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This paper presents a study of causality in a reversible, concurrent setting. There exist 
various notions of causality in π-calculus, which differ in the treatment of parallel 
extrusions of the same name. Hence, by using a parametric way of bookkeeping the order 
and the dependencies among extruders it is possible to map different causal semantics 
into the same framework. Starting from this simple observation, we present a uniform 
framework for reversible π-calculi that is parametric with respect to a data structure that 
stores information about the extrusion of a name. Different data structures yield different 
approaches to the parallel extrusion problem. We map three well-known causal semantics 
into our framework. We prove causal-consistency for the three instances of our framework. 
Furthermore, we prove a causal correspondence between the appropriate instances of the 
framework and the Boreale-Sangiorgi semantics and an operational correspondence with 
the reversible π-calculus causal semantics.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Starting from the 1970s [1] reversible computing has attracted interest in different fields, from thermodynamical 
physics [2] to systems biology [3,4], system debugging [5–7] and quantum computing [8]. Of particular interest is its 
application to the study of programming abstractions for reliable systems: most fault-tolerant schemes exploiting system 
recovery techniques [9] rely on some form of undo. Examples of how reversibility can be used to model transactions or 
transactional memory can be found in [10–12]. An example of how controlled reversibility in π -calculus [11] can be used 
to model checkpoint/rollback schemas is given in [13].

A reversible system is able to execute both in the forward (normal) direction and in the backward one. In a sequential 
setting, there is just one order of reversing a computation: one has just to undo the computation by starting from the 
last action. In a concurrent system there is no clear notion of last action, since due to concurrency there might be differ-
ent actions happening at the same time. A good approximation of what is the last action in a concurrent system is given 
by causally-consistent reversibility, introduced by Danos and Krivine for reversible CCS [14]. Causally-consistent reversibil-
ity relates causality and reversibility of a concurrent system in the following way: an action can be reversed, and hence 
considered as a last one, provided all its consequences have been reversed.

In CCS [15], there exists just one notion of causality: so-called structural causality, which is induced by the prefixing ‘.’ 
operator and by synchronisations. As a consequence, there is only one way of reversing a CCS trace, and from an abstract 
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point of view there exists only one reversible CCS. Evidence for this has been given first [16], where an equivalence is shown 
between the two methods for reversing CCS (namely RCCS [14] and CCSK [17]). Lately in [18] it has been shown that RCCS 
and CCSK are equivalent in terms of LTS isomorphism.

When moving to more expressive calculi with name creation and value passing like the π -calculus, matters are more 
complex. As in CCS, structural causality in the π -calculus is determined by the nesting of the prefixes; for example, in 
process ba.ce the output on channel c structurally depends on the output on b. Extruding (or opening) a name generates 
an object dependency; for example, in process νa (ba | a(z)) the input action on a depends on the output on b. There are 
different interpretations of the object dependency which are easily distinguished when the parallel extrusion of the same 
name and dynamic creation of extruders via name passing is considered. Intuitions about the three approaches will be given 
using a recurring example throughout the paper. We abstract away from the techniques for keeping track of causality and 
consider just the order between the actions.

Let us consider a π -calculus process P = νa(ba | ca | a(x)) | b(y).(yd | e y). After the synchronisation on the channel b, 
we obtain a π -calculus process P ′ = νa(ca | a(x) | ad | ea) where the new extruder ea of the name a is enabled. Now, we 
observe the two actions executing on the channel a. We have three different possibilities.

The classical and the most used approach to causality in the π -calculus is the one where the order of extrusions matters, 
hence the first output executed by process P ′ , say ca, will cause both actions a(x) and ad. Moreover, the first output will 
cause the action ea as well. The actions a(x) and ad can communicate with each other without any constraints. Some of 
the causal semantics representing this idea are [19–21] and all of them are defined for standard (forward-only) π -calculus. 
In [19] the authors claim that, after abstracting away from the technique used to record causal dependences, the final order 
between the actions in their semantics coincides with the ones introduced in [20,21]. Hence we group these semantics 
together as a single approach to causality.

Secondly, in [22], the actions a(x) and ad depend on one of the extruders, ca and ea executed concurrently, but there 
is no need to keep track of which one exactly. Additionally, the action ad is structurally dependent on the communication 
which happened on channel b. This causal semantics is defined for the forward-only π -calculus.

Finally, [23] introduces another interpretation of parallel extrusion by resorting to a compositional causal semantics for 
the reversible π -calculus in [23]. Concerning the common example, the extrusions ca and ea are executed concurrently. 
If the action a(x) synchronises with the environment, it chooses its cause to be one of the extruders. Otherwise, if it 
communicates with the process ad its cause needs to be the action that instantiates the name a in process ad, which is 
the very first action, synchronisation on the channel b. The idea behind this is that the causality of the visible actions is 
an anticipation of the causality of synchronisations they are involved in. This causal semantics enjoys certain correctness 
properties which are not satisfied by the other semantics.

Some correctness criteria for causal models have been proposed in [24] where it was shown that the approach of [23]
satisfies them while those of [19,20] do not. However, there is a question about causality and π -calculus which still has 
to be solved. In [25] it has been shown that the (forward) causal semantics induced by the reversible higher-order π -
calculus [26] coincides with the one of [20] when considering reduction semantics (e.g., considering closed systems). That 
is, the causality considered by [26] coincides with the structural one. One could conclude that while considering closed 
systems the causal semantics of [26] and [23] are the same, even if [26] does not keep track of causal information about 
the instantiators. One interpretation of this fact is that [23] uses more causal information than required. But this is still left 
to be proven. We believe that a common framework will help us compare them.

The novelty of [23] in handling extrusion for reversible π is to endow an extruded name with a “history”, that is, a 
set of process identifiers which extruded that particular name. In this way it is possible to keep track of all the possible 
causes and eventually choose one. By starting from this idea, if we had to model the causality of [20], in which the first 
extruder causes all the subsequent actions, then we could endow the extruded name with an ordered list of extruders, in 
which naturally the order plays a relevant role. Then by starting from this idea, we present a framework for reversible π -
calculi that is parametric with respect to the data structure that stores information about the extrusion of a name. Different 
data structures will lead to different approaches to the parallel extrusion problem, including the three described above. 
Our framework allows us to add reversibility to semantics where it was not previously defined. By varying the parameters, 
different orderings of the causally-consistent backward steps are allowed. For the three instances of the framework, we 
provide full proof of causal-consistency, which was never provided for reversible semantics using the causality of [20,
22]. Our intention is to develop a causal behavioural theory for the framework, in order to better understand different 
interpretations of reversibility in the π -calculus, and to use this understanding for causal analysis of concurrent programs.

A preliminary discussion of the framework appeared in [27], where some initial ideas were given. Moreover in [27] it 
was argued that it was necessary to modify the semantics of [20] in order to add information about silent actions. In this 
work we fully develop the idea behind the framework and leave the semantics of [20] unchanged, apart from using a late 
semantics, rather than early as originally given.

Contributions. We present a framework for reversible π -calculi which is parametric in the bookkeeping data structure used 
to keep track of the object dependency. As reversing technique, we will extend the one introduced by CCSK [17], which 
is limited to calculi defined with GSOS [28] inference rules (e.g., CCS, CSP), to work with more expressive calculi featuring 
name passing and binders. This choice allows us to have a compositional semantics which does not rely on any congruence 
rule (in particular the splitting rule used by [23]). Depending on the bookkeeping data structure used to instantiate the 
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framework, we can obtain different causal semantics (i.e., [23,20,22]). We then show that the three corresponding instances 
enjoy the standard properties for a reversible calculus, namely the loop lemma and causal consistency. In particular, this is a 
novel result for reversible calculi whose underlying causal semantics is one of [20,22]. Also, we prove causal correspondence 
between the causal semantics introduced in [20] and the matching instance of our framework. Also, we prove a correspon-
dence in terms of strong back and forth bisimulation between an instance of our framework and [23]. This is due to the 
fact that we use a different notion of concurrent/conflicting transitions with respect to [23].

The rest of the paper is structured as follows: an informal presentation of the framework is given in Section 2, while its 
syntax and operational semantics are given in Sections 3 and 4, respectively. The properties of the framework are given in 
Section 5 (full proofs can be found in Appendix A). In Section 6, we show how by using different data structures we can 
encompass different causal semantics. The operational correspondence between the matching instance of our framework and 
the causal semantics of [23] is presented in Section 6.1.1 (full proofs and additional examples can be found in Appendix B), 
while the correspondence with the semantics of [20] is given in Section 6.2.3 (full proofs are gathered in Appendix C). 
Section 7 concludes the paper.

This paper is a revised and enhanced version of [29]. In particular:

• Section 2 has been revised and expanded;
• in Sections 3 and 4 the framework has been extended with recursion. Examples 1 and 2 have been revised and more 

explanations have been added;
• Section 5 has been extended with Examples 3–6, which are not present in [29]. Moreover, a novel notion of concurrent/

conflicting transitions is presented, which differs from the one of [23];
• Section 6 has been totally revised: more commentary on the various semantics has been added and Examples 8, 13

and 18 have been revised;
• Section 6.1.1 is new. It presents an encoding from our framework to Rπ [23] and then shows a tight correspondence 

between a term of our framework (instantiated with the causality of Rπ ) and its encoding in Rπ ;
• the proofs in Section 6.2.3 have been revised and Examples 14–17 are added for a better understanding of proofs ideas;
• Appendix A, Appendix B and Appendix C include full proofs.

2. Informal presentation

A general approach to deriving a reversible variant of a CCS-like calculi defined through SOS rules is given in [17]. The 
main ideas behind this approach are to make each operator of a calculus static and to use communication keys to uniquely 
identify the actions. While dynamic operators as choice or prefix are forgetful operators, in the static one, there is no loss 
of information. For instance, if we consider a CCS process P = a.b | a.c the synchronisation between parallel components of 
the process P is:

a.b | a.c
τ−→ b | c

As we can see, the information about the synchronising prefixes is lost. This is due to the fact that the prefixing operator is 
dynamic. By following the approach of [17] we can make the prefixing operator reversible in this way:

a.b | a.c
τ [i]−−→ a[i].b | a[i].c

As we can notice, prefixes a and a are not discarded but annotated with a communication key i. Decorated prefixes are used 
only for the backward steps, hence the resulting process can continue forward computing behaving as process b | c. Hence 
we could have that the process can for example produce the label c:

a[i].b | a[i].c c[ j]−−→ a[i].b | a[i].c[ j]
or it can revert the synchronisation to get back to the original process:

a[i].b | a[i].c τ [i]
a.b | a.c

We expand this idea in the more complex setting of the π -calculus, where the possibility of creating new channel names 
and treating channels as sent values is enabled. For instance, by adapting the process P to the π -calculus, we have the 
computation:

a(x).Q 1 | ab.Q 2
i:τ−→ a(x)[i].Q 1{bi

/x} | ab[i].Q 2

In the substitution {bi
/x}, variable x is substituted by the name b decorated with the key i. Decorations on the names keep 

track of the substitutions occurring during the communications. In the example, it means that variable x is substituted 
with the name b in the synchronisation identified by the key i. In the example above, there is a distinction between the 
past prefix ab[i] and the instantiated name bi . The former indicates that the action ab has been executed and given a 
communication key i, while the second implies that the name b was resolved via the communication indicated by i.
3
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P , Q ::= 0 | ba.P | b(x).P | P | Q | νa(P ) | A

Recursion A � P A

P, Q ::= 0 | b ja j1 .P | b j(x).P | P | Q | νainit�(P) | A

X, Y ::= P | b
j
a j1 [i, K ].X | b j(x)[i, K ].X | X | Y | νa�(X)

Fig. 1. Syntax of the framework.

Remark 1. We could keep track of the substitution of the name differently. For example, we could record in the memory, 
along with the key i the process before the substitution, as is done in [25,26]. By applying this approach to the π -calculus 
example above, we would have the computation:

a(x).Q 1 | ab.Q 2
i:τ−→ a(x)[i, Q 1].Q 1{b/x} | ab[i].Q 2

As we can notice, the input prefix is annotated with both key and the process Q 1 before the substitution. This approach is 
memory consuming but it allows one to revert substitution (which is not a bijection) in a simple way by just restoring the 
past process. By just keeping track of substitutions via decorations, we avoid keeping a copy of each process before an input 
action.

In π -calculus, by adopting the static way of bookkeeping the past actions that processes performed as in [17], we avoid 
using the structural rule of Rπ [23] to split a parallel composition. In what follows we will refer to this rule as the Split

rule. In Rπ , processes with a computational history are called monitored processes. A monitored process has the form m � P . 
One drawback of this approach is the need for the split rule to enable a parallel composition of processes sharing the same 
memory to perform a forward action. In the structural rule

m � (P | Q ) ≡ 〈↑〉 · m � P | 〈↑〉 · m � Q

memory is duplicated and annotated with 〈↑〉 recording the fact that in the past a process split in two parallel ones. This 
rule is not associative and, as shown in [25], brings an undesired feature in which equivalent processes performing the same 
action may become non-equivalent processes.

Besides keeping track of the actions executed in the past of the process, the framework has to remember also the actions 
which extruded a certain name. Following the idea introduced in [23], this can be done by using the contextual cause of an 
action. For example, in the computation

νa (ba | a(x).P )
i:b〈νa〉−−−−→ νa{i}(ba[i] | a(x).P )

j:a(x)−−−→ νa{i}(ba[i] | a(x)[ j, i].P )

we can notice that after the extrusion of the name a (the first action performed), the restriction νa is not discarded as in 
the standard π -calculus, but transformed into the memory νa{i} . In this way, the fact that name a is extruded by the action 
i, is recorded. The memory νa{i} does not behave as a restriction operator anymore; hence name a is free and the input 
action on the channel a can be executed. The contextual cause of the action a(x) is i and this is recorded in the process 
a(x)[ j, i].P .

3. Syntax

We assume the existence of the following denumerable infinite mutually disjoint sets: the set N of names, the set K of 
keys, and the set V of variables. Moreover, we let K∗ = K ∪ {∗} where ∗ is a special key. We let a, b, c range over N ; x, y
range over V ; i and its decorated variants range over K, j and its decorated variants range over K∗ .

The syntax of the framework is depicted in Fig. 1. Processes, given by the P , Q productions, are the standard processes 
of the π -calculus [30]: 0 represents the idle process; ba.P is the output-prefixed process indicating the act of sending name 
a over a channel b; b(x).P is the input-prefixed process indicating the act of receiving a value (which will be bound to the 
variable x) on channel b. Process P | Q represents the parallel composition of two processes, while νa(P ) represents the fact 
that name a is restricted in P . The symbol A represents a process constant defined as A � P A , where P A is a π -calculus 
process. It is assumed that each process identifier A has a single defining equation of the form A � P .

Reversible processes, given by the X, Y productions, are defined on top of π -calculus processes. Differently from the stan-
dard π -calculus, performed actions are not discarded, but annotated and kept in the structure of a process, representing its 
history. A reversible process P behaves as a standard π -calculus process P , only decorated with instantiators. The instan-

tiators are used to keep track of the substitutions. The prefix b
j
a j1 [i, K ] is called a past output and it records the fact that 

in the past, the process performed an output action identified by key i and that the contextual cause set of the executed 
actions was K ⊆ K∗ . Prefix b j(x)[i, K ].X represents a past input recording the fact that the executed action was the input 
action identified by key i and its contextual cause set was K . Parallel composition of two reversible processes X and Y is 
4
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represented with X | Y . Inspired by [23], the restriction operator νa� is decorated with the memory � which keeps track 
of the extruders of the name a. When � is empty (empty(�) = true—we will give the precise definition below), νa� will 
act as the classical restriction operator νa of the π -calculus.

In the framework we use π -calculus processes P decorated with instantiators, written as P; we do the same for process 
constants A. Then, we define A as A � PA .

Process definition is instrumental in adding (reversible) recursion in a neat way, as shown in [31], as it does not require 
us to keep track of the substituted process variable. We denote the set of reversible processes with X .

Remark 2. If the prefix of the process is not relevant, we will denote it with π . Hence, we have π = b
j
a j1 or π = b j(x). 

We shall use notation b∗ in the subject or the object position to specify that name b has no instantiator. We will use this 
technicality in Definition 8 when we define the notion of an initial process in the framework. We denote with K = {∗}
the fact that there is no action that caused the executing action, while K = {∗, i} or K = {i} symbolises the fact that the 
executing action is caused by the action identified with the key i. Later in this section and in Section 4, we shall see 
that K = {∗, i} and K = {i} have the same meaning, but the difference appears as a consequence of the fact that different 
definitions for the data structure � use different machinery to record the causes (Definitions 14–16).

Remark 3. The framework can be easily equipped with the choice operator (+) by making the operator static as in [17]. 
Adding the choice operator would result just in a more complex syntax, but all the results will still hold as the choice 
operator does not affect the notion of causality.

To simplify the manipulation of reversible processes, we shall define history and general contexts. A history context 
represents the executed prefixes of a process. For instance, the process X = b

∗
a∗[i, K ].c∗a∗[i′, K ′].P can be written as X =

H[P], where H = b
∗
a∗[i, K ].c∗a∗[i′, K ′].•. On top of the history context, we define a general context by adding parallel and 

restriction operators. For instance, process Z | Y | X can be written as C[X] where C = Z | Y | •. Formally, we have:

Definition 1 (History and general context). History contexts H and general contexts C are reversible processes with a hole •, 
defined by the following grammar:

H ::= • | π [i, K ].H C ::= H | X | C | νa�(C)

Definition 2 (Set of free names). The set of free names of a given process X , written as fn(X), is defined as:

fn(X | Y ) = fn(X) ∪ fn(Y )

fn(νa�(X)) = fn(X) \ {a} if empty(�) = true

fn(νa�(X)) = fn(X) ∪ {a} if empty(�) �= true

fn(b
j
a j′ .X) = fn(X) ∪ {b,a}

fn(a j(x).X) = fn(X) ∪ {a}
The set of bound names of the process X is defined as bn(X) = n(X) \ fn(X) where n(X) denotes the set of all names 
appearing in process X .

Definition 3 (Set of free variables). The set of free variables of the given process X , written as fv(X), is defined as:

fv(X | Y ) = fv(X) ∪ fv(Y ) fv(b
j
a j′ .X) = fv(X)

fv(νa�(X)) = fv(X) fv(a j(x).X) = fv(X) \ {x}
The set of bound variables of the process X is defined as bv(X) = v(X) \fv(X) where v(X) denotes the set of all variables 
appearing in process X .

Given a process X , we represent the set of its free names and variables, written Fnv(X) as Fnv(X) = fn(X) ∪ fv(X). 
Similarly, the set of bound names and variables is written as Bnv(X).

3.1. Abstract data types

The framework is parametric with respect to the data structure � which we define as an interface (in the style of a Java 
interface) by giving the operations that it has to offer.

Definition 4. The symbol � represents a data structure defined with the following operations:

(i) init : � → � initialises the data structure
5
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(ii) empty : � → bool predicate telling whether � is empty
(iii) + : � ×K → � operation adding a key to �

(iv) #i : � ×K → � operation removing a key from �

(v) ∈:K× � → bool predicate telling whether a key belongs to �

In what follows, we give a description and definitions of operations defined on the three instances of the data structure 
�: set, set indexed with an element and set indexed with a set. As we shall see, these three instances will give rise to three 
different notions of causality.

Set. The data structure is a set � containing keys (i.e. � ⊂K∗) of all the actions that extruded name a. The idea behind the 
memory νa� is that any of the keys contained in � can be a contextual cause for some action having in the subject position 
name a. For example, in the process νa{i1,i2}(Y | a(x)), the contextual cause of the action a(x) can be chosen from the set 
� = {i1, i2}.

Remark 4. In what follows we will abuse notation and write X#i , that is, we apply the operator #i to a process instead of a 
data structure �. The meaning of X#i is that the operator will be applied only on the data structures � contained in X .

Definition 5 (Operations on a set). The operations on a set � are defined as:

(i) init(�) = ∅
(ii) empty(�) = true, when � = ∅

(iii) + is the addition of elements to a set
(iv) #i is defined as the identity, that is �#i = �

(v) i ∈ � means that the key i belongs to the set �

The data structure is initialised when � = ∅ and it implies that empty(�) = true, as expected. The operation #i is 
defined as the identity, while + and i ∈ � are classical operations defined on sets.

Indexed set. The data structure is an indexed set �w , where set � is a set containing keys (� ⊂ K∗) of all the actions that 
extruded name a and w is the key of the very first action that extruded name a. In this case the contextual cause for name 
a is exactly w . For instance in the process νa{i1,i2}i1

(Y | a(x)) the contextual cause of the action a(x) is i1. We shall write 
w = ∗ if there is no action that extruded name a.

Definition 6 (Operations on an indexed set). The operations on an indexed set �w are defined as:

(i) init(�w) = ∅∗
(ii) empty(�w) = true, when � = ∅ ∧ w = ∗

(iii) + is defined as: �w + i =
{

(� ∪ {i})i, when w = ∗
(� ∪ {i})w , when w �= ∗

(iv) #i is defined as: (�w )#i =
{

(�w)#i = �∗, when i = w

(�w)#i = �w , otherwise
(v) i ∈ �w means that the key i belongs to the set �, regardless of w (e.g. i ∈ {i}∗)

The data structure is initialised when init(�w) = ∅∗ and it implies that empty(�w) = true, as expected. The +
operator is defined as: the key added to �w will be added to the set � and in the place of w if w = ∗, otherwise it will be 
added just to the set �. For instance, after adding key i3 to {i1, i2}∗ we obtain {i1, i2, i3}i3 . Operation #i substitutes the value 
of w in �w with element ∗, when w = i. For example, the result of applying operation #i on {i, i1}i is {i, i1}∗ . The operation 
of belonging is defined on the set � in the classical way, regardless of the index w . For instance, the key i belongs to the 
indexed set {i1, i}i1 .

Set indexed with a set. The data structure is a set indexed with a set �� , where � is a set containing keys of all the 
actions that extruded name a and � ∈ K∗ is a set containing keys of the extruders of name a which are not part of the 
communication. The idea behind νa��

is that the contextual cause for the name a is the set �. For example, in the process 
νa{i1,i2,i3}{∗,i1,i3}(Y | a(x)) the contextual cause of the action a(x) is � = {∗, i1, i3}. We write � = {∗} when there is no action 
that extruded name a which is not part of the synchronisation.

Definition 7 (Operations on a set indexed with a set). The operations on a set indexed with a set �� are defined as:

(i) init(��) = ∅{∗}
6
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(ii) empty(��) = true, when � = ∅ ∧ � = {∗}
(iii) + is defined as: (��) + i = (� ∪ {i})(�∪{i})
(iv) #i is defined as: (��)#i = ��\{i}
(v) i ∈ �� means that the key i belongs to the set �, regardless of � (e.g. i ∈ {i}{∗})

The data structure is initialised when init(��) = ∅{∗} and it implies that empty(�{∗}) = true. The + operator is 
defined by adding the key into both sets. For instance, the result of adding key i into the data structure {i1, i2}{∗,i2} is 
{i1, i2, i}{∗,i2,i} . The operation #i removes the key i from the set �. For example, if we apply operation #i to the data 
structure {i1, i2, i}{∗,i2,i} , we obtain {i1, i2, i}{∗,i2} (the key i is deleted from the set � = {∗, i2, i}). The operation of belonging 
is defined on the set � in the classical way, regardless of the set �. For instance, the key i belongs to the data structure 
{i1, i}{∗,i1} .

In the following we define the initial process in the framework.

Definition 8 (Initial process). A reversible process X = P is initial if it is derived from a π -calculus process P where all the 
restriction operators are initialised (i.e. restrictions are decorated with init(�)) and in every prefix, names are decorated 
with a distinguished symbol ∗.

4. Operational semantics of the framework

The grammar of the labels defined on the transition t : X
μ−→ Y is:

μ ::= (i, K , j) : α α ::= ba | b(x) | b〈νa�〉 | τ
The triple (i, K , j) contains the key i that identifies the action α, the contextual cause set K ⊆ K∗ and the instantiator 
j ∈K∗ of the action α. The action α can be:

• standard input and output on the channel b, symbolised with b(x) and ba, respectively;
• the silent action; or
• action b〈νa�〉 that represents the classical bound output from the π -calculus, when � is empty (empty(�) = true), 

otherwise stands for free output decorated with a memory �.

We say that name b is in the subject position of the action α, written as subj(α) = b if α ∈ {ba, b(x), b〈νa�〉}. Similarly, 
name b is in the object position, written as obj(α) = b if α ∈ {ab, a〈νb�〉}. We write bn and bv for the set of bound names 
and variables of the action α:

bn(ba) = ∅ bv(ba) = ∅
bn(a(x)) = ∅ bv(a(x)) = {x}
bn(b〈νa�〉) = {a} when empty(�) = true bv(b〈νa�〉) = ∅
bn(b〈νa�〉) = ∅ when empty(�) �= true

With Bnv(α) = bn(α) ∪ bv(α) we denote the set of bound names and variables in the action α.
Now we define the function key(·) which computes the set of keys in a given process and we specify the notion of 

freshness for a key.

Definition 9 (Process keys). The set of communication keys of a process X , written key(X), is inductively defined as follows:

key(X | Y ) = key(X) ∪ key(Y ) key(π [i, K ].X) = {i} ∪ key(X)

key(νa�(X)) = key(X) key(P) = ∅

Definition 10. A key i is fresh in a process X , written fresh(i, X) if i /∈ key(X).

With the next definition we define the relation between the cause set and the instantiators, which is necessary to define 
the communication rules.

Definition 11. Given a cause set K and an instantiator j, we have

K �� j if K = { j} or ∗ ∈ K
7
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(Out1) b
j
a j1 .P

(i,K , j):ba−−−−−→→ b
j
a j1 [i, K ].P

(Out2)

X
(i,K , j):ba−−−−−→→ X ′ fresh(i,H[X])

H[X] (i,K , j):ba−−−−−→→ H[X ′]

(In1) b j(x).P
(i,K , j):b(x)−−−−−−→→ b j(x)[i, K ].P

(In2)

X
(i,K , j):b(x)−−−−−−→→ X ′ fresh(i,H[X])

H[X] (i,K , j):b(x)−−−−−−→→ H[X ′]

(Par)

X
(i,K , j):α−−−−−→→ X ′ i /∈ Y Bnv(α) ∩ Fnv(Y ) = ∅

X | Y
(i,K , j):α−−−−−→→ X ′ | Y

(Com)

X
(i,K , j):ba−−−−−→→ X ′ Y

(i,K ′, j′):b(x)−−−−−−−→→ Y ′ K �� j′ ∧ K ′ �� j

X | Y
(i,{∗},∗):τ−−−−−−→→ X ′ | Y ′{ai

/x}

(Rec)

PA
(i,K , j):α−−−−−→→ X ′ A � PA

A
(i,K , j):α−−−−−→→ X ′

Fig. 2. Common rules for all instances of the framework.

For instance if K = {∗, i1, i2} and j = i3 the relation K �� j holds since we have ∗ ∈ K . We will come back to this relation 
when explaining the rule (Com).

We let A be the set of all actions ranged over by α. The set of all possible labels is defined as L = K×P(K∗) ×K∗ ×A, 
where P(K∗) denotes the power set of K∗ . In the following definition, we give the operational semantics of the framework.

Definition 12 (Operational semantics). The operational semantics of the reversible framework is given as a pair of LTSs defined 
on the same set of reversible processes X and set of labels L: a forward LTS (X , L, −→→) and a backward LTS (X , L, ). 
We define −→ = −→→ ∪ , where −→→ is the least transition relation induced by the rules in Figs. 2 and 3 (pages 8 and 10
respectively); and is the least transition relation induced by the rules in Fig. 4 (page 11).

In what follows, we give the forward and backward rules of our framework defined with a late semantics for inputs. 
Forward rules are divided into two groups, depending on whether they are common to all the instances of the framework 
(rules which are independent of the data structure) or they are parametric with respect to �.

Common rules are given in Fig. 2, where H is a history context (Definition 1). As we can notice, in the rules (Out1) and 
(In1), executed actions remain in the structure of the process and they are annotated with the memory [i, K ], where i is 
the fresh key bound to the executing action and K is the cause set of the action. The label of the transition except the key 
i and cause set K contains also the instantiator j of the name b. A prefixed process H[X] can perform a forward step if 
process X can execute it. This is depicted by the rules (Out2) and (In2). The rule for parallel composition (Par) allows a 
process to execute the action α, under the condition that the key i is not used by another process in parallel (i /∈ Y ). This 
condition guarantees uniqueness of the action keys.

Rule (Com) allows synchronisation between two processes in parallel which satisfy the condition K �� j′ ∧ K ′ �� j. The 

idea behind the condition is the following one: having two premises p1 : X
(i,K , j):ba−−−−−→→ X ′ and p2 : Y

(i,K ′, j′):b(x)−−−−−−−→→ Y ′ , if name 
b in the premise p1 is instantiated with the action j, then in the premise p2, there are two possibilities for the cause set 
K ′ of the action b(x) so that condition K ′ �� j holds, namely ∗ ∈ K ′ or K ′ = { j}. This condition is necessary when we want 
to capture the semantics of [23].1 As we will see in Section 6.1, to capture it, the set � will be used as the data structure 
and the cause set K will be the singleton. Then the condition K ′ �� j is satisfied if ∗ ∈ {K ′, j} or K ′ = { j}. For the other 
semantics that we considered, K is the set obtained by adding the index of the used data structure (w or �) to it, every 
time when a certain restriction is passed (we will give more details in Section 6). Therefore, since in the initial process 
w = ∗ and � = {∗}, we have ∗ ∈ K , which makes the condition on the rule (Com) always true.

Additionally, in the rule (Com), the necessary substitution is applied to the continuation of the input process in the 
following way: every occurrence of variable x ∈ Fnv(Y ′) is substituted with the name a decorated with the key i of the 
executed action. In this way, future computations of the process Y ′{ai

/x} will be aware that variable x was substituted with 
the name a during the synchronisation identified by i. In ai , the key i is called the instantiator and used only to track the 
substitution, not to define a name. For instance, in the reversible process b

j
a∗.P | b j′ (x).P′ , the communication between 

b
j
a∗.P and b j′ (x).P′ is allowed even if they do not have the same instantiators on the channel b.

Rule (Rec) allows recursive computations. Following [17] we use process constants to define recursive processes. This is 
simpler than dealing with the recursion operator rec X .P since there is no need of keeping track of the substitution of the 

1 In the semantics of [23], the condition on the communication rule is k =∗ j′ ∧ k′ =∗ j, where k =∗ j is defined as ∗ ∈ {k, j} or k = j. We adapt this 
definition to our framework.
8
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process variable. For example, if we take the usual rule for the recursive process:

(Rec1)

P {rec X .P /X } α−→ P ′

rec X .P
α−→ P ′

in our framework, we should have the following forward and backward rules

(Rec1)

P {rec X .P /X } (i,K , j):α−−−−−→→ P ′

rec X .P
α−→→ rec X[i, P ].P ′

(Rec1
•

)

P ′ (i,K , j):α
P ′′

rec X[i, P ].P ′ (i,K , j):α
rec X .P

which keep track of the fact that the process variable X has been substituted in P by the recursive definition, because of 
the action identified by i. For the same reason, we also do not consider constants which are parametric to a set of names, 
that is A(x1, . . . , xn) � P . By resorting to process constants, we avoid keeping track of such information.

For example, let A � b
∗
a∗.A | c∗d∗ be a process constant. The execution of the output action on the channel b is:

b
∗
a∗.A | c∗d∗ (i1,{∗},∗):ba−−−−−−−→→ b

∗
a∗[i1, {∗}].A | c∗d∗

Now we can substitute A with b∗
a∗.A | c∗d∗ and execute the output action on the channel b again:

b
∗
a∗[i1, {∗}].(b∗

a∗.A | c∗d∗) | c∗d∗ (i2,{∗},∗):ba−−−−−−−→→ b
∗
a∗[i1, {∗}].(b∗

a∗[i2, {∗}].A | c∗d∗) | c∗d∗

In order to have better intuition about the rules presented above, we give the following example.

Example 1. Let X = b
∗
a∗.0 | b∗(x).xc∗ be a reversible process. Process X has two possibilities of executing forward actions: 

(i) either the two prefixes synchronise with the environment, (ii) or they synchronise with each other.

(i) An output action ba and an input action b(x) can be performed. In this case actions synchronise with the environment:

b
∗
a∗.0 | b∗(x).xc∗ (i,{∗},∗):ba−−−−−−→→ b

∗
a∗[i, {∗}].0 | b∗(x).xc∗

(i′,{∗},∗):b(x)−−−−−−−→→ b
∗
a∗[i, {∗}].0 | b∗(x)[i′, {∗}].xc∗ = Y1

As we can notice, the output action ba is identified by key i, while the input action is identified by key i′ .
(ii) Two parallel components of the process X can synchronise over the channel b, and we have:

b
∗
a∗.0 | b∗(x).xc∗ (i,{∗},∗):τ−−−−−−→→ b

∗
a∗[i, {∗}].0 | b∗(x)[i, {∗}].aic∗ = Y2

We can notice that during the synchronisation identified with key i, variable x was substituted with the received name 
a decorated with the key i. In this way substitution of a name is recorded.

Parametric rules are represented in Fig. 3. Depending on the data structure used, the mechanism for choosing a con-
textual cause differs. For this reason, we introduce two new predicates Cause(·) and Update(·). The intuition behind the 
predicates is that they define how the contextual cause set is chosen from the memory �. In the following, we give the 
definitions of the mentioned predicates for three data structures that we will use.

To be able to define the predicate Cause(·) when data structure � = � is used, we first need to adapt the definition 
of the instantiation relation ([23, Definition 2.2]) to our framework and define it on the past prefixes. For instance in the 
process

b∗(x)[i1, K1].ai1 c∗[i2, K2].Y
actions i1 and i2 are in instantiation relation, since action i1 instantiated the name a. We can see it in the past prefix 
ai1 c∗[i2, K2] where name a is decorated with the key i1. Formally, the instantiation relation on the prefixes is defined as 
follows.

Definition 13 (Instantiation relation on the framework). Two keys i1 and i2 such that i1, i2 ∈ key(X) and X=C[b j1 (x)[i1, K1].Y ]
with Y = C ′[π [i2, K2].Z ] where j2 ∈ π , are in instantiation relation, denoted with i1 �X i2, if j2 = i1. If i1 �X i2 holds, we 
will write K1 �X K2.

Now we can give the definition of the predicates.
9
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(Cause Ref)

X
(i,K , j):α−−−−−→→ X ′ a ∈ subj(α) empty(�) �= true Cause(�, K , K ′, X)

νa�(X)
(i,K ′, j):α−−−−−→→ νa�(X ′

[K ′/K ]@i)

(Open)

X
(i,K , j):α−−−−−→→ X ′ α = ba ∨ α = b〈νa�′ 〉 Update(�, K , K ′)

νa�(X)
(i,K ′, j):b〈νa�〉−−−−−−−−→→ νa�+i(X ′

[K ′/K ]@i)

(Close)

X
(i,K , j):b〈νa�〉−−−−−−−−→→ X ′ Y

(i,K ′, j′):b(x)−−−−−−−→→ Y ′ K �� j′ ∧ K ′ �� j

X | Y
(i,{∗},∗):τ−−−−−−→→ νa�(X ′

#i | Y ′{ai
/x})

(Res)

X
(i,K , j):α−−−−−→→ X ′ a /∈ α

νa�(X)
(i,K , j):α−−−−−→→ νa�(X ′)

Fig. 3. Parametric rules.

Definition 14 (Predicates when � = �). If the data structure � is instantiated with the set �, the predicates from Fig. 3 are 
defined as:

1. Cause(�, K , K ′, X) stands for K ′ = K if K ⊆ � or K ′ ⊆ � such that K �X K ′;
2. Update(�, K , K ′) stands for K ′ = K .

The predicate Update(�, K , K ′), used in rule (Open) means that the new cause K ′ is the same as the old one, denoted 
with K . The first predicate defined above, Cause(�, K , K ′, X), is used in the rule (Cause Ref) and it defines how the new 
contextual cause K ′ is chosen. In particular, in the rule (Cause Ref) when passing a restriction νa� , the contextual cause 
set K might be preserved (i.e. K ′ = K ) if K ⊆ � or it can be replaced by the new cause set K ′ ⊆ � such that K �X K ′ . We 
illustrate this with examples in Section 6.1.

Definition 15 (Predicates when � = �w ). If the data structure � is instantiated with indexed set �w , the predicates from 
Fig. 3 are defined as:

1. Cause(�w , K , K ′, X) stands for K ′ = K ∪ {w}
2. Update(�w , K , K ′) stands for K ′ = K ∪ {w}

We can notice that the predicates Cause(·) and Update(·) define the new cause set K ′ by adding the value of w to 
the old set of causes K .

Definition 16 (Predicates when � = ��). If an indexed set �� is chosen as a data structure �, the predicates are defined as:

1. Cause(��, K , K ′, X) stands for K ′ = K ∪ �

2. Update(��, K , K ′) stands for K ′ = K

In the definition above we can notice that the new cause K ′ in the predicate Cause(��, K , K ′, X), gathers all extrusions 
of a restricted name executed previously which are not part of the synchronisations.

Let us comment on the rules in Fig. 3. Every time when action α, with a ∈ α, passes the restriction νa� , it is neces-
sary to check if the contextual cause set needs to be modified. If name a is in the subject position of the label α and 
empty(�) = false, then rule (Cause Ref) is used, otherwise, if name a is in the object position, rule (Open) is applied. 
Rule (Cause Ref) can be used only if name a was already extruded by some other action in the past and in this case predi-
cate Cause(�, K , K ′, X) ensures that the contextual cause set K will be substituted with a new cause set K ′ . Additionally, 
predicate Cause(�, K , K ′, X) gives the definition of the cause set K ′ . The contextual cause update operation defined on 
the process X , written as X[K ′/K ]@i , updates the contextual cause K of the action identified by i with the new cause K ′ . 
Formally:

Definition 17 (Contextual cause update). The contextual cause update of the process X , written X[K ′/K ]@i is defined as follows:

(X | Y )[K ′/K ]@i = X[K ′/K ]@i | Y [K ′/K ]@i

(νa�(X))[K ′/K ]@i = νa�(X)[K ′/K ]@i

(π [h, K1].X)[K ′/K ]@i = π [h, K1].X[K ′/K ]@i if K1 �= K

(π [i, K ].P)[K ′/K ]@i = π [i, K ′].P

10
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(Out1
•

) b
j
a j1 [i, K ].P (i,K , j):ba

b
j
a j1 .P

(Out2
•

)

X ′ (i,K , j):ba
X fresh(i,H[X])

H[X ′] (i,K , j):ba
H[X]

(In1
•

) b j(x)[i, K ].P (i,K , j):b(x)
b j(x).P

(In2
•

)

X ′ (i,K , j):b(x)
X fresh(i,H[X])

H[X ′] (i,K , j):b(x)
H[X]

(Par
•

)

X ′ (i,K , j):α
X i /∈ Y

X ′ | Y
(i,K , j):α

X | Y

(Res
•

)

X ′ (i,K , j):α
X a /∈ α

νa�(X ′)
(i,K , j):α

νa�(X)

(Com
•

)

X ′ (i,K , j):ba
X Y ′ (i,K ′, j′):b(x)

Y K �� j′ ∧ K ′ �� j

X ′ | Y ′ (i,{∗},∗):τ
X | Y {x/ai }

(Open
•

)

X ′ (i,K , j):α
X α = ba ∨ α = b〈νa�′ 〉 Update(�, K , K ′)

νa�+i(X ′)
(i,K ′, j):b〈νa�〉

νa�(X)

(Cause Ref
•

)

X ′ (i,K , j):α
X a ∈ subj(α) empty(�) �= true Cause(�, K , K ′, X)

νa�(X ′)
(i,K ′, j):α

νa�(X)

(Close
•

)

X ′ (i,K , j):b〈νa�〉
X Y ′ (i,K ′, j′):b(x)

Y K �� j′ ∧ K ′ �� j

νa�((X ′)#i | Y ′)
(i,{∗},∗):τ

X | Y {x/ai }

(Rec
•

)

X ′ (i,K , j):α
PA A � PA

X ′ (i,K , j):α
A

Fig. 4. Backward rules.

We use this operation in rules (Cause Ref) and (Open). A restricted name can be sent out to the environment (extruded) 
by applying the rule (Open). In this case, we need to record what was the key of the action that extruded a restricted 
name. For this reason key i is added into the memory �. The predicate Update(�, K , K ′) in the rule (Open) defines what 
will be the new contextual cause set K ′ . Rule (Close) allows synchronisation between two processes when bound output 
is included. An additional condition on the rule needs to be satisfied. In the resulting process, after execution of the τ -
action, we can notice the operator #i . As we saw in Section 3, different data structures require different implementations 
of it. The operator #i removes from the data structure �, the keys of the actions that extruded a restricted name and are 
part of synchronisations.2 Therefore, we need to apply the operation #i on every memory of the form νa�′ in the resulting 
process X ′ . The operation is not applied on the very first element νa� since by construction of the rules (Close) and (Open), 
the key i cannot belong to �. Rule (Res) is defined in the usual way. Better intuition of how parametric rules work will be 
given by means of examples in Section 6.

Backward rules are presented in Fig. 4 and they are symmetric to the forward ones. These rules could be made simpler 
by just dropping all the predicates in the premises, since consistency of backward steps is guaranteed by memories and 
keys. Nonetheless, to simplify the proofs, we keep the predicates, even if they are not necessary for the backward transition.

Backward rule (Rec
•) allows one to syntactically put back a constant identifier A provided that the process PA fully 

reverted its computation.
In order to have a better understanding of the backward rules, we shall give the following example.

Example 2. Let us consider the process Y2 = b
∗
a∗[i, {∗}].0 | b∗(x)[i, {∗}].aic∗ . The only possible backward step for process Y2

is undoing the synchronisation done over the channel b:

b
∗
a∗[i, {∗}].0 | b∗(x)[i, {∗}].aic∗ (i,{∗},∗):τ

b
∗
a∗.0 | b∗(x).xc∗

As we can notice, the substitution is also reversed and name ai is substituted with variable x.

2 This is necessary, since in causal semantics [20,22], τ -actions do not bring the causal information.
11
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5. Properties

In this section we shall show some properties of our framework. First we shall show that the framework is a conservative 
extension of standard π -calculus and then that it enjoys causal-consistency, a fundamental property for reversible calculi. 
Most of the terminology and the proof schemas follow those of [14,23], with more complex arguments due to the generality 
of our framework.

All properties defined on the framework are limited to the reachable processes given with the following definition.

Definition 18 (Reachable process). A reversible process is reachable if it can be derived from an initial process by using the 
rules in Figs. 2, 3 and 4.

5.1. Correspondence with the π -calculus

We now show that our framework is a conservative extension of the π -calculus. To do so, we first define an erasing 
function ϕ that, given a reversible process X , by deleting all the past information, generates a π process. Then we shall 
show that there is a forward operational correspondence between a reversible process X and ϕ(X). The proof of the cor-
respondence with the π -calculus is simpler than the one given in [23] for Rπ . The reason for this is that we do not use 
explicit substitutions logged in the event labels as [23]; instead we use direct substitution in the continuation of the input 
process participating in the communication. Let P be the set of π -calculus processes; then we have:

Definition 19 (Erasing function). The function ϕ : X → P that maps reversible processes to the π -calculus, is inductively 
defined as follows:

ϕ(X | Y ) = ϕ(X) | ϕ(Y ) ϕ(b
j
a j′ .P) = ba.ϕ(P)

ϕ(νa�(X)) = ϕ(X) if empty(�) = false ϕ(b j(x).P) = b(x).ϕ(P)

ϕ(νa�(X)) = νa ϕ(X) if empty(�) = true ϕ(0) = 0

ϕ(H[X]) = ϕ(X) if H �= •
The erasing function can be extended to labels as:

ϕ((i, K , j) : α) = ϕ(α) ϕ(ba) = ba

ϕ(b〈νa�〉) = b〈νa〉 when empty(�) = true ϕ(b(x)) = b(x)

ϕ(b〈νa�〉) = ba when empty(�) = false ϕ(τ ) = τ

As expected, the erasing function discards the past prefixes and name restriction operators when � is non-empty. More-
over, it deletes all the information about the instantiators.

Every forward move of a reversible process X can be matched in the π -calculus. To this end we use −→→π to indicate 
the transition semantics of the π -calculus.

Lemma 1. If there is a transition X
μ−→→ Y then ϕ(X) 

ϕ(μ)−−−→→π ϕ(Y ).

Proof. The proof is by induction on the derivation tree of the transition X
μ−→→ Y with the case analysis on the last applied 

rule. �
Now we give the converse of Lemma 1.

Lemma 2. If there is a transition P
ϕ(μ)−−−→→π Q then for all reachable X such that ϕ(X) = P , there is a transition X

μ−→→ Y with 
ϕ(Y ) = Q .

Proof. The proof is by induction on the derivation tree of the transition P
ϕ(μ)−−−→→π Q . �

By combining the two previous lemmata we can state that the relation between a process X and its corresponding π
term P is a strong bisimulation [30, Definition 2.2.1]. Formally:

Corollary 1. The relation given by (X, ϕ(X)), for all reachable processes X, is a strong bisimulation.
12
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5.2. The main properties of the framework

In this section we shall prove some properties of our framework which are typical of a reversible process calculus [14,
17,25,23]. Such properties hold for the three instances of our framework. The first important property is the so-called Loop 
Lemma, stating that any reduction step can be undone. Formally:

Lemma 3 (Loop lemma). For every reachable process X and forward transition t : X
μ−→→ Y there exists a backward transition t′ : Y

μ

X, and conversely.

Proof. The proof follows from the symmetry of the forward and the backward rules. �
Using the symmetry of the rules, we define reverse transitions.

Definition 20 (Reverse transition). The reverse transition of a transition t : X
μ−→→ Y , written t• , is the transition with the same 

label and the opposite direction t• : Y
μ

X , and vice versa. Thus (t•)• = t .

An important component for reversibility is a causal relation between the actions. It is possible to reverse an action α
only if all the actions that were caused by α, were reversed previously. In this way, one avoids reaching states that are 
not consistent. For instance, in the reversible process νa{i1}(ba[i1, {∗}] | a(x)[i2, {i1}]), obtained from the π -calculus process 
νa(ba | a(x)), if the action with the key i1 have been reversed as the first one, we would reach a state that is not consistent 
(it is impossible to have a state in which action with a bound subject is executed before the restricted name was extruded 
and became a free name).

In the following, we give a definition of the causality relation on the framework, regardless of the data structure used. It 
is interpreted as the union of the structural and the object causalities. We start by defining structural dependences between 
two past prefixes. For instance, in the reversible process X = ba[i, K ].cd[i′, K ′], the past prefix with the key i is a structural 
cause of the past prefix with key i′ . Formally:

Definition 21 (Structural cause on the past prefixes). For every two keys i1 and i2 such that i1, i2 ∈ key(X), we say that the 
past prefix with the key i1 is a structural cause of the past prefix with the key i2 in the process X , written as i1 �X i2 if 
X = C[π [i1, K1].Y ] and i2 ∈ key(Y ).

We can now extend the causal relation to work with transitions.

Definition 22 (Structural causality). Transition t1 : X
(i1,K1, j1):α1−−−−−−−→ X ′ is a structural cause of transition t2 : X ′ (i2,K2, j2):α2−−−−−−−→ X ′′ , 

written t1 � t2, if i1 �X ′′ i2, or i2 �X i1 if the transitions are backward. Structural causality, denoted with �, is obtained as 
the reflexive and transitive closure of �.

To ease the understanding of the causal relation, which is a crucial key of our framework, we now give some examples.

Example 3. Let us consider the process X = ba.cd and forward transitions:

t1 : X
(i,K , j):ba−−−−−→→ ba[i, K ].cd and

t2 : ba[i, K ].cd
(i′,K ′, j′):cd−−−−−−→→ ba[i, K ].cd[i′, K ′]

In the process X ′ = ba[i, K ].cd[i′, K ′], by using Definition 21, we have i �X ′ i′ . Since key i identifies transition t1 and key i′
transition t2, we have that t1 � t2.

Example 4. Let us take the resulting process from the example above and use it as an initial state for the backward transi-
tions, i.e. we consider process X = ba[i, K ].cd[i′, K ′] and backward transitions:

t1 : X
(i′,K ′, j′):cd

ba[i, K ].cd and t2 : ba[i, K ].cd
(i,K , j):ba

ba.cd

In the process X = ba[i, K ].cd[i′, K ′], by using Definition 21 for the backward transitions, we have i �X i′ , which implies 
that t1 � t2.

Object causality is defined directly on the transitions, and to keep track of it we use the contextual cause set K .
13
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Definition 23 (Object causality). Transition t1 : X
(i1,K1, j1):α1−−−−−−−→ X ′ is an object cause of transition t2 : X ′ (i2,K2, j2):α2−−−−−−−→ X ′′ , written 

t1 < t2, if i1 ∈ K2 or i2 ∈ K1 (for the backward transition) and t1 �= t•
2. Object causality, denoted with �, is obtained as the 

reflexive and transitive closure of <.

Example 5. Consider the process X = νa�(b
∗
a∗ | a∗(z)) and computation:

X
(i1,K1,∗):b〈νa�〉−−−−−−−−−→ (i2,K2,∗):a(z)−−−−−−−−→ νa�′(b

∗
a∗[i1, K1] | a∗(z)[i2, K2])

where K1 = {∗} and K2 = {i1}. Then i1 ∈ K2 holds, and we have that the first transition is the object cause of the second 
one.

In what follows we will use the concept of freed and consumed prefix. A prefix is freed (resp. consumed) when it 
generates a backward (resp. forward) label. In other words a prefix is freed when it is put back by a backward transition, 
while it is consumed when it becomes a history prefix.

Definition 24 (Causality relation). The causality relation ≺ is the reflexive and transitive closure of structural and object 
causality: ≺ = (� ∪ �)∗ .

Now we define the notion of conflict between two consecutive transitions. It will consider the reverse transitions and 
transitions executed on the very same prefix. Formally we have:

Definition 25 (Conflict relation). Two consecutive transitions t1 : X
μ1−→ X ′ and t2 : X ′ μ2−→ X ′′ are in conflict if

• t1 is a backward transition, t2 is a forward one and transition t2 consumes a prefix freed by transition t1 or
• t1 is a forward transition and t2 = t•

1.

Using conflict and causality as defined above, we can give the notion of concurrency defined on the framework.

Definition 26 (Concurrency relation). Two consecutive transitions are concurrent if they are neither causally related nor in 
conflict.

We illustrate the necessity of the conflict condition between transitions (Definition 25) with the following example. 
Having a process

X = a∗b∗[i1, K1] | a∗b∗ | a∗(x)

we execute two consecutive transitions t1 (backward) and t2 (forward) as:

t1 : a∗b∗[i1, K1] | a∗b∗ | a∗(x)
(i1,K1,∗):ab

a∗b∗ | a∗b∗ | a∗(x)

t2 : a∗b∗ | a∗b∗ | a∗(x)
(i2,∗,∗):τ−−−−−→→ a∗b∗[i2, K2] | a∗b∗ | a∗(x)[i2, K2]

Transitions t1 and t2 are neither structural causal (Definition 22) nor object causal (Definition 23). If there would not be 
the notion of conflict (Definition 25), we would have that transitions t1 and t2 are concurrent, which is not the case (it is 
not possible to swap transitions t1 and t2). Let us note that according to the definition of causality and concurrency given 
in [23, Definition 4.1] the two transitions are not taken into account. In particular, the notion of causality of [23, Definition 
4.1] is defined only for two backward or two forward transitions; it does not consider mixed transitions.

We now give some additional properties and definitions necessary to prove our main results, the Square Lemma 
(Lemma 5) and causal-consistency (Theorem 1). We start by showing the following property stating that in a reachable 
reversible process all restrictions νa� of the same name a are nested.

Lemma 4. If process X = C[νa�(Y ) | Y ′] is reachable, then νa�′ /∈ Y ′ , for all non-empty � and �′ .

Proof. The proof is by induction on the trace that leads to the process X : X1 −→ · · · −→ Xn −→ X , where X1 is an initial 
reversible process,3 and the last applied rule on the transition Xn −→ X . The full proof can be found in Appendix A. �

3 From Definition 8 we have that the reversible process X is initial when all its names are decorated with ∗ and for all restrictions νa� , for some name 
a, � is empty.
14
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Concurrent transitions can be permuted, and the commutation of transitions is preserved up to label equivalence.

Definition 27 (Label equivalence). Label equivalence, =λ , is the least equivalence relation satisfying: (i, K , j) : b〈νa�〉 =λ

(i, K , j) : b〈νa�′ 〉 for all i, j, K , a, b and �, �′ ⊆ K. (Having an indexed set �w for � we disregard index w , and observe 
� ⊆K.)

Label equivalence is necessary since actions bring information about � into the labels. By permuting the transitions, the 
content of � is changing. To illustrate this, let us consider the following example.

Example 6. Consider the process X = νa∅(b
∗
a∗ | c∗a∗) and the case when � = �. For instance, process X can first execute 

output on channel b identified with the key i1 and then output on channel c with the key i2, and we have:

X
(i1,{∗},∗):b〈νa∅〉−−−−−−−−−→ νa{i1}(b

∗
a∗[i1, {∗}] | c∗a∗)

(i2,{∗},∗):c〈νa{i1}〉−−−−−−−−−−→ νa{i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}]) = X1

Now, if we execute actions in the opposite order, we have:

X
(i2,{∗},∗):c〈νa∅〉−−−−−−−−−→ νa{i2}(b

∗
a∗ | c∗a∗[i2, {∗}])

(i1,{∗},∗):b〈νa{i2}〉−−−−−−−−−−→ νa{i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}]) = X2

We can notice that the resulting processes in both computations are the same, i.e. X1 = X2. In the labels of the transitions, 
we can see that (i1, {∗}, ∗) : b〈νa∅〉 =λ (i1, {∗}, ∗) : b〈νa{i2}〉, since the only difference is in the set �. Similarly for the 
transitions on channel c, we have (i2, {∗}, ∗) : c〈νa{i1}〉 =λ (i2, {∗}, ∗) : c〈νa∅〉.

Lemma 5 (Square lemma). If t1 : X
μ1−→ Y and t2 : Y

μ2−→ Z are two concurrent transitions, there exist t′
2 : X

μ′
2−→ Y1 and t′

1 : Y1
μ′

1−→ Z
where μi =λ μ′

i .

Proof. The proof is by case analysis on the form of the transitions t1 and t2. We consider four main cases depending on 
whether transitions t1 and t2 are synchronisations or not, and then use induction on the structure of the process while 
checking all possible combinations of the rules applied to the transitions t1 and t2. More details about the proof can be 
found in Appendix A. �

We shall follow the standard notation and say that t2 is a residual of t′
2 after t1, denoted with t2 = t′

2/t1. Two transitions 
are coinitial if they have the same source, cofinal if they have the same target, and composable if the target of one is the 
source of the other transition. A sequence of pairwise composable transitions is called a trace, written as t1; t2. We denote 
with ε the empty trace. Notions of target, source, composability and reverse extend naturally to traces.

With the next theorem we prove that reversibility in our framework is causally consistent.

Definition 28 (Equivalence up-to permutation). Equivalence up-to permutation, ∼, is the least equivalence relation on the 
traces, satisfying:

t1; (t2/t1) ∼ t2; (t1/t2) t; t• ∼ ε

Equivalence up-to permutation introduced in [14] is an adaptation of equivalence between traces introduced in [32,33]
that additionally erases from a trace, transitions triggered in both directions. It just states that concurrent actions can be 
swapped and that a trace made by a transition followed by its inverse is equivalent to the empty trace.

Theorem 1 (Causal-consistency). Two traces are coinitial and cofinal if and only if they are equivalent up-to permutation.

Proof. Let us denote the two traces with s1 and s2. If s1 ∼ s2 then from the definition of ∼ (Definition 28) we can con-
clude that they are coinitial and cofinal. Let us suppose that s1 and s2 are coinitial and cofinal. We reason by induction 
on the lengths of s1, s2 and on the depth of the very first disagreement between them. The full proof can be found in 
Appendix A. �
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6. Mapping causal semantics

In this section, we show how the causality notions induced by three different approaches [23,20,22] can be mapped in 
our framework. Moreover, we prove the causal / operational correspondence between matching instance of the framework 
and causal semantics of [20] and [23], respectively.

A key point of the semantics proposed in [23] is that it satisfies several correctness criteria for causal models [24], while 
the other causal semantics considered in this paper do not. Two of such criteria in [24] are particularly interesting: (i) two 
visible transitions are causally related if and only if for all contexts the corresponding reductions are; and (ii) causality is 
preserved by structural congruence. These two properties make the semantics of [23] compositional, and do not hold for 
the semantics of [19,20].

Nonetheless, semantics [19,20] deserve still to be studied, and having a common framework in which one can express 
all these semantics all together can lead to a better comparison among them and increase the understanding of causality in 
the π -calculus. Besides, our framework adds reversible computation to semantics originally conceived as forward only.

Even if the causal semantics proposed in [23] is the best one according to the aforementioned criteria, there is an 
open question about causality and π -calculus which still has to be solved. In [25] it has been shown that the (forward) 
causal semantics induced by the reversible higher-order π -calculus [26] coincides with the one of [20] while considering 
reduction semantics (e.g., considering closed systems). That is, the causality considered by [26] coincides with the structural 
one. The causal semantics of [26] heavily exploits structural laws for extruding a name and due to this fact there is no need 
to store information about the extruder of a name. The drawback is that still there exists no compositional LTS for such 
semantics. On the other hand, if we take the semantics of [23] and consider just a closed system, the contextual causality 
is always shadowed by the structural one. For instance let us consider the π -calculus process νa(ba | a(x)) | b(y).yc. After 
the synchronisations on the channels b and a, according to the semantics of [23] (where we omit the split elements in the 
memory), we have:

νa∅(νa{1}(〈1,∗,ba〉 � 0 | 〈2,1,a[c/x]〉 � 0) | 〈2,∗, yc〉 · 〈1,∗,b[a/y]〉 � 0)

If we consider two τ -actions we can notice that the action 1 structurally causes the action 2. In Proposition 5.1 of [23], the 
authors stated that in a closed system, there is a canonical definition of causality, which is the structural one.

Considering the semantics of [26] we start from the configuration

νa(k1 : b〈a〉 | a(x)) | k2 : b(y) � y〈c〉
and when we execute the same transitions, we have:

νa(νk,h1,h2,k3.(k3 : 0) | [M,k] | [M ′,k3])
with M = k1 : b〈a〉 | a(x) | k2 : b(y), M ′ = (〈h1, ̃h〉 · k : a(x)) | (〈h2, ̃h〉 · k : a〈c〉) and h̃ = {h1, h2}. According to the definition of 
causality of [26] we have that the communication identified by k causes the one identified by k3 (as in [23]).

One could conclude that while considering closed systems the causal semantics of [26] and [23] are the same, even 
if [26] does not keep track of causal information about the instantiators. One interpretation of this fact is that [23] uses 
more causal information than required. But this is still left to be proven.

For every semantics, through the common example of process

X = νainit(�)(b
∗
a∗ | c∗a∗ | a∗(x))

we comment on the differences in the orders of the causal-consistent backward moves.

6.1. Reversible semantics for π -calculus

Cristescu et al. [23] introduced Rπ , a compositional reversible semantics for π -calculus. Information about the past 
actions is kept in a memory added to every process. A term of the form m � P represents a reversible process, where 
memory m is a stack of events and P is the process itself. A memory contains two types of events, one which keeps track of 
the past action, 〈i, k, π〉, where elements of a triple are the key, the contextual cause and the label of the executed action, 
respectively; and one which keeps track of the position of the process in the parallel composition, 〈↑〉. Before executing 
in parallel, a process splits by duplicating its memory and adding event 〈↑〉 on the top of each copy. This is achievable 
with specially defined structural congruence rules. The use in [23] of indexed restriction νa� was the inspiration for our 
parametric indexed restriction νa� .

In the following we show how Rπ causality can be captured by the framework.

Definition 29 (Rπ causality). To capture Rπ causality with the reversible framework, the data structure � is instantiated 
with the set �.
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Note that since the actions in [23] can be caused only through the subject of the label, contextual cause set K is a 
singleton.

To illustrate how Rπ causality is captured in the framework, we give the following example.

Example 7. Let us consider the process X = νa∅(b
∗
a∗ | c∗a∗ | a∗(x)) where we have the parallel extrusion of the same name 

a. By extruding the name a with the rule (Open) twice, on the channels b and c, we obtain a process:

νa{i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}] | a∗(x))

The rule (Cause Ref) is used for the execution of the third action where action a(x) can choose its cause from the set {i1, i2}. 
By choosing, for example, i2 as a cause, we obtain the process:

νa{i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}] | a∗(x)[i3, {i2}])

In the memory [i3, {i2}] we can see that the action identified with key i3 needs to be reversed before the action with key 
i2. Process b∗

a∗[i1, {∗}] can execute a backward step at any time with the rule (Open
•).

With the following example we shall show how the instantiation relation is used in the predicate Cause(�, K , K ′, X)

(Definition 14) while choosing the new cause K ′ .

Example 8. Let us consider the process X = νa∅(b
∗
a∗ | c∗a∗ | a∗(x)) from Example 7 in parallel with the process X ′ =

b∗(y).d
∗

y and we are executing the synchronisation on channel b, and extrusions ca and da, identified with keys i1, i2 and 
i3, respectively. In particular, we have:

νa∅(b
∗
a∗ | c∗a∗ | a∗(x)) | b∗(y).d

∗
y

(i1,{∗},∗):τ−−−−−−→→
νa∅(νa{i1}(b

∗
a∗[i1, {∗}] | c∗a∗ | a∗(x)) | b∗(y)[i1, {∗}].d∗

ai1)
(i2,{∗},∗):ca−−−−−−−→→

νa{i2}(νa{i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}] | a∗(x)) | b∗(y)[i1, {∗}].d∗

ai1)
(i3,{∗},∗):da−−−−−−−→→

νa{i2,i3}(νa{i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}] | a∗(x)) | b∗(y)[i1, {∗}].d∗

ai1 [i3, {∗}]) = Y

For the sake of simplicity, we omit the history part of the process Y and we write it as νa{i2,i3}(νa{i1,i2}(a∗(x))).
Now, let us assume that the action a(x) while passing the restriction νa{i1,i2} chooses as its cause the key i1. To pass the 

second restriction, we have the following rule

νa{i1,i2}(a∗(x))
(i,{i1},∗):a(x)−−−−−−−→→ νa{i1,i2}(a∗(x)[i, {i1}]) {i3} ⊆ � {i1}�Y {i3}

νa{i2,i3}(νa{i1,i2}(a∗(x)))
(i,{i3},∗):a(x)−−−−−−−→→ νa{i2,i3}(νa{i1,i2}(a∗(x)[i, {i3}]))

We can notice that in the premise, the contextual cause was K = {i1} and it is saved in the resulting process 
νa{i1,i2}(a∗(x)[i, {i1}]). Passing the restriction νa{i2,i3} , action a(x) needs to take another cause, since i1 /∈ {i2, i3} and 
the chosen cause is K ′ = {i3} since {i1} �Y {i3}. Contextual cause i3 is then recorded in the final process νa{i2,i3}
(νa{i1,i2}(a∗(x)[i, {i3}])).

6.1.1. Correspondence with Rπ causal semantics
In this section we prove the correspondence between our framework when the data structure � is instantiated with the 

set � and the reversible π -calculus given in [23].
The reversing technique used in [23] is an extension of the approach used in [14], where reversibility is added to CCS. To 

obtain reversibility in the framework, we have extended the approach introduced by CCSK [17], to work with the π -calculus. 
These two approaches to reverse CCS are different, as [14] employs a dynamic way of reversing a process by using memory 
stacks and splitting over a parallel composition, while the approach of [17] is static in the sense that all the computational 
history is blended directly into the process. Nonetheless, in [16] it has been shown that the two approaches are similar, by 
means of encodings. Hence, starting from this idea we extend the encoding of RCCS into CCSK, to work with π -calculus 
terms. The following example will highlight the difference between RCCS and CCSK.

Example 9. Let P = a | b a CCS process. A process in order to be executed in RCCS needs to be monitored by a memory. In 
the following example, 〈〉 indicate the empty memory.

〈〉 � P ≡ 〈↑〉 · 〈〉 � a | 〈↑〉 · 〈〉 � b
a,i−→ (1)

〈a, i,0〉 · 〈↑〉 · 〈〉 � 0 | 〈↑〉 · 〈〉 � b (2)
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(Out1) S :: b
j
a j1 .P

(i,K , j):ba−−−−−→→ S :: b
j
a j1 [i, K ].P

(Out2)

X
(i,K , j):ba−−−−−→→ X ′ fresh(i,H[X])
S :: H[X] (i,K , j):ba−−−−−→→ S :: H[X ′]

(In1) S :: b j(x).P
(i,K , j):b(x)−−−−−−→→ S :: b j(x)[i, K ].P

(In2)

X
(i,K , j):b(x)−−−−−−→→ X ′ fresh(i,H[X])
S :: H[X] (i,K , j):b(x)−−−−−−→→ S :: H[X ′]

(Par)

X
(i,K , j):α−−−−−→→ X ′ i /∈ Y Bnv(α) ∩ Fnv(Y ) = ∅

S :: X | Y
(i,K , j):α−−−−−→→ S :: X ′ | Y

(Com)

X
(i,K , j):ba−−−−−→→ X ′ Y

(i,K ′, j′):b(x)−−−−−−−→→ Y ′ K �� j′ ∧ K ′ �� j

S :: X | Y
(i,{∗},∗):τ−−−−−−→→ S ∪ {ai

/x} :: X ′ | Y ′{ai
/x}

(Cause Ref)

X
(i,K , j):α−−−−−→→ X ′ a ∈ subj(α) K ′ = K ∨ K ′ ⊆ � K �X K ′

S :: νa�(X)
(i,K ′, j):α−−−−−→→ S :: νa�(X ′

[K ′/K ]@i)

(Open)

X
(i,K , j):α−−−−−→→ X ′ α = ba ∨ α = b〈νa�′ 〉

S :: νa�(X)
(i,K ′, j):b〈νa�〉−−−−−−−−→→ S :: νa�+i(X ′

[K ′/K ]@i)

(Close)

X
(i,K , j):b〈νa�〉−−−−−−−−→→ X ′ Y

(i,K ′, j′):b(x)−−−−−−−→→ Y ′ K �� j′ ∧ K ′ �� j

S :: X | Y
(i,{∗},∗):τ−−−−−−→→ S ∪ {ai

/x} :: νa�(X ′ | Y ′{ai
/x})

(Res)

X
(i,K , j):α−−−−−→→ X ′ a /∈ α

S :: νa�(X)
(i,K , j):α−−−−−→→ S :: νa�(X ′)

Fig. 5. Semantics of the framework with the substitution set S .

where in (1) ≡ is used to split the empty memory along the processes in parallel, so that they can further execute. Once 
the memory is split, the two processes can run. Let us suppose the left process produces the action a. First, the action is 
bound with a unique identifier i and then the memory of the process keeps track of the executed action, as shown in (2). 
If we were to reproduce the above reduction in CCSK, it is simpler as CCSK does not require initial memories:

a | b
a,i−→ a[i] | b (3)

Also, let us note that in CCSK the history is kept in the process itself, not requiring additional memories.

An important difference between the encoding given in [16] and the one that we will present here is that we need to 
keep track of the substitution of names and encode it. Similarly as for CCS, the difference between Rπ and the framework is 
in how the information about past actions is stored (Rπ relies on external memories and structural congruence, while in the 
framework the information about the past actions is spread among the structure of the process). Additionally, there is also 
a difference in how substitutions are handled. Rπ uses explicit substitutions by relying on memories, while our framework 
uses implicit substitutions. Furthermore, once a process in Rπ produces a label, a lookup function translates “local” names 
(e.g., variables) into public ones (e.g., their actual values). That is, the names are resolved and rendered “public” before 
interacting with the context. To check if synchronisation is possible, processes need to search in their memories for the 
public name of a channel. This operation is performed with rules for reducing the prefix ((IN+) and (OUT+) of [23]).

In the framework, substitutions are executed directly during the synchronisation in the continuation of the input prefix. 
For this reason, to simplify the causal correspondence proofs, we instrument our semantics in such a way that it keeps track 
of all the substitutions that have been made during the computation. Hence, a reversible process from the framework will 
have the form S :: X , where the substitution set S is attached to every reversible process X and when process is initial, we 
have that S = ∅. Since we are considering fresh keys and always different bound names there will be no clashes, and so the 
set S can be a global one. The syntax is formally defined as:

C, D ::= S :: X

X, Y ::= P | b
j
a j1 [i, K ].X | b j(x)[i, K ].X | X | Y | νa�(X)

P , Q ::= 0 | ba.P | b(x).P | P | Q | νa(P )

The semantics of the framework with substitution set S is given in Fig. 5. We instantiate the data structure � with 
the set � and instead of predicates Cause(·) and Update(·) use their definitions to obtain Rπ causality (definition of 
predicates is given in Definition 14). The set S does not have any influence on the execution of the actions. The semantics 
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of the framework work in the same way. The only difference is that we add substitution {ai
/x} to the set S when rules 

(Com) and (Close) are applied.

Remark 5.

• The set S will not have any influence on the execution of the actions in the framework; it will just collect all substitu-
tions that happen during the computation. The framework already takes care of the substitutions; this addition to the 
existing semantics is just to simplify the translation of a process from the framework into an Rπ process.

• We suppose that both calculi support α-conversion [30] that is a bound name/variable can be freely renamed in order 
to avoid name capturing.

• In the encoding of the framework into Rπ , we do not consider recursion as it does not appear in Rπ .

In what follows we will adapt the encoding from [16] to work with the π -calculus. We start by introducing a substitution 
function σ which will delete the substitutions which happened in the past of a process by bringing back the original 
names/variables and deleting the instantiators that decorate names. In this way we will be able to match the explicit 
substitutions used in [23]. Formally:

Definition 30. Given the substitution set S , the function σ is defined as follows:

σ(S,P1 | P2) = σ(S,P1) | σ(S,P2)

σ (S, νa�(P)) = νa�σ (S,P)

σ (b j(x).P) =
{

b(x).σ (S,P) if for some y {b j
/y} /∈ S

y(x).σ (S,P) if for some y {b j
/y} ∈ S

σ(S,b
j
a j′ .P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ba.σ (S,P) if for some x, y {b j

/y} /∈ S ∧ {a j′
/x} /∈ S

bx.σ (S,P) if for some x, y {b j
/y} /∈ S ∧ {a j′

/x} ∈ S

ya.σ (S,P) if for some x, y {b j
/y} ∈ S ∧ {a j′

/x} /∈ S

yx.σ (S,P) if for some x, y {b j
/y} ∈ S ∧ {a j′

/x} ∈ S

σ(S,0) = 0

The function σ can be extended to the labels as

σ(S,b j[∗/x]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b[∗/x] if for some a j′ , y {b j

/y} /∈ S ∧ {a j′
/x} /∈ S

b[a/x] if for some a j′ , y {b j
/y} /∈ S ∧ {a j′

/x} ∈ S

y[∗/x] if for some a j′ , y {b j
/y} ∈ S ∧ {a j′

/x} /∈ S

y[a/x] if for some a j′ , y {b j
/y} ∈ S ∧ {a j′

/x} ∈ S

σ(S,b
j
a j′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ba if for some x, y {b j

/y} /∈ S ∧ {a j′
/x} /∈ S

bx if for some x, y {b j
/y} /∈ S ∧ {a j′

/x} ∈ S

ya if for some x, y {b j
/y} ∈ S ∧ {a j′

/x} /∈ S

yx if for some x, y {b j
/y} ∈ S ∧ {a j′

/x} ∈ S

We will use the function σ while applying the encoding, to obtain the correct action label in the memory and to delete 
the instantiators from the process P (a process from the framework without past). For instance, if the set of the substitu-

tions is S = {a j
/x}, {b j′

/y}, then if we apply σ(·) on the label of the event 〈i, ∗, c j′′ [∗/x]〉, we have 〈i, ∗, σ(S, c j′′ [∗/x])〉 =
〈i, ∗, c[a/x]〉. If function is applied on the process P = b

j′
a j .c j′′ (z), we have σ(S, b j′

a j .c j′′ (z)) = yx.σ (S, c j′′ (z)) = yx.c(z).
Now we can give the encoding function �·�, which will take two additional parameters: a memory m and the set S (the 

set of all substitutions applied in the past of the process X). See Fig. 6.
Let us comment on the encoding. The encoding has to go through the structure of the process from the framework 

in order to build the memory of the Rπ process (similarly as in [16]). The encoding of a decorated π -calculus process P
with some memory m and substitution set S is the reversible process m � σ(S, P), where function σ will deal with the 
substitutions and delete the instantiators. If the process is not standard, then the encoding is by structural induction. A past 
prefix b

j
a j′ [i, K ] of the process X is encoded into a corresponding memory event 〈i, K , σ(S, b j

a j′ )〉. The parallel and the 
restriction operators of the framework are mapped to the corresponding operators of Rπ . Let us note that, in the case of 
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�S :: X� = �X, 〈〉, S�

�b
j
a j′ [i, K ].X,m, S� = �X, 〈i, K ,σ (S,b

j
a j′ )〉.m, S�

�b j(x)[i, K ].X,m, S� = �X, 〈i, K ,σ (S,b j[∗/x])〉.m, S�

�X | Y ,m, S� = �X, 〈↑〉.m, S� | �Y , 〈↑〉.m, S�

�νa�(X),m, S� = νb��X{b/a},m, S�

if b /∈ Fnv(m) ∧ (b = a ∨ b /∈ Fnv(X))

�P,m, S� = m � σ(S,P)

Fig. 6. Encoding of the framework into Rπ .

parallel composition, the memory m and the substitution set S are duplicated into two identical memories 〈↑〉.m and sets 
S , respectively. The rule for restriction needs to avoid capturing free occurrences of a inside m: name capture is avoided 
by renaming a into a fresh name b. If a /∈ Fnv(m) then one can choose b = a. Both the calculi feature α-conversion; hence 
renaming is not an issue.

To have a better intuition about the encoding let us consider the following example.

Example 10. Consider a π -calculus process b(x).ax.xd | bc. After the synchronisation on the channel b and output on the 
channel a, the reversible process in the framework is:

X = S :: b∗(x)[1, {∗}].a∗c1[2, {∗}].c1d∗ | b
∗
c∗[1, {∗}]

where the substitution set S = {{c1
/x}}. Then the encoding of the process X is:

�X� = �S :: b∗(x)[1, {∗}].a∗c1[2, {∗}].c1d∗ | b
∗
c∗[1, {∗}]�

= �b∗(x)[1, {∗}].a∗c1[2, {∗}].c1d∗ | b
∗
c∗[1, {∗}], 〈〉, S�

= �b∗(x)[1, {∗}].a∗c1[2, {∗}].c1d∗, 〈↑〉.〈〉, S� | �b
∗
c∗[1, {∗}], 〈↑〉.〈〉, S�

= �a∗c1[2, {∗}].c1d∗, 〈1,∗,σ (S,b∗[∗/x])〉.〈↑〉.〈〉, S� | �0, 〈1,∗,σ (S,b
∗
c∗)〉.〈↑〉.〈〉, S�

= �a∗c1[2, {∗}].c1d∗, 〈1,∗,b[c/x]〉.〈↑〉.〈〉, S� | �0, 〈1,∗,bc〉.〈↑〉.〈〉, S�

= �c1d∗, 〈2,∗,σ (S,a∗c1)〉.〈1,∗,b[c/x]〉.〈↑〉.〈〉, S� | 〈1,∗,bc〉.〈↑〉.〈〉 � 0

= �c1d∗, 〈2,∗,ax〉.〈1,∗,b[c/x]〉.〈↑〉.〈〉, S� | 〈1,∗,bc〉.〈↑〉.〈〉 � 0

= 〈2,∗,ax〉.〈1,∗,b[c/x]〉.〈↑〉.〈〉 � σ(S, c1d∗) | 〈1,∗,bc〉.〈↑〉.〈〉 � 0

= 〈2,∗,ax〉.〈1,∗,b[c/x]〉.〈↑〉.〈〉 � xd | 〈1,∗,bc〉.〈↑〉.〈〉 � 0

We now show a decomposition property for Rπ transitions, which allows us to isolate the impact of structural congru-
ence inside transitions.

Definition 31. The relation −� is the smallest relation induced by the rules in Fig. B.9 (Appendix B), except the rules for 
congruence (rules (MEM+), (SPLIT) and (RES)).

Note that by definition in Rπ , we have −� ⊂ −→.

Lemma 6. If there is an Rπ transition R 
(i, j,k):α−−−−→ S then there exist R ′ ≡ R and S ′ ≡ S such that R ′ (i, j,k):α−−−−� S ′ .

Proof. The proof is by induction on the derivation of the transition R 
(i, j,k):α−−−−→ S , with a case analysis on the last applied 

rule. The full proof can be found in Appendix B. �
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We can now prove the property that every transition of a reachable process S :: X in the framework can be mimicked 
with its translation (R = �X, 〈〉, S�) in Rπ .

Proposition 1 (Forward correctness). Let S :: X be a reachable process from the framework and R = �X, 〈〉, S�. For each transition in 

the framework S :: X
(i,K , j):α−−−−−→→ S ′ :: X ′ there exists a corresponding Rπ transition R 

(i, j,k):α−−−−→ R ′ with �X ′, 〈〉, S ′� = R ′ and K = {k}.

Proof. The proof is by induction on the derivation of S :: X
(i,K , j):α−−−−−→→ S ′ :: X ′ and by case analysis on the last applied rule. 

The full proof can be found in Appendix B. �
Proposition 2 (Backward correctness). Let S :: X be a reachable process from the framework and R = �X, 〈〉, S�. For each transition 

in the framework S :: X
(i,K , j):α

S ′ :: X ′ there exists a corresponding Rπ transition R 
(i, j,k):α

R ′ with �X ′, 〈〉, S ′� = R ′ and K = {k}.

Proof. From the Loop Lemma in the framework (Lemma 3) we have that S :: X
(i,K , j):α

S :: X ′ implies S ′ :: X ′ (i,K , j):α−−−−−→→
S :: X . By Proposition 1 we have that there exists a corresponding Rπ transition R ′ (i, j,k):α−−−−→ R with �X, 〈〉, S� = R and 

�X ′, 〈〉, S ′� = R ′ and K = {k}. By applying the Rπ Loop Lemma [23, Proposition 3.1] we have that R 
(i, j,k):α

R ′ , as de-
sired. �

The two propositions above prove that if we have a couple of processes (S :: X, R) = (S :: X, �X, 〈〉, S�) where S :: X is 
a reachable process in the framework, and if S :: X does an action α, then process R does the same action in Rπ . The 
resulting process R ′ = �X ′, 〈〉, S ′� is the encoding of process S ′ :: X ′ . Now we show the opposite direction.

Proposition 3 (Forward completeness). Let X be a reachable process from the framework and R = �X, 〈〉, S�. For each Rπ transition 

R 
(i, j,k):α−−−−→ R ′ there exists a corresponding transition in the framework S :: X

(i,K , j):α−−−−−→→ S ′ :: X ′ with R ′ ≡ �X ′, 〈〉, S ′� and K = {k}.

Proof. Thanks to Lemma 6 we can equivalently write the statement as follows: for each reachable process S :: X in the 

framework and Rπ processes R and R ′′ , such that R = �X, 〈〉, S� and R ′′ ≡ R , if there exists a Rπ transition R ′′ (i, j,k):α−−−−� R ′ , 
then there exists a corresponding transition in the framework S :: X

(i,K , j):α−−−−−→→ S ′ :: X ′ , with R ′ ≡ �X ′, 〈〉, S ′�. When consider-
ing R ′′ ≡ R we will not consider α-conversion, since it can be trivially matched by framework α-conversion.

Now the proof is by structural induction on S :: X with a case analysis on the last applied rule in the derivation of 

R ′′ (i, j,k):α−−−−� R ′ . We have two main cases, depending on whether X is a process without past P or not. The full proof can be 
found in Appendix B. �
Proposition 4 (Backward completeness). Let X be a reachable process from the framework and R = �X, 〈〉, S�. For each Rπ transition 

R 
(i, j,k):α

R ′ there exists a corresponding transition in the framework S :: X
(i,K , j):α

S ′ :: X ′ with R ′ ≡ �X ′, 〈〉, S ′� and K = {k}.

Proof. From the Rπ Loop Lemma we have that R ′ (i, j,k):α−−−−→ R in Rπ . From Proposition 3 we have that S ′ :: X ′ (i,K , j):α−−−−−→→ S :: X

with �X, 〈〉, S� ≡ R and �X ′, 〈〉, S ′� = R ′ and K = k. By applying Rπ rule (MEM+) to R ′ (i, j,k):α−−−−→ R and R ≡ �X, 〈〉, S� we have 

that R ′ (i, j,k):α−−−−→ �X, 〈〉, S�. By applying the framework Loop Lemma we have that S :: X
(i,K , j):α

S ′ :: X ′ . �
Now we have all necessary auxiliary lemmas to prove the operational correspondence between the framework when 

� = � and the semantics of [23]. We prove it in terms of strong back and forth bisimulation [16].

Theorem 2 (Operational correspondence). Given a reachable process from the framework S :: X, the relation R = {(S :: X, �X, 〈〉, S�)}
is a strong back and forth bisimulation.

Proof. If S :: X does a forward transition S :: X
(i,K , j):α−−−−−→→ S ′ :: X ′ , then by Proposition 1, we have that �X, 〈〉, S� 

(i, j,k):α−−−−→
�X ′, 〈〉, S ′� with K = {k} and (S ′ :: X ′, �X ′, 〈〉, S ′�) ∈R. If the transition is a backward one we apply Proposition 2.

If R = �X, 〈〉, S� does a forward transition R 
(i, j,k):α−−−−→ R ′ , then by Proposition 3 we have S :: X

(i,K , j):α−−−−−→→ S ′ :: X ′ with K = k, 
R ′ ≡ �X ′, 〈〉, S ′� and (S ′ :: X ′, �X ′, 〈〉, S ′�) ∈R. If the transition is a backward one we apply Proposition 4. �

Let us note that the result presented in this section (Theorem 2) is on the (strong) operational correspondence between 
two reversible calculi and it is not affected by the fact that we depart from the conflict notion of [23].
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(BS-Out) ba.A
k:ba−−→∅ k :: A (BS-In) b(x).A

k:b(x)−−−→∅ k :: A

(BS-Cau)

A
k:α−−→
K

A′

K′ :: A
k:α−−→
K,K′ K

′ :: A′ (BS-Par)

A1
k:α−−→
K

A′
1 Bnv(α) ∩ Fnv(A2) = ∅

A1 | A2
k:α−−→
K

A′
1 | A2

(BS-Com)

A1
k:ba−−→
K1

A′
1 A2

k:b(x)−−−→
K2

A′
2 k /∈ K(A1, A2)

A1 | A2
τ−→ A′

1[k � K2] | A′
2{a/x}[k � K1]

(BS-Open)

A
k:ba−−→
K

A′

νa A
k:b〈νa〉−−−−→

K
A′

(BS-Res)

A
k:α−−→
K

A′ a /∈ n(α)

νa A
k:α−−→
K

νa A′

(BS-Close)

A1
k:b〈νa〉−−−−→
K1

A′
1 A2

k:b(x)−−−→
K2

A′
2 k /∈ K(A1, A2)

A1 | A2
τ−→ νa(A′

1[k � K2] | A′
2{a/x}[k � K1])

Fig. 7. Causal semantics rules.

6.2. Boreale-Sangiorgi and Degano-Priami causal semantics

A compositional causal semantics for standard (i.e., forward-only) π -calculus was introduced by Boreale and San-
giorgi [20]. Later on, Degano and Priami in [19] introduced a causal semantics for π based on localities. While using 
different approaches to keep track of the dependencies in the π -calculus, these two approaches impose the same order of 
the forward actions (as claimed in [19]). Hence, from the reversible point of view the causality notions of these two seman-
tics coincide. In what follows we shall concentrate on the Boreale-Sangiorgi causal semantics. To show the correspondence 
between the mentioned semantics and our framework, we shall consider it in a late (rather than early, as originally given) 
version. The precise definition is given below.

6.2.1. Boreale and Sangiorgi’s late semantics
Originally the causal semantics of [20] was defined for a polyadic π -calculus, with early semantics for inputs. Here we 

adapt the causal semantics to work with monadic π -calculus and late input semantics.
The authors of [20] distinguish between two forms of dependencies: subject and object. While the object dependence 

can be detected from the trace (called run in [20]) that a process performed, to track the subject one, the authors introduced 
a causal term, defined on top of the π -calculus. Every visible transition is bound with a unique cause k ∈ K, where K is a 
set of causes. Let N and V be infinite, countable sets of names and variables such that N ∩ V ∩K = ∅.

The syntax of the causal process is defined as follows:

(Causal process) A, B ::= P | K :: A | A | B | νa(A)

where P is a π -calculus process defined in Fig. 1. In causal term K :: A, set K records that every action performed by A
depends on K. Two causal processes can be composed in parallel by A | B and name a can be restricted in the process A. 
The set of causes appearing in the causal process A is denoted with K(A) and its definition is given below.

Definition 32 (Set of the causes). The set of causes of a given causal process A, written as K(A), is inductively defined on the 
structure of the causal term as:

K(A | B) = K(A) ∪K(B) K(K :: A) = K∪K(A)

K(νa(A)) = K(A) K(P ) = ∅

In what follows, we give the definition of the labels on the transitions and operational semantics of the causal term.

Definition 33 (Label on the transition). The label on the transition of the causal process is defined as A k:α−−→
K

A′ , where cause 

set K contains causes of all the actions that trigger the action α; k is the cause associated to α and α ::= ba | b(x) | b〈νa〉 | τ .

The rules for the causal semantics are given in Fig. 7. Causes are introduced into the processes by the rules (BS-Out) 
and (BS-In). A new cause k is attached to the executing action. Rule (BS-Cau) allows a causal process K′ :: A to move if A
can move, while cause set K′ is preserved. Rules (BS-Open) and (BS-Res) are defined in the usual way. The communication 
between two causal processes can be done through rules (BS-Com) and (BS-Close), while necessary substitution is applied. 
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Notation A′
1[k � K2] indicates the fact that cause k needs to be replaced with the set K2. The condition k /∈ K(A1, A2)

ensures that cause k is fresh. The synchronisation rules merge the cause sets of processes that communicate and do not 
produce a new cause bound to τ . The reason for this is that τ actions do not impose causes on future actions.

In order to provide a better intuition of how the semantics works, we give the following example.

Example 11. Let us consider the π -calculus process P = ab.cd.0 | ea1.c(x).Q . Process P can perform the output on channel 
a, and we have:

ab.cd.0 | ea1.c(x).Q
k:ab−−→∅ {k} :: cd.0 | ea1.c(x).Q = A

We can notice that cause k is bound to the action ab, and saved in the resulting process. Since P was a π -calculus process, 
the cause set K is empty. To continue execution, process A can perform the output on channel e:

k :: cd.0 | ea1.c(x).Q
k1:ea1−−−→∅ {k} :: cd.0 | {k1} :: c(x).Q

The two executed actions are structurally independent and this is the reason why the cause set is empty in both cases. Now 
we can synchronise two processes in parallel:

k :: cd.0 | k1 :: c(x).Q
τ−→ {k,k1} :: 0 | {k1,k} :: Q {d/x}

As we can notice, after the communication, cause sets {k} and {k1} are merged, meaning that the actions of Q will struc-
turally depend on both actions ab and ea1.

Remark 6. In the original version of the causal semantics [20], labels on transitions are defined as A
α−−→
K; k

A′ . We use the 
notation A k:α−−→

K
A′ to simplify the comparison given in Section 6.2.3. For the same reason we divided the original rule for 

communication (Com) from [20] into two rules: (BS-Com) and (BS-Close).

The subject causality is given by the cause sets attached to the process, while the object one is defined on the trace 
that the process performed. The first action that extrudes a bound name causes every further action using that name in the 
subject or in the object position of the label. To illustrate this, we give the following example.

Example 12. Let us consider a process P = νa(ba | ca | a(x)) and the trace:

νa(ba | ca | a(x))
k:b〈νa〉−−−−→

∅
A1

k1:ca−−→
∅

A2
k2:a(x)−−−−→

∅
{k} :: 0 | {k1} :: 0 | {k2} :: 0

where A1 = {k} :: 0 | ca | a(x) and A2 = {k} :: 0 | {k1} :: 0 | a(x). The action b〈νa〉 extrudes name a and causes other two 
actions: ca where name a is in the object position and a(x) where a is in the subject position.

We adapt the definition of object causality to the late semantics defined on the traces of the causal process A.

Definition 34 (Object causality). In a trace A1
k1:α1−−−→

K1
A2 · · · An

kn :αn−−−→
Kn

An+1 where A1 is a π -calculus process P , if

• αi = b〈νa〉 where a ∩ fn(Ai) = ∅ and for all j < i, a ∩ n(α j) = ∅ we say that name a is introduced in αi . Action αh is 
object dependent on αi , 1 � i < h � n, if there is a name introduced in αi which is among the free names of αh .

• αi = b(x) where x ∩ fn(Ai) = ∅ and for all j < i, x ∩ v(α j) = ∅ we say that variable x is introduced in αi . Action αh is 
object dependent on αi , 1 � i < h � n, if there is a variable introduced in αi which is among the free variables of αh .

6.2.2. Boreale and Sangiorgi’s late semantics captured in the framework
In the following we show how the behaviour of Boreale and Sangiorgi’s late semantics is captured by the framework.

Definition 35 (Boreale and Sangiorgi causal semantics). To capture the causality induced by Boreale and Sangiorgi’s late se-
mantics, the data structure � is instantiated with the indexed set �w .

From the object causality definition (Definition 34), we have that an output action can be caused through the subject and 

the object position of a label. For instance, consider a process νa(νb(cb | da | ba)) and its trace 
c〈νb〉−−−→ d〈νa〉−−−→ ba−→. The action ba

depends on both actions executed before (on the first one because it extrudes the name b and on the second one because 
it extrudes the name a).
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In [27], we present our initial idea of the reversible framework where we discussed the necessity of adding causal 
information to the silent actions in the semantics of [20]. Here we take different approach and keep the silent actions as 
they are in the original semantics of [20]. Therefore, silent actions do not exhibit or impose contextual causes.

We give the following example to provide a better intuition about the framework expressing Boreale and Sangiorgi 
causality.

Example 13. Consider the process X = νa∅∗(b
∗
a∗ | c∗a∗ | a∗(x)). By extruding the name a over the channel b (rule (Open) is 

applied), we obtain the process:

νa{i1}i1
(b

∗
a∗[i1, {∗}] | c∗a∗ | a∗(x))

From the memory {i1}i1 we have that w = i1. By executing the actions ca with the rule (Open) and a(x) with the rule 
(Cause Ref), predicates Update(·) and Cause(·) ensure that the key i1 = w will be added to the cause sets. We obtain the 
process:

νa{i1,i2}i1
(b

∗
a∗[i1, {∗}] | c∗a∗[i2, {i1,∗}] | a∗(x)[i3, {i1,∗}])

In the memories [i2, {i1,∗}] and [i3, {i1,∗}] we can notice that the executed actions are caused by the action i1 and for this 
reason the action i1 needs to be reversed last. The actions i2 and i3 can be reversed in any order.

6.2.3. Correspondence with Boreale and Sangiorgi’s semantics
In this section, we prove the causal correspondence between Boreale and Sangiorgi’s late semantics (rather than early, 

as originally given) and the framework when memory � is instantiated with �w . The full proof is given in Appendix C.
Now we observe the differences in the structural causality in both settings by looking at process traces. Since the frame-

work is meant for reversible computation (Lemma 3), every action has its corresponding key, including τ -actions, which is 
not the case in [20], where synchronisation only merges cause sets of the actions that communicate. Additionally, for the 
same reason, the framework keeps track of every action that was executed, while the semantics in [20] just records the 
sets of causes that trigger the performing action. Example 14 will exemplify how our framework carries more information 
than [20] in a simple execution, and Example 15 will motivate and ease the definition of structural causality that follows.

Example 14. Let us consider the π -calculus process P = ba.cd | ea1.c(x).Q . By executing two output actions on the channel 
b and e and synchronisation on the channel c, we obtain:

• In [20], the resulting process is A = {i1, i2} :: 0 | {i1, i2} :: Q where keys i1 and i2 correspond to actions ba and ea1, 
respectively. We can notice that the τ -action just merged the cause sets {i1} and {i2}. For more details about the 
computation, see Example 11.

• In our framework, the resulting process is

X = ba[i1, {∗}].cd[i3, {∗}] | ea1[i2, {∗}].c(x)[i3, {∗}].Q
As we can notice, the τ -action is identified by the key i3.

Another difference is that in [20], the executing action brings its cause set into the label of the transition, while in the 
framework, the structural cause set is defined on the resulting process of the transition.

Example 15. Consider the π -calculus process P = ba.cd.e f :

• In [20], actions ba with i1 and cd with i2 can be performed and we obtain the causal process A = {i1, i2} :: e f . The 
transition for the action e f is

{i1, i2} :: cd
i3:e f−−−→
{i1,i2}

{i1, i2, i3} :: 0

We can notice that in the label of the transition we can see the whole set of the causes that cause action e f .
• In the framework, the same actions are performed and obtained reversible process is X = ba[i1, {∗}].cd[i2, {∗}].e f . The 

transition for the action e f is

ba[i1, {∗}].cd[i2, {∗}].e f
(i3,{∗},∗):e f−−−−−−−→→ ba[i1, {∗}].cd[i2, {∗}].e f [i3, {∗}] = X ′

The structural causality is defined on the prefixes of the resulting process X ′ (Definition 21); hence the set of the 
structural causes of the action with the key i3 can be computed after the execution.
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In the following, we define the structural cause set of an executed action in the framework.

Definition 36 (Structural causes set K F ). Given a transition X
(i,K , j):α−−−−−→→ X1, the set of keys of the actions that structurally 

caused the action (i, K , j) : α, denoted with K F , is defined as: for all i′ ∈ key(X1), if i′ �X1 i, then i′ ∈ K F .

Example 16. To understand it better, let us consider a reversible process

X = b
∗
a∗[i1, {∗}].c∗d∗[i3, {∗}].e∗ f ∗[i4, {∗}] | b1

∗
a∗

1[i2, {∗}].c∗(x)[i3, {∗}].b∗
c∗

and transition X
(i,{∗},∗):bc−−−−−−→→ X1, where

X1 = b
∗
a∗[i1, {∗}].c∗d∗[i3, {∗}].e∗ f ∗[i4, {∗}] | b1

∗
a∗

1[i2, {∗}].c∗(x)[i3, {∗}].b∗
c∗[i, {∗}]

The cause set K F of the action bc, identified with the key i, is K F = {i1, i2, i3}. The action identified with i4 is not the 
structural cause of any action in X1 because there do not exist contexts C4 and C ′

4 such that X1 = C4[e∗ f ∗[i4, {∗}].Y ], 
where Y = C ′

4[πh[h, {∗}]] and h ∈ {i, i1, i2, i3} (Definition 22).

Notation 1. To distinguish the labels of the two semantics, we shall write:

• a transition from [20] as A
ζ−→
K

A1, where

ζ = i : β and β = ba | b(x) | b〈νa〉 | τ
and i ∈K (K is an infinite denumerable set of keys);

• a transition from the framework as X
μ−→→ X K F

1 , where

μ = (i, K , j) : α and α = ba | b(x) | b〈νa�〉 | τ
with i ∈K, j ∈K∗ , K ⊂K∗ and K F the set of the keys belonging to the actions that structurally cause the action μ.

Focusing on structural causality, the main difference between the two semantics is in the τ -actions; therefore, we need 
to provide the connection between the structural cause sets K and K F of these two semantics. The idea is to represent 
structural dependences between keys in the reversible process X involved in the executing action (i.e. past prefixes whose 
keys belong to the set K F ) as a directed graph (digraph) [34] and by removing the nodes (keys) belonging to the τ -actions, 
obtain the cause set K of the corresponding causal process A. In order to illustrate the method which connects structural 
cause sets K and K F , we give the following example.

Example 17. Let us consider the π -calculus process

P = ba.cd | b1a1.c(x).bc.b2a2 | f e.b(y)

where the actions ba, b1a1, τ , f e, τ and b2a2 are identified with the keys i1, i2, i3, i4, i5 and i6, respectively.

• in the semantics of [20], we have:

P
i1:ba−−→

∅
{i1} :: cd | b1a1.c(x).bc.b2a2 | f e.b(y)

i2:b1a1−−−−→
∅

{i1} :: cd | {i2} :: c(x).bc.b2a2 | f e.b(y)

τ−→ {i1, i2} :: 0 | {i2, i1} :: bc.b2a2 | f e.b(y)

i4: f e−−−→
∅

{i1, i2} :: 0 | {i2, i1} :: bc.b2a2 | {i4} :: b(y)

τ−→ {i1, i2} :: 0 | {i2, i1, i4} :: b2a2 | {i4, i2, i1} :: 0

i6:b2a2−−−−−→
{i4,i2,i1}

{i1, i2} :: 0 | {i2, i1, i4} :: {i6} :: 0 | {i4, i2, i1} :: 0

As we can notice, τ -actions do not have keys; hence i3, i5 are not in A. We separated set {i6} from the rest of the cause 
set to emphasise the fact that the action with key i6 depends on the cause set K = {i1, i2, i4}.
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• the resulting process in the framework is:

X = b
∗
a∗[i1, {∗}].c∗d∗[i3, {∗}] | b1

∗
a∗

1[i2, {∗}].c∗(x)[i3, {∗}].b∗
c∗[i5, {∗}].b2

∗
a∗

2[i6, {∗}]
| f

∗
e∗[i4, {∗}].b∗(y)[i5, {∗}]

We can represent dependences between the keys as a digraph G = (V , E), given below:

i5i4

i5 i6

i3i2

i3i1

In the digraph G , nodes represent keys and directed edge i −→ i′ symbolises that key i causes key i′ . From the graph, 
we can notice that the cause set of the action with key i6 is K F = {i1, i2, i3, i4, i5}. If we remove all bidirectional edges, 
join the nodes that they connect (keys belong to synchronisations) and rename them into τl , we obtain the graph 
G ′ = (V ′, E ′):

τ1

i4

i6

τ2

i2

i1

Now, if we take the set of vertices V ′ and remove all τi nodes, we obtain the cause set K of the action i6 in Boreale and 
Sangiorgi’s semantics (K = V ′ \ {τl}).

The whole algorithm of connecting sets K F and K, illustrated in Example 17 is called Removing Keys from a Set written as 
Rem(K F ) = K.

Before defining our method, we recall some basic notions about graphs [34]. A directed graph or digraph G = (V , E)

consists of the non-empty set of vertices V (nodes) and the set of directed edges E = {(v1, v2)| where v1, v2 ∈ V }. In the 
edge (v1, v2), v1 is the source vertex of the edge, while v2 is the target vertex.

Now we give the auxiliary definitions necessary to formally define the method Rem. First, we define a function γ (·) that 
translates the label from the framework μ into a label from Boreale and Sangiorgi’s semantics ζ . It is done by discarding 
the instantiator j and cause set K of the label μ, since they are not present in the semantics of [20], and translating the 
action label α into the corresponding action label of [20]. Additionally, when τ -actions are considered, in semantics [20], 
they are not bound with a new key; hence the key i is deleted as well. Formally:

Definition 37. The function γ that maps label from the framework μ, with a label from [20] ζ , is inductively defined as 
follows:

γ ((i, K , j) : α) = i : γ (α) when α �= τ γ ((i, {∗},∗) : τ ) = τ

γ (b〈νa�〉) = b〈νa〉 when empty(�) = true γ (b(x)) = b(x)

γ (b〈νa�〉) = ba when empty(�) = false γ (ba) = ba

Suppose that we have two transitions:

t : X
μ−→→ X K F

1 and t′ : A
ζ−→
K

A1

with γ (μ) = ζ and processes X and A, translated in the π -calculus, give the same process P , i.e. ϕ(X) = λ(A) = P . The 
same holds for the processes X K F

1 and A1, i.e., we have ϕ(X K F
1 ) = λ(A1) = Q . The function ϕ(·) is the same as the erasing 

function from Definition 19 with an additional rule ϕ(X K F ) = ϕ(X) that removes the set K F from the reversible process. 
The function λ that translates a causal term into a π -calculus process is defined as:

Definition 38. The erasing function λ that maps causal processes from Boreale and Sangiorgi’s semantics into the π -calculus 
is inductively defined as follows:
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λ(A | A′) = λ(A) | λ(A′) λ(K :: A) = λ(A)

λ(νa(A)) = νa(λ(A)) λ(P ) = P

The structural dependences between the past prefixes belonging to the history of the process X involved in the execution 
of the action α ∈ t, t′ can be represented with a digraph in the following way: keys belonging to the past prefixes are 
represented as vertices of the digraph (the same keys which are representing synchronisation, are represented by two 
vertices with the same name); structural dependences between the keys are represented by directed edges where between 
the same vertices we shall have edges in both directions. Formally, we have:

Definition 39. Given a transition t : X
(i,K , j):α−−−−−→→ X K F

1 the structural dependences between the past prefixes involved in the 
execution of the action α contained in the history of the reversible process X K F

1 can be represented as a digraph G = (V , E), 
in the following way:

− ∀ π [i1, K ] ∈ X K F
1 ∧ i1 �

X
K F
1

i =⇒ i ∈ V

− ∀ i1, i2 ∈ V such that π [i1, K ].π ′[i2, K ′] ∈ X K F
1 =⇒ (i1, i2) ∈ E ′

− E = E ′ ∪ {(i1, i2)| when i1, i2 ∈ V ∧ i1 = i2}
∪ {(i2, i1)| when i1, i2 ∈ V ∧ i2 = i1}

where V is a multiset of vertices and E is a set of directed edges. Having a digraph G = (V , E), the structural cause set of 
the action α is K F = V \ {i}.

Since bidirectional edges represent dependency flow between vertices with the same name, we can remove them and 
join two vertices into one, renamed to τ . This operation is known as edge contraction [34]. Here we adapt it to bidirectional 
edges as follows:

Definition 40 (Bidirectional edge contraction). Bidirectional edge contraction is an operation defined on the directed graph 
G = (V , E), as follows:

• E ′ = E \ ((i1, i2) ∪ (i2, i1)) when i1 = i2

• V ′ = (V \ {i1, i2}) ∪ {τl} when i1 = i2

• ∀(i, ih), (ih, i) ∈ E where h ∈ {1,2}, we have that (i, τl), (τl, i) ∈ E ′,
where G ′ = (V ′, E ′) is the obtained graph.

In words, the above definition removes a bidirectional edge and substitutes two nodes that it connects with the τl node. 
Additionally, all the edges that have a source or target in the removed nodes will have a source or target in the τl node. For 
instance, let G = (V , E) be directed graph and G ′ be the graph obtained from the graph G by applying Definition 40:

i3

i3

i2

i1 i4

G: τ1

i2

i1 i4

G ′:

From the representations of the graphs G and G ′ above, we can notice that nodes labelled with i3 together with the 
bidirectional edge, are substituted with the node τ1. At the same time, edge (i1, i3) becomes (i1, τ1), and similarly for the 
rest of the edges containing nodes labelled with i3.

By applying bidirectional edge contraction (Definition 40) on every bidirectional edge of a graph G = (V , E), we obtain a 
graph G ′ = (V ′, E ′) in which all pairs of the same vertices are joined and renamed as τl , for l = 1, 2, ... Set V ′ differs from 
the multiset V in having τl vertices instead of the pairs of vertices labelled with the same name (originally belonging to 
silent moves in the framework). Hence, we can conclude that K = V ′ \ ({i} ∪ τl).

The method ‘Removing Keys from a Set’, denoted as Rem is formally defined as.

Definition 41 (Method Rem). Given two transitions t : X
μ−→→ X K F

1 with μ = (i, K , j) : α and t′ : A
ζ−→
K

A1, where γ (μ) = ζ and 
ϕ(X) = λ(A) = P and ϕ(X K F

1 ) = λ(A1) = Q , a correspondence between sets K F and K is defined through method Rem, given 
with the following steps:

• structural dependences in the process X K F
1 involved in the transition t are represented as the digraph G = (V , E)

(Definition 39), where K F = V \ {i};
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E1 :
a(x)

cd

E2 :
ab

E3 :
a(x)

cd

τx→b

cd

ab

Fig. 8. The event structures representing processes P1, P2 and P3.

• by applying Definition 40 on every bidirectional edge in G = (V , E), the graph G ′ = (V ′, E ′) is obtained, where V ′ \
({i} ∪ τl) = K (τl represents all the nodes obtained by bidirectional edge contraction).

Now we can state a lemma expressing the structural correspondence between Boreale and Sangiorgi’s late causal seman-
tics and the framework when � = �w .

Lemma 7 (Structural correspondence). Starting from initial π -calculus process P , where P = ϕ(P), we have:

1. if P
ζ1−→
K1

A1 . . . An−1
ζn−→
Kn

An is a trace in causal semantics [20], then there exists a trace P 
μ1−→→ X K F 1

1 . . . X K Fn−1
n−1

μn−→→ X K Fn
n and K F i

in the framework, such that for all i, λ(Ai) = ϕ(X K F i
i ), ζi = γ (μi) and Rem(K F i) = Ki , for i = 1, ..., n.

2. if P 
μ1−→→ X K F 1

1 . . . X K Fn−1
n−1

μn−→→ X K Fn
n is a trace in the framework, then there exists a trace P

ζ1−→
K1

A1 . . . An−1
ζn−→
Kn

An in the causal 

semantics, where for all i, λ(Ai) = ϕ(X K F i
i ), ζi = γ (μi) and Rem(K F i) = Ki , for i = 1, ..., n.

Proof. Both clauses (1. and 2.) are proved by induction on the length of the computation followed by induction on 
the structure of the process An (X K Fn

n for the clause 2.) and the last applied rule on the transition t : An
ζn+1−−→
Kn+1

An+1

(t′ : X K Fn
n

μn+1−−−→→ X K Fn+1
n+1 for the clause 2.). The full proof is given in Appendix C. �

The object causality in Boreale and Sangiorgi’s semantics is defined on the trace of a process. Hence, to have a direct 
correspondence, we redefine the object causality induced by the framework, on the forward trace of a reversible process. 
Previously it was defined on two consecutive transitions (Definition 23). In this way, Definition 23 will represent the case 
when n = 2.

Definition 42 (Object causality on the trace in the framework). In the trace t1 : X1
(i1,K1, j1):α1−−−−−−−→ X2 · · · tn : Xn

(in,Kn, j1):αn−−−−−−−→ Xn+1, 
transition th is an object cause of transition tl (1 ≤ h < l ≤ n), written th < tl , if ih ∈ Kl .

With the next theorem we show a causal correspondence between causality in the framework when memory � is 
instantiated with �w and Boreale and Sangiorgi’s late causal semantics.

Theorem 3 (Causal correspondence). The reflexive and transitive closure of the causality introduced in [20] coincides with the causality 
of the framework when � = �w .

Proof. The proof relies on Lemma 7 and the fact that object dependence induced by input actions in Boreale and Sangiorgi’s 
semantics is subject dependence as well. By the design of the framework and the definitions for predicates Cause(·) and 
Update(·), the first extrusion of a name will cause every other action using that name (this is accomplished with the rules 
(Open) and (Cause Ref)). In Definition 34 object dependence induced by an input action is also the structural one, and the 
one induced by extrusion coincides with object dependence in the framework. �
6.3. Crafa, Varacca and Yoshida causal semantics

A compositional event structure semantics for the forward π -calculus is introduced in [22]. A process is represented 
as a pair (E, X), where E is a prime event structure and X is a set of bound names. For instance, process P3 = P1 | P2
where P1 = a(x).cd and P2 = ab is given in event structure semantics in Fig. 8. The event structures E1, E2 and E3 represent 
processes P1, P2 and P3, respectively. Causal order is represented with straight lines, while conflict is represented with 
dotted lines. In the event structure E3 we can notice that there are two possibilities for the computation: either action a(x)
will execute and trigger the action cd, while in parallel the input action ab can be performed; or processes P1 and P2 will 
synchronise and then trigger the action cd. The synchronisation pair (a(x), ab) is relabelled into τx→b .

Disjunctive object causality is represented in such a way that it is not necessary to remember the exact extruder of a 
bound name. It is important that at least one happened in the past. In the case of parallel extrusion of the same name, 
for instance in process νa(ba | ca | a(x)), action a(x) can be caused by any of the extrusions (configurations {ba, a(x)} and 
{ca, a(x)} are both permitted), without recording the actual extruder.
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Consequently, events do not have a unique causal history. As discussed in [24] this type of disjunctive causality cannot 
be expressed when we consider processes with contexts. For example, in the process P = νa(ba | ca | a(x)), the cause of the 
action a(x) is either ba or ca but if context is added to this process (i.e. we consider closed terms), the ambiguity of the 
cause choice is lost. The choice of the cause is determined by the context (for instance, we can add context b(y).yd to the 
process P and in this case we know that the action a(x) is caused by ba).

We consider two possibilities for keeping track of the causes: the first one is choosing one of the possible extruders and 
the second one is recording all of them. In the first case, we would obtain a notion of causality similar to the one introduced 
in [23]. In the following we shall concentrate on the second option. The idea is that, since we do not know which extruder 
really caused the action with the extruded name in the subject position, we shall record the whole set of extruders that 
happened previously.

Hence, the data structure that can be used to represent the whole set of extruders is: set indexed with a set �� . The 
reason why two sets are necessary is because the τ -actions do not impose causes. Every extruder will be recorded in the 
set � and in that way we will keep track about the scope of the restricted name, while extruders which are not part of the 
synchronisations will be saved in �.

In the following we show how modified semantics of [22], where we keep track of the extruders in the way described 
above, is captured by the framework.

Definition 43 (Modified semantics of Crafa, Varacca and Yoshida). To capture the causality induced by modified semantics 
of [22], the data structure � is instantiated with the indexed set �� .

Now, let us illustrate it with the common example in this section.

Example 18. Let us consider the process X = νa∅{∗}(b
∗
a∗ | c∗a∗ | a∗(x)). By extruding the name a on the channels b and c

(by applying rule (Open)), we obtain the process:

νa{i1,i2}{∗,i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}] | a∗(x))

As we can notice, keys i1 and i2 are added in the data structure �� in both sets. From Definition 16 we have that the cause 
of the action a(x) will be the whole set {∗, i1, i2}. By executing the input action we obtain process:

νa{i1,i2}{∗,i1,i2}(b
∗
a∗[i1, {∗}] | c∗a∗[i2, {∗}] | a∗(x)[i3, {∗, i1, i2}])

From the reversible point of view, action a(x) needs to be reversed as the first one (we can notice it in the memory 
[i3, {∗, i1, i2}]). The other two actions can be reversed in any order.

7. Conclusions

In a concurrent setting, causally-consistent reversibility relates causality and reversibility. Several works [23,19,20,22,21]
have addressed causal semantics for the π -calculus, differing on how object causality is modelled. The main difference is 
in how these semantics treat the parallel extrusion of the same name. Starting from this observation, we have devised 
a framework for reversible π -calculi parametric with respect to the data structure used to record extrusions of a name. 
Our framework is highly influenced by [17], in the way we treat reversibility, and from [23] in the way the extrusion of 
a name is handled. Nonetheless we improve on both. With respect [17] we extend its reversing technique to work with 
binders, value passing and scope extrusion. Originally in [17] this is not possible due to the ‘limitations’ of the chosen SOS 
format. With respect to [23] we abstract away from how causality is defined, so to account for different notions. More-
over, our semantics (thanks to the technique of [17]) is more compositional (e.g., it does not require global rules) with 
respect to [23] as it does not require structural rules to deal with the splitting of a memory along a parallel composi-
tion.

Depending on the underlying data structure, we can obtain different causal semantics representing three different 
approaches to the parallel extrusion problem. We have shown that the three instances of our framework, using the 
aforementioned data structures, enjoy typical properties of reversible process algebra and that their reversibility is causally-
consistent. Additionally, this is the first time reversible semantics using the causality of [20,22] are introduced and shown 
to be causally-consistent. We illustrate how three different semantics [23,20,22] can be captured by the framework and we 
have proved a causal correspondence with the semantics introduced in [20] and an operational correspondence with [23]. 
Moreover, we depart from [23] by using a different notion of concurrency as explained in Definition 25. This allows us to 
be more selective and to deem as conflicting two consecutive transition producing/consuming the same prefix, which was 
not the case in [23].

An important difference between the causal semantics considered in this paper is that the one proposed in [23] satisfies 
several correctness criteria for causal models [24], while the causal semantics of [19,20] do not. Even if the causal semantics 
proposed in [23] is the best one according to the aforementioned criteria, there is an open question about causality and 
29
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π -calculus which still has to be solved. In [25] it has been shown that the (forward) causal semantics induced by the re-
versible higher-order π -calculus [26] coincides with the one of [20] while considering reduction semantics (e.g., considering 
closed systems). That is, the causality considered by [26] coincides with the structural one. One could conclude that while 
considering closed systems the causal semantics of [26] and [23] are the same, even if [26] does not keep track of causal 
information about the instantiators. One interpretation of this fact is that [23] uses more causal information than required. 
But this is still left to be proven. Having a common framework in which one can express all these semantics can lead to a 
better comparison among them and increase the understanding of causality in the π -calculus.

One of the directions for future work is to develop a behavioural theory of our framework. While exploring causally-
consistent reversibility of the different causal semantics that can be expressed in the framework, we are interested in 
the causality relation as the union of object and subject causality. Therefore, we shall define a causal bisimulation on the 
framework which does not distinguish object from subject causality. Then, we shall compare it with existing causal sensitive 
bisimulations and determine whether it is a congruence. Another question would be whether this bisimulation coincides 
with standard ones [35].

The other directions for future work are to continue working towards a more parametric framework and to compare 
it with [36,37] and to prove causal correspondence with the revised semantics of [22]. As discussed in Section 6.3, the 
semantics of [22] is given in terms of prime event structures, where events do not have a unique causal history and the 
ambiguity of disjunctive causality does not hold when processes with contexts are used, as shown in [24]. In our framework 
reversibility is causally-consistent; therefore it is necessary to keep track of the causes. Otherwise, by executing backward 
actions, one could reach a non-consistent state. Therefore we used a modified version of the semantics of [22], where the 
information about the causes can be tracked. Moreover, we plan to distill the minimum assumptions for predicates Cause(·)
and Update(·) so that causal consistency holds. In this way, we will be able to prove causally consistency in general for our 
framework (and not for each instance) and then each instance whose predicates satisfy the assumptions will automatically 
inherit such a property.

Following the approach of [35], we could further abstract our reversing approach and bring it to the (meta-)level of an 
SOS format dealing with values and binders. One good candidate would be the nominal format [38]. Moreover, it would be 
interesting to implement our framework in the psi-calculi framework [39].
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Appendix A

In this appendix we give the detailed proofs and further technical material of Section 5.

Proposition 5. In X
(i,K , j):b〈νa�〉−−−−−−−−→→ Y , ∃C such that X = C[νa� X ′]. Similarly in X

(i,K , j):b〈νa�〉
Y , ∃C such that Y = C[νa� X ′].

Proof. The proof is by induction on the derivation of transition X
(i,K , j):b〈νa�〉−−−−−−−−→→ Y . The interesting cases are when rules 

(Open) and (Close) are applied and they follow directly from the construction of the rules. �
Proposition 6. If X = C[νa�′ X ′], then a transition that has the name a as the object of an output is necessarily of the form 

X
(i,K , j):b〈νa�〉−−−−−−−−→→ Y .

Proof. The proof is by induction on the derivation of transition X
(i,K , j):b〈νa�〉−−−−−−−−→→ Y . It follows directly from the construction 

of the rules. �
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Proposition 7. Let � = �, X
(i,K , j):α−−−−−→ Y and a = subj(α). Then X = C[νa� X ′] ⇐⇒ K �= {∗}.

Proof. If X = C[νa� X ′] and X
(i,K , j):α−−−−−→ Y with a = subj(α), then � �= ∅. Having a transition C[νa� X ′] (i,K , j):α−−−−−→ C[νa� X ′′]

the rule (Cause Ref) needs to be applied. Therefore, the cause set K ⊆ �, which means that there exists some key i′ such 
that i′ ∈ K .

If K �= {∗} and X
(i,K , j):α−−−−−→ Y and a = subj(α) it means that the rules (Cause Ref) was applied, since it is the only rule 

in which cause set K can be updated. Therefore, some νa� ∈ X and we can write X as X = C[νa� X ′]. �
Lemma 4. If process X = C[νa�(Y ) | Y ′] is reachable, then νa�′ /∈ Y ′ , for all non-empty � and �′ .

Proof. The proof is by induction on the trace that leads to the process X : X1 −→ · · · −→ Xn −→ X , where X1 is an initial 
reversible process,4 and the last applied rule on the transition Xn −→ X . The base case is trivial, since for every νa� ∈ X1, 
empty(�) = true. In the inductive case, we have that in the transition Xn −→ X , the property holds for Xn . We continue 
by case analysis on the last applied rule on the transition Xn −→ X :

• rule (Par)

Y0
(i,K , j):α−−−−−→→ Y1 i /∈ Y ′ Bnv(α) ∩ Fnv(Y ′) = ∅

Y0 | Y ′ (i,K , j):α−−−−−→→ Y1 | Y ′

where the property holds for Y0 | Y ′ . We proceed with the following cases:
– if νa� ∈ Y0, then by the inductive hypothesis νa�′ /∈ Y ′ . After the execution of the action α, the property is preserved 

and it holds in Y1 | Y ′ as well.
– if νa� ∈ Y ′ , then by the inductive hypothesis νa�′ /∈ Y0, when �, �′ are not empty (name a is free in Y ′ , since � is 

not empty). To satisfy the property, we need to show that νa�′ /∈ Y1 holds.
Let us suppose that νa�′ ∈ Y1. Then some restriction νa�′′ needs to belong to Y0 and the only possibility is νa�′′ ∈ Y0
when empty(�′′) = true. Since name a is bound in Y0 and free in Y1 we have that action α extrudes bound name 
a and we have α = b〈νa�′′ 〉, where empty(�′′) = true. This is in contradiction with the side condition in the rule
Par, since the bound action a is between the free names in Y ′ . Hence, νa�′ /∈ Y1 and the property holds.

• rule (Com)

Y0
(i,K , j):bc−−−−−→→ Y1 Y ′

0
(i,K ′, j′):b(x)−−−−−−−→→ Y ′

1 K �� j′ ∧ K ′ �� j

Y0 | Y ′
0

(i,{∗},∗):τ−−−−−−→→ Y1 | Y ′
1{ci

/x}

where the property holds for Y0 | Y ′
0. We proceed with the following cases:

– if νa� ∈ Y0, then by the inductive hypothesis νa�′ /∈ Y ′
0, when �, �′ are not empty. We need to show that νa�′ /∈

Y ′
1{ci

/x}.
If c = a, and νa� ∈ Y0, then by Proposition 6, action bc should be b〈νa�′′ 〉, for some �′′ . In this case the rule Close

should be applied.
If c �= a, then νa�′ /∈ Y ′

1 since a is not in the object position of the output action bc. Hence, for the process

Y1 | Y ′
1{ci

/x} the property holds.
– if νa� ∈ Y ′

0, then by inductive hypothesis νa�′ /∈ Y0, when �, �′ are not empty. Since the action bc is executed on 
the Y0, there is no possibility for νa�′ to belong to the process Y1, and we have νa�′ /∈ Y1 and the property holds.

For the rest of the rules, the property trivially holds. �
Lemma 8. Given a process X = C[νa�′ Y ], where the context C does not contain the restriction of the name a, and transition 

νa� X
(i,K ′, j):π−−−−−→ νa� X ′ with the premise X

(i,K , j):π−−−−−→ X ′ where π = ab or π = a〈νb�1 〉, there exists at most one K such that K �X K ′ .

Proof. Before starting with the proof we make a small observation. From the definition of the instantiation relation (Defi-
nition 13) we have that the only possibility to have one key to be instantiated by two different keys is if one instantiation 
relation is defined for the name in the subject position of the prefix and the other one for the name in the object position. 

4 From Definition 8 we have that the reversible process X is initial when all its names are decorated with ∗ and for all restrictions νa� , for some name 
a, � is empty.
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Therefore, we can have a process Z = C[c(x)[i1, K1].C ′[d(y)[i2, K2].π [i3, K3].Y ] where π = ai1 bi2 such that i1 �Z i3 and 
i2 �Z i3.

Let us now proceed with the proof of the lemma and assume that there exist K ′′ and K ′′′ such that K ′′ �= K ′′′ and 
K ′′ �X K ′ and K ′′′ �X K ′ . From Definition 13 and the observation above, we know that one of them is related to the name 
a and the other one to the name b. Let us say that K ′′ �X K ′ is related to the name a and K ′′′ �X K ′ to the name b. 
Therefore, the action K ′′′ was a communication on some channel over which name b was sent.

On the other side, from X
(i,K ′′′, j):π−−−−−−→ X ′ where X = C[νa�′ Y ], we know that K ′′′ ⊂ �′ . This implies that the action K ′′′

was an extrusion of the name a (since this is the only way to update the set �′) which is not the case. �
In the following we prove that having two transitions and their derivation trees, the conclusions of transitions are the 

same if and only if they have the same premises. This result is needed to show Lemma 10 when two transitions having the 
same conclusions are considered. By applying Lemma 9, we can conclude that two transitions are equal.

Lemma 9. Two derivation trees have the same conclusion if and only if they have the same premises.

Proof. If the premises of the rules are the same, then it is trivial to show that derivations will reach the same conclusion. 
In the other direction, let us consider two derivation trees with the same conclusions and premises p1 and p2:

p1

X
μ−→ Y

p2

X
μ−→ Y

We proceed with the induction on the derivation tree of the transition X
μ−→ Y . For each rule of Figs. 2 and 3 we need to 

show that only one premise is possible. The interesting cases for us are the rules in which the label changes, in particular 
the communication rules (Com) and (Close), and the rules in which the contextual cause set K is updated, rules (Open) and 
(Cause Ref). For the rest of rules, the lemma holds by construction.

• (Cause Ref) Given a transition

pq

νa�(X)
(i,K ′, j):π−−−−−→→ Y

a ∈ subj(π) q ∈ {1,2}

the only applicable rule is (Cause Ref) with Y = νa� X ′
[K ′/ Kq]@i , and we have

X
(i,Kq, j):π−−−−−−→→ X ′ a ∈ sub(π) q ∈ {1,2} Cause(�, Kq, K ′, X)

νa�(X)
(i,K ′, j):π−−−−−→→ νa� X ′

[K ′/ Kq]@i

Now we want to show that K1 = K2. Depending on the data structure used for �, we have different definitions for the 
predicate Cause(�, Kq, K ′, X):
– if � is a set �, then predicate Cause(·) is defined as Kq = K ′ when Kq ⊂ � or K ′ ⊆ � Kq �X K ′ for q ∈ {1, 2} and 

we have the following cases:
� there does not exist νa�′ such that νa�′ ∈ X . Then K1 = K2 = {∗}. Follows from Proposition 7.
� if νa�′ ∈ X , then, we can write X as X = C[νa�′ Y ], where the context C does not contain the restriction of the 

name a. Then, we have either Kq = K ′ or K ′ ⊆ � Kq �X K ′ . Therefore, we have the following options:
– K1 = K ′ and K2 = K ′ , therefore K1 = K2 as desired;
– K ′ ⊆ � K1 �X K ′ and K2 �X K ′ . Since there is only one substitution per variable this case can only happen 

when π = ab, for some b, and K1 �X K ′ is related to the name a while K2 �X K ′ is related to the name 
b. Then by Lemma 8 we have that K2 cannot be the cause of the premise (i.e. cannot be the cause of action 
π = ab).

– K1 = K ′ and K ′ ⊆ � K2 �X K ′ . Since X = C[νa�′ Y ] and the executed action has a = subj(π), the rule (Cause 
Ref) is applied so that Kq ⊂ �′ . Then since K1 = K ′ we have K2, K ′ ⊂ �′ which is impossible since K2 �X K ′ .

– if � is an indexed set �w , we have K ′ = Kq ∪ {w}, i.e. K1 ∪ {w} = K2 ∪ {w}. We can distinguish two cases, depending 
if w is a ∗ or not:
� if w = ∗, we have K1 = K2 = K ′
� if w = k, where k �= ∗, we need to prove that K1 ∪{k} = K2 ∪{k}. Since it is an operation on sets, we need to prove 

that the key k belongs to both sets K1 and K2 or neither one of them. If k ∈ K1 we have that there is a restriction 
νa�′

k
∈ X . By the condition Cause(·) of the rule (Cause Ref) we have k ∈ K2. Similarly if k ∈ K2 we need to prove 

that k ∈ K1. If k /∈ K1, then there does not exist the restriction νa�′
k

in the process X ; hence k cannot be part of 
the causal set K2.

– if � is a set indexed with a set �� , then we have K ′ = Kq ∪ �, i.e. K1 ∪ � = K2 ∪ �. The proof is similar to the one 
above but we need to prove it for every element in a set �.
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• (Open) Given a transition

pq

νa�(X)
(i,K ′, j):b〈νa�〉−−−−−−−−→→ Y

q ∈ {1,2}

the only applicable rule is (Open) and we have Y = νa�+i X ′
[K ′/Kq]@i with a rule

X
(i,Kq, j):πq−−−−−−→→ X ′ πq = ba πq = b〈νa�′ 〉

νa�(X)
(i,K ′, j):b〈νa�〉−−−−−−−−→→ νa�+i X ′

[K ′/Kq]@i

Update(�, Kq, K ′)

Now we want to show that K1 = K2 and π1 = π2. Depending on the data structure used for �, we have different 
definitions for the condition Update(�, Kq, K ′):
– if � is a set �, we have K1 = K2 = K ′ and we just need to prove that π1 = π2. Let us suppose that π1 = ba; then 

by Proposition 6 there does not exist a context C[•] such that X = C[νa�′ X ′′]; hence from Proposition 5, we have 
π2 = ba. Similarly for π1 = b〈νa�′ 〉.

– if � = �� , the cause does not change with the rule Open and the proof is similar to the case above.
– if � is an indexed set �w , we have K ′ = Kq ∪ {w} and we need to prove that K1 = K2 and π1 = π2. Since set Kq can 

contain causes of the names a and b, we have Kq = Kqa ∪ Kqb . Now, let us suppose that π1 = ba. By Proposition 6 we 
have that there does not exist a context C[•] such that X = C[νa�′

w′ X ′′]; hence from Proposition 5, we can conclude 

that π2 = ba and K1a = K2a = {∗}. Now we have two cases: if the action b was extruded in the process X , then exist 
restriction νb�′′

w′′ ∈ X such that Kqb = {w ′′, ∗}; if b was free in X , then Kqb = {∗}.

Let us suppose that π1 = b〈νa�′
w′ 〉, by Proposition 6 there exists a context C[•] such that X = C[νa�′

w′ X ′′], and from 

Proposition 5 we have π2 = b〈νa�′
w′ 〉. For the cause sets Kqa we have two possibilities: if w ′ = ∗, we have Kqa = {∗}; 

if w ′ = k, we have Kqa = {∗, k}. For the set Kqb we reason in the same way as when π1 = ba.
• (Close): Given a transition

pq

X | Y
(i,{∗},∗):τ−−−−−−→→ Z

q ∈ {1,2}

if there exists νa� ∈ X , we can apply only the rule (Close) (by Proposition 6) and get Z = νa�(X ′
#i | Y ′) with a rule:

X
(i,Kq, j):b〈νa�〉−−−−−−−−−→→ X ′ Y

(i,K ′
q, j′):b(x)−−−−−−−→→ Y ′

X | Y
(i,{∗},∗):τ−−−−−−→→ νa�(X ′

#i | Y ′)
Kq �� j′ ∧ K ′

q �� j

Now we want to show that K1 = K2. Depending on the data structure used for �, we have different cases:
– if � is a set �, we have Kq �� j′ ∧ K ′

q �� j and two cases:
� if b was a free name that was not bound in the past, we have that νb′

� /∈ X and then by Proposition 7 Kq = K ′
q =

{∗}.
� if b is a name that was bound in the past, then there exists a restriction νb�′ ∈ X such that Ki �= {∗} and K ′

i = {∗}
for i ∈ {1, 2} or there exists a restriction νb�′ ∈ Y such that Ki = {∗} and K ′

i �= {∗} for i ∈ {1, 2}. In the first case we 
have K ′

1 = K ′
2 = {∗}; hence in order to satisfy the condition of the rule, we have K1 = K2 �� j′ . The second case is 

similar.
– if � is an indexed set �w , the action b〈νa�w 〉 can be caused through subject and object position in the label, and 

we need to reason on both names: a and b. We shall divide cause sets Kq into two subsets: Kq = Kqa ∪ Kqb and for 
K ′

q we have K ′
q = K ′

qb
since it can be only caused through the name b. The rule Close is used; hence there exists a 

context C[•], such that X = C[νa�w X ′′] and we have three possibilities:
� if a restriction νb�′

w′ is not in X and Y , then Kqb = K ′
qb

= {∗}. For Kqa we have two cases: if w = ∗, we can 
conclude that Kqa = {∗} and we have K1 = K2; if w = k′′ for some k′′ ∈ �, we can conclude that Kqa = {∗, k′′} and 
K1 = K2.

� if a restriction νb�′
w′ ∈ X then by Lemma 4 there is no restriction νb�′′

w′′ in Y , hence K ′
qb

= {∗}. For the cause set 
Kq we reason as in the case when rule (Open) was applied.

� if a restriction νb�′
w′ ∈ Y then by Lemma 4 there is no restriction νb�′′

w′′ in X , hence Kqb = {∗}. For Kqa we have 
two cases: if w = ∗, we can conclude that Kqa = {∗} and we have K1 = K2; if w = k′′ for some k′′ ∈ �, we can 
conclude that Kqa = {∗, k′′} and K1 = K2. From νb�′

w′ ∈ Y we know that the rule (Cause Ref) is applied on the 
process Y and we reason as in the first case of the proof.

– if � = �� , we have two cases:
� if b was a free name, then Kq = K ′

q = {∗}
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� if b is a name that was bound in the past, then by Lemma 4 there exists a restriction νb�′
�′ ∈ X such that Ki �= {∗}

and K ′
i = {∗} for i ∈ {1, 2} or exists a restriction νb�′

�′ ∈ Y such that Ki = {∗} and K ′
i �= {∗} for i ∈ {1, 2}. In the first 

case we have: if �′ = {∗} then K1 = K2 = {∗}; if �′ �= {∗} then from the definition of the predicate Cause(·) of 
the rule (Cause Ref) applied on the process X we have Kq = K ′′

q ∪ �′ , where K ′′
q are the cause sets belonging to 

the premise of the rule (Cause Ref). Then we reason as in the case when the rule (Cause Ref) is applied. The case 
when νb�′

�′ ∈ Y is similar.

• (Com): This case is handled similarly to the case when we considered rule (Close). �
With the following definition we introduce the normal form of a reversible process which we will use in this section.

Definition 44 (Normal form). The normal form of the reversible process X is given with

X = νãn�n Cn[ν ˜an−1�n−1 Cn−1[. . . νã0�0 C0[X1]]]
where the contexts Ci when i = 0, 1, . . . , n (Definition 1) do not contain any restriction on the name a and νãl�l =
νãl1�l1 , . . . , νãln�ln .

Notation 2. If the contexts are not relevant, we will write X = C[νã0�0 C0[X1]] where C = νãn�n Cn[ν ˜an−1�n−1 Cn−1
[. . . νã1�1 C1[]]].

With the next properties, we show how in the transition t : X
(i,K , j):α−−−−−→ X ′ , executing action α influences the resulting 

process X ′ . Depending on the nature of action α, just one part of it or the whole process X ′ will be modified.

Property 1. Given a process X = νãn�n Cn[ν ˜an−1�n−1 Cn−1[. . . νã0�0 C0[X1]]], and transition t : X
(i,K , j):α−−−−−→ X ′ , α �= τ , executed by 

any component in X, there are two possibilities for modifying the resulting process X ′, depending on the nature of the action α:

• if α = b〈νa�〉, for some name b, then transition t modifies the component on which it is executed and all the restrictions on the 
name a before it;

• if α �= b〈νa�〉, then transition t modifies only the component on which it is executed:

Proof. The proof follows directly from the semantics of the framework. �
For instance, consider the process X = νa�n Cn[νa�n−1 Cn−1[. . . νa�0 C0[X1]]] and transition t : X

(i,K , j):α−−−−−→→ X ′ , where 
α �= τ . Let us assume that transition t is performed by the process X1. Then we have:

• if α = b〈νa�〉, for some name b; transition t modifies the process X1 and all the restrictions, since all of them are 
before X1, and we have:

t : X
(i,K , j):b〈νa�n 〉−−−−−−−−−→→ νa�n+iCn[νa�n−1+iCn−1[. . . νa�0+i C0[X ′

1]]]
Every time when action α passes the restriction on the name a, rule (Open) is applied and key i is added to �l when 
l = 0, 1, . . . , n.

• if α �= b〈νa�〉, then transition t modifies only the process X1:

t : X
(i,K , j):α−−−−−→ νa�n Cn[νa�n−1 Cn−1[. . . νa�0 C0[X ′

1]]]

Property 2. Given a process X = νãn�n Cn[ν ˜an−1�n−1 Cn−1[. . . νã0�0 C0[X1]]], and transition t : X
(i,{∗},∗):τ−−−−−−→ X ′ , there are two possi-

bilities for modifying the resulting process X ′, depending whether the transition t involves one or two contexts:

• if transition t involves one context, then considering the synchronisation t : X1
(i,{∗},∗):τ−−−−−−→ X ′

1 we have:
– if C0 = • | Y , transition t modifies just that context, hence

t : C[νã0�0(X1 | Y )] (i,{∗},∗):τ−−−−−−→ C[νã0�0(X ′
1 | Y )]

– if C0 = •, the synchronisation can add or remove an element of ̃a0�0 but not of �0 , and it does not change the context C, hence:

t : C[νã0�0(X1)] (i,{∗},∗):τ−−−−−−→ C[ν˜a′ (X ′
1)]
0�0
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• if transition t involves two contexts and rules (Com) and (Com
•) are applied, then transition t modifies just the two contexts. 

Otherwise if rule (Close) and (Close
•) are applied and transition t involves X1 and context Cn−1 , we have:

νãn�n Cn[ν ˜an−1�n−1 Cn−1[. . . νã0�0 C0[X1]]] (i,{∗},∗):τ−−−−−−→
νãn�n Cn[ν ˜a′

n−1�n−1
C ′

n−1[. . . νã0�′
0
C0[X ′

1]]]

where transition t modifies both contexts, restriction ν ˜an−1�n−1 where it can add or remove element from it, and restrictions νãl�l

when l = 0, 1, ..., n − 1 where it can change just �l .

Proof. The proof is straightforward from the rules for communication. �
Notation 3. For the sake of simplicity we shall assume that the vector of names νãl�l from Definition 44 is a singleton and 
we shall write: X = νa�n Cn[νa�n−1 Cn−1[. . . νa�0 C0[X1]]].

Lemma 5 (Square lemma). If t1 : X
μ1−→ Y and t2 : Y

μ2−→ Z are two concurrent transitions, there exist t′
2 : X

μ′
2−→ Y1 and t′

1 : Y1
μ′

1−→ Z
where μi =λ μ′

i .

Proof. The proof is by case analysis on the form of the transitions t1 and t2. The case when transitions t1 and t2 execute 
on exactly the same prefix is impossible since the transitions are concurrent. In particular:

• if X = C[a∗b∗.P ], for some a, b, then t1 is a forward transition executed on prefix a∗b∗ and t2 is a backward transition 
executed on history prefix a∗b∗[i1, K1] such that i1, K1 ∈ μ1. Then we have t2 = t•

1 and by Definition 26, transitions t1
and t2 are not concurrent, which is not the case.

• if X = C[a∗b∗[i1, K1].P ], for some a, b, then t1 is a backward transition executed on history prefix a∗b∗[i1, K1] and t2 is 
a forward transition executed on prefix a∗b∗ . Then we have that transition t2 consumes the prefix freed by transition 
t1 and by Definition 26, transitions t1 and t2 are not concurrent, which is not the case.

Similarly if the transitions are executed on input prefixes.
We proceed with the proof by considering four main cases depending on whether transitions t1 and t2 are synchronisa-

tions or not and then proceed with the induction on the structure of the process while checking all possible combination 
of the rules applied on the transitions t1 and t2. We just show interesting cases when the restriction of a name is involved 
and the reversible process is written in the form X = νa�n Cn[νa�n−1 Cn−1[. . . νa�0 C0[X1]]] (Notation 3).

We proceed with case analysis on whether transitions t1 and t2 are synchronisations or not:

1. t1 and t2 are not synchronisations. We need to prove that by changing the order of the transitions we shall obtain 
the same process. We consider the cases where transitions t1 and t2 modify not just their own context, but also other 
contexts or restrictions.
Let us assume that transition t1 modifies process X1 and that the performed action is α1 = b〈νa�〉. By Property 1,we 
have

t1 : X
μ1−→ νa�′

n
Cn[νa�n−1 Cn−1[. . . νa�′

0
C0[X ′

1]]]

where μ1 = (i1, K1, j1) : b〈νa�〉. Let α2 be the action of the transition t2. If a /∈ α2 then t2 modifies just its own context 
(Property 1) and it is not prevented by the restrictions on a. Let us consider the case when a ∈ α2. We continue the 
proof by the induction on the structure of the process.
• The base case of induction is to prove that if

νa�(X1 | X2)
μ1−→ νa�′

1
(X ′

1 | X2)
μ2−→ νa�′(X ′

1 | X ′
2)

then

νa�(X1 | X2)
μ′

2−→ νa�′
2
(X1 | X ′

2)
μ′

1−→ νa�′(X ′
1 | X ′

2)

Since t1 has performed action α1 = b〈νa�〉, rules (Open) and (Open
•) can be used. We consider just the interesting 

cases when on t1 is applied rule (Open) and continue with the case analysis on the rules that can be applied on t2
such that a ∈ α2.
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– Rule (Open) applied on t2. We have

νa�(X1 | X2)
(i1,K1, j1):b〈νa�〉−−−−−−−−−−→→ νa�+i1(X ′

1 | X2)

(i2,K2, j2):c〈νa�+i1 〉−−−−−−−−−−−−→→ νa�+i1+i2(X ′
1 | X ′

2)

where X2
(i2,K , j2):c〈νa�′ 〉−−−−−−−−−−→→ X ′

2. If i1 ∈ K2 then transition t1 causes transition t2 and this is not the case (they are 
concurrent). If i1 ∈ K , then by definition of the predicate Update(·) (on the rule (Open)) for the three data struc-
tures that we considered, we will have i1 ∈ K2 and again, we have that t1 causes transition t2 which is not the 
case. Therefore, i1 /∈ K , K2 and we can safely commute transitions and obtain:

νa�(X1 | X2)
(i2,K2, j2):c〈νa�〉−−−−−−−−−−→→ νa�+i2(X1 | X ′

2)

(i1,K1, j1):b〈νa�+i2 〉−−−−−−−−−−−−→→ νa�+i1+i2(X ′
1 | X ′

2)

as desired. The labels of transitions t1 and t′
1 are not equal; they are label equivalent, i.e. μ1 =λ μ′

1.
– Rule (Cause Ref) applied on t2. We have

νa�(X1 | X2)
(i1,K1, j1):b〈νa�〉−−−−−−−−−−→→ νa�+i1(X ′

1 | X2)

(i2,K2, j2):α−−−−−−−→→ νa�+i1(X ′
1 | X ′

2)

with X2
(i2,K , j2):α−−−−−−→→ X ′

2 and a ∈ subj(α). If i1 ∈ K2 then transition t1 causes transition t2 but this is not the case 
as they are concurrent. If i1 ∈ K , then by definition of the predicate Cause(·) from the rule (Cause Ref) we have 
three cases: if � = �, then by i1 ∈ K and i1 /∈ K2, we have K �X2 K2 which implies that i1 is a synchronisation 
and that is not the case; if � = �w , then by the predicate Cause(·), new cause set K2 is the union of the old 
cause set K and w , therefore i1 ∈ K implies i1 ∈ K2, which is not the case; similarly if � = �� . Hence i1 /∈ K , K2

and we can commute transitions:

νa�(X1 | X2)
(i2,K2, j2):α−−−−−−−→→ νa�(X1 | X ′

2)

(i1,K1, j1):b〈νa�〉−−−−−−−−−−→→ νa�+i1(X ′
1 | X ′

2)

• In the inductive case it is necessary to show that if X
μ1−→ Y

μ2−→ Z and X
μ′

2−→ Y1
μ′

1−→ Z , then the following holds

νa� X
μ1−→ νa�′

1
Y

μ2−→ νa�′ Z and νa� X
μ′

2−→ νa�′
2
Y1

μ′
1−→ νa�′ Z

Zi | X
μ1−→ Zi | Y

μ2−→ Zi | Z and Zi | X
μ′

2−→ Zi | Y1
μ′

1−→ Zi | Z

Both subcases are straightforward.
2. t2 is a synchronisation and t1 is not. We observe the case when t1 is performing an action b〈νa�〉 (the rest of the cases 

are straightforward). In this case, the applied rule could be (Open) or (Open
•).

If t2 is a synchronisation which does not involve name a or involve just one component of the process X , then by 
Property 2 the case is trivial.
We shall consider the case when transition t2 involves two contexts Ci[•] and C j[•] of the process X written as:

X = νa�n Cn[. . . νa�i Ci[. . . νa� j C j[νa�0 C0[X1]]]]
and name a is used in the object position of the label α2 of t2. Then rules (Close) and (Close

•) can be applied. Now 
we proceed with the induction on the structure of the process.
• In the base case, since transitions will modify contexts just up to νa�i , we can reason on process X written as:

X = νa�i Ci[. . . νa� j C j[X1]]]
Now we combine rules applied on transition t1 with the one applied on t2 and we have:
– Rule (Open) applied on t1 and rule (Close) on t2. We assume that transition t1 is executed on the component X1. 

Then we have:
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νa�i Ci[. . . νa� j C j[X1]]
(i1,K1, j1):b〈νa�i 〉−−−−−−−−−−→→

νa�i+i1 Ci[. . . νa� j+i1 C j[X ′
1]]

(i2,{∗},∗):τ−−−−−−→→
νa�i+i1νa�+i1 C ′

i[. . . νa�′
j+i1

C ′
j[X ′

1]] = Z

where νa�+i1 ∈ Ci[. . . νa� j+i1 C j[X ′
1]] (from Proposition 5). To permute transitions, we need to be sure that tran-

sition t1 does not cause transition t2. Since t2 is a synchronisation, we need to check if t1 causes the transitions 
that are involved in the communication; but then we have to check if the lemma holds for transitions that are not 
synchronisations and that is done in Case 1. Hence, we commute transitions and obtain:

νa�i Ci[. . . νa� j C j[X1]] (i2,{∗},∗):τ−−−−−−→→

νa�i νa�C ′
i[. . . νa�′

j
C ′

j[X1]]
(i1,K1, j1):b〈νa�i 〉−−−−−−−−−−→→

νa�i+i1νa�+i1 C ′
i[. . . νa�′

j+i1
C ′

j[X ′
1]] = Z

where νa� ∈ Ci[. . . νa� j C j[X1]]. We have Z = Z , as desired.
– Rule (Open

•) applied on t1 and rule (Close) on the t2. We have:

νa�i+i1 Ci[. . . νa� j+i1 C j[X1]]
(i1,K1, j1):b〈νa�i 〉

νa�i Ci[. . . νa� j C j[X ′
1]]

(i2,{∗},∗):τ−−−−−−→→ νa�i νa�′ C ′
i[. . . νa�′

j
C ′

j[X ′
1]] = Z

where νa� ∈ Ci[. . . νa� j C j[X ′
1]]. It is not possible that backward transition t1 causes transition t2 and we can swap 

transitions and obtain:

νa�i+i1 Ci[. . . νa� j+i1 C j[X1]] (i2,{∗},∗):τ−−−−−−→→

νa�i+i1νa�′+i1 C ′
i[. . . νa�′

j+i1
C ′

j[X1]]
(i1,K1, j1):b〈νa�i 〉

νa�i νa�′ C ′
i[. . . νa�′

j
C ′

j[X ′
1]] = Z

where νa�+i1 ∈ Ci[. . . νa� j+i1 C j[X1]].
– Similarly for the rules (Open) and (Open

•) combined with rule (Close
•).

• The inductive case is trivial since t1 only modifies processes in the context, not the context by itself. Considering the 
synchronisation t : X1

(i,{∗},∗):τ−−−−−−→ X ′
1, we have t : C[νa�(X1 | X2)] (i,{∗},∗):τ−−−−−−→ C[νa�(X ′

1 | X2)] where we can notice that 
transition t modified just X1 (Property 2).

3. The case when t1 is a synchronisation and t2 is not, is similar to the one above.
4. t1 and t2 are synchronisations. We consider the cases when synchronisations involve two different components of the 

process X . Assume that t1 is a synchronisation between process X1 where output is executed and context C j where 
input is performed; while t2 is a synchronisation between input in context Ci and output in Ck . Since transitions will 
modify contexts just up to νa�i , we can reason on process X written as:

X = νa�i Ci[. . . νa� j C j[. . . νa�k Ck[X1]]]
We continue with the case analysis depending whether name a is used in the subject or in the object position of the 
output actions involved in the communications t1 and t2.
• name a is in the object position in both output actions involved in the communications t1 and t2; in this case, rules 

(Close) and (Close
•) can be applied. Let us consider the case when rule (Close) is applied on both t1 and t2; the 

rest of the cases are similar. We have

νa�i Ci[. . . νa� j C j[. . . νa�k Ck[X1]]] (i1,{∗},∗):τ−−−−−−→→
νa�i Ci[. . . νa� j νa�C ′

j[. . . νa�′
k
Ck[X ′

1]]]
(i2,{∗},∗):τ−−−−−−→→

νa�i νa�′′
l

C ′
i[. . . νa�′

j
νa�′′ C ′

j[. . . νa�′′
k

C ′
k[X ′

1]]]
where from Proposition 5, we have νa� ∈ C j[. . . νa�k Ck[X1]] and νa�′′

l
∈ Ci[. . . νa� j νa�′ C ′

j[. . . νa�′
k
Ck[X ′

1]]]. To per-
mute transitions, we need to ensure that transition t1 is not the cause of transition t2. Since both transitions are 
synchronisations we need to check if the output transition involved in t1 causes the output transition involved in t2. 
This is covered with Case 1 when we proved that the lemma holds for single transitions.
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Now we can safely swap the transitions and transition t′
2 is:

νa�i Ci[. . . νa� j C j[. . . νa�k Ck[X1]]] (i2,{∗},∗):τ−−−−−−→→
νa�i νa�′′

l
C ′

i[. . . νa�′
j
C j[. . . νa�′

k
C ′

k[X1]]]
where νa�l ∈ Ci[. . . νa� j C j[. . . νa�k Ck[X1]]]. The derivation for the transition t′

1 is:

νa�i νa�′′
l

C ′
i[. . . νa�′

j
C j[. . . νa�′

k
C ′

k[X1]]] (i1,{∗},∗):τ−−−−−−→→
νa�i νa�′′

l
C ′

i[. . . νa�′
j
νa�′′ C ′

j[. . . νa�′′
k

C ′
k[X ′

1]]]
where νa�′ ∈ C j[. . . νa�′

k
C ′

k[X1]], as desired.
• name a is in the object position in the output transition involved in the communication t1 and in the subject position 

in the output transition involved in communication t2. In this case, rules (Close) and (Close
•) can be applied on t1

and (Com) and (Com
•) on t2. Let us consider the case when (Close) is applied on t1 and (Com) on t2. The rest of the 

cases are similar. By executing the rule (Close) on t1, we have:

νa�i Ci[. . . νa� j C j[. . . νa�k Ck[X1]]] (i1,{∗},∗):τ−−−−−−→→
νa�i Ci[. . . νa� j νa�C ′

j[. . . νa�k+i1 Ck[X ′
1]]]

where νa� ∈ C j[. . . νa�k Ck[X1]]] (Proposition 5). By executing the rule (Com) we are changing just contexts Ci and 
Ck , not the restrictions.

νa�i Ci[. . . νa� j νa�C ′
j[. . . νa�k+i1 Ck[X ′

1]]]
(i2,{∗},∗):τ−−−−−−→→

νa�i C
′
i[. . . νa� j νa�C ′

j[. . . νa�k+i1 C ′
k[X ′

1]]]
To permute transitions, we need to ensure that transition t1 is not the cause of transition t2. Since both transitions are 
synchronisations we need to check if the output action involved in t1 causes the output or the input action involved 
in transition t2. This is covered with Case 1 when we proved that the lemma holds for single transitions t1 and t2. 
Hence, we can swap transitions and obtain:

νa�i Ci[. . . νa� j C j[. . . νa�k Ck[X1]]] (i2,{∗},∗):τ−−−−−−→→
νa�i C

′
i[. . . νa� j C j[. . . νa�k C ′

k[X1]]] (i1,{∗},∗):τ−−−−−−→→
νa�i C

′
i[. . . νa� j νa�C ′

j[. . . νa�k+i1 C ′
k[X ′

1]]]
where νa� ∈ C j[. . . νa�k C ′

k[X1]]] since transition t2 does not change restrictions. �
In the following we give some properties defined on the transitions, necessary to show the main result of this section: 

causal-consistency of the framework.

Definition 45. Two transitions t1 and t2 are prefix equivalent, written t1 =p t2 if they add or remove the same past element 
π [i, K ] from the history context of a process.

We would like to remind that a history context is built from the past prefixes. For example, in the process 
a∗b∗[i, K ].c∗(x).P, the history context is H = a∗b∗[i, K ].•, while in the process a∗b∗.c∗(x).P, the history context is empty 
(i.e. H = •).

Example 19. Given the process a∗b∗.P1 | a∗b∗.P2, we have two transitions

t1 : a∗b∗.P1 | a∗b∗.P2
(i,{∗},∗):ab−−−−−−→→ a∗b∗[i, {∗}].P1 | a∗b∗.P2

t2 : a∗b∗.P1 | a∗b∗.P2
(i,{∗},∗):ab−−−−−−→→ a∗b∗.P1 | a∗b∗[i, {∗}].P2

Transitions t1 and t2 are not the same, but they are prefix equivalent because they add the same past element into the 
history. The LTS ensures that keys are unique in the process.

Lemma 10. In a trace, if two transitions t1 and t2 are prefix equivalent, then t1 = t• .
2
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Proof. If they are prefix equivalent, we know that i1 = i2 and we have that the transitions happened on the same com-

ponent in the parallel composition. Therefore t1 : X
(i1,K1, j1):α−−−−−−−→→ Y and t1 : Y

(i1,K1, j1):α
X . Then t•

2 = X
(i1,K1, j1):α−−−−−−−→→ Y . From 

Lemma 9, we have t1 = t•
2. �

Lemma 11. If transitions t1 and t2 are prefix equivalent, coinitial and they are on exactly the same prefix in a process, then t1 = t2 .

Proof. The proof follows from the fact that keys are unique and that transitions are coinitial on the same prefix. �
The following lemma states that reversible computation can be rearranged as the backward-only transitions, followed by 

the forward-only ones.

Lemma 12 (Parabolic traces). Let s be a trace. Then there exist a backward-only trace r and a forward-only trace r′ such that s ∼ r; r′ .

Proof. The proof is by induction on the length of s and the distance between the very first transition in s and the pair of 
transitions contradicting the statement of the lemma. Let suppose that this is a pair of transitions t1; t2. Then we have:

t1 : X
(i1,K1, j1):α1−−−−−−−→→ Y t2 : Y

(i2,K2, j2):α2
Z

We have two cases depending whether transitions t1 and t2 are concurrent or not.

• if t1 and t2 are concurrent; then we can apply Lemma 5 and swap them. In this way we decrease the distance between 
the very first transition in s and the pair of transitions contradicting the statement of the lemma.

• if t1 and t2 are not concurrent, then we have two possibilities:
– t1 and t2 are causally related. If structural causality is concerned, then they are performed on the same component 

of the process. Since they are consecutive and in opposite directions they are prefix equivalent. From Lemma 10 we 
have t2 = t•

1 and since t1; t•
1 ∼ ε we can decrease the length of s on which we can apply the induction hypothesis.

Regarding to contextual causality, we have that this case is impossible. They cannot be object dependent since tran-
sitions t1 and t2 are consecutive and t2 is the backward one.

– transition t2 is the reverse of transition t1, i.e., t2 = t•
1. Then as in the case above since t1; t•

1 ∼ ε we can decrease the 
length of s on which we apply the induction hypothesis. �

With the next lemma we show that if s1 and s2 are two coinitial and cofinal traces and s2 is made just of forward 
transitions, then there exists a forward-only trace s′

1 equivalent to s1. Intuitively, backward transitions of the trace s1 can 
be deleted, since s1 and s2 are coinitial and cofinal and s2 is forward-only.

Lemma 13. Let us denote with s1 and s2 two coinitial and cofinal traces, where s2 is forward only. Then there exists a forward-only 
trace s′

1 , shorter or equal to s1, such that s1 ∼ s′
1 .

Proof. The proof is by induction on the length of s1. If s1 is forward-only then s′
1 = s1. If not, by Lemma 12, we can 

assume that s1 is parabolic, and write it as s1 = u; t1; t2; v where t1; t2 is the only pair of consecutive transitions in the 
opposite direction; u; t1 is backward-only and t2; v is forward-only. Since traces s1 and s2 are coinitial and cofinal and s2
is forward-only, we can notice that the history element which transition t1 takes out of the history, some transition in t2; v
needs to put back, otherwise, the difference will stay visible (i.e. s1 and s2 would not be cofinal). Let us denote with t′ the 
first such transition. To preserve the same target in the end of the traces s1 and s2, we have that transitions t′ and t1 are 
prefix equivalent, hence from Lemma 10 we have t′ = t•

1. We can rewrite s1 as u; t1; t2; v1; t′; v2 where trace t2; v1; t′; v2 is 
forward-only.

We proceed by showing that t1 is concurrent with all transitions up to t′ . Let us suppose the opposite, namely that there 
exists some transition t′′ between t1 and t′ such that t1 and t′′ are not concurrent. From Definition 26, we can distinguish 
three cases:

• if t1 and t′′ are structural causal then we have a contradiction with the hypothesis that t′ is the first transition that will 
put back the history element that t1 deletes.

• the case when t1 and t′′ are object causal is impossible, since t1 is a backward transition and t′′ is forward.
• t1 is a backward transition and t′′ is a forward transition such that t′′ consumes the prefix freed by transition t1. Then 

we have a contradiction with the hypothesis that t′ is the first transition that will put back the history element that t1
deletes.

We can conclude that transition t1 is concurrent with all transitions between t1 and t′ . By Lemma 5 we can swap t1
with each transition up to t′ and by Definition 28 we have s1 ∼ u; t2; v1; t1; t′; v2. By the same definition we have s1 ∼
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u; t2; v1; v2 (since t•
1 = t′ , we can erase the transitions because t1; t′ ∼ ε). In this way, the length of s1 decreases and we 

can apply the inductive hypothesis. �
Theorem 1 (Causal-consistency). Two traces are coinitial and cofinal if and only if they are equivalent up-to permutation.

Proof. Let us denote two traces with s1 and s2. If s1 ∼ s2 then from the definition of ∼ (Definition 28) we can conclude 
that they are coinitial and cofinal.

Let us suppose that s1 and s2 are coinitial and cofinal. From Lemma 12 we can suppose that they are parabolic. We shall 
reason by induction on the lengths of s1, s2 and on the depth of the very first disagreement between them. We shall denote 
it with the pair t1, t2. Then we can write the traces s1 and s2 as

s1 = u1; t1; v1 s2 = u2; t2; v2

where u1 ∼ u2. Depending on whether t1 and t2 are forward or not, we have the following cases:

• t1 is forward and t2 is backward. Since s1 is parabolic we have that u1 is backward-only and v1 is forward-only. From 
u1 ∼ u2 we have that u1 and u2 are coinitial and cofinal; hence the traces t1; v1 and t2; v2 are coinitial and cofinal (s1
and s2 are cofinal) where t1; v1 is forward only.
Now we can apply Lemma 13 on the traces t1; v1 and t2; v2 and we have that there exists a trace s′

2 (forward-only), 
shorter or equal to t2; v2 such that s′

2 ∼ t2; v2. If it is equal then t2 needs to be forward and this is in contradiction 
with the fact that t2 is backward. If it is shorter then we proceed by induction with u2; s′

2 shorter.
• t1 and t2 are forward. Then t1; v1 and t2; v2 are coinitial, cofinal and forward-only. We have two cases depending on 

whether t1 and t2 are concurrent or not.
– if t1 and t2 are concurrent then whatever t1 puts in the history, v2 needs to do the same. Let t′

1 be the first such 
transition, then t′

1 ∈ v2 and t′
1 =p t1. Now we can rewrite t2; v2 as t2; v ′

2; t′
1; v ′′

2 and show that t′
1 is concurrent with 

all transitions in v ′
2:

� t′
1 is the first transition on the same prefix as t1 (since t1; v1 and t2; v2 are coinitial, cofinal and forward-only). 

Hence, it is not structural causal with any transition in t2; v ′
2.

� from t′
1 =p t1, cause sets of both transitions are the same and since t1 is coinitial with t2; v ′

2 and t2; v ′
2 are 

forward-only, transition t1 cannot have as contextual cause any transition from t2; v ′
2.

We can conclude that transitions t1 and t2 are concurrent and from Lemma 5 we have:

t2; v2 = t2; v ′
2; t′

1; v ′′
2 ∼ t′

1; t2; v ′
2; v ′′

2.

Since t′
1 =p t1, they are on exactly the same prefix and they are coinitial, from Lemma 11 we have that t′

1 = t1. 
Without changing the length of s1 and s2 we obtain the first disagreement pair later and we can rely on the inductive 
hypothesis.

– the case when t1 and t2 are causally related is impossible since they are both forward, and coinitial.
• The proof is similar if both transitions t1 and t2 are backward. here �

Appendix B

In this appendix we report the full proofs from Section 6.1.1. We start by recalling the semantics of Rπ [23] in Fig. B.9. 
For more information see [23].

Before proving the operational correspondence of the encoding we shall define the operation @ on the Rπ memories as 
follows:

Definition 46. We define m1@m2 by structural induction on m1:

〈〉@m2 = m2

(e · m1)@m2 = e · (m1@m2)

We assume that the cons operator · has precedence over @. We remark that the operation @ does not appear in [23].

Assumption 1. We always choose �X, 〈〉, S� in such a way that Bnv(�X, 〈〉, S�) ∩ Fnv(�X, 〈〉, S�) = ∅.

Before stating the correctness of the encoding, we need some auxiliary results. First, we can view any Rπ process R as 
a context C R composed of parallel and restriction operators annotated with the set �, containing numbered holes filled by 
monitored processes. Hence, we will use the following notation.
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(IN+)

i /∈ m j = instm(b)

m � b(c).P
(i, j,∗):m[b(x)]−−−−−−−−→ 〈i,∗,b[∗/x]〉.m � P

(OUT+)

i /∈ m j = instm(b)

m � ba.P
(i, j,∗):m[ba]−−−−−−−→ 〈i,∗,ba〉.m � P

(PAR+)

R
(i, j,k):α−−−−→ R ′ i /∈ S Bnv(α) ∩ Fnv(S) = ∅

R | S
(i, j,k):α−−−−→ R ′ | S

(COM+)

R
(i, j,k):ba−−−−−→ R ′ S

(i, j,k):b(x)−−−−−−→ S ′ k =∗ j′ ∧ k′ =∗ j

R | S
(i,∗,∗):τ−−−−−→ R ′ | S ′

[a/x]@i

(CAUSE REF+)

R
(i, j,k):α−−−−→ R ′ a ∈ subj(α) � �= ∅ k = k′ ∨ ∃k′ ∈ � k �R k′

νa�(R)
(i, j,k′):α−−−−−→ νa�(R ′

[k′/k]@i)

(OPEN+)

R
(i, j,k):α−−−−→ R ′ α = ba ∨ α = b〈νa�′ 〉
νa�(R)

(i, j,k):b〈νa�〉−−−−−−−→ νa�+i(R ′)

(CLOSE+)

R
(i, j,k):b〈νa�〉−−−−−−−→ R ′ S

(i, j′,k′):b(x)−−−−−−−→ S ′ k =∗ j′ ∧ k′ =∗ j

R | S
(i,∗,∗):τ−−−−−→ νa�(R ′ | S ′

[a/x]@i)

(NEW+)

R
(i, j,k):α−−−−→ R ′ a /∈ α

νa�(R)
(i, j,k):α−−−−→ νa�(R ′)

(MEM+)

R ≡ S
(i, j,k):α−−−−→ S ′ ≡ R ′

R
(i, j,k):α−−−−→ R ′

(SPLIT) m � (P | Q ) ≡ 〈↑〉.m � P | 〈↑〉.m � Q

(RES) m � νa(P ) ≡ νa∅(m � P ) with a /∈ m

Fig. B.9. Rπ semantics.

Notation 4. We write an Rπ process R as C R [1 �→ m1 � P1, . . . , n �→ mn � Pn], or, more compactly, as C R
i∈{1,...,n}[i �→ mi � Pi]. 

We may drop R when not relevant. If R = C R [1 �→ m1 � P1, . . . , n �→ mn � Pn] then we denote by R@m the process C R [1 �→
m1@m � P1, . . . , n �→ mn@m � Pn].

We can use the notation above to establish useful properties of the translation of the processes from the framework. 
Most of the terminology and the proof schemas are adapted from [16] and extended to work with the π -calculus. In what 
follows, we prove some auxiliary properties necessary for the proof of the main theorem.

Lemma 14. Let S :: X be a process from the framework. There exist C�X,〈〉,S� , n, m1 , . . . , mn, P1 , . . . , Pn such that, for each Rπ memory 
m, such that for every name a ∈ Fnv(m), νa� /∈ R for all � and for some i′, k′, c, b, d and event 〈i′, k′, c[b/d]〉 /∈ m, we have

�X,m, S� = C�X,〈〉,S�[1 �→ m1@m � P1, . . . ,n �→ mn@m � Pn]

Proof. The proof is by induction on the derivation of �X,m, S�.

• if X = P then �P,m, S� = m � σ(S, P) as desired (with C�X,〈〉,S�[•] = •, n = 1, m1 = 〈〉 and P1 = σ(S, P));

• if X = b
j′

a j[i, K ].X ′ then

�b
j′

a j[i, K ].X ′,m, S� = �X ′, 〈i, K ,σ (S,ba)〉.m, S�

and by inductive hypothesis

�X ′, 〈i, K ,σ (S,ba)〉.m, S� =
C�X ′,〈〉,S�[1 �→ m1@〈i, K ,σ (S,ba)〉.m � P1, . . . ,n �→ mn@〈i, K ,σ (S,ba)〉.m � Pn]

as desired, by selecting C�X,〈〉,S� = C�X ′,〈〉,S�;
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• if X = X ′ | X ′′ then �X ′ | X ′′,m, S� = �X ′, 〈↑〉.m, S� | �X ′′, 〈↑〉.m, S� and by inductive hypotheses:

�X ′, 〈↑〉.m, S� = C ′�X ′,〈〉,S�[1 �→ m′
1@〈↑〉.m � P ′

1, . . . ,n1 �→ m′
n1

@〈↑〉.m � P ′
n1

]
�X ′′, 〈↑〉.m, S� = C ′′�X ′′,〈〉,S�[1 �→ m′′

1@〈↑〉.m � P ′′
1, . . . ,n1 �→ m′′

n1
@〈↑〉.m � P ′′

n1
]

The thesis follows since

�X,m, S� =C�X,〈〉,S�[1 �→ m′
1@〈↑〉.m � P ′

1, . . . ,n1 �→ m′
n1

@〈↑〉.m � P ′
n1

,

n1 + 1 �→ m′′
1@〈↑〉.m � P ′′

1, . . . ,n1 + n2 �→ m′′
n2

@〈↑〉.m � P ′′
n2

]
where C�X,〈〉,S� = C ′�X ′,〈〉,S� | C ′′′�X ′′,〈〉,S� with C ′′′�X ′′,〈〉,S� equal to C ′′�X ′′,〈〉,S� but for having hole numbers increased 
by n1.

• if X = νa�(X ′) then �νa� X ′,m, S� = νb��X ′{b/a},m, S� with b /∈ Fnv(m) ∧(b = a ∨b /∈ Fnv(X ′)). By inductive hypothesis 
we have:

�X ′{b/a},m, S� = C�X ′{b/a},〈〉,S�[1 �→ m1@m � P1, . . . ,n �→ mn@m � Pn]
Hence:

νb��X ′{b/a},m, S� = νb�C�X ′{b/a},〈〉,S�[1 �→ m1@m � P1, . . . ,n �→ mn@m � Pn]
as desired, by selecting C�X,〈〉,S� = νb�C�X ′{b/a},〈〉,S� .

The thesis follows by noticing that m is only inserted into monitored processes, and has no impact on the other parts of 
the term since for every name a ∈ Fnv(m), νa� /∈ R for all � and for some i′, k′, c, b, d, event 〈i′, k′, c[b/d]〉 /∈ m. �
Lemma 6. If there is an Rπ transition R 

(i, j,k):α−−−−→ S then there exist R ′ ≡ R and S ′ ≡ S such that R ′ (i, j,k):α−−−−� S ′ .

Proof. The proof is by induction on the derivation of the transition R 
(i, j,k):α−−−−→ S , with a case analysis on the last applied 

rule:

• Rules (IN+) and (Out+): the thesis holds trivially, by choosing R ′ = R , S ′ = S .

• Rule (PAR+): we have that R = R1 | R2 and S = S1 | R2, with premise R1
(i, j,k):α−−−−→ S1 and Bnv(α) ∩ Fnv(R2) = ∅. By 

inductive hypothesis there exist R ′
1 ≡ R1 and S ′

1 ≡ S1 such that R ′
1

(i, j,k):α−−−−� S ′
1. By congruence we have R ≡ R ′

1 | R2 and 

S ≡ S ′
1 | R2, and, by applying rule (PAR+) with premise R ′

1

(i, j,k):α−−−−� S ′
1, we obtain R ′

1 | R2
(i, j,k):α−−−−� S ′

1 | R2 as desired.

• Rule (OPEN+): we have R = νa�(R1) and S = νa�+1(S1) with premise R1
(i, j,k):α−−−−→ S1 where α = b〈νa�′ 〉 ∨ α = ba. By 

inductive hypothesis there exist R ′
1 ≡ R1 and S ′

1 ≡ S1 such that R ′
1

(i, j,k):α−−−−� S ′
1 with α = b〈νa�′ 〉 ∨α = ba. By congruence 

we have R ≡ νa�(R ′
1) and S = νa�+1(S1) and, by applying rule (OPEN+) with premise R ′

1

(i, j,k):α−−−−� S ′
1 with α = b〈νa�′ 〉 ∨

α = ba, we obtain

νa�(R ′
1)

(i, j,k):b〈νa�〉−−−−−−−� νa�+1(S1)

as desired.
• Rule (CLOSE+): similar to the case above.
• Rule (COM+): similar to the case above.
• Rule (CAUSE REF+): similar to the case above.
• Rule (NEW+): similar to the case above.

• Rule (MEM+): we have as premises R ≡ R1, R1
(i, j,k):α−−−−� S1, and S1 ≡ S . By inductive hypothesis there exist R ′

1 ≡ R1 and 

S ′
1 ≡ S1 such that R ′

1

(i, j,k):α−−−−� S ′
1. We can conclude by noticing that R ≡ R1 ≡ R ′

1 and S ≡ S1 ≡ S ′
1, as desired. �

Lemma 15. If R ≡ S then, for each memory m such that for every name a ∈ Fnv(m), νa� /∈ R, S for all � and for some i′, k′, c, b, d
and event 〈i′, k′, c[b/d]〉 /∈ m, we have R@m ≡ S@m.

Proof. By induction on the derivation of R ≡ S . The only interesting case is the base one, corresponding to the application 
of an axiom. We have a case analysis on the applied axiom.
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(SPLIT): we have R = m′ � (P | Q ) and S = 〈↑〉.m′ � P | 〈↑〉.m′ � Q . By adding the same memory m to the processes R and 
S we get R@m = m′@m � (P | Q ) and S@m = 〈↑〉.m′@m � P | 〈↑〉.m′@m � Q . By applying the (SPLIT) axiom to the 
process R@m we get m′@m � (P | Q ) ≡ 〈↑〉.m′@m � P | 〈↑〉.m′@m � Q as desired.

(RES): we have R = m′ � νa(P ) and S = νa∅(m′ � P ) with a /∈ Fnv(m′). By adding the same memory m to the processes R
and S we get R@m = m′@m � νa(P ) and S@m = νa∅(m′@m � P ). By applying the axiom (RES) to the process R@m
we get m′@m � νa(P ) ≡ νa∅(m′@m � P ) as desired. Note that a /∈ Fnv(m′) from the side condition of the inductive 
hypothesis and a /∈ Fnv(m) from the statement of the lemma.

(α): we have R ≡ S since R =α S . By adding the same memory m to both R and S we still have R@m =α S@m (note 
that since for every name a ∈ Fnv(m), νa� /∈ R, S for all � then m is not changed by α-conversion), which implies 
R@m ≡ S@m, as desired. �

Lemma 16. If we have a Rπ forward transition R 
(i, j,k):α−−−−→ R ′ then, for each memory m such that for every name a ∈ Fnv(m), νa� /∈ R

for all � and for some i′, k′, c, b, d and event 〈i′, k′, c[b/d]〉 /∈ m, we have R@m 
(i, j,k):α−−−−→ R ′@m.

Proof. The proof is by induction on the derivation of the transition R 
(i, j,k):α−−−−→ R ′ , with a case analysis on the last applied 

rule:

• if Rπ rule (OUT+) is applied, then we have

m1 � ba.P
(i, j,∗):m1[ba]−−−−−−−−→ 〈i,k,ba〉.m1 � P

By applying the rule (OUT+) on R@m = m1@m � ba.P , we have:

m1@m � ba.P
(i, j′,∗):m1@m[ba]−−−−−−−−−−→ 〈i,k,ba〉.m1@m � P

Since in m there is no event for full synchronisation (there is no substitution), we have m1[ba] = m1@m[ba] and j = j′
as desired.

• if Rπ rule (IN+) is applied, it is similar to the case above.
• if Rπ rule (OPEN+) is applied, then we have

νa�(R1)
(i, j,k):b〈νa�〉−−−−−−−→ νa�+i(R ′

1)

with premise R1
(i, j,k):α−−−−→ R ′

1 where α = b〈νa�′ 〉 ∨ α = ba. Since νa� ∈ R = νa�(R1), then a /∈ Fnv(m). Then by inductive 

hypothesis we have that R1@m 
(i, j,k):α−−−−→ R ′

1@m where α = b〈νa�′ 〉 ∨ α = ba. Now we can apply the Rπ rule (OPEN+) on 
(νa�(R1))@m and we have:

(νa�(R1))@m = νa�(R1@m)
(i, j,k):b〈νa�〉−−−−−−−→ νa�+i(R ′

1@m)

The thesis follows since (νa�+i(R ′
1))@m = νa�+i(R ′

1@m).
• if Rπ rule (CAUSE REF+) is applied, it is similar to the case above.
• if Rπ rule (NEW+) is applied, it is similar to the case above.
• if Rπ rule (PAR+) is applied, then we have

R1 | R2
(i, j,k):α−−−−→ R ′

1 | R2

with a premise R1
(i, j,k):α−−−−→ R ′

1. By inductive hypothesis we have that R1@m 
(i, j,k):α−−−−→ R ′

1@m. Now we can apply the Rπ

rule (PAR+) on (R1 | R2)@m = R1@m | R2@m and we have:

R1@m | R2@m
(i, j,k):α−−−−→ R ′

1@m | R2@m

• if Rπ rule (COM+) is applied, it is similar to the case above.
• if Rπ rule (CLOSE+) is applied, it is similar to the case above.
• if Rπ rule (MEM+) is applied, then we have

R1
(i, j,k):α−−−−→ R ′

1

with a premise R1 ≡ S1
(i, j,k):α−−−−→ S ′

1 ≡ R ′
1. By inductive hypothesis and Lemma 15 we have that R1@m ≡ S1@m 

(i, j,k):α−−−−→
S ′

1@m ≡ R1@m. Now we can apply the Rπ rule (MEM+) and we have:

R1@m
(i, j,k):α−−−−→ R ′

1@m

as desired. �
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D. Medić, C.A. Mezzina, I. Phillips et al. Information and Computation 275 (2020) 104644
Lemma 17. There is a forward transition R 
(i, j,k):α−−−−� R ′ iff there is R@m 

(i, j,k):α−−−−� R ′@m such that for every name a ∈ Fnv(m), νa� /∈ R
for all � and for some i′, k′, c, b, d, event 〈i′, k′, c[b/d]〉 /∈ m.

Proof. The proof is similar to that of Lemma 16. �
We can now prove the operational correspondence for forward transitions.

Proposition 1 (Forward correctness). Let S :: X be a reachable process from the framework and R = �X, 〈〉, S�. For each transition in 

the framework S :: X
(i,K , j):α−−−−−→→ S ′ :: X ′ there exists a corresponding Rπ transition R 

(i, j,k):α−−−−→ R ′ with �X ′, 〈〉, S ′� = R ′ and K = {k}.

Proof. By induction on the derivation of S :: X
(i,K , j):α−−−−−→→ S ′ :: X ′ and by case analysis on the last applied rule.

(Out1): We have ∅ : b
∗
a∗.P 

(i,K ,∗):ba−−−−−→→ ∅ :: b
∗
a∗[i, K ].P where K = {∗}. By applying the encoding we have:

�b
∗
a∗.P, 〈〉,∅� = 〈〉 � σ(∅,b

∗
a∗.P) = 〈〉 � ba.P

Then, by using Rπ rule (OUT+) we get

〈〉 � ba.P
(i, j,∗):m[ba]−−−−−−−→ 〈i,∗,ba〉.〈〉 � P

with m[ba] = ba and j = ∗ (since it is the very first action). The thesis follows since �b
∗
a∗[i, {∗}].P, 〈〉,∅� =

〈i, ∗, ba〉.〈〉 � P .

(Out2): We have S :: c∗d∗[i′, {∗}].X1
(i,K , j):ba−−−−−→→ S ′ :: c∗d∗[i′, {∗}].X ′

1 with premise S :: X1
(i,K , j):ba−−−−−→→ S ′ :: X ′

1.

Let R1 = �X1, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j,k):ba−−−−−→ R ′

1, with R ′
1 = �X ′

1, 〈〉, S ′�, 
where K = {k} and S = S ′ since the executed action is not a synchronisation. From the encoding we have

�c∗d∗[i′, {∗}].X1, 〈〉, S� = �X1, 〈i′,∗,σ (S, c∗d∗)〉.〈〉, S�

where by Assumption 1 from c, d ∈ free(�c∗d∗[i′, {∗}].X1, 〈〉, S�) we have νc�, νd� /∈ X1. Since in the Frame-
work, c∗d∗ is the very first action that process did, we have σ(S, c∗d∗) = cd.
Thanks to Lemma 14 we have that �X1, 〈i′,∗, cd〉.〈〉, S� = R1@〈i′, ∗, cd〉.〈〉. By Lemma 16 we have:

R1@〈i′,∗, cd〉.〈〉 (i, j,k):ba−−−−−→ R ′
1@〈i′,∗, cd〉.〈〉

The thesis follows since

�c∗d∗[i′, {∗}].X ′
1, 〈〉�, S = �X ′

1, 〈i′,∗, cd〉.〈〉, S� = R ′
1@〈i′,∗, cd〉.〈〉

(In1): Similar to the case of (Out1).
(In2): Similar to the case of (Out2).

(Open): We have

S :: νa�(X1)
(i,K , j):b〈νa�〉−−−−−−−−→→ S ′ :: νa�+1(X ′

1)

with premise S :: X1
(i,K , j):α−−−−−→→ S ′ :: X ′

1, where α = ba ∨ α = b〈νa�′ 〉 and S ′ = S since the performed action is 
not a synchronisation. Let us choose, for example, α = b〈νa�′ 〉; the other case is similar.

Let R1 = �X1, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j,k):b〈νa�′ 〉−−−−−−−−→ R ′

1, where K = {k} and 
R ′

1 = �X ′
1, 〈〉, S ′�.

Since m = 〈〉, by the encoding for b = a, we have �νa�(X1), 〈〉, S� = νa��X1, 〈〉, S� = νa�(R1). By applying the 
Rπ rule (OPEN+) on νa�(R1), we have

νa�(R1)
(i, j,k):b〈νa�〉−−−−−−−→ νa�+1(R ′

1)

The thesis follows since �νa�+1(X ′
1), 〈〉, S ′� = νa�+1(R ′

1).
(Cause Ref): We have

S :: νa�(X1)
(i,K ′, j):α−−−−−→→ S ′ :: νa�(X ′

1 ′ )
[K /K ]@i
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with premise S :: X1
(i,K , j):α−−−−−→→ S ′ :: X ′

1 where a ∈ subj(α), empty(�) �= true and K ′ = K ∨ K �X1 K ′ . As the 
performed action is not a synchronisation, we have S ′ = S .

Let R1 = �X1, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j,k):α−−−−→ R ′

1, with a ∈ subj(α), 
k = K , empty(�) �= true and k′ = k ∨ k �R1 k′ and R ′

1 = �X ′
1, 〈〉, S ′�.

Since m = 〈〉, in the encoding we can take b = a and we have �νa�(X1), 〈〉, S� = νa��X1, 〈〉, S� = νa�(R1). By 
applying the Rπ rule (CAUSE REF+) on νa�(R1), we have

νa�(R1)
(i, j,k′):α−−−−−→ νa�(R ′

1[k′/k]@i)

Since R1 = �X1, 〈〉, S�, the restriction νa�′′ ∈ R1 iff νa�′′ ∈ X1; hence k′ = K ′ . The thesis follows since

�νa�(X ′
1[K ′/K ]@i), 〈〉, S ′� = νa��X ′

1[K ′/K ]@i, 〈〉, S ′� = νa�(R ′
1[k′/k]@i)

(Par): We have

S :: Y1 | Y2
(i,K , j):α−−−−−→→ S ′ :: Y ′

1 | Y2

with premise S :: Y1
(i,K , j):α−−−−−→→ S ′ :: Y ′

1 where i /∈ Y2 and Bnv(α) ∪ Fnv(Y2) = ∅ and S ′ = S .

Let R1 = �Y1, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j,k):α−−−−→ R ′

1 with R ′
1 = �Y ′

1, 〈〉, S ′�
and {k} = K .
From the encoding we have �Y1 | Y2, 〈〉, S� = �Y1, 〈↑〉.〈〉, S� | �Y2, 〈↑〉.〈〉, S�. Thanks to Lemma 14, �Y1, 〈↑〉.〈〉, S�

= R1@〈↑〉.〈〉. Since m = 〈↑〉 we can apply Lemma 16 and obtain R1@〈↑〉.〈〉 (i, j,k):α−−−−→ R ′
1@〈↑〉.〈〉. By applying Rπ

rule (PAR+) on R1@〈↑〉.〈〉 | �Y2, 〈↑〉.〈〉, S� we have:

R1@〈↑〉.〈〉 | �Y2, 〈↑〉.〈〉, S�
(i, j,k):α−−−−→ R ′

1@〈↑〉.〈〉 | �Y2, 〈↑〉.〈〉, S�

The thesis follows since

�Y ′
1 | Y2, 〈〉, S ′� = �Y ′

1, 〈↑〉.〈〉, S ′� | �Y2, 〈↑〉.〈〉, S ′�

and by Lemma 14 we have

�Y ′
1, 〈↑〉.〈〉, S ′� | �Y2, 〈↑〉.〈〉, S ′� = R ′

1@〈↑〉.〈〉 | �Y2, 〈↑〉.〈〉, S ′�

(Com): We have

S :: Y1 | Y2
(i,{∗},∗):τ−−−−−−→→ S ∪ {ai

/x} :: Y ′
1 | Y ′

2{ai
/x}

with premises S :: Y1
(i,K1, j1):ba−−−−−−−→→ S :: Y ′

1 and S :: Y2
(i,K2, j2):b(x)−−−−−−−→→ S :: Y ′

2 when K1 �� j2 ∧ K2 �� j1.

Let R1 = �Y1, 〈〉, S� and R2 = �Y2, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j1,k1):ba−−−−−−→ R ′

1

and R2
(i, j2,k2):b(x)−−−−−−−→ R ′

2 with {k1} = K1 and {k2} = K2.
By the encoding we have �Y1 | Y2, 〈〉, S� = �Y1, 〈↑〉.〈〉, S� | �Y2, 〈↑〉.〈〉, S�.
By Lemma 14 we have

�Y1, 〈↑〉.〈〉, S� = R1@〈↑〉.〈〉 and �Y2, 〈↑〉.〈〉, S� = R2@〈↑〉.〈〉
We can apply Lemma 16 since m = 〈↑〉 and we get

R1@〈↑〉.〈〉 (i, j1,k1):ba−−−−−−→ R ′
1@〈↑〉.〈〉 and R2@〈↑〉.〈〉 (i, j2,k2):b(x)−−−−−−−→ R ′

2@〈↑〉.〈〉
By applying Rπ rule (Com+) on R1@〈↑〉.〈〉 | R2@〈↑〉.〈〉 we have:

R1@〈↑〉.〈〉 | R2@〈↑〉.〈〉 (i,{∗},∗):τ−−−−−−→ R ′
1@〈↑〉.〈〉 | R ′

2[a/x]@i@〈↑〉.〈〉
The thesis follows since

�Y ′
1 | Y ′

2{ai
/x}, 〈〉, S ′� = �Y ′

1, 〈↑〉.〈〉, S ′� | �Y ′
2{a/x}, 〈↑〉.〈〉, S ′�

where S ′ = S ∪ {ai
/x}; and by Lemma 14 we have

�Y ′
1, 〈↑〉.〈〉, S ′� | �Y ′ {ai

/x}, 〈↑〉.〈〉, S ′� = R ′
1@〈↑〉.〈〉 | R ′ @〈↑〉.〈〉
2 2[a/x]@i
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(Close): We have

S :: Y1 | Y2
(i,{∗},∗):τ−−−−−−→→ S ′ :: νa�(Y ′

1 | Y ′
2{ai

/x})

with premises S :: Y1
(i,K1, j1):b〈νa�〉−−−−−−−−−→→ S :: Y ′

1 and S :: Y2
(i,K2, j2):b(x)−−−−−−−→→ S :: Y ′

2 when K1 �� j2 ∧ K2 �� j1 and S ′ =
S ∪ {ai

/x}.

Let R1 = �Y1, 〈〉, S� and R2 = �Y2, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j1,k1):b〈νa�〉−−−−−−−−−→ R ′

1

and R2
(i, j2,k2):b(x)−−−−−−−→ R ′

2 with {k1} = K1 and {k2} = K2.
By the encoding we have �Y1 | Y2, 〈〉, S� = �Y1, 〈↑〉.〈〉, S� | �Y2, 〈↑〉.〈〉, S�.
Thanks to Lemma 14, �Y1, 〈↑〉.〈〉, S� = R1@〈↑〉.〈〉 and �Y2, 〈↑〉.〈〉, S� = R2@〈↑〉.〈〉. Since m = 〈↑〉 by Lemma 16
we have

R1@〈↑〉.〈〉 (i, j1,k1):b〈νa�〉−−−−−−−−−→ R ′
1@〈↑〉.〈〉 and R2@〈↑〉.〈〉 (i, j2,k2):b(x)−−−−−−−→ R ′

2@〈↑〉.〈〉
By applying Rπ rule (CLOSE+) on R1@〈↑〉.〈〉 | R2@〈↑〉.〈〉 we have:

R1@〈↑〉.〈〉 | R2@〈↑〉.〈〉 (i,{∗},∗):τ−−−−−−→ νa�(R ′
1@〈↑〉.〈〉 | R ′

2[a/x]@i@〈↑〉.〈〉)
The thesis follows since

�νa�(Y ′
1 | Y ′

2{ai
/x}), 〈〉, S ′� = νa��Y ′

1 | Y ′
2{ai

/x}, 〈〉, S ′�
= νa��Y ′

1, 〈↑〉.〈〉, S ′� | �Y ′
2{ai

/x}, 〈↑〉.〈〉, S ′�
and by Lemma 14 we have

�Y ′
1, 〈↑〉.〈〉, S ′� | �Y ′

2{ai
/x}, 〈↑〉.〈〉, S ′� = R ′

1@〈↑〉.〈〉 | R ′
2[a/x]@i@〈↑〉.〈〉

(Res): We have

S :: νa�(X1)
(i,K , j):α−−−−−→→ S ′ :: νa�(X ′

1)

with premise S :: X1
(i,K , j):α−−−−−→→ S ′ :: X ′

1 where a /∈ α.

Let R1 = �X1, 〈〉, S�. By applying the inductive hypothesis we have that R1
(i, j,k):α−−−−→ R ′

1, with a /∈ α, {k} = K and 
R ′

1 = �X ′
1, 〈〉, S ′� where S ′ = S .

Since m = 〈〉 we have b = a and by the encoding we get �νa�(X1), 〈〉, S� = νa��X1, 〈〉, S� = νa�(R1). By apply-
ing the Rπ rule (NEW+) on νa�(R1), we have

νa�(R1)
(i, j,k):α−−−−→ νa�(R ′

1)

The thesis follows since

�νa�(X ′
1), 〈〉, S ′� = νa��X ′

1, 〈〉, S ′� = νa�(R ′
1) �

Proposition 3 (Forward completeness). Let X be a reachable process from the framework and R = �X, 〈〉, S�. For each Rπ transition 

R 
(i, j,k):α−−−−→ R ′ there exists a corresponding transition in the framework S :: X

(i,K , j):α−−−−−→→ S ′ :: X ′ with R ′ ≡ �X ′, 〈〉, S ′� and K = {k}.

Proof. Thanks to Lemma 6 we can equivalently write the statement as follows: for each reachable process S :: X in the 

framework and Rπ processes R and R ′′ , such that R = �X, 〈〉, S� and R ′′ ≡ R , if there exists a Rπ transition R ′′ (i, j,k):α−−−−� R ′ , 
then there exists a corresponding transition in the framework S :: X

(i,K , j):α−−−−−→→ S ′ :: X ′ , with R ′ ≡ �X ′, 〈〉, S ′�. When consider-
ing R ′′ ≡ R we will not consider α-conversion, since it can be trivially matched by framework α-conversion.

Now the proof is by structural induction on S :: X with a case analysis on the last applied rule in the derivation of 

R ′′ (i, j,k):α−−−−� R ′ . We have two main cases, depending on whether X is a process without past P or not.
In the first case X = P, and we perform a structural induction on P.

P = b
∗
a∗.P1: we have that R = �b

∗
a∗.P1, 〈〉, S� where S = ∅ and by applying the encoding, we have

�b
∗
a∗.P1, 〈〉,∅� = 〈〉 � σ(∅,b

∗
a∗.P1) = 〈〉 � ba.P1

Since we cannot apply any structural rule (beyond α-conversion), then R ′′ = R . Then, the only applicable rule 
in Rπ is (OUT+), and we get
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〈〉 � ba.P1
(i, j,∗):〈〉[ba]−−−−−−−� 〈i,∗,ba〉.〈〉 � P1 = R ′

Since m = 〈〉, we have j = ∗ and 〈〉[ba] = ba.
In the framework, process ∅ :: b

∗
a∗.P1 can perform the same action (i, {∗}, ∗) : ba by applying the rule (Out1) 

and we get

∅ :: b
∗
a∗.P1

(i,{∗},∗):ba−−−−−−→→ ∅ :: b
∗
a∗[i, {∗}].P1

Since �b
∗
a∗[i, {∗}].P1, 〈〉,∅� = �P1, 〈i,∗, σ (∅,b

∗
a∗)〉.〈〉,∅� = 〈i, ∗, ba〉.〈〉 � P1 = R ′ and S = S ′ = ∅ (since the ex-

ecuted action was not a synchronisation) we are done.
P = b∗(x).P1: similar to the case above.

P = P1 | P2: we have that R = �P1 | P2, 〈〉, S�. By applying the encoding and the fact that S = ∅, we have

�P1 | P2, 〈〉,∅� = 〈〉 � (σ (∅,P1 | P2)) = 〈〉 � (P1 | P2)

We have now two possibilities: either R ′′ = R or R ′′ = 〈↑〉.〈〉 � P1 | 〈↑〉.〈〉 � P2. In the first case no rule can 
be applied and we are done. Let us consider the second one. Now we distinguish three cases depending on 
whether the last applied rule is (PAR+), (Com+) or (Close+). If (PAR+) is applied, then we have that

〈↑〉.〈〉 � P1 | 〈↑〉.〈〉 � P2
(i,∗,∗):α−−−−−� R1 | 〈↑〉.〈〉 � P2

with a premise 〈↑〉.〈〉 � P1
(i,∗,∗):α−−−−� R1 and Bnv(α) ∪ Fnv(〈↑〉.〈〉 � P2) = ∅. Since α is the very first action, we 

have j, k = ∗.

Thanks to Lemma 17 we can derive 〈〉 � P1
(i,∗,∗):α−−−−� R ′

1 with R1 = R ′
1@〈↑〉.〈〉.

Since 〈〉 � P1 = �P1, 〈〉,∅� we can apply the inductive hypothesis and get ∅ :: P1
(i,{∗},∗):α−−−−−−→→ ∅ :: X ′

1 with 
�X ′

1, 〈〉,∅� = R ′
1. The set of substitutions remains empty since α �= τ . We can now apply the rule from the 

framework (Par) and derive

∅ :: P1 | P2
(i,{∗},∗):α−−−−−−→→ ∅ :: X ′

1 | P2

We can notice that �X ′
1 | P2, 〈〉,∅� = �X ′

1, 〈↑〉.〈〉,∅� | �P2, 〈↑〉.〈〉,∅�. By applying Lemma 14 on �X ′
1, 〈〉,∅� = R ′

1
we can derive �X ′

1, 〈↑〉.〈〉,∅� = R ′
1@〈↑〉.〈〉 = R1. We can now conclude since

�X ′
1, 〈↑〉 · 〈〉,∅� | �P2, 〈↑〉 · 〈〉,∅� = R1 | 〈↑〉 · 〈〉 � P2

as desired.
If (Com+) or (Close+) are applied, we use the inductive hypothesis twice and we reason as in the previous 
cases.

P = νa�(P1): since it is an initial process, we have � = ∅. Then we have that R = �νa∅(P1), 〈〉,∅� and by applying the 
encoding, we get

�νa∅(P1), 〈〉,∅� = 〈〉 � σ(∅, νa∅(P1)) = 〈〉 � νa∅(P1)

We have two possibilities: either R ′′ = R or R ′′ = νa∅(〈〉 � P1). In the first case no rule can be applied and 
we are done. Let us consider the second one. Depending on the action α, rules (NEW+) and (OPEN+) can be 
applied.
• If a /∈ α, the rule (NEW+) is applied and we have

νa∅(〈〉 � P1)
(i,∗,∗):α−−−−−� νa∅(R ′

1)

with a premise 〈〉 � P1
(i,∗,∗):α−−−−� R ′

1 where j, k = ∗. Since 〈〉 � P1 = �P1, 〈〉,∅� we can apply the inductive 

hypothesis and get that ∅ :: P1
(i,{∗},∗):α−−−−−−→→ ∅ :: X ′

1 with �X ′
1, 〈〉,∅� = R ′

1. The thesis follows by applying the 
framework rule (Res) on ∅ :: νa∅(P1).

• If a ∈ obj(α), then the only possibility to execute the action α is if α = b〈νa∅〉 for some name b. Then the 
rule (OPEN+) is applied and we have

νa∅(〈〉 � P1)
(i,∗,∗):b〈νa∅〉−−−−−−−� νa∅+i(R ′

1)

with a premise 〈〉 � P1
(i,∗,∗):ba−−−−−� R ′

1. Since 〈〉 � P1 = �P1, 〈〉,∅� we can apply the inductive hypothesis and 

get that ∅ :: P1
(i,{∗},∗):ba−−−−−−→→ ∅ :: X ′

1 with �X ′
1, 〈〉,∅� = R ′

1. The thesis follows by applying the framework rule 
(Open) on ∅ :: νa∅(P1).
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In the second case process X is not standard. We proceed by structural induction on X .

X = b
∗
a∗[i, {∗}].Y : we have that R = �b

∗
a∗[i,∗].Y , 〈〉, S�, and by applying the encoding and the fact that the past prefix 

b
∗
a∗[i, {∗}] represents the very first action the process X performed, we have

�b
∗
a∗[i, {∗}].Y , 〈〉, S� = �Y , 〈i,∗,σ (S,b

∗
a∗)〉.〈〉, S� = �Y , 〈i,∗,ba〉.〈〉, S�

Take any Rπ transition

�Y , 〈i,∗,ba〉.〈〉, S� ≡ R ′′ (i′, j′,k′):α−−−−−−� R ′

By Lemma 14 there exists T ′′ ≡ �Y , 〈〉, S� such that R ′′ = T ′′@〈i, ∗, ba〉.〈〉.
By Assumption 1, we know that names a, b /∈ Bnv(Y ) hence a, b /∈ Bnv(T ′′) and from X reachable, we 
can conclude that νa�, νb�′ /∈ Y for some �, �′ �= ∅.

Now by Lemma 17 we have that T ′′ (i′, j′,k′):α−−−−−� T ′ with R ′ = T ′@〈i, ∗, ba〉.〈〉. By applying the inductive 

hypothesis on �Y , 〈〉, S� ≡ T ′′ (i′, j′,k′):α−−−−−−→ T ′ we have that S :: Y
(i′,K ′, j′):α−−−−−−→→ S ′ :: Y ′ with �Y ′, 〈〉, S ′� ≡ T ′ and 

K ′ = {k′}. Now we have two options, depending whether action α is a synchronisation or not.
If α �= τ By applying the rules from framework, depending on the nature of the action α, we can also 

derive S :: b
∗
a∗[i, {∗}].Y (i′,K ′, j′):α−−−−−−→→ S ′ :: b

∗
a∗[i, {∗}].Y ′ with S = S ′ . The thesis follows since

�b
∗
a∗[i, {∗}].Y ′, 〈〉, S ′� = �Y ′, 〈i,∗,ba〉.〈〉, S ′� ≡ R ′

thanks to Lemma 14.
If α = τ , the sets S and S ′ will differ exactly for the substitution pair obtained by action α. The case is 
similar to the one above.

X = b∗(x)[i, {∗}].Y : similar to the case above. Since X is reachable, we know that past prefix b∗(x)[i, {∗}] was not part of 
the synchronisation.

X = Y1 | Y2: we have that R = �Y1 | Y2, 〈〉, S�, and by applying the encoding we obtain

�Y1 | Y2, 〈〉, S� = �Y1, 〈↑〉.〈〉, S� | �Y2, 〈↑〉.〈〉, S�

Take any term R ′′ ≡ �Y1, 〈↑〉.〈〉, S� | �Y2, 〈↑〉.〈〉, S�. There are two cases: either R ′′ = R ′′
1 | R ′′

2 with R ′′
1 ≡

�Y1, 〈↑〉.〈〉, S� and R ′′
2 ≡ �Y2, 〈↑〉.〈〉, S�, or the two parallel sub-processes have been merged by applying 

the Rπ structural rule for split from right to left. In this last case no transition can be performed. Let us 
consider the first case. We have a case analysis depending on whether the last applied rule is (PAR+), 
(COM) or (CLOSE+).

• If rule (PAR+) is applied we have that R ′′
1 | R ′′

2

(i, j,k):α−−−−� T ′′
1 | R ′′

2 with hypothesis R ′′
1

(i, j,k):α−−−−� T ′′
1 . Moreover, 

from Lemma 14 there exists R ′′′
1 such that R ′′

1 = R ′′′
1 @〈↑〉.〈〉 and by Lemma 17 we have R ′′′

1

(i, j,k):α−−−−� T ′′′
1 , 

where T ′′
1 = T ′′′

1 @〈↑〉.〈〉. Since R ′′′
1 ≡ �Y1, 〈〉, S� we can apply the inductive hypothesis and obtain that

S :: Y1
(i,K , j):α−−−−−→→ S ′ :: Y ′

1 with �Y ′
1, 〈〉, S ′� ≡ T ′′′

1 and K = k

Since transition −� is executed without applying a congruence rule, α �= τ and S = S ′ . We can now 
apply the framework rule (Par) and derive the transition

S :: Y1 | Y2
(i,K , j):α−−−−−→→ S ′ :: Y ′

1 | Y2

and we conclude by noticing that

�Y ′
1 | Y2, 〈〉, S ′� = �Y ′

1, 〈↑〉.〈〉, S ′� | �Y2, 〈↑〉.〈〉, S ′� ≡ T ′′
1 | R ′′

2

• If rule (CLOSE+) is applied we have that

R ′′
1 | R ′′

2
(i,∗,∗):τ−−−−� νa�(T ′′

1 | T ′′
2 [a/x]@i)

with hypothesis R ′′
1

(i, j,k):b〈νa�〉−−−−−−−� T ′′
1 and R ′′

2

(i, j′,k′):b(x)−−−−−−� T ′′
2 with k =∗ j′ and k′ =∗ j.

Moreover, from Lemma 14 there exist R ′′′
1 and R ′′′

2 such that R ′′
1 = R ′′′

1 @〈↑〉.〈〉 and R ′′
2 = R ′′′

2 @〈↑〉.〈〉.

By Lemma 17 we have R ′′′
1

(i, j,k):b〈νa�〉−−−−−−−� T ′′′
1 , where T ′′

1 = T ′′′
1 @〈↑〉.〈〉 and R ′′′

2

(i, j′,k′):b(x)−−−−−−� T ′′′
2 , where T ′′

2 =
T ′′′

2 @〈↑〉.〈〉. Since R ′′′
1 ≡ �Y1, 〈〉, S� and R ′′′

2 ≡ �Y2, 〈〉, S�, we can apply the inductive hypothesis and 
obtain that
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S :: Y1
(i,K , j):b〈νa�〉−−−−−−−−→→ S :: Y ′

1 with �Y ′
1, 〈〉, S� ≡ T ′′′

1 and K = {k} and

S :: Y2
(i,K ′, j′):b(x)−−−−−−−→→ S :: Y ′

2 with �Y ′
2, 〈〉, S� ≡ T ′′′

2 and K ′ = {k′}
We can now apply framework rule (Close) and derive the transition

S :: Y1 | Y2
(i,{∗},∗):τ−−−−−−→→ S ∪ {ai

/x} :: νa�(Y ′
1 | Y ′

2{ai
/x})

and we conclude by noticing that

�νa�(Y ′
1 | Y ′

2{ai
/x}), 〈〉, S ∪ {ai

/x}� =
νa�(�Y ′

1, 〈↑〉.〈〉, S ∪ {ai
/x}� | �Y ′

2{a/x}, 〈↑〉.〈〉, S ∪ {ai
/x}�)

≡ νa�(T ′′
1 | T ′′

2 [a/x]@i)

• If rule (COM+) is applied, it is similar to the case above.
X = νa�(Y ): we have that R = �νa�(Y ), 〈〉, S� and by applying the encoding with m = 〈〉, we have �νa�(Y ), 〈〉, S� =

νa��Y , 〈〉, S�. Take any term R ′′ ≡ νa��Y , 〈〉, S�. There are two cases: either R ′′ = νa�(R ′′
1) with R ′′

1 ≡
�Y , 〈〉, S� for any �, or for � = ∅ the restriction has been put back inside the term using the Rπ struc-
tural rule for restriction. In this last case no transition can be performed. Let us consider the first case. 
Depending on the action α, rules (NEW+), (OPEN+) and (CAUSE REF+) can be used.

• If rule (OPEN+) is applied, we have νa�(R ′′
1) 

(i, j,k):b〈νa�〉−−−−−−−� νa�+i(R ′′′) with hypothesis R ′′
1

(i, j,k):β−−−−� R ′′′
where β = b〈νa�′ 〉 ∨ β = ba. Let us choose β = b〈νa�′ 〉; the other case is similar. By applying the 
inductive hypothesis we obtain that

S :: Y
(i,K , j):b〈νa�′ 〉−−−−−−−−→→ S ′ :: Y ′

with �Y ′, 〈〉, S ′� ≡ R ′′′ and K = {k}. Since the executed action is not a synchronisation, we have S = S ′ . 
By applying framework rule (Open) we also have

S :: νa�(Y )
(i,K , j):b〈νa�〉−−−−−−−−→→ S :: νa�+i(Y ′)

The thesis follows since �νa�+i(Y ′), 〈〉, S� = νa�+i�Y ′, 〈〉, S� ≡ νa�+i(R ′′′).
• If rule (CAUSE REF+) is applied, we have

νa�(R ′′
1)

(i, j,k′):α−−−−−� νa�(R ′′′
[k′/k]@i)

with hypothesis R ′′
1

(i, j,k):α−−−−� R ′′′ where a ∈ subj(α), � �= ∅ and k = k′ ∨ k �R ′′
1

k′ .
By applying the inductive hypothesis we obtain that

S :: Y
(i,K , j):α−−−−−→→ S ′ :: Y ′

with �Y ′, 〈〉, S ′� ≡ R ′′′ and K = {k}. Since α �= τ , we have S = S ′ . By applying framework rule (Cause 
Ref) we also have

S :: νa�(Y )
(i,K ′, j):α−−−−−→→ S :: νa�(Y ′

[K ′/K ]@i)

Since R ′′
1 = �Y , 〈〉, S�, the restriction νa�′′ ∈ R ′′

1 iff νa�′′ ∈ Y , hence K ′ = {k′}. The thesis follows since

�νa�(Y ′
[K ′/K ]@i), 〈〉, S� = νa��Y ′

[K ′/K ]@i, 〈〉, S� ≡ νa�(R ′′′
[k′/k]@i)

• If rule (NEW+) is applied, it is similar to the cases above. �
Appendix C

Here we give the proof of Lemma 7 from Section 6.2.3.

Lemma 7 (Structural correspondence). Starting from an initial π -calculus process P , where P = ϕ(P), we have:

1. if P
ζ1−→
K1

A1 . . . An−1
ζn−→
Kn

An is a trace in causal semantics [20], then there exists a trace P 
μ1−→→ X K F 1

1 . . . X K Fn−1
n−1

μn−→→ X K Fn
n and K F i

in the framework, such that for all i, λ(Ai) = ϕ(X K F i ), ζi = γ (μi) and Rem(K F i) = Ki , for i = 1, ..., n.
i
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2. if P 
μ1−→→ X K F 1

1 . . . X K Fn−1
n−1

μn−→→ X K Fn
n is a trace in the framework, then there exists a trace P

ζ1−→
K1

A1 . . . An−1
ζn−→
Kn

An in the causal 

semantics, where for all i, λ(Ai) = ϕ(X K F i
i ), ζi = γ (μi) and Rem(K F i) = Ki , for i = 1, ..., n.

Proof. Both clauses (1. and 2.) are proved by induction on the length of the computation. Let us consider clause 1.

(I) The base case is given by 0 transitions. Trivially, the theorem holds.
(II) In the inductive case, for P = ϕ(P), we let

sB S : P
ζ1−→
K1

A1 . . . An−1
ζn−→
Kn

An and sF : P
μ1−→→ X K F 1

1 . . . X K Fn−1
n−1

μn−→→ X K Fn
n

be the traces on causal processes and processes from the framework, respectively. Let us suppose that the inductive 
hypothesis holds for these two traces. We need to prove that for

sB S
ζn+1−−→
Kn+1

An+1 and sF
μn+1−−−→→ X K Fn+1

n+1

the theorem holds. Hence, we need to show Rem(K Fn+1) = Kn+1 and λ(An+1) = ϕ(X K Fn+1
n+1 ).

We proceed by structural induction on the process An and the last applied rule on the transition An
ζn+1−−→
Kn+1

An+1. We have 

two main cases depending whether An is a π -calculus process, or it is a causal process. If An = P , where P is a π -calculus 
process, then it is the first transition; hence the cause sets are empty (K1 = K F 1 = ∅), and we have:

• P = π.P ′ where π = ba or π = b(x). The rules that can be applied in Boreale and Sangiorgi’s semantics are (BS-Out)

and (BS-In). We show the case when rule (BS-Out) is applied; the other case is similar.

We have ba.P ′ i1:ba−−→ {i1} :: P ′ = A1 where λ(A1) = P ′ .
In the framework, by applying the rule (Out1), we can execute the corresponding action μ1 = (i1, {∗}, ∗) : ba, where 
γ (μ1) = i1 : ba. We have:

b
∗
a∗.P′ (i1,{∗},∗):ba−−−−−−−→→ b

∗
a∗[i1, {∗}].P′ = X1

with ϕ(P′) = P ′ and ϕ(X1) = P ′ as desired.
• P = Q | Q ′ . The rules that can be applied in Boreale and Sangiorgi’s semantics are (BS-Par), (BS-Com) and (BS-Close). 

We show the case when the rule (BS-Close) is used; the rest of the cases are similar.
Since rule (BS-Close) is applied on the process Q | Q ′ one of the parallel components needs to extrude a bound name. 
Let it be a process Q = νa(Q 1). Then we have

νa(Q 1) | Q ′ τ−→ νa(Q 2 | Q ′′{a/x}) = A1

with the premises νa(Q 1) 
i1:b〈νa〉−−−−→ Q 2 and Q ′ i1:b(x)−−−→ Q ′′ , for some name b. Since τ actions do not impose causes and 

there is no cause set to merge, we have λ(A1) = νa(Q 2 | Q ′′{a/x}).
In the framework we have ϕ(Q1) = Q 1 and ϕ(Q′) = Q ′ . Hence there exist actions μ′

1 = (i1, {∗}, ∗) : b〈νa∅∗ 〉 and μ′′
1 =

(i1, {∗}, ∗) : b(x) such that γ (μ′
1) = i1 : b〈νa〉 and γ (μ′′

1) = i1 : b(x). Then we have:

νa∅∗(Q1)
μ′

1−→→ νa{i1}ı1
(Y1) and Q′ μ′′

1−→→ Y ′′

where ϕ(Y1) = Q 2 and ϕ(Y ′′) = Q ′′ .
By applying the rule (Close) on the process νa∅∗ (Q1) | Q′ with the given premises, we get

νa∅∗(Q1) | Q′ (i1,{∗},∗):τ−−−−−−→→ νa∅∗(νa{i1}∗(Y1) | Y ′′{ai1
/x}) = X1

Then we have

ϕ(νa∅∗(νa{i1}∗(Y1) | Y ′′{ai1
/x})) = νa(Q 2 | Q ′′{a/x})

as desired.
• P = νa(P ′). The rules that can be applied in Boreale and Sangiorgi’s semantics are (BS-Res) and (BS-Open), depending 

on whether the name a belongs to the executing action or not. We show the case when rule (BS-Open) is applied; the 
other case is similar to the one above.
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If the rule (BS-Open) is applied on the process νa(P ′), the executed action extrudes name a, and we have:

νa(P ′) i1:b〈νa〉−−−−→ {i1} :: P ′′ = A1

with the premise P ′ i1:ba−−→ {i1} :: P ′′ . By discarding cause set {i1} we have λ(A1) = P ′′ .
In the framework we have ϕ(P′) = P ′ . Hence there exists an action μ1 = (i1, {∗}, ∗) : ba such that γ (μ1) = i1 : ba. By 

executing the action μ1, we obtain: P′ (i1,{∗},∗):ba−−−−−−−→→ Y ′ where ϕ(Y ′) = P ′′ .
Now, by applying the rule (Open) on the process νa∅∗(P′) (where ϕ(νa∅∗(P′)) = λ(νa(P ′)) = νa(P ′)), with the given 
premises, we obtain

νa∅∗(P′)
(i1,{∗},∗):b〈νa∅∗ 〉−−−−−−−−−−→→ νa{i1}i1

(Y ′) = X1

where γ ((i1, {∗}, ∗) : b〈νa∅∗ 〉) = i1 : b〈νa〉. By discarding the elements of the history from the process X1, we have 
ϕ(X1) = P ′′ as desired.

If An is a casual process, then we have the following cases:

• An = K′ :: A. In the BS semantics, the only applicable rule is (BS-Cau) and we have:

An = K′ :: A
in+1:α−−−→
K′,K

K′ :: A′ = An+1

with the premise A 
in+1:α−−−→
K

A′ and Kn+1 = K′ ∪ K.

From the inductive hypothesis, we have λ(An) = ϕ(Xn). Hence, in the framework, there exist process X and history 
context H such that Xn = H[X], where ϕ(X) = λ(A) and context H corresponds to cause set K′ .
From ϕ(X) = λ(A), there exists an action μn+1 = (in+1, Kn+1, jn+1) : α′ where γ (μn+1) = in+1 : α, such that

X
(in+1,Kn+1, jn+1):α′
−−−−−−−−−−−→→ Y K F

Now, we can apply the rules (IN2) or (OUT2) in the framework, depending on the nature of the action α′ , on the process 
Xn = H[X] with the premise given above, and we obtain:

H[X] (in+1,Kn+1, jn+1):α′
−−−−−−−−−−−→→ H[Y ]K ′

F ∪K F

where the set of the causes K ′
F represents the causes of the action α′ belonging to the history context H. Hence, we 

have K Fn+1 = K ′
F ∪ K F .

To show that actions μn+1 and ζn+1 happened on the same part of the π -calculus process ϕ(H[X]) = λ(K′ :: A), which 
would imply that ϕ(H[Y ]K ′

F ∪K F ) = λ(K′ :: A′), we need to prove that two actions had corresponding cause sets, i.e. we 
need to prove Rem(K Fn+1) = Kn+1. To do it, we should look at the action ζn because it is the last action that can 
influence the cause set Kn+1 (cause set Kn+1 does not depend on the action ζn+1). There are two main cases:
– action ζn is the direct structural cause of the action ζn+1 (it happened on the same component in the parallel 

composition, immediately before the action ζn+1). Then the action ζn is a visible action and Kn+1 = Kn ∪ {in} where 
Kn = K′ ∪K \{in}. By inductive hypothesis, we have that there exist K Fn, μn ∈ sF such that γ (μn) = ζn and Rem(K Fn) =
Kn . The action μn is identified with a key in and it is a direct structural cause of the action in+1; therefore we 
have K Fn+1 = K Fn ∪ {in}. The method Rem (Definition 41) does not remove keys of the visible actions and we have 
Rem(K Fn ∪ {in}) = K′ ∪ K \ {in} ∪ {in} = K′ ∪ K = Kn+1 as desired.

– action ζn is not the direct cause of the action ζn+1; then ζn = in : τ or ζn happened on a different component in the 
parallel composition from the action ζn+1.
– If ζn = in : τ , then there exist K j, Kh ∈ sB S such that K j is a cause set of the input action and Kh is a cause set 

of the output action which participated in the τ move. Since τ actions merge cause sets, we have that Kn+1 =
K′ ∪ K = K j ∪ Kh .
In the framework, a τ move is composed of the same input and output actions as in the trace on the causal 
processes. Hence, there exist K F j, K F h ∈ sF , and by inductive hypothesis Rem(K F j) = K j and Rem(K F h) = Kh . Since 
in the framework the τ -action is identified with the key in we have that K Fn+1 = K F j ∪ K F h ∪{in}. By Definition 41, 
method Rem removes keys belonging to the τ actions; hence, we have Rem(K F j ∪ K F h ∪ {in}) = K j ∪ Kh = Kn+1 as 
desired.

– If ζn happened on a different component in the parallel composition, there exist Kh, ζh ∈ sB S where ζh is the 
last action on the same component in the parallel composition as ζn+1 . Then we have that Kh+1 = Kh ∪ {ih} and 
Kn+1 = K′ ∪ K = Kh+1, since ζh was the last action before ζn+1.
By inductive hypothesis, in the framework, there exist K F h, μh ∈ sF , where γ (μh) = ζh and K F h+1 = K F h ∪ {ih}. We 
can notice that Rem(K F h+1) = Kh+1 such that K F h+1 = K Fn+1.
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• An = An1 | An2. In the BS semantics, applicable rules are (BS-Par), (BS-Close) and (BS-Com).
◦ Let us first consider the case when rule (BS-Par) is applied. We have:

An = An1 | An2
in+1:α−−−→
Kn+1

A′
n1 | An2

with premise An1
in+1:α−−−→
Kn+1

A′
n1 where Bnv(α) ∩ Fnv(An2) = ∅.

From λ(An1 | An2) = λ(An1) | λ(An2) = ϕ(Xn1) | ϕ(Xn2) we have that action (in+1, Kn+1, jn+1) : α′ exists where 
γ ((in+1, Kn+1, jn+1) : α′) = in+1 : α, such that

Xn1
(in+1,Kn+1, jn+1):α′
−−−−−−−−−−−→→ Y K Fn+1

n1

On the process Xn = Xn1 | Xn2 we can apply the rule (Par) from the framework, and we have:

Xn1 | Xn2
(in+1,Kn+1, jn+1):α′
−−−−−−−−−−−→→ Y K Fn+1

n1 | Xn2

To prove Rem(K Fn+1) = Kn+1 we should look at the action ζn because it is the last action that can influence the cause 
set Kn+1 (cause set Kn+1 does not depend on the action ζn+1). We then reason much as in the previous case.
Once we have proved Rem(K Fn+1) = Kn+1, we can conclude that

λ(A′
n1 | An2) = λ(A′

n1) | λ(An2) = ϕ(Y K Fn+1
n1 ) | ϕ(Xn2)

as desired.
◦ Suppose that the applied rule is (BS-Close). Then we have:

An1 | An2
τ−→ νa(A′

n1[in+1 � K′′
n+1] | A′

n2{a/x}[in+1 � K′
n+1]) = An+1

with premises An1
in+1:b〈νa〉−−−−−−→
K′

n+1

A′
n1 and An2

in+1:b(x)−−−−−→
K′′

n+1

A′
n2. Since function λ deletes cause sets we have:

λ(An+1) = νaλ((A′
n1 | A′

n2{a/x})) = νaλ(A′
n1) | λ(A′

n2{a/x})
From the inductive hypothesis, we have λ(An)=ϕ(Xn); hence we have λ(An1 | An2)=λ(An1) | λ(An2)=ϕ(Xn1) | ϕ(Xn2).

From λ(An1) = ϕ(Xn1) we know that action (in+1, K ′
n+1, j

′
n+1) : b〈νa∅∗ 〉 exists such that γ ((in+1, K ′

n+1, j
′
n+1) : b〈νa∅∗ 〉) =

in+1 : b〈νa〉 and

Xn1
(in+1,K ′

n+1, j′n+1):b〈νa∅∗ 〉−−−−−−−−−−−−−−→→ Y
K ′

Fn+1
n1

Similarly, from λ(An2) = ϕ(Xn2) we know that action (in+1, K ′′
n+1, j

′′
n+1) : b(x) exists such that γ ((in+1, K ′′

n+1, j
′′
n+1) :

b(x)) = in+1 : b(x) and

Xn2
(in+1,K ′′

n+1, j′′n+1):b(x)−−−−−−−−−−−−→→ Y
K ′′

Fn+1
n2

The condition on the rule (Close) is satisfied since by definition of the set K when data structure �w is used, we have 
∗ ∈ K ′

n+1 and ∗ ∈ K ′′
n+1 which makes K ′

n+1 =∗ j′′n+1 and K ′′
n+1 =∗ j′n+1 true.

Now we can apply the rule (Close) on the process Xn = Xn1 | Xn2 with the given premises, and obtain:

Xn1 | Xn2
(in+1,{∗},∗):τ−−−−−−−−→→ νa∅∗((Y

K ′
Fn+1

n1 )#in+1 | Y
K ′′

Fn+1
n2 {ain+1

/x})
where

ϕ(νa∅∗((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x})) =

νaϕ((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x}))

Since the operator #in+1 is applied on the memories of the type νa�w when empty(�w) �= true it is deleted with the 
function ϕ . Therefore, we have:

νaϕ((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x})) =

νaϕ(Y
K ′

Fn+1
n1 )) | ϕ(Y

K ′′
Fn+1

n2 {ain+1
/x})

Now we need to prove Rem(K ′
Fn+1) = K′

n+1 and Rem(K ′′
Fn+1) = K′′

n+1.
To prove it we should look at the action ζn because it is the last action that could influence the cause sets K′

n+1 and 
K′′ (cause sets K′ and K′′ do not depend on the action ζn+1). There are two main cases:
n+1 n+1 n+1
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– action ζn is the direct structural cause of the action ζn+1. Then we have that action ζn was a visible action identified 
with the key in and since action ζn+1 is a communication, we have three different possibilities: K′

n+1 = Kn ∪ {in} or 
K′′

n+1 = Kn ∪ {in} or K′
n+1 = K′′

n+1 = Kn ∪ {in}.
Let us consider the first case, when K′

n+1 = Kn ∪{in}; the other cases are similar. We can notice that there exists some 
Kl ∈ sB S such that Kl = K′′

n+1 (since K′′
n+1 does not contain action in , it is computed in the trace sB S before execution 

of the action in). By inductive hypothesis we have that exist K Fn, K Fl, μn ∈ sF such that:
(i) Rem(K Fl) = Kl and K Fl = K ′′

Fn+1, hence Rem(K ′′
Fn+1) = K′′

n+1;
(ii) γ (μn) = ζn and Rem(K Fn) = Kn . The action μn is identified with a key in and it is visible and direct structural 

cause of the action μn+1, where γ (μn+1) = ζn+1; therefore, we have K ′
Fn+1 = K Fn ∪ {in}. The method Rem (Defi-

nition 41) does not remove keys of the visible actions and we have Rem(K Fn ∪ {in}) = Kn ∪ {in} = K′
n+1 as desired.

– action ζn is not the direct cause of the action ζn+1; then ζn = in : τ or ζn happened on a different component in the 
parallel composition from the action ζn+1.
– If ζn = in : τ , then there exist K j, Kh ∈ sB S such that K j is a cause set of the input action and Kh is a cause set of 

the output action which participated in the τ move. Since τ actions merge cause sets, we have that K′
n+1 = K j ∪Kh . 

For the cause set K′′
n+1 we have two options: either K′′

n+1 = K′
n+1 or there exists some Kl ∈ sB S such that Kl = K′′

n+1
(since K′′

n+1 does not contain action in , it is computed in the trace sB S before execution of the action in) in which 
case the proof is similar to the one above.
In the framework, a τ move is composed of the same input and output actions as in the trace on the causal 
processes. Hence, there exist K F j, K F h ∈ sF , and by inductive hypothesis Rem(K F j) = K j and Rem(K F h) = Kh . Since 
in the framework the τ -action is identified with the key in we have that K ′

Fn+1 = K F j ∪ K F h ∪{in}. By Definition 41, 
method Rem removes keys belonging to the τ actions; hence, we have Rem(K F j ∪ K F h ∪ {in}) = K j ∪ Kh = K′

n+1 as 
desired.

– If ζn happened on a different component in the parallel composition, there exist Kh, ζh ∈ sB S where ζh is the 
last action on the same component in the parallel composition as ζn+1 and Kh+1 = Kh ∪ {ih}. Then we have that 
K′

n+1 = Kh+1, since ζh was the last action before ζn+1.
By inductive hypothesis, in the framework, there exist K F h, μh ∈ sF , where γ (μh) = ζh and K F h+1 = K F h ∪ {ih}. Then 
we have Rem(K F h+1) = Kh+1 such that K F h+1 = K ′

Fn+1 as desired. Similarly for K′′
n+1.

By having Rem(K ′
Fn+1) = K′

n+1 and Rem(K ′′
Fn+1) = K′′

n+1, we can conclude that ϕ(Y
K ′

Fn+1
n1 ) = λ(A′

n1) and ϕ(Y
K ′′

Fn+1
n2 ) =

λ(A′
n2) which concludes our case.

◦ The case when the rule (BS-Com) is applied in the BS semantics is similar to the case with the rule (BS-Close)

• An = νa(A). In the BS semantics, applicable rules are (BS-Res) and (BS-Open).
Let us first consider the case when rule (BS-Open) is applied. We have:

An = νa(A)
in+1:b〈νa〉−−−−−−→
Kn+1

A′ = An+1

with premise A 
in+1:ba−−−−→
Kn+1

A′ .
From inductive hypothesis, there exists a process X , such that λ(An) = ϕ(νa∅∗(X)) and λ(A) = ϕ(X). Then, there exists 
an action (in+1, Kn+1, jn+1) : α′ , where γ ((in+1, Kn+1, jn+1) : α′) = in+1 : ba such that

X
(in+1,Kn+1, jn+1):α′
−−−−−−−−−−−→→ Y K Fn+1

where α′ = b〈νa�w 〉 or α′ = ba.
On the process Xn we can apply the (Open) rule from the framework and we have:

νa∅∗(X)
(in+1,Kn+1, jn+1):b〈νa∅∗ 〉−−−−−−−−−−−−−−→→ νa{in+1}in+1

(Y K Fn+1)

Now we need to prove Rem(K Fn+1) = Kn+1, to obtain λ(A′) = ϕ(Y K Fn+1 ), which implies λ(An+1) = λ(A′) and ϕ(Xn+1) =
ϕ(νa{in+1}in+1

(Y K Fn+1 )) = ϕ(Y K Fn+1 ) = λ(A′).
To prove Rem(K Fn+1) = Kn+1 we should look at the action ζn because it is the last action that can influence the cause 
set Kn+1 (cause set Kn+1 does not depend on the action ζn+1). We then reason much as in the case when An = K′ :: A.
• The case when the rule (BS-Res) is applied is similar to the one above.

Let us now consider clause 2.

(I) The base case is given by 0 transitions. Trivially, the theorem holds.
(II) In the inductive case, for P = ϕ(P), we let

sF : P
μ1−→→ X K F 1

1 . . . X K Fn−1
n−1

μn−→→ X K Fn
n and sB S : P

ζ1−→ A1 . . . An−1
ζn−→ An
K1 Kn
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D. Medić, C.A. Mezzina, I. Phillips et al. Information and Computation 275 (2020) 104644
be the traces on the processes from the framework and on causal processes, respectively. Let us suppose that the inductive 
hypothesis holds for these two traces. We need to prove that the Lemma holds for

sF
μn+1−−−→→ X K Fn+1

n+1 and sB S
ζn+1−−→
Kn+1

An+1

Hence, we need to show Rem(K Fn+1) = Kn+1 and λ(An+1) = ϕ(X K Fn+1
n+1 ).

We proceed by structural induction on the process X K Fn
n and the last applied rule on the transition X K Fn

n
μn+1−−−→→ X K Fn+1

n+1 . 
We have two main cases depending whether X K Fn

n is a π -calculus process, or it is a reversible process with past. If X K Fn
n = P, 

where ϕ(P) = P and P is a π -calculus process, then it is the first transition; hence cause sets are empty (K F 1 = K1 = ∅), 
and we have:

• P = b
∗
a∗.P′ or P = b∗(x).P′ where ϕ(P) = P and ϕ(P′) = P ′ . The rules that can be applied in the framework are (Out1)

and (In1), respectively. We show the case when the rule (Out1) is applied; the other case is similar. We have

b
∗
a∗.P′ (i1,{∗},∗):ba−−−−−−−→→ b

∗
a∗[i1, {∗}].P′ = X1

where ϕ(X1) = P ′ and γ ((i1, {∗}, ∗) : ba) = i1 : ba.
In Boreale and Sangiorgi’s semantics we can apply the rule (BS-Out) on the process ba.P ′ , and we have

ba.P ′ i1:ba−−→ {i1} :: P ′ = A1

where λ(A1) = P ′ as desired.
• P = Q1 | Q2 where ϕ(Q1) = Q 1 and ϕ(Q2) = Q 2. The rules that can be applied in the framework are (Par), (Com) and 

(Close). We show the case when the rule (Close) is used; the rest of the cases are similar.
Since rule (Close) is applied on the process Q1 | Q2 one of the parallel components needs to extrude a bound name. 
Let it be a process Q1 = νa∅∗ (Q′

1). Then we have:

νa∅∗(Q′
1) | Q2

(i1,{∗},∗):τ−−−−−−→→ νa∅∗(νa{i1}∗(Y1) | Y2{ai1
/x}) = X1

with premises

νa∅∗(Q′
1)

μ′
1−→→ νa{i1}ı1

(Y1) and Q2
μ′′

1−→→ Y2

where ϕ(Y1) = Q ′′
1 and ϕ(Y2) = Q ′

2. Hence we have

ϕ(νa∅∗(νa{i1}∗(Y1) | Y2{ai1
/x})) = νa(ϕ(Y1) | ϕ(Y2{ai1

/x}))
= νa(Q ′′

1 | Q ′
2{a/x})

From the inductive hypothesis, we have ϕ(Q′
1) = Q ′

1 and there exist ζ ′
1 and ζ ′

1 such that γ (μ′
1) = ζ ′

1 and γ (μ′′
1) = ζ ′′

1 . 
Now, in Boreale and Sangiorgi’s semantics, we have:

νa(Q ′
1)

ζ ′
1−→ Q ′′

1 and Q 2
ζ ′′

1−→ Q ′
2

We can apply the rule (BS-Close) on the process νa(Q ′
1) | Q 2, and we have:

νa(Q ′
1) | Q 2

τ−→ νa(Q ′′
1 | Q ′

2{a/x}) = A1

with ϕ(A1) = νa(Q ′′
1 | Q ′

2{a/x}) as desired.
• νa∅∗(P′), where ϕ(νa∅∗(P′)) = νa(P ′). The rules that can be applied in the framework are (Res) and (Open). We show 

the case when the rule (Open) is used; the other case is similar.
If (Open) is applied on the process νa∅∗ (P′), the executed action extrudes name a, and we have:

νa∅∗(P′)
(i1,{∗},∗):b〈νa∅∗ 〉−−−−−−−−−−→→ νa{i1}i1

(Y1) = X1

with the premise P′ (i1,{∗},∗):ba−−−−−−−→→ Y1 where γ ((i1, {∗}, ∗) : ba) = i1 : ba and ϕ(Y1) = P1.

From the inductive hypothesis, we have ϕ(P′) = P ′; hence in Boreale and Sangiorgi’s semantics we have P ′ i1:ba−−→ {i1} ::
P1. Now, we can apply the rule (BS-Open) on the process νa(P ′), and obtain:

νa(P ′) i1:b〈νa〉−−−−→ {i1} :: P1 = A1

where λ(A1) = λ({i1} :: P1) = P1 as desired.
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If X K Fn
n is a reversible process with past, then we have the following cases:

• X K Fn
n = H[X]; In the framework, we can apply rules (Out2) and (In2), depending whether the executing action is the 

input or the output. Let us consider the case when the executing action is the output action and the applied rule is 
(Out2); the other case is similar. Then we have:

H[X] (in+1,Kn+1, jn+1):α−−−−−−−−−−−→→ H[Y ]K ′
F ∪K F

with the premise X
(in+1,Kn+1, jn+1):α−−−−−−−−−−−→→ Y K F . The set of causes K ′

F represents the causes of the executed action belonging 
to the history context H, while K F are causes belonging to the process X . Hence, we have K Fn+1 = K ′

F ∪ K F .
From the inductive hypothesis, we know that ϕ(H[X]) = λ(An), where An = K :: A and ϕ(X) = λ(A). Therefore, there 

exists an action ζn+1 = in+1 : α such that γ ((in+1, Kn+1, jn+1) : α) = ζn+1 and A 
in+1:α−−−→
K

A′ .
Now we can apply the rule (BS-Cau) in Boreale and Sangiorgi’s semantics, on process K :: A with the given premise, 
and obtain:

An = K′ :: A
in+1:α−−−→
K′,K

K′ :: A′ = An+1

where Kn+1 = K′ ∪ K.
To prove that actions ζn+1 and μn+1 are executed on the same part of the π -calculus process ϕ(H[X]) = λ(K′ :: A), 
which implies ϕ(H[Y ]K ′

F ∪K F ) = λ(K′ :: A′), we need to prove that the actions had the same structural cause sets, i.e. 
Rem(K Fn+1) = Kn+1. To do so, we should look at the action μn because it is the last action that can influence the cause 
set K Fn+1. There are three main cases:
– action μn is the direct structural cause of the action μn+1 and it is visible action (it happened on the same component 

in the parallel composition, immediately before the action μn+1). Then we have K Fn+1 = K ′
F ∪ K F = K Fn ∪ {in}. By 

inductive hypothesis, we have that there exist Kn, ζn ∈ sB S such that γ (μn) = ζn and Rem(K Fn) = Kn . Since μn is 
visible, ζn needs to be too and it is identified with the key in . The action ζn is the direct structural cause of the action 
ζn+1; hence, we have Kn+1 = Kn ∪ {in} as desired.

– action μn is the direct structural cause of the action μn+1 and it is a silent action. In the framework we have 
K Fn+1 = K ′

F ∪ K F = K Fn ∪ {in}, since the silent action is identified with the key in . Cause set K Fn of the τ action 
contains cause sets of the communicating actions (the input and the output ones). Hence, there exist K F j, K F h ∈ sF

such that K Fn = K F j ∪ K F h = K ′
F ∪ K F \ {in}. By inductive hypothesis, we know that there exist K j, Kh ∈ sB S such 

that Rem(K F j) = K j and Rem(K F h) = Kh . Since silent actions on causal processes just merge two cause sets, we have 
Kn+1 = K j ∪ Kh . Method Rem (Definition 41) removes keys belonging to τ actions; hence we have Rem(K Fn ∪ {in}) =
Rem(K F j ∪ K F h) = K j ∪ Kh = Kn+1 as desired.

– action μn is not the direct cause of the action μn+1; then μn happened on a different component in the parallel 
composition from the action μn+1. In this case, there exist K F h, μh ∈ sF where μh is the last action on the same 
component in the parallel composition as μn+1. Hence, action μh is the direct cause of the action μn+1 and we have 
K Fn+1 = K F h ∪ {ih}. Now we have the same reasoning as in the first case.

• X K Fn
n = Xn1 | Xn2; In the framework, applicable rules are (Par), (Close) and (Com). Let us consider the case when the 

rule (Close) is used; the remaining cases are similar. Now we have that one of the processes in parallel extrudes a 
bound name, say Xn1. Then Xn1 = νa∅∗(X ′

n1). By applying the rule (Close) on the process νa∅∗ (X ′
n1) | Xn2, we obtain

νa∅∗(X ′
n1) | Xn2

(in+1,{∗},∗):τ−−−−−−−−→→ νa∅∗((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x})

with premises νa∅∗(X ′
n1) 

(in+1,K ′
n+1, j′n+1):b〈νa∅∗ 〉−−−−−−−−−−−−−−→→ νa{in+1}in+1

(Y
K ′

Fn+1
n1 ) and Xn2

(in+1,K ′′
n+1, j′′n+1):b(x)−−−−−−−−−−−−→→ Y

K ′′
Fn+1

n2 .
The condition on the rule (Close) is satisfied since by definition of the set K when data structure �w is used, we have 
∗ ∈ K ′

n+1 and ∗ ∈ K ′′
n+1, which makes K ′

n+1 =∗ j′′n+1 and K ′′
n+1 =∗ j′n+1 true. By the definition of the function ϕ(), we 

have:

ϕ(νa∅∗((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x})) =

νaϕ((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x}))

Since the operator #in+1 is applied on the memories of the type νa�w when empty(�w) �= true it is deleted with the 
function ϕ . Therefore, we have:

νaϕ((Y
K ′

Fn+1
n1 )#in+1 | Y

K ′′
Fn+1

n2 {ain+1
/x})) =

νaϕ(Y
K ′

Fn+1
n1 )) | ϕ(Y

K ′′
Fn+1

n2 {ain+1
/x})
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From the inductive hypothesis we know that ϕ(νa∅∗ (X ′
n1)) = λ(νaAn1) and ϕ(Xn2) = λ(An2). Hence, there exist ζ ′

n =
in+1 : b〈νa〉 and ζ ′′

n = in+1 : b(x) such that νaAn1
in+1:b〈νa〉−−−−−−→
K′

n+1

A′
n1 and An2

in+1:b(x)−−−−−→
K′′

n+1

A′
n2. With the given premises, we can 

apply the rule (BS-Close) on the process νaAn1 | An2 and obtain:

νa(An1) | An2
τ−→ νa(A′

n1[in+1 � K′′
n+1] | A′

n2{a/x}[in+1 � K′
n+1]) = An+1

Since function λ deletes cause sets we have:

λ(An+1) = νaλ((A′
n1 | A′

n2{a/x})) = νaλ(A′
n1) | λ(A′

n2{a/x})
Now we need to prove Rem(K ′

Fn+1) = K′
n+1 and Rem(K ′′

Fn+1) = K′′
n+1. To do that, we should look at the action μn

because it is the last action that can influence the cause sets K ′
Fn+1 and K ′′

Fn+1. There are three main cases:
– action μn is the direct structural cause of the action μn+1 and it is a visible action (it happened in the same 

component in the parallel composition, immediately before the action μn+1). Then we have three different cases: 
K ′

Fn+1 = K Fn ∪ {in} and K ′′
Fn+1 ∈ sF ; K ′′

Fn+1 = K Fn ∪ {in} and K ′
Fn+1 ∈ sF or K ′

Fn+1 = K ′′
Fn+1 = K Fn ∪ {in}.

Let us consider the first case, when K ′
Fn+1 = K Fn ∪{in} and K ′′

Fn+1 ∈ sF ; the other cases are similar. From the inductive 
hypothesis we have Rem(K ′′

Fn+1) = K′′
n+1 and there exist Kn, ζn ∈ sB S such that: γ (μn) = ζn and Rem(K Fn) = Kn . The 

action ζn is identified with a key in and it is a visible action and direct structural cause of the action ζn+1, where 
γ (μn+1) = ζn+1; therefore, we have K′

n+1 = Kn ∪ {in}. The method Rem (Definition 41) does not remove keys of the 
visible actions and we have Rem(K Fn ∪ {in}) = Kn ∪ {in} = K′

n+1 as desired.
– action μn is the direct structural cause of the action μn+1 and it is a silent action. We have similar reasoning as 

in the previous case, with the difference that method Rem removes keys of the silent actions; hence key in will be 
deleted from the cause set K ′

Fn+1.
– action μn is not the direct cause of the action μn+1; then μn happened in a different component in the parallel 

composition from the actions μ′
n+1 and μ′′

n+1. In this case, there exist K F h, K Fl, μh, μl ∈ sF where μh and μl are the 
last actions on the same components in the parallel composition as μ′

n+1 and μ′′
n+1. Hence, action μh is the direct 

cause of the action μ′
n+1 and action μl is the direct cause of the action μ′′

n+1. Then we have K ′
Fn+1 = K F h ∪ {ih} and 

K ′′
Fn+1 = K Fl ∪ {il}. Now we have the same reasoning as in the first case.

By having Rem(K ′
Fn+1) = K′

n+1 and Rem(K ′′
Fn+1) = K′′

n+1, we can conclude that ϕ(Y
K ′

Fn+1
n1 ) = λ(A′

n1) and ϕ(Y
K ′′

Fn+1
n2 ) =

λ(A′
n2) which concludes our case.

• X K Fn
n = νa�w (X); In the framework, applicable rules are (Res), (Open) and (Cause Ref). Let us consider the case when the 

rule (Cause Ref) is applied. In this case, the executing action has the name a in the subject position and empty(�w) �=
true. We have:

νa�w (X)
(in+1,K ′

n+1, jn+1):ab−−−−−−−−−−−→→ νa�w (Y K Fn+1)

with premise X
(in+1,Kn+1, jn+1):ab−−−−−−−−−−−→→ Y K Fn+1 where K ′

n+1 = Kn+1 ∪ {w}.
Since empty(�w) �= true name a is free in the process X and νa�w is discarded by the function ϕ(); hence, we have 
ϕ(νa�w (Y K Fn+1 )) = ϕ(Y K Fn+1 ). From the inductive hypothesis we have ϕ(νa�w (X)) = ϕ(X) = λ(An) where a is free 
name in An and there exists ζn+1 = in+1 : ab such that:

An
in+1:ab−−−−→
Kn+1

An+1

To prove Rem(K Fn+1) = Kn+1 which would imply ϕ(Y K Fn+1 ) = λ(An+1) we need to reason on the action μn and proceed 
similarly to the cases above. �
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