
Asynchronous Distributed Monitoring
for Multiparty Session Enforcement

Tzu-Chun Chen1, Laura Bocchi2, Pierre-Malo Deniélou3, Kohei Honda1, Nobuko Yoshida3

1Queen Mary, University of London, 2University of Leicester, 3Imperial College London

Abstract. We propose a formal model of runtime safety enforcement for large-
scale, cross-language distributed applications with possibly untrusted endpoints.
The underlying theory is based on multiparty session types with logical assertions
(MPSA), an expressive protocol specification language that supports runtime val-
idation through monitoring. Our method starts from global specifications based
on MPSAs which the participants should obey. Distributed monitors use local
specifications, projected from global specifications, to detect whether the interac-
tions are well-behaved, and take appropriate actions, such as suppressing illegal
messages. We illustrate the design of our model with examples from real-world
distributed applications. We prove monitor transparency, communication confor-
mance, and global session fidelity in the presence of possibly unsafe endpoints.

1 Introduction

Communication among distributed components is becoming the norm for building large-
scale software, for example in the backend of web services, financial protocols, enter-
prise applications and cyberinfrastructures. This change is sustained by an accelerating
infrastructural support for portable distributed components through technologies such
as clouds, messaging middleware and distributed stores. While distribution leads to such
virtues as scalability, sharing and resilience [10, 22], guaranteeing safety poses new
technical challenges. First, endpoints for a distributed application are often managed
under multiple administrative domains, making it hard to enforce the use of verified
code. Thus, even in a single application, safe and unsafe components can co-exist. Sec-
ondly, many non-trivial correctness properties of distributed programs rely on reciprocal
assurance through cooperating endpoints (for example, a sender multi-casts a message
with a type expected by each receiver). Hence a safety property needs be specified as a
global invariant involving multiple peers. Thirdly, in spite of its global nature, scalable
distributed assurance is only feasible through local validation: a centralised dynamic
validation (validating all distributed interactions in one place) is clearly unrealistic in
large-scale distributed systems.

Against these backgrounds, this paper introduces a theory of runtime verification
for distributed programs, based on distributed endpoint monitoring in which non-trivial
global safety assurance results from local runtime verification and enforcement of pos-
sibly untrusted endpoints, rather than from static checking. We stipulate that an external
monitor is associated with each endpoint participating in a distributed infrastructure (in
actual implementations, one or more logical monitors may be realised by (a cluster of)
one or more physical monitors). A monitor associated with an endpoint acts for that

endpoint as its unique entry point to the infrastructure, and guarantees that its interac-
tions with its environment, which are globally observable, never violates a given global
specification. The framework hinges on the linkage between local validation and global
correctness, and is characterised by asynchrony: each monitor can verify the behaviour
of local process only by observing the outgoing or incoming messages and validating
that they conform to a given local specification.

For linking the global invariants to local validation, we use the preceding work on
multiparty session types (MPSTs) [2, 17], which provides a formally founded approach
to the local validation of globally specified protocols, assuring communication safety,
protocol fidelity and progress. We use its logical extension, called multiparty session
assertions (MPSAs) [4], which further allow, by extending MPSTs with logical formu-
lae, fine-grained specification of interactional behaviour including message contents,
choices of conversation paths and recursion invariants. By projecting a global asser-
tion (global protocol specification) onto each endpoint, we obtain a local assertion for
each endpoint. By all endpoints adhering to their respective local specifications, their
interactions satisfy global correctness.

Our theory offers a formal framework to semantically link local behaviour of pro-
cesses to their global behaviour and to global invariants, through the introduction of a
notion of global observables. Since, in distributed processes, the sending events and
the receiving events are decoupled, and because external monitors can only observe
asynchronously exchanged messages, the semantic account of global invariants (hence
correctness of runtime verification) should take into account temporary discrepancies
of the global view. When a sender sends a message correctly, its local view is updated;
however, as the receiver has not yet received the message, we cannot update neither
the global view nor the receiver’s local view. In other words, to prove the correctness of
distributed runtime verification, we cannot simply use the projection from global invari-
ants to endpoints: we need to take into account the time lag between the sending and
receiving events. Asynchrony also poses a challenge in the treatment of out-of-order
asynchronous message monitoring, which we capture through type-level permutations
of actions.

This paper offers an overview of a theory of monitored networks illustrated through
many examples. Its main contributions may be summarised as follows.

Contributions. The main contributions of the present paper include:

– A model of distributed monitoring featuring the following elements: (1) endpoint
code is possibly ill-behaved; (2) global assertions [4] enable concise global specifi-
cation of application-level multiparty protocols; and (3) conformance to stipulated
global protocols is guaranteed at runtime through local monitoring.

– A multiparty session π-calculus with distributed external monitors, with a new ca-
pability passing primitive for fine-grained control of distributed session initialisa-
tion. The calculus presents an exact semantic account of monitors’ behaviour, of-
fering a foundation of architectural realisations of the proposed framework, with an
efficient monitoring mechanism.

– An overview of the fundamental properties of monitored networks, including local
and global safety, the latter built on a novel global observational framework. We

discuss how local communication conformance leads to global conformance and
session fidelity, as well as estalbishing the local and global monitor transparency.

As far as we know, the formal behavioural assurance of global properties for distributed
applications with unsafe endpoints against non-trivial logical specifications, built on
a rigorous semantic basis, is new. The general ideas of the proposed framework are
illustrated in § 2 through a concrete example. An asynchronous distributed calculus
with multiparty session primitives and the syntax of endpoint monitors are introduced
in § 3. The monitored network and global observable environment (which constructs
the global observables) are introduced in § 4. In § 4, we propose a formal framework
for runtime monitoring, and describe how an endpoint monitor is capable to guide and
protect local processes to exactly obey the global specification, and thus assure the
safety and correctness of the whole monitored network during runtime. § 5 outlines
the resulting properties and theorems, such as local and global safety, local and global
transparency, and session fidelity. For further comparisons, see § 6. For full definitions
and descriptions of the running example please refer to the online full version [20].

2 Basic Ideas through Examples

2.1 Assumptions and Background.

As we discussed in Introduction, we assume that endpoint components of distributed
applications may reside in geographically disparate and heterogeneous administrative
domains, so that we cannot expect that all programs are pre-verified. This necessitates
the use of runtime verification and enforcement through trusted monitors. Monitors act
as gateways for participating endpoint code: first an endpoint sends a message and other
requests to a monitor; then if the monitor finds the message to be valid, it will route it
to its designation. If the monitor finds the message to be invalid, it will treat it as an
error. Below we illustrate the basic idea of this distributed runtime verification through
a concrete use case from a project to build a global distributed infrastructure for ocean
science, the Ocean Observatories Initiative (OOI) [23]. The OOI aims to build a dis-
tributed network of environmental observatories for ocean sciences, with persistent and
interactive capabilities [7]. Its key element is a comprehensive cyberinfrastructure (OOI
CI), which offers services to its users through interactions among distributed endpoints
in geographically distributed OOI observatories, from seafloor instruments to buoys and
on-shore research stations, communicating through a uniform messaging infrastructure.
Its usecase scenarios focus on structured conversations among distributed endpoints
which may be a thousand miles apart, running under different administrative domains
with different degrees of trust. For example, some components of a distributed applica-
tion may be scripting programs in users’ browsers, some may be located in the endpoint
cloud of an academic or corporate institution, and some others may be infrastructural
components residing in one of the central clouds of the OOI CI.

Because each distributed service in the OOI CI is realised by structured conversa-
tions among distributed components, it is essential for its development that protocols
for interactions among the participating components are specified with clear semantics.
We call these protocols, application-level protocols. For example, a scientist may wish

Process
P1

Principal 1

Process
P2

Process
P3

Process
P4

Process
P5

Principal 2

Principal 3

Principal 4

Principal 5

Monitor

Monitor
Monitor

Monitor

Monitor

s [Instrument]

s [User]

s [Agent]

s [Register]

(Local) Queues

Global Queue

Shared Channels Definitions
(Principal 1)
(Principal 2)
(Principal 3)
(Principal 4)
(Principal 5)

s [Instrument]

s [User]

s [Agent]
s [Register]

Transport

new a1 : (GIC � User) in P1

new a2 : (GIC � Register) in P2

new a3 : (GIC � Agent) in P3

new a4 : (GIC � Instrument) in P4

new a5 : (GIC � Instrument) in P5

s

s

Fig. 1. Monitoring architecture

to use a remote instrument, say a seabed camera, after being authorised by an agent:
the interactions among these three will form a specific application-level protocol. In
the OOI CI, the design choice has been made so that these application-level protocols
are to be uniformly specified by a common protocol description language. Safety of
interactions is validated against these stipulated protocol descriptions.

Since we cannot expect either each endpoint code or its environment to be (wholly)
trusted, a primary way to ensure a global invariant for such an interactional application
is through trusted monitors which enforce correct behaviour for participating programs,
a design being considered in the OOI CI. Such monitors need in general to be external
to these participants, i.e. they are not embedded in their code, because, as already dis-
cussed, we may not be able to trust an administrative domain where an endpoint code
resides (an endpoint may as well be equipped with its internal monitor). These monitors
will check and verify the incoming/outgoing messages to/from distributed components,
so that the correctness of global interactions are ensured. Logically, we can stipulate
that there is one monitor for each principal, guarding their behaviour.

A particular application-level protocol in the OOI CI is the instrument command we
shall treat below. It allows a user to perform operations on a remote instrument. This
protocol is specified as a global assertion GIC, described later in this section (the formal
definition is in § 3.2). GIC models a session which involves roles User, Register,
Agent and Instrument. Given a global assertion G, we denote its projection on role p
as G � p, giving an endpoint assertion which describes the protocol from the perspective
of a specific role. We call a participant in one or more distributed applications in the OOI
CI, principal. A principal executes its local process and interacts with other principals
through one or more applications. Its incoming and outgoing messages are validated by
a monitor, which is part of the infrastructure. Figure 1 presents a monitored network
involving five principals.

We now illustrate, using the instrument command example, some of the features
of our formalism, including how the initialisation of conversation is done and how the
associated protocol is specified.

2.2 Session Establishment through Distributed Invitations.

For a monitor to listen to and check the communications of a principal, it should start
by observing the initiation phase of conversations, called session establishment. Session
establishments are done in two steps:

1. A principal initiates a session by creating a session channel for a specific application-
level protocol (e.g., GIC); and

2. The principal sends, through shared channels, invitations to other principals to par-
ticipate in the session in a specified role.

The initiation of a conversation (1) equips the initiator with its endpoint capabilities,
one for each role, each of which can be passed to another principal (who may in turn
pass it to yet another principal). Thus the binding of principals to endpoint roles is incre-
mentally established through capability passing. This fine-grained scheme can represent
many real-world examples [6]. Further, the operation can be seen as a asynchronous lin-
ear capability passing system, leading to a clear monitor semantics.

As an example, consider the following process P1 of Principal1, from Figure 1,
which creates a session s with specification GIC and sends invitations to others.

P1 = new s :GIC in (PJOIN | PINV)

PJOIN = join s[User];Puser
PINV = a2〈s[Register] :GIC � Register〉;a3〈s[Agent] :GIC � Agent〉;

a4〈s[Instrument] :GIC � Instrument〉

where the capabilities s[User], s[Register], s[Agent] and s[Instrument], are either
activated (i.e. the process has joined the session) or forwarded (i.e. used for inviting oth-
ers). E.g., P1 joins the session as User (PJOIN above), and sends invitations to the other
roles (PINV above). Thus Principal1 is inviting other four principals in Figure 1. Shared
channels (a1,a2, . . .) determine which invitations each process is entitled to receive,
e.g. only Principal4 and Principal5 can accept (by any other process) an invitation
s[Instrument], through a4 and a5, respectively.

Below we show Principal4, which receives the capability s[Instrument] and passes
it to Principal5 who joins the session.

P4 = a4(y4[Instrument] :GIC� Instrument).a5〈y4[Instrument] :GIC� Instrument〉
P5 = a5(y5[Instrument] :GIC� Instrument).join y5[Instrument];PInstrument

Monitors observe the exchange of capabilities between their endpoint and the network.
Once a process joins a session, the corresponding monitor is activated and enforces
conformance to the conversation scenario prescribed for that session/role for the sub-
sequent interactions. The asynchronous message in transit between a process (as a role
in a session) and its monitor is represented as a message in a local queue: messages
in transit among monitors for a session is called global queue. In Figure 1, s[User],
s[Register], etc., represent local queues, while s is a global queue.

User Register

 xint : InterfaceId

more(xcom : Command)

Agent

μt<xn>(y:Int)

reject(xe : ErrorData)

Instrument

 xn : Int

 xp : Priority

accept()

 yr : Response

 xr : Response

quit()
t<y-1>

A2
(1)
(2)

(3)

(4)

(5)

(6)A5A

A4

Predicates
A = (y ≥ 0)

 A2 = (xn > 0)

 A4 = (xp = high ⊃ xe ≠ busy)
 A5 = (y > 0 ∧ xcom ≠ switch-off)

more(ycom : Command)

quit()

⊕
⊕

(7)

Fig. 2. Illustration of the global assertion for ‘OOI Instrument Command’

2.3 Specifying Application-Level Protocols.

Monitors dynamically learn about which protocols to enforce during session establish-
ment. Application-level protocols are specified as MPSAs [4]. A global MPSA, some-
times called global assertion, is an abstract description of the interaction steps taken by
the roles in the session. Basic interaction steps are asynchronous message exchanges.
Branching and recursion describe potential choices and repeated interactions. Each
message exchange/branching is annotated with a predicate specifying a constraint on
the message value or the choice of a branch. Recursion is annotated with an invariant.

Figure 2 gives an illustration of global assertion GIC as a message sequence chart, in
which User performs one or more commands on a remote Instrument. Register is
used to retrieve information on the instrument’s usage, e.g., to determine the maximum
number of commands allowed in the current session depending on the system load.
Agent interfaces the communications with the actual Instrument.

Full arrows represent interactions where one party sends a branch label and a mes-
sage value (or just one of the two) to another party. The labels carry information on the
branch to follow. Arrows linked by ⊕ represent alternative branches.

The conversation proceeds as follows:

(1) User sends Register a message xint of type InterfaceId.
(2) Register replies with an integer xn which determines the number of commands

that User will be allowed to perform on the instrument. The predicate annotating
this interaction specifies an obligation for Register to send a value for xn satisfy-
ing xn > 0; dually User can rely on this fact.

(3) User sends Agent a priority xp (e.g., low, high).
(4) Agent sends User a label which is either accept or reject. In case of reject,

Agent sends also an error message xe of type errData and the protocol terminates.
The predicate for this branch ensures that a request will not be rejected due to the
fact that the instrument is busy if the priority is high. In case of accept the protocol
continues with a recursion µt〈xn〉(y : Int) where y is a parameter initialised to xn,

y≥ 0 is an invariant and y is used to enforce User to perform at most xn commands
on the instrument.

(5) User selects either branch more and sends a new command to Agent, or quit and
terminates. The predicate y > 0∧ xcom 6= switch-off is a guard to the branch more:
a new command can be sent only if User has not performed already xn commands
in this session and anyway the command must not ask to switch off the instrument.

(6, 7) Finally, either the command (6) or the quit notification (7) is forwarded by Agent
to Instrument. In the former case, Instrument responds to Agent (who forwards
the message to User).

2.4 Processes for Instrument Command.

In the following we present the processes for instrument command used in our later
discussions. Principal1 in Figure 1 runs P1 in § 2.2. P1 refers to Puser which is given as:

Puser = s[User,Register]!〈vint〉;s[Register,User]?(xn).
s[User,Agent]!〈High〉;s[Agent,User]?{accept().Pu

acc, reject(xe)}
Pu

acc = µX〈xn〉(y).if needmore()∧ y > 0 then s[User,Agent]!more〈next()〉;
s[Agent,User]?(xr).t〈y−1〉;else s[User,Agent]!quit〈〉

where needmore() and next() are functions local to Principal1: needmore() returns a
boolean (i.e., whether more commands are needed), and next() returns the next com-
mand. Principal2 in Figure 1 uses a2 to receive an invitation, then joins the session as
Register. We assume Principal2 returns always 10 allowing all participants to per-
form at most 10 commands on the instrument. Note any positive value for xn would
satisfy the predicate xn > 0 in (2) of §2.2.

P2 = a2(y2[Register] :GIC � Register).join y2[Register];Pregister
Pregister = y2[User,Register]?(xint).y2[Register,User]!〈10〉

The next process is for Agent (Principal3 in Figure 1), which, through channel a3,
receives an invitation and joins the session as Agent. We assume Principal3 relies on
a local function error() returning an error data. Noticeably, the agent simply forwards
the command and the response between the user and the instrument.

P3 = a3(y3[Agent] :GIC � Agent).join y3[Agent];Pagent
Pagent = y3[User,Agent]?(xp).if xp = high then y3[Agent,User]!accept〈〉.Pa

acc,
else y3[Agent,User]!reject〈error()〉

Pa
acc = µ〈xn〉X(y).y3[User,Agent]?{more(xcom).Pa

com,
quit().y3[Agent,Instrument]!quit〈〉}

Pa
com = y3[Agent,Instrument]!more〈xcom〉;y3[Instrument,Agent]?(yr).

y3[Agent,User]!〈yr〉.t〈y−1〉

Finally two instruments, Principal4 and Principal5 in Figure 1, are given below. The
first, Principal4, forwards the invitation to Principal5 and terminates. The second,

u ::= a,b | x,y shared channel

k ::= s,s′ | x,y sessions

P ::= u〈k[p] :T 〉;P request

| u(y[p] :T).P accept

| new s :G in P session creation

| new a :T [p] in P name creation

| join s[p];P join

| if e then P else Q conditional

Prt ::= (ν s :G)P | (ν a :T [p])P hiding

| a〈s[p] : T 〉 invitation

| s[p] : h queue

v ::= a | true | false | n value

e ::= v | x | e+ e′ | e∧ e′ | · · · expression

| k[p1,p2]!l〈e〉;P selection

| k[p1,p2]?{li(xi).Pi}i∈I branching

| P | Q parallel

| 0 inact

| µt〈e〉(x).P | t〈e〉 recursion

| Prt runtime process

h ::= /0 | 〈p,q, l〈v〉〉 ·h message queue

Fig. 3. Syntax of processes

Principal5, joins the session and relies on a local function response that takes a com-
mand and returns a response.

P4 = a4(y4[Instrument] :GIC � Instrument).
a5〈y4[Instrument] :GIC � Instrument〉

P5 = a5(y5[Instrument] :GIC � Instrument).join y5[Instrument];Pinst
Pinst = µt.y5[Agent,Instrument]?{

more(ycom).y5[Instrument,Agent]!〈response(ycom)〉.t,
quit()}

This concludes the introduction of processes for the Instrument Command use case.

3 A Calculus for Distributed Monitoring

In this section and the next, we introduce a calculus of distributed monitored processes.
The syntax is divided into three parts:

(§ 3.1) local untyped processes P, with a fine-grained distributed session initiation
primitive called invitation;

(§ 3.2) local monitors M which check the correctness of the incoming and outgoing
messages (w.r.t. a set of endpoint assertions) and drop the wrong ones; and

(§ 4.1) distributed networks N which consist of one or more monitored local processes
M [P] and (global) queues containing pending messages sent by one monitored
process but not yet received by another.

3.1 Multiparty Session π-calculus with Distributed Initialisation

This subsection presents the syntax of local processes, extending [2] with fine-grained
primitives for session creation and invitation.

Invitations are exchanged through shared channels (a,b, . . .). The session interac-
tions occur through session channels (s,s′, . . .) whose names identify session execution
instances. Shared channel identifiers (u,u′, . . .) denote shared channels or variables; ses-
sion identifiers (k,k′, . . .) denote session channels or variables. We let p,q, . . . range over
participant roles, given as finite natural numbers. We use x,y for variables; v,v′ for val-
ues; and e,e′ for natural or boolean expressions.

We let P,P′ denote processes. The request process asynchronously invites, through
a shared channel u, another process to play p in a session (channel) k and continues as P
(T denotes an endpoint assertion, defined later). The accept process receives a session
invitation for role p and, after instantiating y with the received session channel, behaves
as p (following endpoint assertion T). Process new s : G in P creates a fresh session s
whose protocol obeys a global assertion G, and behaves as P. Similarly for the shared
name creation. By join, a process joins a session s as p, creating a fresh local queue s[p].

The selection and branching represent communications through an established ses-
sion k. We make the sender p1 and receiver p2 explicit by the notation [p1,p2]. The
selection sends, in a session k, an expression e with label l from p1 to p2. Dually the
branching is ready to receive each label li, and behaves as Pi{e/x}. Conditional, paral-
lel composition and inaction are standard. The recursion µt〈e〉(x).P defines t as P with
recursion parameter x which is initialised to e; t〈e〉 is the corresponding recursion call.

Once a session is started, we use the runtime syntax Prt (not accessible to the pro-
grammer) which includes hiding, asynchronous invitation messages and the queues rep-
resenting messages in transit between a process and its monitor for a session instance.

For brevity, we often write k[p1,p2]?l(x).P or k[p1,p2]?(x).P for a single branch, and
omit trailing 0 and type annotations. We call initial a process which does not contain
free variables and runtime syntax.

Figure 4 lists the LTS for processes. Each output is performed in two steps: (1) a
local action spawns the message (i.e., invitations remain local and linear messages are
inserted in a local queue s[p]) and (2) a visible action sends out the message. Inputs are
dual. Whereas local actions are always allowed by monitors, visible actions have to be
checked (as it will be clear in § 4.1). The first five rules are for local actions: bARQ,AACc
respectively spawn and receive an invitation message through a shared channel; bSELc
puts a message in a local queue for a session s, after evaluating e to a value v; bBRAc gets
a message from a local queue with label l j, so that the j-th process Pj receives a value
v; bIFc is standard. The rest models visible actions: bNEW,NEWSc are for shared channel
and session channel creation (it is through these actions that monitors learn about the
session specifications to be enforced), bJOINc is for session joining using capability s[p]
and creates the corresponding local queue, bOUTc sends out an invitation, bOUTc (resp.
bINc) sends out (resp. receives) a message from (resp. into) a local queue.

3.2 Distributed Monitors

To every process is associated a dedicated monitor that manages its interactions with the
network (hence with other peers) by inspecting outgoing and incoming messages: the
monitor protects the endpoint from bad messages from the environment and the envi-
ronment from those from the endpoint. The syntax of monitors is presented in Figure 5.

bARQ,AACc a〈s[p]〉;P τ−→ a〈s[p]〉 | P a〈s[p]〉 | a(y[p]).Q τ−→ Q{s/y}
bSELc s[p1,p2]!l〈e〉;P | s[p1] : h τ−→ P | s[p1] : h · 〈p1,p2, l〈v〉〉 (e ↓ v)

bBRAc s[p1,p2]?{li(xi).Pi}i∈I | s[p2] : 〈p1,p2, l j〈v〉〉 ·h τ−→ Pj{v/x j} | s[p2] : h

bIFc if true then P else Q τ−→ P if false then P else Q τ−→ Q

bNEW,NEWSc new a :T [p] in P
new a:T [p]−−−−−−→ P new s :G in P new s:G−−−−−→ P

bJOIN,OUTc join s[p];P
join(s[p])−−−−−→ P | s[p] : /0 s[p1] : 〈p1,p2, l〈v〉〉 ·h

s[p1,p2]!l〈v〉−−−−−−−→ s[p1] : h

bREQ,INc a〈s[p] : T 〉 a〈s[p] : T 〉−−−−−−→ 0 s[p2] : h
s[p1,p2]?l〈v〉−−−−−−−→ s[p2] : h · 〈p1,p2, l〈v〉〉

We omit standard context/structure congruence rules. Accept bACCc is defined as a dual of bREQc.

Fig. 4. Labelled transition system for processes

M ::= Γ ,∆ monitor

∆ ::= /0 | ∆ ,s[p] : T | ∆ ,s[p]• : T session env

G ::= p→ q : {li(xi :Si){Ai}.Gi}i∈I interaction

| G1 | G2 parallel

| µt〈e〉(x :S){A}.G | t〈e〉 | end rec/end

Γ ::= /0 | Γ ,a : T [p] shared env

S ::= nat | bool | T [p] sorts

T ::= p!{li(xi :Si){Ai}.Ti}i∈I selection

| p?{li(xi :Si){Ai}.Ti}i∈I branch

| µt〈e〉(x : S){A}.T | t〈e〉 | end rec/end

Fig. 5. Monitors and global/endpoint assertions (resp. M , G, and T)

Note that a monitor M should check two kinds of messages: (1) capability exchanges
for invitations via shared channels, and (2) session messages via session channels. Thus
the syntax for a monitor above consists of two typing environments, one for shared
channels (Γ) and one for sessions (∆). In ∆ , we let s[p] : T represent a capability which
is owned by the local process but is not active yet (i.e., it can still be sent to invite
another process); s[p]• : T represents an active capability after the monitored process
has joined the session as p. The session environment ∆ associates each linear capability
to an endpoint assertion T which describes the behaviour of a specific role in a session.

When a principal creates a session instance s : G, the associated monitor learns
about its specification from the global assertion G, which describes a global scenario
among multiple participants annotated with logical formulae. The main construct is a
labelled message exchange, where p sends q a label li (I is a finite set of integers) and
a message xi with sort Si. Sorts include base types and shared channel types T [p]. T [p]
is an endpoint assertion T (described later) modelling role p. The global assertion Gi
describes the continuation of the session for the selected branch i, and Ai is a predicate
on interaction variables specifying what p must guarantee and dually what q can rely
on. Ai expresses a constraint on the choice of branch i (e.g., a guard that must hold
when selecting label li) and on the value of the exchanged message xi, which we call
interaction variable. We do not fix a specific logic for A, we only assume it is decidable.
Interactions bind each xi in Ai and in Gi. Parallel composition is written as G | G′. A
recursive assertion is guarded in the standard way and defines a recursion parameter

with its initialisation and an invariant predicate A. end ends the session. Below we give
an example of a global assertion from the Instrument Command use case.

Example 1 (OOI Instrument Command - Global Assertion). The following is the
global assertion for our running example (Figures 1 and 2). A branch without predicate
means its accompanying predicate is true. We sometimes omit labels when there is a
single branch.

GIC = User→ Register : (xint : InterfaceId).
Register→ User : (xn : Int){xn > 0}.User→ Agent : (xp : Priority).
Agent→ User : {accept().Gacc, reject(xE : ErrData){xP = high⊃ xe 6= busy}}

Gacc = µt〈xn〉(y){y≥ 0}.
User→ Agent : {more(xcom : Command){y > 0∧ xcom 6= switch-off}.Gcom,

quit().Agent→ Instrument : quit()}
Gcom = Agent→ Instrument : (ycom : Command).

Instrument→ Agent : (yr : Response).Agent→ User : (xr : Response). t〈y−1〉

The scenario modelled by GIC has already been described informally in § 2 (Figure 2).
We here assume the consistency properties for assertions, the projectability and well-
assertedness, from [4, 17].1

The endpoint assertions T are local specification for endpoints, which are used by mon-
itors. They specify which interactions are acceptable for an endpoint: in other words, an
endpoint assertion specifies constraints on a session from the perspective of a specific
role, rather than globally. In the grammar of Figure 5, selection expresses the transmis-
sion to p of a label li taken from a set {li}i∈I , together with an interaction variable xi
of sort Si and that the remaining interaction in the session is Ti. Branching is its dual.
Others are similar to their global versions.

An endpoint projection or often simply projection G � p projects G onto p returning
an endpoint assertion. Projection is defined as in [4] (please see online Appendix [20]).
An example follows, projected from global assertions in Example 1.

Example 2 (OOI Instrument Command - Endpoint Assertion for User). Below we
show the projections of respectively GIC, Gacc and Gcom onto User.

Tuser = Register!(xint : InterfaceId).Register?(xn : Int){xn > 0}.Agent!(xp : Priority).
Agent?{accept().T u

acc, reject(xe : ErrData){xp = high⊃ xe 6= busy}}
Tacc = µt〈xn〉(y){y≥ 0}.

Agent!{more(xcom : Command){y > 0∧ xcom 6= switch-off}.T u
com, quit()}

Tcom = Agent?(xr : Response).t〈y−1〉

3.3 Semantics of Monitors

The semantics of a monitor is given as a LTS following the standard interpretation
of typing environments in process calculi. Later, this relation is used to control the

1 Projectability says that a global assertion is projectable to each endpoint [17] (defined in online
Appendix [20]) while well-assertedness says that it is always possible for an endpoint to find
a path which satisfies its own obligations [4] (defined in online Appendix [20]). In this paper
we only treat global assertions satisfying these properties. See [4, 17] for further explanations.

behaviour of processes. M
`−→M ′ only if ` is a legal action (i.e., that a process should

be allowed to perform by the monitor). We use the following labels:

` ::= τ | a〈s[p] : T 〉 | a〈s[p] : T 〉 | new s : G | new a : T [p] | join(s[p])
| s[p1,p2]!l〈v〉 | s[p1,p2]?l〈v〉

A label can be a τ-action, a session request or reception, the creation of a new session
or shared channel, the join of a session, selection or branching. Request and selection
(resp. reception and branching) are often collectively called output (resp. input).

[TAU,JOIN] M
τ−→M M ,s[p]◦ :T

join(s[p])−−−−−→M ,s[p]• : T

[NEW, NEWS]
a 6∈ dom(M)

M
new a:T [p]−−−−−−→M ,a : T [p]

s 6∈ dom(M)

M
new s:G−−−−−→M ,{s[pi]

◦ : (G � pi)}pi∈G

[REQ] M ,a :T [p],s[p]◦ : T
a〈s[p] : T 〉−−−−−−→M ,a :T [p]

[ACC]
s 6∈ dom(M)

M ,a :T [p]
a〈s[p] : T 〉−−−−−−→M ,a :T [p],s[p]◦ :T

[SEL]
M ` v : S j, A j{v/x j} ↓ true,T y p2!{(xi : Si){Ai}.Ti}i∈I

M ,s[p1]
• :T

s[p1,p2]!l j〈v〉−−−−−−−→M ,s[p1]
• :Tj{v/x j}

[BRA]
M ` v : S j, A j{v/x j} ↓ true,T y p1?{li(xi :Si){Ai}.Ti}ı∈I

M ,s[p2]
• : T

s[p1,p2]?l j〈v〉−−−−−−−→M ,s[p2]
• :Tj{v/x j}

[BRAN]
S j = T [p], a 6∈ dom(M),∀i a 6∈ Ai, Ai ↓ true, T y p1?{li(xi :Si){Ai}.Ti}ı∈I

M ,s[p2]
• : T

s[p1,p2]?l j〈a〉−−−−−−−−→M ,a : S j,s[p2]
• : Tj

Fig. 6. Labelled transition system for monitors

The LTS for monitors is defined in Figure 6. Rule [NEW] allows a shared name cre-
ation with type T [p]. Rule [NEWS] is for a new session s with type G, which is always
allowed as far as s is fresh; it adds the projections of G at each pi (denoted by G � pi),
endowing the local process with the capabilities s[pi] to play behaviours of all roles in
G. Rule [JOIN] activates session s[p]. Rule [REQ] represents that, for invitation at a, if the
monitor includes the type of shared channel a as T [p], and the type of p in session s is
exactly T , the monitor approves this invitation and, since this capability has been sent
out, relinquishes s[p]; rule [ACC] is its dual.

In [SEL], [BRA] and [BRAN], we use permutations, denoted T y T ′. A sound permuta-
tion (called asynchronous subtyping in [21]) changes the order of actions to capture the
semantics of asynchronously arriving messages without affecting causally related ac-
tions. Consider the global assertion p2→ p1 : (x :S){A}.p3→ p1 : (x′ :S′){A′}.G where
p1 6= p3. In an asynchronous network we cannot prevent message x′ to reach p1 earlier
than x. Hence p1’s monitor needs to accept the messages from p2 and p3 in any order. We
define T y T ′ when we can permute up an action in T to the top, and do nothing else,

to reach T ′, via the axioms: p1 †1 {li(xi : Si){Ai}.p2 †2 {l′j(x′j : S′j){A′j}.Ti j} j∈I}i∈I y
p2 †2{l′j(x′j : S′j){A′j}.p1 †1{li(xi : Si){Ai}.Ti j}i∈I} j∈I where †1 =?,†2 =? or †1 =!,†2 =!
or †1 =!,†2 =?. Note that †1 =?,†2 =! is unsound since the actions are causally related.

Thus [SEL] says that if the endpoint assertion of s[p1]
• at p1 can be permuted to

p2!{li(xi : Si){Ai}.Ti}i∈I , then the outgoing message with label li sent from p1 to p2,
as far as it satisfies formula A j{v/x j}, is approved by the monitor which prepares the
next (incoming or outgoing) message with local specification Tj. Rule [BRA] is its sym-
metric (input) counterpart, while [BRAN] is one for fresh shared channel a (ensured by
a 6∈ dom(M) and a 6∈ Ai), so that a : S j is added to the monitor.

Unmonitored networks are given by erasing the co-domain (types and assertions)
from each monitor in a monitored network. The result of such erasure, the monitor
which ‘switches-off’ the monitoring activity, acts simply as a gateway with information
on local addresses, including a session endpoint s[p]. We call this stripped-off gateway a
monitor-off (M ◦,M ◦

1 , . . .), used for routing session messages to the right destinations.
The semantics of M ◦ is obtained by erasing the co-domain from each monitor in each
rule in Figure 6. We write erase(M) for the monitor-off obtained through this erasure
of M . Hereafter we denote erase(M) as M ◦.

Example 3 (M vs M ◦). Let M1
def
= s[p1]

• : p2!(x : Int){x> 0}.T and `= s[p1,p2]!〈−10〉.
Then M ◦

1
`−→ but M1 6 `−→ since the value −10 does not satisfy the predicate x > 0 in the

endpoint assertion for the session monitored by M1. Similarly, for type violations, if
M2

def
= s[p1]

• : p2!(x :String){true}.T and `= s[p1,p2]!〈10〉 then M ◦
2

`−→ but M2 6 `−→.

4 Monitored Network and Global Observables

4.1 Monitored Network

Syntax. We write M [P] for P monitored by M , called monitored process. Then a
monitored network or network (N,N′, . . .) is given as:

N ::= /0 | M [P] | N1 | N2 | (νa :T [p])N | (νs :G)N | s : h | a〈s[p] : T 〉

A monitored network represents a network of processes and their monitors, together
with messages in transit, which include global message queues for each session (s : h
where h is a partial sequence of messages) and an unordered collection of invitations
a〈s[p] : T 〉.

Reduction and Transition. The dynamics of networks, in particular how messages
travel from a local configuration through a network to another local configuration, is
formalised by the reduction rules in Figure 7. In each rule except bPROCc, the b-ERRc case
is when the monitor detects a violation of the specification by the current action; we
stipulate that M simply drops such message. Each rule corresponds to a rule for the
monitor semantics defined in Figure 6. Rule bNEWc creates a fresh (bound) shared chan-
nel, while rule bNEWSc creates a new session channel, together with an empty (global)

queue used by all processes joining session s. Rule bJOINc creates a local queue for ses-
sion s and role p. In rules bREQ,ACCc, monitor M checks outgoing and incoming invi-
tations. Ideally, bREQc forwards an outgoing invitation, which is still local to a process,
to the external environment (dually for bACCc with an incoming invitation). In bOUTc, M
forwards a session message from a local queue s[p] into the global queue s (dually for
bINc). Other rules are standard.

bPROCc P τ−→ P′
M [P]→M [P′]

bNEW, NEW-ERRc
M

new a:T [p]−−−−−−→M ′
M [new a :T [p] in P]→ (νa :T [p])(M ′[P])

M 6 new a:T [p]−−−−−−→
M [new a :T [p] in P]→M [0]

bNEWS, NEWS-ERRc M
new s:G−−−−−→M ′

M [new s :G in P]→ (νs :G)(M ′[P] | s : /0)
M 6 new s:G−−−−−→

M [new s :G in P]→M [0]

bJOIN, JOIN-ERRc
M

join(s[p])−−−−−→M ′
M [join s[p];P]→M ′[P | s[p]: /0]

M 6 join(s[p])−−−−−→M ′
M [join s[p];P]→M [P]

bREQ, REQ-ERRc
M

a〈s[p] : T 〉−−−−−−→M ′
M [a〈s[p] : T 〉]→M ′[0] | a〈s[p] : T 〉

M 6 a〈s[p] : T 〉−−−−−−→M ′
M [a〈s[p] : T 〉]→M [0]

bACC, ACC-ERRc
M

a〈s[p] : T 〉−−−−−−→M ′
M [0] | a〈s[p] : T 〉 →M ′[a〈s[p] : T 〉]

M 6 a〈s[p] : T 〉−−−−−−→M ′
M [0] | a〈s[p] : T 〉 →M [0]

bOUTc M
s[p1,p2]!l〈v〉−−−−−−−→M ′

M [s[p1] : 〈p1,p2, l〈v〉〉 ·h] | s : h′→M ′[s[p1] : h] | s : h′ · 〈p1,p2, l〈v〉〉
bOUT-ERRc M 6 s[p1,p2]!l〈v〉−−−−−−−→M ′

M [s[p1] : 〈p1,p2, l〈v〉〉 ·h] | s : h′→M [s[p1] : h] | s : h′

bINc M
s[p1,p2]?l〈v〉−−−−−−−→M ′

M [s[p2] : h] | s : 〈p1,p2, l〈v〉〉 ·h′→M ′[s[p2] : h · 〈p1,p2, l〈v〉〉] | s : h′

bIN-ERRc M 6 s[p1,p2]?l〈v〉−−−−−−−→M ′

M [s[p2] : h] | s : 〈p1,p2, l〈v〉〉 ·h′→M [s[p2] : h] | s : h′

We omit the standard context rules and structural congruence rules.

Fig. 7. Reduction for monitored network

Example 4. Let P = s[p1,p2]!〈100〉;P′ | s[p1] : /0 be a process with an empty queue
playing role p1 in s. Let also M1 = s[p1]

• : p2!(x : Int){x> 0}.T be its local monitor. The
communication happens in two steps. First, the message is spawn into the local queue
as P τ−→ P2 with P2 = P′ | s[p1] : s[p1,p2]!〈100〉 hence, since M1

τ−→M1, then M1[P]→
M1[P2]. Second, the message is forwarded to the global queue as P2

`−→ P′ | s[p1] : /0 with

`= s[p1,p2]!〈100〉; hence since M1
`−→ s[p1]

• : T then M1[P]→ s[p1]
• : T [P′ | s[p1] : /0].

4.2 The Global Observables

As Figure 7 shows, from the perspective of the global network, all global-behaviours
of monitored processes become unobservable. To analyse and state properties of mon-
itored networks, the global-behaviours need be observed by linking global assertions
to global interactions among monitored networks, neglecting local interactions inside
endpoints. We therefore propose a notion of global observables and we define it through
two labelled transitions systems: one for networks and one for environments (they rep-
resent the abstraction of global specifications and message flows).

First, we formalise the notion of the global observables of networks as follows:
N `−→gN′ for N without hiding, if any of its monitors of monitored processes has the
transition ` (by the LTS given Figure 6). Thus global observability is the aggregate of
what all monitors observe.

Second, we formalise a global observable environment, ranged over by E ,E ′, . . ., in
order to witness the legality of all messages in transit. A global observable environment
includes pending messages together with global assertions (for ease of defining its LTS,
we also include local assertions). The use of pending messages is motivated as follows.

In a monitored network, we expect that all endpoint processes follow exactly what
global assertions G define. However, at runtime, monitors at receiver-side can only
observe the behaviours of processes through the passing messages, in order to capture
whether the incoming message has been sent or not. If this message has not been sent,
there should exist a monitor at sender-side specifying this sending action. In this case,
these two monitors are coherent. On the other hand, if this message has been sent (so
there is no any monitor contains the specification of this sending action), the monitor
at receiver-side needs to be compensated not by another monitor specification but by a
message in a global queue. This situation is illustrated by the following example.

Example 5. Assume a simple global protocol specifies that:

p1→ p2 : (x : int){x > 5}.G2

At the beginning, the specification of sender-side monitor is

s[p1]
• : p2!(x : int){x > 5}.G2 � p1

and the one of receiver-side is

s[p2]
• : p1?(x : int){x > 5}.G2 � p2

When the sender-side monitor permits an outgoing message s : 〈p1,p2,10〉, (i.e., a legal
sending action), its specification immediately changes to s[p1]

• : G2 � p1 for the next
action; however, the specification of receiver-side monitor may not change because it is
waiting for the message that is travelling in the global queue s : h ·〈p1,p2,10〉; as long as
the message does not arrive, the receiver-side monitor cannot change its specification. In
this case, the receiver-side monitor knows the messages will certainly come by looking
at the global queue.

Keeping in mind that a global queue (containing assertions of run-time pending mes-
sages) is needed as a part of the global observable environment, we define the syntax of
global observable environment E as follows:

E ::= Γ ,∆ ,Θ Γ ::= /0 | Γ ,a : T [p] Θ ::= /0 |Θ ,s : G
∆ ::= /0 | ∆ ,s[p] : T | ∆ ,s[p]• : T | ∆ ,s : ~mv mv ::= 〈p,q, l〈v〉〉

where Γ is a typing environment, ∆ is a session environment as the one in Figure 5,
to which we add message assertions s : ~mv to model a global queue environment. Each
assignment in s : ~mv is of the form s : mv1..mvn, n≥ 0, where mvi is a message assertion
of shape 〈p,p′, l〈v〉〉. Θ is a global environment associating sessions to global assertions.
Thus E can use both global specification and pending messages to help monitors and
thus ensure that the whole network is in a correct state.

4.3 Labelled Transition Rules for E

In Figure 8 we define E
`−→g E ′, which says: environment E allows a global observation

of ` as a valid interaction, and, after the corresponding changes in the assertions and
global queues, becomes ready to observe a possible next action as E ′.

E
τ−→g E [E -TAU]

E ` v : S j A j{v/x j} ↓ true G y p1→ p2 : {li(xi :Si){Ai}.Gi}i∈I

E ,s : G,s[p2]
• : T,s : 〈p1,p2, l j〈v〉〉· ~mv

s[p1,p2]?l j〈v〉−−−−−−−→g E ,s : G j{v/x j},s[p2]
• : Tj,s : ~mv

[E -BCH]

E ` v :S j A j{v/x j} ↓ true T y p2!{li(xi : S j){Ai}.Ti}i∈I

E ,s[p1]
• :T,s : ~mv

s[p1,p2]!l j〈v〉−−−−−−−→g E ,s[p1]
• :Tj{v/x j},s : ~mv·〈p1,p2, l j〈v〉〉

[E -SEL]

s 6∈ dom(E)

E
new s:G−−−−−→g E ,s :G,{s[pi] :(G � pi)}pi∈G,s : /0

[E -NEW S]

a 6∈ dom(E)

E
new a:T [p]−−−−−−→g E ,a :T [p]

[E -NEW A]

E ,s[p] :T
join(s[p])−−−−−→g E ,s[p]• :T [E -JOIN]

E ,a :T [p],s[p] :T
a〈s[p] : T 〉−−−−−−→g E ,a :T [p],s[p] :T [E -REQ]

E ,a :T [p],s[p] :T
a〈s[p] : T 〉−−−−−−→g E ,a :T [p],s[p] :T [E -ACC]

Fig. 8. Labelled transition system for environments

In [E -BCH], T is obtained by removing all outputted actions of p2 (i.e., ~mv � p2) from
all actions of p2 (i.e., G � p2); Tj is, similarly, obtained by removing outputted actions
of p2 from all actions in G j of p2 and replacing x j by v in G j � p2. The reason why
this is needed, instead of simply applying G � p2, is to obtain the appropriate endpoint
specification considering the asynchrony nature of interactions. We use the following
example to show this situation.

Example 6. Given a simple global assertion

p1→ q1 : (x1 : int){x1 > 0}.p1→ q2 : (x2 : int){x2 > 1}.q3→ p1 : (x3 : int){x3 > 2}.end
(1)

Obviously, as p1 is active, the local specification of monitor at p1 is

s[p1]
• : q1!(x1 : int){x1 > 0}.q2!(x2 : int){x2 > 1}.q3?(x3 : int){x3 > 2}.end (2)

It is possible that participants interact in the following order: (I) q3 firstly sends mes-
sage 〈q3,p1,〈3〉〉 to p1, (II) then p1 sends messages to q1 and q2 with 〈p1,q1,〈1〉〉 and
〈p1,q2,〈2〉〉 respectively. Note that, as the first interaction happens, p1 may not receive
this messages immediately. Assume before this message arrives, p1 has sent out mes-
sages 〈p1,q1,〈1〉〉 and 〈p1,q2,〈2〉〉. Therefore, the global queue is

〈q3,p1,〈1〉〉 · 〈p1,q1,〈1〉〉 · 〈p1,q2,〈2〉〉

and the global assertion maintains as Equation (1) because no message has been re-
ceived. However, the current specification of monitor at p1 is s[p1]

• : q3?(x3 : int){x3 >
2}.end since it has done two output actions. In such a case, G � p1, which is still Equa-
tion (2), cannot reflect the reality of p1 that is going to receive a message because of the
asynchrony nature.

Continue with rule [E -BCH]. It says that if a value is typed S j and satisfies A j, and G has
a corresponding interaction up to permutations, it allows 〈p1,p2, l j〈v〉〉 to be received,
resulting in the new local/global assertions. The permutation relation G y G′ (defined
in online Appendix [20]) means that the specification G can be permuted to G′, so that
what is not apparently an active action in G becomes active in G′ modulo permutation.
For example, if both Buyer and Broker are sending a message to Seller:

G def
= Buyer→ Seller : (x : integer).Broker→ Seller :: (x : string).end

then Broker’s message may as well arrive at Seller first, hence we permute this to

G′ def
= Broker→ Seller : (x : string).Buyer→ Seller : (x : integer).end

where GyG′ and G′ is ready to check an appropriate message from Broker to Seller.
Rule [E -SEL] states that when E approves an output, its global assertion is unchanged but
put a message to the global queue, indicating that an interaction has partially happened
by an output, but not completed.

[E -NEW S] says if a session s is new to E , E adds the global assertion of s and the
session environments {s[pi] :(G � pi)}pi∈G corresponding to s, and the queue s : /0 at the

same time. [E -NEW A] says if a shared name a is new to E , then E adds this new shared
channel. [E -JOIN] makes the specified session-role s[p] become active. Finally, since E
watches the global environment (i.e., by watching all endpoint monitors), as request
and accept happens at endpoint, it does not affect the global environment. [E -REQ] and
[E -ACC] state this fact. Note that, for [E -REQ] (or [E -ACC]), if the left-hand side environment
violates the rule, then the rule [E -TAU] is applied; which means that, globally, there is no
such a request (or accept) action observed.

5 Transparency, Conformance and Session Fidelity

This section informally outlines the key local and global safety properties that our mon-
itoring mechanism can enforce.

5.1 Local Safety and Transparency

We first list the properties that monitors guarantee for local configurations. Hereafter,
we let L , a located process, stand for either a monitored process M [P] or monitor-off
process M ◦[P]. Conformance of a located process to a monitor’s specification means
this located process only sends “good” messages (which implies that its monitor always
permits those messages) and receive “good” messages (which have been approved by
its monitor). In this case we say this process conforms to M , (i.e. it behaves well w.r.t.
M), represented as M |= L .

We can then show every monitored process conforms to the specification given by
its monitor. Locally speaking, a monitored-process and a monitor-off process behave
precisely in the same way if the latter already conforms to its monitor’s specification.
Therefore M |=M ◦[P] implies M |=M ◦[P]∼M [P], denoting that M ◦[P] and M [P]
are bisimilar under M 2 Note that a process P that can be validated by Γ ` P .∆ (in
the sense of [4]) is guaranteed to behave correctly and thus satisfies M |= M ◦[P] for
M = Γ ,∆ .

5.2 Global Safety, Fidelity and Transparency

Global Safety and Transparency. Let us say a network is open if it has no name
restrictions, and receivable if all pending messages in global queue can be received by
their destinations. Here we state that, given N is open and receivable, N `−→g N′ implies,
for an input `, N′ is receivable.

To describe each party in a network behaves consistently with other parties, coher-
ence is defined: an open network N is coherent if all of its pending messages are receiv-
able up to permutation of actions y and, after these messages have been received, the
resulting monitors, say {Mi}i∈I with Mi = Γi,∆i, satisfy the following conditions: (1)
shared channels carry the same specification; (2) no two locations share the same role

2 Monitored strong bisimulation is defined by: (1) for output or silent actions, if M ◦[P] allows
an action then also the monitor must allow that action; (2) for input actions, if the monitor
allows an action then also M ◦[P] must allow that action.

for a same session and each assertion has its dual; (3) for each session channel, the local
assertion for each of its roles is the result of projecting from a common global assertion.

Coherence should be preserved by the interactions that can happen in a moni-
tored network. Thus N `−→gN′ with N coherent implies N′ is coherent. When N is open,
N is locally conformant if, for each monitored process Mi[Pi] in N, we have Mi |=
erase(Mi)[Pi]. If N is coherent and locally conformant and such that N

`1−→g · · · `n−→g N′,
then N′ is also coherent and locally conformant. Let∼ be the standard strong bisimilar-
ity defined by `−→g. By the global invariance, we have: N, which is coherent and locally
conformant, implies N ∼ erase(N).

Session Fidelity. When a new session is generated, it is associated with a global asser-
tion G. This notion is called session fidelity [17].

The coherence of E is defined as the one for network (for the full definition, please
see the online Appendix [20]). Given E and N open, we write E ` N when: E is co-
herent, its shared and linear environments come from the monitors in N, and its global
queue environment comes from the pending messages in N. Whenever N is coherent,
we can construct a (coherent) E such that E ` N. Using these results and the exact
correspondence between the permutation rules over assertions, we can establish the
following result: E ` N and N `−→g N′ implies E

`−→g E ′ such that E ′ ` N′. It states
that global interactions in a coherent network never violate the expected network-wide
global specifications: the former follows the latter step by step.

6 Related Work and Conclusion

Related work. Our previous work [4] uses the static validation of an endpoint process
against local (endpoint) assertions for guaranteeing global safety of their behaviour.
In other words, the postulated global properties are guaranteed only if the local code
of every endpoint is statically verified. As discussed in Introduction, this assumption
is often not practicable in heterogeneous distributed applications where endpoints are
located in multiple administrative domains thus we cannot trust all of the participants
to well-behave. The present paper also gives, for the first time, a direct formalisation of
the notion of global invariants through global transitions and the induced bisimilarity.

The monitoring mechanism presented in this paper can be seen as a distributed vari-
ant of runtime verification in the sense of [1, 14, 15]. We monitor program executions to
detect violation of properties and to enforce correct behaviours. The proposed approach
is light-weight, concerned only with the observable executions, and does not aim to
give a conclusive analysis about all their possible behaviours. Hence it is applicable to
real-world systems, where off-line formal verification is intractable or impossible due to
incomplete information on system components or the dynamic change in requirements.

In the classification of [8, 18], our monitor is online (program execution is checked
as it takes place) rather than offline (only the history of the execution is analysed), and
is outline (or external) (the monitors run as separate processes and analyse the program
via its observable events) rather than inline (the monitors are embedded in the target
programs). This combination is the most effective for specifying and maintaining global
correctness and protecting endpoints from illegal interactions (cf. § 2).

Our monitor mechanism respects two important principles: soundness, which states
that enforcement results in a correct behaviour, and transparency, which requires the
behaviour of a correct program not to be modified (a principle studied for example in an
automata framework [11, 25]). Our monitor suppresses [19] the illegal actions (as seen
in (else) case of M

`−→M ′) but neither immediately halts nor inserts the correct actions.
Incorporating more elaborate reactions as in edit automata [19, 25] is interesting future
topics. None of the above work can ensure the fidelity to application-level multiparty
global protocols for distributed applications with logical properties.

Our work uses a distributed process calculus to model networks of monitored (pos-
sibly unsafe) processes. From this viewpoint, the most closely related formalism is
safeDpi [16] (a precursor of [24]) which models filtering for migrating processes, pre-
serving type safety, using channel dependent types. Recently dynamic joining mecha-
nisms are studied in the conversation-calculus [5] (which uses conversation contexts)
and [13] (based on roles). Our primitive invites other parties via capability passing
through shared channels, while [5, 13] formalise joining to the existing session and
maintain progress by advanced type checking. The main difference is that our work is
about runtime enforcement of global protocol properties rather than static type check-
ing, and that we enforce properties by local runtime checking. Our framework also
incorporates logical assertions, offering more fine-grained logical specifications than
bare protocols representable by types.

Another recent work [3, 9] presents a secure implementation of sequential multi-
party sessions. Through the mechanised use of cryptography, the integrity of session
executions is protected in the presence of an active attacker controlling the network and
some peers. The main differences from [3, 9] are our support of a more general class of
global specifications based on MPSAs and our choice of a framework based on trusted
external monitors. We indeed advocate a framework independent from any particular
programming language, enabling a greater applicability for large-scale distributed in-
frastructures. Unifying these two approaches by including active, un-monitored, attack-
ers to the network offers an interesting research opportunity.

Conclusion and on-going work. Our formalism aims at providing a reference semantics
for efficient and interoperable monitors in order to enforce safe multiparty session ex-
ecutions. A preliminary prototype is running over an advanced messaging middleware,
and consists of: a protocol specification language called Scribble [26], the interfaces
and runtimes for Scala, Java and Ocaml, and distributed monitors written in Ocaml.
Following the monitoring rules in Figure 6, a monitor can be implemented efficiently
(incl. the projection algorithm for generating monitors, which is polynomial against the
size of global types [12]). Collaborations with OOI and Scribble projects to develop a
MPSA-based monitor architecture of industrial strength are on-going.

References

1. H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu, O. Sokol-
sky, and N. Tillmann, editors. Runtime Verification, volume 6418 of LNCS. Springer, 2010.

2. L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and N. Yoshida.
Global progress in dynamically interleaved multiparty sessions. In CONCUR, volume 5201
of LNCS, pages 418–433. Springer, 2008.

3. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. Leifer. Cryptographic protocol
synthesis and verification for multiparty sessions. In CSF, pages 124–140. IEEE Computer
Society, 2009.

4. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages 162–176.
Springer, 2010.

5. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages
285–300. Springer, 2009.

6. W3C WS-CDL. http://www.w3.org/2002/ws/chor/.
7. M. Chave, A. Arrott, C. Farcas, E. Farcas, I. Krueger, M. Meisinger, J. Orcutt, F. Vernon,

C. Peach, O. Schofield, and J. Kleinert. Cyberinfrastructure for the US Ocean Observatories
Initiative. In Proc. IEEE OCEANS’09. IEEE, 2009.

8. F. Chen and G. Rosu. MOP: an efficient and generic runtime verification framework. In
OOPSLA, pages 569–588. ACM, 2007.

9. R. Corin, P.-M. Denielou, C. Fournet, K. Bhargavan, and J. Leifer. Secure implementations
for typed session abstractions. In CSF, pages 170–186. IEEE Computer Society, 2007.

10. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems, Concepts and Design.
Addison-Wesley, 2001.

11. M. Dam, B. Jacobs, A. Lundblad, and F. Piessens. Security monitor inlining for multi-
threaded Java. In ECOOP, volume 5653 of LNCS, pages 546–569. Springer, 2009.

12. P.-M. Deniélou and N. Yoshida. Buffered communication analysis in distributed multiparty
sessions. In CONCUR, volume 6269 of LNCS, pages 343–357. Springer, 2010.

13. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages 435–446.
ACM, 2011.

14. Y. Falcone. You should better enforce than verify. In Runtime Verification, volume 6418 of
LNCS, pages 89–105. Springer, 2010.

15. K. Havelund and A. Goldberg. Verify your runs. In Verified Software: Theories, Tools,
Experiments, volume 4171, pages 374–383. Springer, 2008.

16. M. Hennessy, J. Rathke, and N. Yoshida. safeDpi: a language for controlling mobile code.
Acta Inf., 42(4-5):227–290, 2005.

17. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In POPL,
pages 273–284. ACM, 2008.

18. M. Leucker and C. Schallhart. A brief account of runtime verification. J. Log. Algebr.
Program., 78(5):293–303, 2009.

19. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur., 12:19:1–19:41, January 2009.

20. Online Appendix of this paper. http://www.eecs.qmul.ac.uk/˜tcchen/
TGC11/.

21. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially commutative
asynchronous sessions. In ESOP, number 5502 in LNCS. Springer, 2009.

22. S. Mullender, editor. Distributed Systems. Addison-Wesley, 1993.
23. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
24. J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. In

POPL, 1999.
25. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3:30–50, 2000.
26. Scribble Project homepage. www.scribble.org.

