
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Compiling First-Order Functions to
Session-Typed Parallel Code

David Castro-Perez

Imperial College London

London, UK

d.castro-perez@imperial.ac.uk

Nobuko Yoshida

Imperial College London

London, UK

n.yoshida@imperial.ac.uk

Abstract
Building correct and efficient message-passing parallel pro-

grams still poses many challenges. The incorrect use of

message-passing constructs can introduce deadlocks, and

a bad task decomposition will not achieve good speedups.

Current approaches focus either on correctness or efficiency,

but limited work has been done on ensuring both. In this

paper, we propose a new parallel programming framework,

PAlg, which is a first-order language with participant anno-
tations that ensures deadlock-freedom by construction. PAlg
programs are coupled with an abstraction of their communi-

cation structure, a global type from the theory of multiparty
session types (MPST). This global type serves as an output

for the programmer to assess the efficiency of their achieved

parallelisation. PAlg is implemented as an EDSL in Haskell,

from which we: 1. compile to low-level message-passing

C code; 2. compile to sequential C code, or interpret as se-

quential Haskell functions; and, 3. infer the communication

protocol followed by the compiled message-passing program.

We use the properties of global types to perform message

reordering optimisations to the compiled C code. We prove

the extensional equivalence of the compiled code, as well

as protocol compliance. We achieve linear speedups on a

shared-memory 12-core machine, and a speedup of 16 on a

2-node, 24-core NUMA.

Keywords multiparty session types, parallelism, arrows

1 Introduction
Structured parallel programming is a technique for parallel

programming that requires the use of high-level parallel

constructs, rather than low-level send/receive operations

[52; 62]. A popular approach to structured parallelism is

the use of algorithmic skeletons [20; 36], i.e. higher-order
functions that implement common patterns of parallelism.

Programming in terms of high-level constructs rather than

low-level send/receive operations is a successful way to avoid

common concurrency bugs by construction [38]. One limita-

tion of structured parallelism is that it restricts programmers

to use a set of fixed, predefined parallel constructs. This is

CC ’20, February 22–23, 2020, San Diego, CA, USA
2020. ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00

https://doi.org/10.1145/3377555.3377889

problematic if a function does not match one of the avail-

able parallel constructs, or if a program needs to be ported

to an architecture where some of the skeletons have not

been implemented. Unlike previous structured parallelism

approaches, we do not require the existence of an underlying

library or implementation of common patterns of parallelism.

In this paper, we propose a structured parallel program-

ming framework whose front-end language is a first-order

language based on the algebra of programming [2; 3]. The

algebra of programming is a mathematical framework that

codifies the basic laws of algorithmics, and it has been suc-

cessfully applied to e.g. program calculation techniques [4],

datatype-generic programming [35], and parallel computing
[66]. Our framework produces message-passing parallel code

from program specifications written in the front-end lan-

guage. The programmer controls how the program is paral-

lelised by annotating the code with participant identifiers. To
make sure that the achieved parallelisation is satisfactory,

we produce as an output a formal description of the com-
munication protocol achieved by a particular parallelisation.

This formal description is a global type, introduced by Honda
et al. [42] in the theory of Multiparty Session Types (MPST).
We prove that the parallelisation, and any optimisation per-

formed to the low-level code respects the inferred protocol.

The properties of global types justify the message reordering

done by our back-end. In particular, we permute send and

receive operations whenever sending does not depend on the

values received. This is called asynchronous optimisation [57],
and removes unnecessary synchronisation, while remaining

communication-safe.

1.1 Overview

PAlg (§3)

Parallel Code (§5) MPST (§4)

code generation protocol inference

typability

optimise

Figure 1. Overview

Our framework has three layers: (1) Parallel Algebraic Lan-

guage (PAlg), a point-free first-order language with partici-
pant annotations, which describe which process is in charge

of executing which part of the computation; (2) Message

1

https://doi.org/10.1145/3377555.3377889

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Passing Monad (Mp), a monadic language that represents

low-level message-passing parallel code, from which we gen-

erate parallel C code; and (3) global types (from MPST), a
formal description of the protocol followed by the output

Mp code. Fig. 1 shows how these layers interact. PAlg, high-
lighted in green, is the input to our framework; and Mp and

global types (MPST), highlighted in yellow, are the outputs.

We prove that the generated code behaves as prescribed by

the global type, and any low-level optimisation performed on

the generated code must respect the protocol. As an example,

we show below a parallel mergesort. mergesort.

1 msort :: (CVal a, CAlg f) => Int -> f [a] [a]

2 msort n = fix n $ \ms x -> vlet (vsize x) $ \sz ->

3 if sz <= 1 then x

4 else vlet (sz / 2) $ \sz2 ->

5 vlet (par ms $ vtake sz2 x) $ \xl ->

6 vlet (par ms $ vdrop sz2 x) $ \xr ->

7 app merge $ pair (sz, pair (xl, xr))

The return type of msort, f [a] [a], is the type of first-order

programs that take lists of values [a], and return [a]. Con-

straint CAlg restricts the kind of operations that are allowed

in the function definition. The integer parameter to function

fix is used for rewriting the input programs, limiting the

depth of recursion unrolling. par is used to annotate the func-
tions that we want to run at different processes, and function

app is used to run functions at the same participant as their

inputs. In case this input comes from different participants,

first all values are gathered at any of them, and then the

function is applied. We can instantiate f either as a sequen-

tial program, as a parallel program, or as an MPST protocol.

We prove that the sequential program, and output parallel

programs are extensionally equal, and that the output parallel
program complies with the inferred protocol. For example,

interpreting msort 1 as a parallel program produces C code

that is extensionally equal to its sequential interpretation,

and behaves as the following protocol:

p1 p2

p3

p1⊕

This is a depth 1 divide-and-conquer, where p1 divides the
task, sends the sub-tasks to p2 and p3, and combines the

results. If the input is small, p1 produces the result directly.
Our prototype implementation is a tagless-final encoding

[9] in Haskell of a point-free language. Constraint CAlg is

a first-order form of arrows [45; 61], with a syntactic sugar

layer that allows us to write code closer to (point-wise) id-

iomatic Haskell. The remainder of the paper focuses on the

language underlying CAlg.

WhyMultiparty Session Types There are both practical

and theoretical advantages. On the theoretical side, the the-

ory of multiparty session types ensures deadlock-freedom and

protocol compliance. TheMPST theory guarantees that the
code that we generate complies with the inferred protocol

(Theorem 5.2), which greatly simplifies the proof of exten-
sional equivalence (Theorem 5.3), by allowing us to focus on

representative traces, instead of all possible interleavings of

actions. On the practical side, we perform message reorder-

ing optimisation based on the global types [57]. Moreover,

an explicit representation of the communication protocol is

a valuable output for programmers, since it can be used to

assess a parallelisation. (Fig. 4).

1.2 Outline and Contributions
§2 defines the Algebraic Functional Language (Alg), a lan-
guage inspired by the algebra of programming, that we use

as a basis for our work; §3 proposes the Parallel Algebraic

Language (PAlg), our front-end language, as an extension

of Alg with participant annotations; §4 introduces a proto-
col inference relation that associates PAlg expressions with
MPST protocols, specified as global types. We prove that

the inferred protocols are deadlock-free: i.e. every send has

a matching receive. Moreover, we use the global types to

justify message reordering optimisations, while preserving

communication safety; §5 develops a translation scheme

which generates message-passing code from PAlg, that we
prove to preserve the extensionality of the input programs;

§6 demonstrates our approach using a number of examples.

We will provide as an artifact our working prototype im-

plementation, and the examples that we used in §6, with

instructions on how to replicate our experiments.

2 Algebraic Functional Language
This section describes the Algebraic Functional Language

(Alg) and its combinators. In functional programming lan-

guages, it is common to provide these combinators as ab-

stractions defined in a base language. For example, one such

combinator is the split function (△), also known as fanout, or
(&&&), in the arrow literature [45] and Control.ArrowHaskell

package [61]. Programming in terms of these combinators,

avoiding explicit mention of variables is known as point-free
programming. Another approach is to translate code writ-

ten in a pointed style, i.e. with explicit use of variables, to a

point-free style [23; 44]. This translation can be fully auto-

mated [23; 29]. In our approach, we define common point-

free combinators as syntactic constructs of Alg, and require

programs to be implemented in this style. Our implementa-

tion provides a layer of syntactic sugar for programmers to

refer to variables explicitly, as shown in msort in §1, but that

builds internally a point-free representation.

2.1 Syntax

F1, F2 F I | Ka | F1 + F2 | F1 × F2
a,b F 1 | int | . . . | a → b | a + b | a × b | F a | µF

e1, e2 F f | v | const e | id | e1 ◦ e2 | πi | e1 △ e2 | ιi | e1 ▽ e2
| F e | inF | outF | recF e1 e2

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

In our syntax, f1, f2, . . . , capture atomic functions, which
are functions of which we only know their types; v1,v2 are
values of primitive types (e.g. integer and boolean); e1, e2, . . . ,
represent expressions; F1, F2, . . . , are functors; and a, b, . . . ,
are types. The syntax and semantics are standard [34; 53].

Constant, identity functions, and function composi-
tion are const, id and ◦ respectively. Products are repre-

sented using the standard pair notation: ifx : a andy : b, then
(x,y) : a×b. The functions on product types are πi and△, and
they represent, respectively, the projections, and the split
operation: (f △ д)(x) = (f x,д x). Coproducts have two

constructors, the injections ιi , that build values of type a+b.
The▽ combinator is the case operation: (f1▽ f2)(ιi x) = fi x .
Products and coproducts can be generalised to multiple argu-

ments: a×b ×c is isomorphic to a× (b ×c), and to (a×b) ×c .
We use

∏
i ∈[1,n] ai as notation for the product of more than

two types; similarly we use

∑
for coproducts. The

∏
no-

tation binds tighter than any other construct. Whenever

∀i, j ∈ I ,ai = aj = a, we use the notation

∏
n a as a syn-

onym for

∏
i ∈[1,n] ai .

Functors are objects that take types into types, and func-

tions to functions, such that identities and compositions are

preserved. In this work, we focus on polynomial functors [31],
which are defined inductively: I is the identity functor, and

takes a type a to itself; Kb is the constant functor, and takes

any type to b; F1 × F2 is the product functor, and takes a type

a to F1 a × F2 a; F1 + F2 is the coproduct functor, and takes

a type to a coproduct type. A term F e behaves as mapping
term e to the I positions in F . For example, if F = Ka × I × I,
then applying F e to (x, y, z) yields (x, e y, e z).
Recursion is captured by combinators in, out, rec, and

type µF . We use standard isorecursive types [31; 47; 53],

where µF is isomorphic to FµF , and the isomorphism is given

by the combinators inF (roll) and outF (unroll). For any
polynomial functor F , µF , and strict functions inF and outF
are guaranteed to exist. In our implementation, inF is just

a constructor (like inji). Recursion is recF e1 e2, and it is

known as a hylomorphism [53]. A hylomorphism captures

a divide-and-conquer algorithm, with a structure described

by F , where e1 is the conquer term and e2 the divide term.

Using hylomorphisms requires us to work in a semantic

interpretation with algebraic compactness, i.e. in which car-

riers of initial F -algebras and terminal F -coalgebras coin-
cide (or are isomorphic). Hylomorphisms and exponentials

ap : (a → b) × a → b allow the definition of a general fix-

point operator [54]. Working with hylomorphisms implies

that our input programs may not terminate. We guarantee

that, given a terminating input program, we will not produce
a non-terminating parallelisation (Theorem 5.3).

Example 2.1 (MergeSort in Alg). Assume a type Ls of lists
of elements of type a. Functor T = K (Ls) + I × I captures
the recursive structure of ms : Ls → Ls. When splitting

some l : Ls, we may find one of the two cases described by

T : an empty or singleton list, Ls, or a list of size ≥ 2, that

can be split in two halves Ls × Ls. Assume that a functions

spl : Ls → T Ls, and a function mrg : T Ls → Ls. We define

ms = recT mrg spl. By the definition of rec:

ms = recT (id ▽mrg) spl = (id ▽mrg) ◦ T (recT mrg spl) ◦ spl
= (id ▽mrg) ◦ (id + (recT mrg spl) × (recT mrg spl)) ◦ spl
= (id ▽mrg ◦ (ms ×ms)) ◦ spl

Function ms first applies spl. Then, if the list was empty or

singleton, it returns the input unmodified. Otherwise, ms
applies recursively to the first and second halves. Finally,

mrg returns a pair of sorted lists.

3 Parallel Algebraic Language
In the previous section we introduced Alg, a point-free func-
tional language. In this section, we extend this language with

participant annotations. Annotations occur both at the type

and expression levels: at the type level, annotations represent

where the data of the respective type is; at the expression
level, it represents by whom the computation is performed.

This language extension is called PAlg.
The implicit dataflow of the Alg (or PAlg) constructs deter-

mines which interactions must take place to evaluate an an-

notated program. To illustrate this, we use the Cooley-Tukey

Fast-Fourier Transform algorithm [21]. The Cooley-Tukey

algorithm is based on the observation that an FFT of size n,
fftn can be described as the combination of two FFTs of size

n/2. We focus its high-level structure:

(add@p1 △ sub@p2) ◦ ((fftn/2@p3 ◦ π1)△ ((exp ◦fftn/2)@p4 ◦ π2))

Assume that the input is a pair of vectors that contain the

deinterleaved input, i.e. elements at even positions on the left,

and odd positions on the right.We first compute the fft of size
n/2 to the even and odd elements at p3 and p4 respectively.
Then, the first half of the output is produced by adding the re-

sults pairwise (at p1), and the second half by subtracting them
(at p2). In order to evaluate this expression, we need to know

where is the input data. This is specified by the programmer

as an annotated type, which we call interface. Suppose that
the interface specifies that the even elements are at p, and the
odd elements at p′. The interface that represents this scenario
is (vec× vec)@(p× p′), i.e. an annotated pair of vectors, with

the first component at p, and the second component at p′.
By keeping track of the locations of the data, we obtain type

(vec × vec)@(p1 × p2), which is the output (or codomain) in-
terface the PAlg expression. We also refer to the annotations

(e.g p1 × p2) as interfaces, whenever there is no ambiguity.

We write fftn : (vec × vec)@(p × p′) → (vec × vec)@(p1 × p2)
to represent the input and output interfaces of fftn .

Consider now e1@p1 ▽ e2@p2. The output interface of this
expression is either p1 or p2, depending on whether the input
is the result of applying ι1 or ι2. We represent such interfaces

using unions: e1@p1 ▽ e2@p2 : (a + b)@p → c@(p1 ∪ p2). Since
p contains a value of a sum type a+b, p is responsible for no-
tifying both p1 and p2 which branch needs to be taken in the

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

control flow. Incorrectly notifying the necessary participants

will produce incorrect parallelisations that might deadlock.

For example, consider the expression e0@p0 ◦ (e1@p1▽ e2@p2).
Assuming that the input at p, p needs to notify p0, otherwise
p0 will be stuck. To avoid such cases, and to compute the

interfaces of an expression, we define a type system for PAlg.

3.1 Syntax of PAlg

I F p | ιi I | I × I R F I | R ∪®p R P F R → R
eF e@p | [p ⊕ ®p] | id | e◦ e | πi | e△ e | ιi | e▽ e

The syntax of PAlg is that of Alg, extended with partici-

pant annotations (red). Note that certain Alg constructs can

only occur under annotations (e@p), e.g: in, out and rec. This
implies that recursive functions need to be annotated at a

single participant. To parallelise recursive functions, they

need first to be rewritten into a suitable form, and then an-

notate the resulting expression. At the moment, we support

automatic recursion unrolling up to a user-specified depth.

We provide an overview of the main syntactic constructs of

PAlg: annotations, interfaces, and annotated functions.
Annotations are ranged over by R, R′

,... We define them

in two layers, I , or simple annotations that cannot contain

choices (∪), and R. This way, we ensure that choices only oc-

cur at the topmost level. Simple annotations are: participant

ids p, that identify processes; products of interfaces I1 × I2;
and tagged interfaces ιi I , that keep track of the branch of the

choice that led to I . A choice R1 ∪
®p R2 describes an scenario

that is the result of a branch in the control flow, where a

value can be found at either R1 or R2. Here, ®p = p1 · · · pn are

the participants whose behaviour depends on the path in the

control flow. Finally, arrows P of the form R1 → R2 represent

the input/output annotations of a parallel program.

Interfaces are annotated types. They range over A, B, . . . ,
and are of the form a@R, which means that values of type

a are distributed across R. We require annotated types to

be well-formed, WF(a@R), which implies that the structure

of a matches that of R. We write I to represent one-hole
contexts for interfaces, with I[p] representing the interface

that results of placing p at the hole in I.

Annotated functions are ranged over by e, e′. The anno-
tations are introduced using e@p, where e is an unannotated

Alg expression, and p is a single participant identifier. These

annotations need to be set by the programmer, but their

introduction can be also automated. Additionally, we intro-

duce the choice point annotations: [p ⊕ ®p]. This annotation
specifies that p performs a choice, and notifies ®p. Choice
points can be introduced fully automatically by collecting

all participants whose behaviour depends on the value of a

sum type.

3.2 Interfaces
An interface represents a state in a concurrent system: the

set of participants, and the types of the values that they

contain. We use mappings from participants to values to

represent such states: V B [p 7→ v]p∈P . The programmer,

additionally to writing an Alg (PAlg) expression, will need
to provide an input interface, i.e. where is the input to the

parallel program. Consider, for example, the interface int@pi .
Given a concurrent system with participants po · · · pn , we
know that pi contains a value of type int: [· · · pi 7→ 42 · · ·].

An interface with a product of participants (a × b)@(p1 × p2)
represents a state in which p1 contains an element of type a,
and p2 an element of type b, e.g a possible state represented

by (int×vec)@(p1×p2) is: [· · · p1 7→ 42 · · · p2 7→ [1, 1, 2, . . .] · · ·].

An interface ιi I represents the same state as interface I , but
we statically know that this state was reached after an i-
th injection. Then, if a participant requires the value at I ,
this participant will apply the necessary injections to the

received values. Finally, an interface a@(R1∪
®pR2)means that

the state might be either R1 or R2, and that all participants ®p
should be notified of the state.

Well-formedness The above examples are of well-formed

interfaces: int@pi , (int × vec)@(p1 × p2). Well-formedness en-

sures that interfaces represent valid states. Generally, a@R
is well-formed if a matches the structure of R. For example,

int@(p1 × p2) is ill-formed, since a single integer cannot be
at two different participants. An interface a@(R1 ∪ R2) re-

quires that both a@R1 and a@R2 are well-formed. So, (vec ×
vec)@((p1 × p2) ∪ p3) is well-formed because we can have

vec@p1 and vec@p2, or (vec × vec)@p3. However, int@((p1 ×
p2) ∪ p3) is ill-formed, because int@(p1 × p2) is ill-formed.

3.3 Typing of Parallel Algebraic Language
We introduce a relation that associates Alg expressions with

potential parallelisations PAlg, and their interfaces. This re-

lation can be seen as a type system for both Alg and PAlg.
As a type system for PAlg, this relation provides a way to

check or infer the output interface of some e. By using this

relation as a type system for Alg, we can explore potential

parallelisations of some input expression e . Additionally, the
type system ensures that all choice point annotations contain
every participant that depends on each particular choice.

Typing Rules A judgement of the form ⊢ e ⇒ e : A → B
means that the PAlg expression e is one potential paral-

lelisation of the Alg expression e , with domain interface

A and codomain interface B. The intuition of a judgement

⊢ e ⇒ e : a@R1 → b@R2 is that the participants in e collec-

tively apply computation e to the value of type a distributed

across R1, and produce a value of type b distributed across

R2. We sometimes omit e and write ⊢ e : A → B. We ensure

that given any e and e such that they are typeable against

interfaces a@Ra → b@Rb , then e must have type a → b.

Lemma 3.1. If e ⇒ e : a@Ra → b@Rb , then e : a → b.

The typing rules (Fig. 2) must ensure that the participants

involved in a choice are notified, and that Alg expressions

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

are correctly expanded. Rule Choice specifies that a choice

point may be introduced at any point when a participant

contains a value of a sum-type. In such cases p sends the

tag of the sum-type value to any other participant whose

behaviour depends on it. After the choice point, the interface

is I [ι1 p] ∪®p I [ι2 p], with the constraint that the participants

in I[p] must be in ®p. Rule Alt specifies that e must be the

parallelisation of e , considering both A1 and A2 as input in-

terfaces. The output interface is the union of B1 and B2. Any

participant in e must be notified of the choice pids(e) ⊆ ®p,
to make sure that they perform the interactions that corre-

spond to the correct Ai . Rule Alg specifies that given any e
and participant p, e@p is a valid parallelisation, with output

interface b@p. Finally, rule Ext is crucial for exploring po-

tential parallelisations. It states that if e is the parallelisation
of e2, and e2 is extensionally equal to e1, then e is also a

parallelisation of e1. The undecidability of this rule requires

that the programmer specifies rewriting strategies both for

checking and inference.

Rewriting and Annotation Strategies We use rewrit-

ing strategies when exploring potential parallelisations of

functions. This is inference problem (2) below. Let ?i be
metavariables. The two inference problems that we are in-

terested in are: 1. Solving ⊢ e ⇒ e : A → ?0 obtains the

output interface for e, with input interface A. 2. Solutions
of ⊢ e ⇒ ?0 : A → ?1 are potential parallelisations of e ,
and their output interface. Solving (1) is straightforward.

Problem (2) requires to decide how to introduce role annota-

tions (rule Alg), how to perform rewritings (rule Ext), and

where to introduce choice points (rule Choice). Introduc-

ing choice points is straightforward: we introduce them as

early as possible, as soon as an input interface contains a

sum-type at a participant. For introducing annotations and

doing Alg rewritings, the programmer has to specify annota-
tion and rewriting strategies. At the moment, our tool allows

the developer to introduce annotations explicitly, or to se-

lect sub-expressions that will be annotated with fresh new

participants. The rewriting strategies that our current imple-

mentation supports are unrollings of recursive definitions.

However, our tool is extensible: the equivalences used in the

rewritings are a parameter.

Example 3.2 (Mergesort). Consider the mergesort defini-

tion ms = recT mrg spl. Solutions to the inference problem

⊢ ms ⇒ ?0 : Ls@p0 → ?1 provide the alternative parallelisa-

tions ofms. By choosing a rewriting strategy that unrollsms
once, and annotates any remaining instances of ms at fresh
new participants, we produce the following PAlg expression:

⊢ (id ▽ (mrg ◦ (ms ×ms))) ◦ spl
⇒ (id ▽ (mrg@p1 ◦ (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1)))

◦[p1 ⊕ p1p2p3] ◦ spl@p1
: Ls@p0 → Ls@p1 ∪p1p2p3 Ls@p1

Alg

⊢ e : a → b

⊢ e ⇒ e@p : a@I → b@p

Ext

⊢ e2 ⇒ e : a@I → B e1 =ext e2

⊢ e1 ⇒ e : a@I → B

Alt

⊢ e ⇒ e : A1 → B1 ⊢ e ⇒ e : A2 → B2 A1 , A2 pids(e) ⊆ ®r

⊢ e ⇒ e : A1 ∪
®p A2 → B1 ∪

®p B2

Choice

pids(I[p]) ⊆ ®p
WF(a@I[ιi p]), i ∈ [1, 2] ⊢ e ⇒ e : a@(I[ι1 p] ∪®p I[ι2 p]) → B

⊢ e ⇒ e ◦ [p ⊕ ®p] : a@I[p] → B

Figure 2. Typing rules of PAlg (selected)

4 Multiparty Session Types for PAlg
The dataflow of the PAlg constructs determine the commu-

nication protocol of the annotated expression. However, it is

hard to manually check what this communication structure

is. Recall the mergesort PAlg expression of §3, ms, and sup-

pose that we want to produce a parallelisation for a 32-core

machine. Then, wemight be interested in using a 5-unfolding

of ms, so that we have ms executing concurrently on all of

the cores. How do we know, for such cases, that we produced

a sensible parallelisation? As an example, suppose we use an

annotation strategy that produces the following code:

(id ▽ (mrg@p1 ◦ (ms@p2 ◦ π1@p1) △ (ms@p2 ◦ π2@p1)))
◦[p1 ⊕ p1p2] ◦ spl@p1 : Ls@p0 → Ls@p1 ∪p1p2 Ls@p1

Notice that this example will run correctly, and produce the

expected result. However, the achieved PAlg expression is

not parallel! If we represent the implicit dataflow of this

expression as explicit communication, the reason becomes

apparent. We use global types from multiparty session types
to provide an explicit representation of the communication

structure of the program:

p0 → p1 : Ls. p1 → p2{ι1. end;
ι2. p1 → p2 : Ls. p1 → p2 : Ls.p2 → p1 : Ls × Ls. end}

This global type represents the following protocol: 1. par-

ticipant p0 sends a list to p1; 2. p1 sends to p2 either ι1 or
ι2, and if the label is ι1, the protocol ends; 3. if p1 sent ι2,
then p1 sends to p2 two lists, in two different interactions;

and 4. p2 replies with a message to p1 with a pair of lists.

It is clear from this protocol that p1 and p2 are dependent
on each others’ messages, and that p2 cannot perform any

computation in parallel. The larger the expression is, the

harder avoiding these wrong annotations will become. By

changing the annotation strategy, we produce the following

parallel structure, where p2 and p3 can operate in parallel:

p0 → p1 : Ls. p1 → {p2p3} {ι1. end;
ι2. p1 → p2 : Ls. p1 → p3 : Ls.p2 → p1 : Ls. p3 → p1 : Ls. end}

This abstraction of the communication protocol of an achieved

parallelisation is therefore useful as an output for the pro-

grammer. Additionally, these global types are a contract that
5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

can be enforced on the generated code. We use this for prov-

ing that our back-end is correct, but also for applying low-

level code optimisations (e.g. message reordering) guided

by this global type, ensuring that they do not introduce any

run-time error. For example, when we find in a global type

p1 → p2. p2 → p3, we mark the send/receive actions for p2
as point of potential optimisation. If the messages exchanged

do not depend on each other, we permute them, performing

first the send action, so that p2 is not blocked by a receive

action. This is known as asynchronous optimisation [57].

4.1 Multiparty Session Types
Our global types are based on themost commonly used in the

literature [22]. We start with a set of participant identifiers,
p1, p2, . . . , and a set of labels, ι1, ι2, These are considered
as natural numbers: participant identifiers uniquely identify

an independent unit of computation, e.g. thread or process

ids; and labels are tags that differentiate branches in the

data/control flow. The syntax of global (G) and local (L) types
inMPST is given as:

G F p1 → p2 : a.G | p1 → {pj }j ∈[2,n] : {ιi .Gi }i ∈I
| µX .G | X | end

L F p!⟨a⟩.L | p?(a).L | p & {ιi .Li }i ∈I | {pj }j ∈[2,n] ⊕ {ιi .Li }i ∈I
| µX .L | X | end

Global type p1 → p2 : a.G denotes data interactions from

p1 to p2 with value of type a; Branching is represented by

p1 → {pj }j ∈[2,n] : {ιi .Gi }i ∈I with actions ιi from p1 to all

pj , j ∈ [2,n]. end represents a termination of the protocol.

µX .G represents a recursive protocol, which is equivalent to
[µX . G/X]G. We assume recursive types are guarded.

Each participant in G represents a different participant in

a parallel process. Local session types represent the commu-

nication actions performed by each participant, i.e. the role
of the participant. Since each participant has a unique role,

we sometimes refer to them interchangeably. The send type

p!⟨a⟩.L expresses the action of sending of a value of type a
to p followed by interactions specified by L. The receive type
p?(a).L is the dual, where a value with type a is received

from p. The selection type represents the transmission to all

pj of label ιi chosen in the set of labels (i ∈ I) followed by Li .
The branching type is its dual. pids(G)/pids(L) denote the
set of participants that occur in G/L.

Projection We use a standard definition of projection that

uses the full merging operator [24; 27], which allows more

well-formed global types than the original projection rules

[42]. We write G ↾ p for the projection of G onto the role

of p. We illustrate the projection with an interaction p0 →
p1 : a.G. The projection onto p0 is p1!⟨a⟩.(G ↾ p0), the pro-
jection onto p1 is p0?(a).(G ↾ p1), and the projection onto

any other role p is G ↾ p. Projection on choices is similar,

with the difference that whenever the role is not at the re-

ceiving or sending ends of the choice, the different branches

must be merged. Two local types can be merged when they

Choice

⊨ [p ⊕ ®p] ⇐ a[b + c]@I [p] ∼ p → {®p \ p}{ι1. end; ι2. end}

Alt

⊨ e ⇐ A1 ∼ G1 ⊨ e ⇐ A2 ∼ G2

⊨ e ⇐ A1 ∪
®p A2 ∼ G1 ∪G2

Alg

⊢ e : a → b

⊨ e@p ⇐ a@I ∼ [a@I { p]

[a@p1 { p2] = p1 → p2 : a. end, if p1 , p2; [a@p { p] = end;
[(a × b)@(Ia × Ib) { p] = [a@Ia { p] # [b@Ib { p]; and

[(a1 + a2)@(ιi I) { p] = [ai@I { p]

Figure 3. Protocol Relation (selected)

are the same, or they branch on the same role, and their

continuations can be merged.

We use a standard definition of well-formedness that states
that a global type is well formed if ts projection on all its roles

is defined. We denote:WF(G) = ∀p ∈ pids(G), ∃L,G ↾ p = L.

4.2 Protocol Relation
We introduce now the set of rules that associate a PAlg ex-
pression and domain interface with their global type (Fig.

3). We extend the syntax of global types with G1 ∪
®p G2 to

represent the external choices, i.e. Gi are the continuations

for both branches of a previous choice that affects ®p. We also

extend the local types, and projection rules (G1 ∪
®p G2) =

G1 ↾ p ∪®p G2 ↾ p, and the notion of well-formedness. We

say that an external choice is well-formed, WF(G1 ∪
®p G2), if

WF(G1),WF(G2), and for all p < ®p,G1 ↾ p = G2 ↾ p. We omit

the annotation of the participants involved in the choice

whenever it is not needed. The relation ⊨ p ⇐ A ∼ (G,B)
specifies that the parallel code for p and input interface A
will behave as global type G, and output interface B (Fig. 3).

The rules are similar to the typing rules of PAlg.

Example 4.1 (Mergesort Protocol). The protocol for Exam-

ple 3.2 is obtained by solving:

⊨ (id▽ (mrg@p1 ◦ (ms@p2 ◦ π1@p1)△ (ms@p3 ◦ π2@p1))) ◦ [p1 ⊕
p1p2p3] ◦ spl@p1 ⇐ Ls@p1 ∼ ?0.

p1 → {p2p3}
{
ι1.end;
ι2.p1 → p2 : Ls.p1 → p3 : Ls.end

}
#(

end ∪ (p2 → p1 : Ls. p3 → p1 : Ls.end)
)

= p1 → {p2p3}

ι1.end;
ι2.p1 → p2 : Ls.

p1 → p3 : Ls.
p2 → p1 : Ls.
p3 → p1 : Ls.end

p1 p2

p3

p1⊕

4.3 Correctness
We guarantee that for e s.t. ⊢ e ⇒ e : A → B, with A
and B well-formed, there exists a protocol G and that it is

well-formed and deadlock-free.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Lemma 4.2. [Existence of Associated Global Type] For all
WF(A), if ⊢ e : A → B, then there exists G s.t. ⊨ e ⇐ A ∼ G.

Lemma 4.3. [Protocol Deadlock-Freedom] For allWF(A), if
⊢ e : A → B and ⊨ e ⇐ A ∼ G, then WF(G).

Remark. Since the local type abstracts the behaviour of mul-
tiparty typed processes, a well-formed global type ensures
the end-point processes (programs) typed by that global type
are guaranteed to satisfy the properties (such as safety and
deadlock-freedom) of local types [27; 43].

5 Code Generation
This section addresses the problem of generating low-level

parallel code from PAlg expressions. We prove that the gen-
erated code complies with its inferred protocol, which has

several implications: (1) code generation does not introduce

any concurrency errors, and the parallel code is therefore

deadlock-free; and (2) we can prove that the generated code
is extensionally equal to the input expression by considering

only a representative trace, since any valid interleaving of

actions must respect this protocol. The target language of

our tool is an indexed monad, the Message Passing Monad
(Mp). From Mp, we implement our low-level C backend. We

implement an untyped version ofMp as a deep embedding

in Haskell, and session typing on top of it. This is suitable

for code generation: we only generate parallel code if the

monadic actions are typeable against the respective local

types. Our definition of Mp has significant differences to

other embeddings of session types in Haskell, such as the

Session monad by Neubauer and Thiemann [58]. First, our

Mp monad is deeply embedded in Haskell, and secondly, we

use type indices instead of an encoding of session types in

terms of type classes. Our approach is better suited for com-

pilation since we manipulate session types, and postpone

session typing until code generation.

5.1 Message Passing Monad
Mp comprises four basic operations: send, receive, choice

and branching, with a standard (asynchronous) semantics.

Additionally, for composing actions that depend on the same

choice, we introduce case expressions. Our definition of Mp
is based on the free monad construction:

v F x | (v,v) | ιi v | · · · | e v
mi F ret v | send p v m | recv p a f | sel ®p v f1 f2

| brn pm1 m2 | case f1 f2 f F λx .m

Values v are either primitive values, tagged values ιi v , pairs
of values, or the result of applying an Alg expression e to a

value. We use standard notation for the monadic unit (ret),
bind (≫=) and Kleisli composition: f1>=> f2 = λx . f1 x≫=f2.
The message-passing constructs are standard, except sel,
brn and case, which are used for performing choices, and

composing actions that depend on the same choice.

Each monadic computation f orm has a typem : Mp L a,
where a is the return type ofm, and L is the type index of

Mp, and it represents the local type that corresponds to the

behaviour of the termm. There is almost a one to one cor-

respondence between the terms L and the monadic actions

m, so we omit the full definition. The types of the constructs

that deal with choices use a new type,⊎, that is isomorphic to

sum types, but that can only be constructed and eliminated

by using the corresponding monadic constructs:

sel ®p : a + b → (a → Mp L1 c1) → (b → Mp L2 c2)
→ Mp (®p ⊕ {ι1.L1; ι2.L2}) (c1 ⊎ c2)

brn p : Mp L1 a1 → Mp L2 a2
→ Mp (p & {ι1.L1; ι2.L2}) (a1 ⊎ a2)

case : (a → Mp L1 c) → (b → Mp L2 d) → a ⊎ b
→ Mp (L1 ∪ L2) (c ⊎ d)

These constructs ensure that the tag used to build a ⊎ b
indeed corresponds to the correct branch of the right choice.

We use case to compose actions that depend on a previous

choice. While this treatment of ⊎ leads to unnecessary code

duplication, our back-end easily optimises cases where we

have case f f to avoid code duplication.

Parallel programs We define the basic constructs of PAlg
in a bottom-up way by manipulating parallel programs. Paral-
lel programs aremappings from participants to theirmonadic

action: EF [pi 7→mi]i ∈I . Ifmi : Mp Li ai for all i ∈ I , then
we write [pi 7→ mi]i ∈I : Mp [pi 7→ Li]i ∈I [pi 7→ ai]i ∈I .
The semantics of both local types and monadic actions is

defined in terms of such collections of actions or local types,

and shared queues of valuesW , or queues of types Q , e.g.
⟨E,W ⟩ {ℓ ⟨E′,W ′⟩ is a transition from E to E′, and shared

queuesW toW ′
with observable action ℓ. We prove a stan-

dard safety theorem (Theorem 5.1 below) that guarantees

that if a participant does a transition with some observable

action, then so does the type index.

Theorem 5.1. [Soundness] Assume E : Mp C A,m : Mp L a
andW : Q . Suppose ⟨E[r 7→ m],W ⟩ {ℓ ⟨E[r 7→ m′],W ′⟩.
Then there exists ⟨C[r 7→ L],Q⟩ →ℓ ⟨C[r 7→ L′],Q ′⟩ such
thatW ′

: Q ′ andm′
: Mp L′ a.

Mp code generation The translation scheme forMp code

generation is done recursively on the structure of PAlg ex-
pressions. It takes a PAlg expression e, an interface A, and
produces a mapping from all participants in e and A to their

respective monadic continuations. We write JeK (A), and
guarantee that JeK (A) : A → Mp G B, if ⊨ e ⇐ A ∼ (G,B).
This means that if e induces protocol G with interfaces

A → B, then the generated code behaves as G, with in-

terfaces A and B. Code generation follows a similar struc-

ture to global type inference, and is defined by building

PAlg constructs asMp parallel programs. For example, the

translation of e@p : a@I → B requires to define the in-

teractions from an interface I that gathers a type a at p:
La@I { pM : a@I → Mp [a@I { p] (a@p). The definition

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

is analogous to that of [a@I { p]. The remaining of the

translation is straightforward, so we skip the details.

We prove two main correctness results. We guarantee that

the generated code behaves as its inferred protocol (Theorem

5.2). We also guarantee that regardless of the annotations and

interfaces chosen for e, the parallel code always produces the
same result as the sequential implementation (Theorem 5.3).

Theorem 5.2. [Protocol Conformance of the Generated Code]
If ⊨ e ⇐ A ∼ G, then JeK (A) complies with protocol G.

Theorem 5.3. [Extensionality] Assume e ⇒ e : a@p → b@R

and x : a initially at p. If e x = y, then the execution of JeK (p)
also produces y, distributed across R.

Example 5.4 (MergeSort Code Generation). We show be-

low the code generation for ms (Example 3.2), with p1 as
domain interface:

p1 7→ λx . sel {p2, p3} (spl x) (λx . ret x)
(λx . send p2 (π1 x)≫=λy. send p3 (π2 x)≫=λ_.
recv p2 Ls≫=λx . recv p3 Ls≫=λy. ret (mrg (x,y)))

p2,3 7→ λx . brn p1 (ret x) (recv p1 Ls≫=λx .send p1 (ms x))

6 Parallel Algorithms and Evaluation
We evaluate our approach using a number of parallel al-

gorithms derived from Alg expressions, and the speedups

achieved. The purpose of this is twofold: (i) showing that

our approach achieves speedups for an input sequential al-

gorithm, with naïve annotation strategies, and limited opti-

misations (Fig. 5), and (ii) illustrating the practical value of

providing a global type that describes the parallel strategy

achieved by a particular annotation strategy (Fig. 4). We run

all our experiments on 2 NUMA nodes, 12 cores per node

and 62GB of memory, using Intel Xeon CPU E5-2650 v4 @

2.20GHz chips. We run our experiments first restricting the

execution to a single node to avoid NUMA effects, and then

on the 2 NUMA nodes.

6.1 Benchmarks
Mergesort Mergesort is the usual divide-and-conquer al-

gorithm, using a tree-like parallel reduce.

Cooley-Tukey FFT We use a recursive Cooley-Tukey al-

gorithm. The algorithm starts by splitting the elements of

the list into those that are at even and odd positions. Then, it

recursively computes the FFT of them, and finally combines

the results. To generate a butterfly pattern, we use: products

of size n, to store the results of the subsequent interleav-

ings; product associativity to produce a perfect tree; and

asynchronous optimisations.

Dot Product The dot product algorithm zips the inputs,

multiplies them pairwise, and then adds them by folding the

result. We use products of size n to derive a scatter-gather.

M
er
ge

so
rt p0 → {p1, p2} :

{ι1.p0 → p1 : 1 + int.
p1 → p0 : µL. end,

ι2.p0 → p1 : µL. p0 → p2 : µL.
p2 → p1 : µL. p1 → p0 : µL.
end

p0 p1

p2

p1 p0⊕
ι1

ι2

FF
T

p0 → p1 : µL. p0 → p2 : µL.
p0 → p3 : µL. p0 → p4 : µL.
p1 → p3 : µL. p3 → p1 : µL.
p2 → p4 : µL. p4 → p2 : µL.
p2 → p1 : µL. p1 → p2 : µL.
p3 → p4 : µL. p4 → p3 : µL.
end

p0
p2

p1

p3

p4

p2

p1

p3

p4

p2

p1

p3

p4

D
ot

Pr
od

.

p0 → p1 : µL. p0 → p2 : µL.
p0 → p3 : µL. p2 → p3 : int.
p1 → p3 : int. p3 → p0 : int.
end

p0 p2

p1

p3

p3 p0

Figure 4. Benchmarks: potential parallelisations.

AdditionalAlgorithms We implemented scalar prod, that
recursively splits a matrix into sub-matrices, distributes them

to different workers, and then multiplies their elements by a

scalar, and quicksort, with a divide-and-conquer structure.

6.2 Evaluation
We translateMp monadic actions to C using pthreads and

shared buffers for communication, and we have a prelim-

inary compilation of the first-order sequential terms to C.

We compile the generated C code using gcc version 4.8.5.

We take the average of 50 repetitions for each benchmark.

Our benchmarks achieve reasonable speedups against the

sequential C implementations. Fig. 5 presents the speedups

against the number of participants for different input sizes,

and Fig. 6 present a summary of our speedups for large inputs

of size > 10
9
. We show below an analysis of these results, by

plotting the speedups against two factors: 1. the number of

participants (threads) produced by a particular annotation

and recursion unrolling, named K ; and 2. the input size, e.g.

number of elements in the input list.

Increasing the number of threads (parameter K), increases
the speedups obtained, up to a certain value that depends on

the amount of available cores and the input size. For bench-

marks that work better with dynamic task creation, our tool

does not currently achieve good performance (e.g. quicksort).

For FFT, our tool produces the usual butterfly pattern from

a straightforward recursive definition, that we can achieve

a speedup of 12 when running on a single shared-memory

node. The rest of the examples are limited either by Amdahl’s
law (justified by their global types in Fig. 4), or by the over-

head of the communication and pthread creationwith respect

to the cost of the computations, but still achieve speedups of

up to 7 and 8 on 12 cores. We can observe that there is a slow

down after creating a much larger number of participants

than the ones required. This usually depends on how evenly

we can distribute the data amongst workers, and whether

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

12
co

re
s

20 21 22 23 24 25 26

K

0

2

4

6

8

10

12 2^24
2^27
2^29
2^30

20 21 22 23

K

0

2

4

6

8

10

12 2^20
2^23
2^25
2^26

20 21 22 23

K

0

2

4

6

8

10

12 2^24
2^27
2^29
2^30

2
×
12

co
re
s

20 21 22 23 24 25 26

K

0

2

4

6

8

10

12

14

16

18
2^24
2^27
2^29
2^30

20 21 22 23

K

0

2

4

6

8

10

12

14

16

18
2^20
2^23
2^25
2^26

20 21 22 23

K

0

2

4

6

8

10

12

14

16

18
2^24
2^27
2^29
2^30

DotProd FFT Mergesort

Figure 5. Benchmark speedups, run in 2 NUMA nodes with 12 cores each. The X-axis is the number of workers of the parallel

program generated from a set of annotations and recursion unrolling. We show the results for 4 different input sizes.

dot fft ms qs scalar
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
p
e
e
d
u
p
s

12 C
2 x 12 C

Figure 6. Achieved speedups

the amount of workers can be evenly scheduled to differ-

ent cores. We observe that we can achieve further speedups

when running our benchmarks in the 2 NUMA nodes. Over-

all, we observe that our annotation strategies enable good

speedups over the sequential implementation, with relatively

little effort. Global types can be used to detect optimisation

opportunities that yield efficient parallelisations, such as the

Butterfly topology in Fig. 4. Without message-reordering

based on the session types, FFT participant p3 would need to
wait for p1’s message before sending its part to p1, i.e. p3’s lo-
cal type would be p1?(µL). p1!⟨µL⟩ This means that p3’s
local computation would only become available to p1 after

it p1 finishes its own local computation, thus sequentialising

the code. Asynchronous permutations [16; 57] allow us to

permute such actions, and still have communication safety,

i.e. p1!⟨µL⟩. p1?(µL) Global types capture the structure
of the parallelisation, which can in some cases be used to

justify the achieved speedups. For example, we can observe

that the mergesort global type contains a part that needs to

happen sequentially (p0 and the last merging point in p1),
and this will prevent us from achieving linear speedups.

7 Related Work
López et al. [50] develop a verification framework for MPI/C

inspired by MPST by translating parameterised protocol

specifications to protocols in VCC [19]. They focus on verifi-

cation, not on code or protocol generation. Ng et al. [59; 60]

use parameterised MPST [25] to generate an MPI backbone

in C that encapsulates the whole protocol (i.e., every end-

point), and merges it with user-supplied computation ker-

nels. Several authors (e.g. [10]) generate skeleton API from

extensions of Scribble (www.scribble.org). Their approach
requires the protocol to be specified beforehand, and it is

not extracted from sequential code. Unlike ours, none of the

above work formally defines code generation or proves its

correctness.

Structured parallelism includes the use of high-level con-

structs in languages with implicit/data parallelism [5; 12–

15; 46; 64], algorithmic skeleton APIs [1; 18; 20; 36; 48], and

DSLs/APIs that compile to parallel code [8; 11; 28; 63; 69].

Besides safety, such approaches are often highly optimised.

9

www.scribble.org

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

However, most rely on using a fixed, predetermined range of

patterns, typically by design with respect to their application

domains. By contrast, our work only relies on send/receive

operations, which makes it highly portable, and can be easily

extended to support further parallel structures by extend-

ing the annotation strategies. Optimisations for structured

parallel approaches also require to study and define a set

of equivalences between patterns [6; 7; 41]. In contrast, our

approach does not require the definition of new sets of equiv-

alences, since these are derived from program equivalences.

Lift is a new language for portable parallel code genera-

tion, based on a small set of expressive parallel primitives

[40; 67; 68]. Currently, their backend focuses on generat-

ing high-performance OpenCL code, while our approach

focuses on placing computations on different participants

of a concurrent/distributed system. Both approaches could

be combined: annotations can be used to generate a high-

level message-passing layer that distributes tasks to multiple

nodes in a GPU cluster, using the global type to minimise

communication costs; then, the code at each participant can

be compiled to high-performance GPU code using Lift.

Elliott exploits the idea of giving functional programs

multiple interpretations in different categories, and shows

examples of applications to multiple domains, including par-

allelism [29; 30]. Our approach is similar in the sense that we

allow the specifications of first-order functional programs

to have multiple different interpretations, but we focus on

generating parallel code, and provide a finer-grained con-

trol over the parallelisations by adding participant anno-

tations. There is a large body of literature in using pro-

gram equivalences to derive parallel implementations, e.g.

[17; 32; 37; 39; 49; 51; 55; 56; 65; 66]. Our framework is or-

thogonal, in that we focus on tying a low-level C back-end

with global types. Our front-end, however, supports some

basic form of rewritings, and we plan to extend it in the

future with more interesting ones from the literature.

8 Conclusions and Future Work
We have presented a novel approach to protocol inference

and code generation. By using this approach, we can reason

about extensionality of the parallel programs, and alternative

mappings of computations to participants. We produce the

parallel program global type, i.e. its communication protocol,

that acts as a contract for the low-level code, can be used to

pin-point potential optimisations, or assessing the suitabil-

ity of a parallelisation. This approach has several benefits:

1. our message-passing code is deadlock-free by construc-

tion, since it follows the data-flow of the program, and the

optimisations must respect the global type; 2. we prove that

our parallelisations are extensionally equivalent to the input

function. Additionally, PAlg code could be used for further

multiple purposes, such as parallel GPU/FPGA code genera-

tion, by combining our approach with other state of the art

code generation techniques. We will study this for future

work.

Though our approach can already generate representative

parallel protocols, our framework is extensible. E.g. we can

extend our framework with dynamic participants to handle

dynamic task generation [26], and we plan to use this to

capture a wider range of communication patterns for paral-

lel computing, such as load-balancing or work-stealing. We

plan to study the extension of our back-end to heterogeneous

architectures, e.g. GPU clusters, or FPGAs. Our prototype

generates code that can achieve speedups against sequential

implementations, the optimisations that we support are very

basic, and our generated code can be very large. We plan to

introduce optimisations that reduce the amount messages

exchanged, further message reorderings guided by the global

type, and optimisations of the size of the generated code. Fi-

nally, we plan to study the instrumentation of global types to

estimate statically the speedups of different parallelisations,

and optimise communication costs.

Acknowledgements
We thank Shuhao Zhang for his contributions to the C back-

end, described in [70]. We thank Francisco Ferreira for the

helpful discussions in the early stages of this work. This

work was supported in part by EPSRC projects EP/K011715/1,

EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1,

and EP/T006544/1.

References
[1] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano

Meneghin, and Massimo Torquati. 2011. Accelerating Code on Multi-

cores with FastFlow. In Proc. of 17th International Euro-Par Conference
(Euro-Par 2011) (LNCS), Vol. 6853. Springer, 170–181.

[2] John Backus. 1978. Can Programming Be Liberated from the Von

Neumann Style?: A Functional Style and Its Algebra of Programs.

Commun. ACM 21, 8 (Aug. 1978), 613–641.

[3] Richard Bird and Oege De Moor. 1996. The algebra of programming.

In NATO ASI DPD. 167–203.
[4] R. S. Bird. 1989. Algebraic Identities for Program Calculation. Comput.

J. 32, 2 (01 1989), 122–126.
[5] Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun.

ACM 39, 3 (1996), 85–97.

[6] Christopher Brown, Marco Danelutto, Kevin Hammond, Peter Kil-

patrick, and Archibald Elliott. 2014. Cost-Directed Refactoring for

Parallel Erlang Programs. International Journal of Parallel Program-
ming 42, 4 (01 Aug 2014), 564–582.

[7] Christopher Brown, Kevin Hammond, Marco Danelutto, and Peter

Kilpatrick. 2012. A Language-independent Parallel Refactoring Frame-

work. In Proc. of the 5th Workshop on Refactoring Tools (WRT ’12). ACM,

New York, NY, USA, 54–58.

[8] Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf,

Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2011. A Hetero-

geneous Parallel Framework for Domain-Specific Languages. In Proc.
of 2011 Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT’11). IEEE, 89–100.

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler

Typed Languages. J. Funct. Program. 19, 5 (2009), 509–543.
10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

[10] David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and

Nobuko Yoshida. 2019. Distributed Programming Using Role Paramet-

ric Session Types in Go. In 46th Symp. on Principles of Programming
Languages (POPL’19), Vol. 3. ACM, 29:1–29:30.

[11] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,

Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-Specific

Approach to Heterogeneous Parallelism. In Proc. of the 16th Symp.
on Principles and Practice of Parallel Programming (PPoPP’11). ACM,

35–46.

[12] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton

Jones, Gabriele Keller, and Simon Marlow. 2007. Data Parallel Haskell:

a Status Report. In Proc. of the POPL 2007 Workshop on Declarative
Aspects of Multicore Programming, (DAMP’07) (2007). ACM, 10–18.

[13] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007.

Parallel Programmability and the Chapel Language. IJHPCA 21, 3

(2007), 291–312.

[14] Rohit Chandra. 2001. Parallel Programming in OpenMP. Morgan

Kaufmann.

[15] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher

Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and

Vivek Sarkar. 2005. X10: an Object-Oriented Approach to Non-Uniform

Cluster Computing. In Proc. of the 20th Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, (OOPSLA05). ACM,

San Diego, CA, USA, 519–538.

[16] Tzu-chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and

Nobuko Yoshida. 2017. On the Preciseness of Subtyping in Session

Types. Logical Methods in Computer Science Volume 13, Issue 2 (June

2017).

[17] Yun-Yan Chi and Shin-Cheng Mu. 2011. Constructing List Homo-

morphisms from Proofs. In Proc. APLIAS ’11: Asian Symposium on
Programming Languages & Systems. 74–88.

[18] Philipp Ciechanowicz and Herbert Kuchen. 2010. Enhancing Muesli’s

Data Parallel Skeletons for Multi-core Computer Architectures. In

12th Intl. Conf. on High Performance Computing and Communications,
(HPCC’10). IEEE, 108–113.

[19] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,

Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.

2009. VCC: A Practical System for Verifying Concurrent C. In Proc. of
the 22nd Intl. Conf. on Theorem Proving in Higher Order Logics, (TPHOLs
2009) (LNCS), Vol. 5674. Springer, 23–42.

[20] Murray Cole. 1988. Algorithmic skeletons : a structured approach to the
management of parallel computation. Ph.D. Dissertation. University of

Edinburgh, UK.

[21] James W Cooley and John W Tukey. 1965. An Algorithm for the

Machine Calculation of Complex Fourier Series. Mathematics of com-
putation 19, 90 (1965), 297–301.

[22] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and

Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asynchro-

nous Session Types. In 15th International School on Formal Methods for
the Design of Computer, Communication and Software Systems: Multi-
core Programming (LNCS), Vol. 9104. Springer, 146–178.

[23] Alcino Cunha, Jorge Sousa Pinto, and José Proença. 2006. A Framework

for Point-Free Program Transformation. In Proc. of 17th Intl. Workshop
on Implementation and Application of Functional Languages (IFL 2005).
Springer, 1–18.

[24] Romain Demangeon and Kohei Honda. 2012. Nested Protocols in

Session Types. In CONCUR 2012 – Concurrency Theory. Springer, 272–
286.

[25] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond

Hu. 2012. Parameterised Multiparty Session Types. Logical Methods
in Computer Science 8, 4 (2012).

[26] Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic Multirole

Session Types (POPL’11). ACM, New York, NY, USA, 435–446.

[27] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compati-

bility in Communicating Automata: Characterisation and Synthesis of

Global Session Types. In 40th International Colloquium on Automata,
Languages and Programming (LNCS), Vol. 7966. Springer, 174–186.

[28] Zach DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley,

Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex

Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan.

2011. Liszt: a Domain Specific Language for Building Portable Mesh-

based PDE Solvers. In Conference on High Performance Computing
Networking, Storage and Analysis, SC 2011. ACM, 9:1–9:12.

[29] Conal Elliott. 2017. Compiling to Categories. Proc. ACM Program.
Lang. 1, ICFP, Article 27 (Aug. 2017), 27 pages.

[30] Conal Elliott. 2017. Generic functional parallel algorithms: Scan and

FFT. Proc. ACMProgram. Lang. 1, ICFP, Article 48 (Sept. 2017), 24 pages.
[31] Maarten M. Fokkinga and Erik Meijer. 1991. Program Calculation Prop-

erties of Continuous Algebras. Number CS-R91 in Report / Department

of Computer Science. CWI.

[32] Jeremy Gibbons. 1996. Computing Downwards Accumulations on

Trees Quickly. Theoretical Computer Science 169, 1 (1996), 67–80.
[33] Jeremy Gibbons. 1996. The Third Homomorphism Theorem. Journal

of Functional Programming (JFP) 6, 4 (1996), 657–665.
[34] Jeremy Gibbons. 2002. Calculating Functional Programs. In Algebraic

and Coalgebraic Methods in the Mathematics of Program Construction.
Springer, Chapter 5, 151–203.

[35] Jeremy Gibbons. 2007. Datatype-Generic Programming. In Datatype-
Generic Programming. Springer, 1–71.

[36] Horacio González-Vélez and Mario Leyton. 2010. A survey of algorith-

mic skeleton frameworks: high-level structured parallel programming

enablers. Softw., Pract. Exper. 40, 12 (2010), 1135–1160.
[37] Sergei Gorlatch. 1999. Extracting and Implementing List Homomor-

phisms in Parallel Program Development. Science of Computer Pro-
gramming 33, 1 (1999), 1 – 27.

[38] Sergei Gorlatch. 2004. Send-receive Considered Harmful: Myths and

Realities of Message Passing. ACM Trans. Program. Lang. Syst. 26, 1
(Jan. 2004), 47–56.

[39] Sergei Gorlatch and Christian Lengauer. 1995. Parallelization of Divide-

and-Conquer in the Bird-Meertens Formalism. Formal Aspects of
Computing 7, 6 (1995), 663–682.

[40] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High Performance Stencil Code Gener-

ation with Lift. In Proc. of the 2018 Intl. Symp. on Code Generation and
Optimization (CGO 2018). ACM, New York, NY, USA, 100–112.

[41] Kevin Hammond, Marco Aldinucci, Christopher Brown, Francesco

Cesarini, Marco Danelutto, Horacio González-Vélez, Peter Kilpatrick,

Rainer Keller, Michael Rossbory, and Gilad Shainer. 2013. The Para-
Phrase Project: Parallel Patterns for Adaptive Heterogeneous Multicore
Systems. Springer, 218–236.

[42] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty

Asynchronous Session Types. In Proc. of 35th Symp. on Princ. of Prog.
Lang. (POPL ’08). ACM, New York, NY, USA, 273–284.

[43] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty

Asynchronous Session Types. J. ACM 63, 1 (2016), 9:1–9:67.

[44] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. 1996. Deriving

Structural Hylomorphisms from Recursive Definitions. In Proc. ICFP
’96: ACM Int. Conf. on Functional Programming (ICFP ’96). ACM, New

York, NY, USA, 73–82.

[45] John Hughes. 2000. Generalising monads to arrows. Science of Com-
puter Programming 37, 1 (2000), 67 – 111.

[46] Guy L. Steele Jr. 2005. Parallel Programming and Parallel Abstractions

in Fortress. In 14th International Conference on Parallel Architecture and
Compilation Techniques (PACT 2005), 17-21 September 2005, St. Louis,
MO, USA. IEEE Computer Society, 157.

[47] Daniel J. Lehmann andMichael B. Smyth. 1981. Algebraic Specification

of Data Types: A Synthetic Approach. Mathematical Systems Theory

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

14, 1 (01 Dec 1981), 97–139.

[48] Mario Leyton and José M. Piquer. 2010. Skandium: Multi-core Program-

ming with Algorithmic Skeletons. In Proceedings of the 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing, PDP
2010, Pisa, Italy, February 17-19, 2010. IEEE Computer Society, 289–296.

[49] Yu Liu, Zhenjiang Hu, and Kiminori Matsuzaki. 2011. Towards Sys-

tematic Parallel Programming over Mapreduce. In Proc. Euro-Par 2011:
European Conference on Parallelism. 39–50.

[50] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas

Ng, César Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.

2015. Protocol-Based Verification of Message-Passing Parallel Pro-

grams. In Proc. of the 2015 Intl. Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’15). ACM, 280–298.

[51] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. 2017. Calcu-

lating Parallel Programs in Coq Using List Homomorphisms. Interna-
tional Journal of Parallel Programming 45, 2 (01 Apr 2017), 300–319.

[52] Michael McCool, Arch Robison, and James Reinders. 2012. Structured
parallel programming: patterns for efficient computation. Elsevier.

[53] Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional

Programming with Bananas, Lenses, Envelopes and Barbed Wire.

In Functional Programming Languages and Computer Architecture.
Springer, 124–144.

[54] Erik Meijer and Graham Hutton. 1995. Bananas in Space: Extending

Fold and Unfold to Exponential Types. In Proceedings of the Seventh
International Conference on Functional Programming Languages and
Computer Architecture (FPCA ’95). ACM, New York, NY, USA, 324–333.

[55] Akimasa Morihata. 2013. A Short Cut to Parallelization Theorems. In

Proc. ICFP 2013: 18th Int. Conf. on Functional Programming. 245–256.
[56] Akimasa Morihata and Kiminori Matsuzaki. 2010. Automatic Paral-

lelization of Recursive Functions using Quantifier Elimination. In Proc.
FLOPS ’10: Functional and Logic Programming. 321–336.

[57] Dimitris Mostrous and Nobuko Yoshida. 2009. Session-Based Commu-

nication Optimisation for Higher-Order Mobile Processes. In Proc. of
the 9th Intl. Conf on Typed Lambda Calculi and Applications (LNCS),
Vol. 5608. Springer, 203–218.

[58] Matthias Neubauer and Peter Thiemann. 2004. An Implementation

of Session Types. In Practical Aspects of Declarative Languages, 6th
International Symposium, PADL 2004, Dallas, TX, USA, June 18-19, 2004,
Proceedings. 56–70.

[59] Nicholas Ng, José Gabriel de Figueiredo Coutinho, andNobuko Yoshida.

2015. Protocols by Default - Safe MPI Code Generation Based on

Session Types. In Proc. of the 24th Intl. Conf. on Compiler Construction
(LNCS), Vol. 9031. Springer, 212–232.

[60] Nicholas Ng and Nobuko Yoshida. 2015. Pabble: parameterised Scribble.

Service Oriented Computing and Applications 9, 3-4 (2015), 269–284.
[61] Ross Paterson. 2018. arrows: Arrow classes and transformers. http:

//hackage.haskell.org/package/arrows-0.4.4.2.
[62] Fethi A. Rabhi and Sergei Gorlatch (Eds.). 2003. Patterns and Skeletons

for Parallel and Distributed Computing. Springer.
[63] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a

Language and Compiler for Optimizing Parallelism, Locality, and

Recomputation in Image Processing Pipelines. In Proc. of Conf. on
Programming Language Design and Implementation, PLDI ’13. ACM,

519–530.

[64] James Reinders. 2007. Intel threading building blocks - outfitting C++
for multi-core processor parallelism. O’Reilly.

[65] Rodrigo C. O. Rocha, Luís Fabrício Wanderley Góes, and Fernando

Magno Quintão Pereira. 2016. An Algebraic Framework for Paral-

lelizing Recurrence in Functional Programming. In Proc. of the 20th
Brazilian Symposium on Programming Languages, SBLP 2016 (LNCS),
Vol. 9889. Springer, 140–155.

[66] David B Skillicorn. 1993. The Bird-Meertens Formalism as a Parallel
Model. Springer.

[67] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe

Dubach. 2015. Generating Performance Portable Code Using Rewrite

Rules. In Proc ICFP 2015: 20th ACM Conf. on Functional Prog. Lang. and
Comp. Arch. 205–217.

[68] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.

Lift: a functional data-parallel IR for high-performance GPU code

generation. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization, CGO 2017, Austin, TX, USA, February 4-8,
2017. ACM, 74–85.

[69] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf,

Hassan Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and

Kunle Olukotun. 2011. OptiML: An Implicitly Parallel Domain-Specific

Language for Machine Learning. In Proc. of the 28th Intl. Conf. on
Machine Learning (ICML’11). Omnipress, 609–616.

[70] Shuhao Zhang. 2019. Session Arrows: A Session-Type Based Framework
For Parallel Code Generation. Master’s thesis. Imperial College London.

A Further Definitions
A.1 Algebraic Functional Language

F1, F2 F I | Ka | F1 + F2 | F1 × F2
a,b F 1 | int | . . . | a → b | a + b | a × b | F a | µF

e1, e2 F f | v | const e | id | e1 ◦ e2 | πi | e1 △ e2 | ιi | e1 ▽ e2
| F e | inF | outF | recF e1 e2

f : a → b ∈ Γ

⊢ f : a → b

⊢ e : a

⊢ const e : b → a ⊢ id : a → a

⊢ inF : F µF → µF ⊢ outF : µF → F µF

⊢ e1 : b → c ⊢ e2 : a → b

⊢ e1 ◦ e2 : a → c

i ∈ [1, 2]

⊢ πi : a1 × a2 → ai

⊢ e1 : a → b ⊢ e2 : a → c

⊢ e1 △ e2 : a → b × c

i ∈ [1, 2]

⊢ ιi : ai → a1 + a2

⊢ e1 : a → c ⊢ e2 : b → c

⊢ e1 ▽ e2 : a + b → c

⊢ e : a → b

⊢ F e : F a → F b

⊢ e1 : F b → b ⊢ e2 : a → F a

⊢ recF e1 e2 : a → b

Figure 7. Syntax and types of Alg.

A.1.1 Properties of Alg Constructs
Alg constructs are characterised by well-known properties.

Sum and product functions, are uniquely determined by their

universal properties. Composition and identity must satisfy

the associativity and cancellation properties. These basic

properties are summarised in Fig. 9. Functors preserve iden-

tities and composition, and rec satisfy the hylomorphism
laws (Fig. 9b). The laws of hylomorphisms can be used to

perform some common program optimisations. For exam-

ple, the well-known deforestation transformation can be

12

http://hackage.haskell.org/package/arrows-0.4.4.2
http://hackage.haskell.org/package/arrows-0.4.4.2

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Constant, Identity and Composition
const e = λx . e id = λx . x e1 ◦ e2 = λx . e1 (e2 x)

Products
πi = λ(x1, x2). xi , i ∈ [1, 2] e1 △ e2 = λx . (e1 x, e2 x)

e1 × e2 = (e1 ◦ π1) △ (e2 ◦ π2)

Coproducts
ιi = λx . inji x e1 ▽ e2 = λ(inji x). ei x

e1 + e2 = (ι1 ◦ e1) ▽ (ι2 ◦ e2)

Functors
I a = a Ka b = a (F1 † F2) a = F1 a † F2 a, † ∈ {+,×}

I e = e Ka e = id (F1 † F2) e = F1 e † F2 e

Recursion
inF = λx . inF x outF = λ(inF x). x
recF e1 e2 = f where f = e1 ◦ F f ◦ e2

Figure 8. Semantics of Alg combinators.

derived from the hylomorphism equation, and the prop-

erties of functors. Particularly, it is an instance of Equa-

tions A.11 and A.7 in Fig. 9. From the universal proper-

ties of △ and ▽ (Fig. 9a), a number of equivalences can

be derived, e.g.: πi ◦ e1 △ e2 = ei ; (π1 ◦ e) △ (π2 ◦ e) = e;
π1 △ π2 = id; (e1 × e2) ◦ (e3 △ e4) = (e1 ◦ e3) △ (e2 ◦ e4);
e1 ▽ e2 ◦ ιi = ei ; (e ◦ ι1) ▽ (e ◦ ι2) = eι1 ▽ ι2 = id; and
(e1▽e2) ◦ (e3 +e4) = (e1 ◦e3)▽ (e2 ◦e4) where i ∈ {1, 2}. The
properties of combinators provide a formal framework for

equational reasoning that can be used as a basis for doing

program transformations [31; 34; 53]. These properties have

been used for parallelising functions, e.g. [17; 33; 55]. In this

paper, we use =ext for the equations in 9, to distinguish them

from the syntactic equality (=).

A.2 Parallel Algebraic Language
A.2.1 Typing rules
Rules Id, Comp, Proji and Split are standard. The main

feature of this type system is the use of eta-expanded sum-

types and unions of interfaces to deal with choices. Rule

Choice specifies that a choice point may be introduced at

any point when a participant contains a value of a sum-

type. In such cases p sends the tag of the sum-type value

to any other participant whose behaviour depends on it.

After the choice point, the interface is I [ι1 p] ∪®p I [ι2 p], with
the constraint that the participants in I[p] must be in ®p.
Rule Alt specifies that e must be the parallelisation of e ,
considering both A1 and A2 as input interfaces. The output

interface is the union of B1 and B2. Any participant in emust

be notified of the choice pids(e) ⊆ ®p, to make sure that they

perform the interactions that correspond to the correct Ai .

Rule Join is the same as rule Alt, but we do not require

the participants in e to be notified of the choice, since the

input interface is the same in both branches of the choice.

Rule Inji is used to tag an interface with the i-th injection.

Then, rule Casei specifies that if ei is the parallelisation of

ei , then e1▽e2 is a parallelisation of e1▽e2, given the tagged

input interface ιi Ia . Note that ej with j , i is free in rule

Casei . We solve these cases by unification (see rule Alt). If

this is not possible, this means that no branch in the control

flow will ever reach ej , and so we can set it to any arbitrary

parallelisation of ej , or even optimise ej away. Rule Alg

specifies that given any e and participant p, e@p is a valid

parallelisation, with output interface b@p. Finally, rule Ext is

crucial for exploring potential parallelisations. It states that

if e is the parallelisation of e2, and e2 is extensionally equal

to e1, then e is also a parallelisation of e1. The undecidability
of this rule requires that the programmer specifies rewriting
strategies both for checking and inference.

Example A.1 (Rewriting and annotation strategies). We il-

lustrate how rewriting and annotation strategies work by

showing the mergesort (ms) example. Consider the merge-

sort definitionms = recT mrg spl. Solutions to the inference
problem ⊢ ms ⇒ ?0 : Ls@p0 → ?1 provide the alternative

parallelisations ofms. The only two rules that can be applied

are Alg or Ext. By rule Alg, we can annotate ms at some

p1: ⊢ ms ⇒ ms@p1 : Ls@p0 → Ls@p1. Alternatively, we can
use the hylomorphism equation, and apply rule Ext:

ms = recT mrg spl = mrg ◦T ms ◦ spl = mrg ◦
(id +ms ×ms) ◦ spl
We decide which of the rules to apply by querying a collec-

tion of rewriting hints, that we call rewriting strategy. This
collection of hints is of the form [e1 : rw1, . . .], and must be

specified by the programmer. The rewritings rwi are essen-
tially proofs that ei =ext e

′
i , by applying equations in Fig.

9. Once a hint is used, it is removed from the collection of

hints. For the mergesort example, if we use the rewriting

strategy [ms : unroll 1], we will apply rule Ext, unroll the

hylomorphism equation once, and continue with an empty

strategy [].

⊢ mrg ◦ (id +ms ×ms) ◦ spl ⇒ ?0 : Ls@p0 → ?1
ms =ext mrg ◦ (id +ms ×ms) ◦ spl

⊢ ms ⇒ ?0 : Ls@p0 → ?1

With an empty rewriting strategy, the only possibility once

we find the atomic function spl is to use rule Alg. To select a
participant, we query the annotation strategy. The annotation
strategy is a collection of expressions that we require to place

at distinct participants. Suppose that our annotation strategy

is {spl}. Then, we would need to select a fresh participant

p1: ⊢ spl ⇒ spl@p1 : Ls@p0 → ((1 + a) + Ls × Ls)@p1. If the
annotation strategy does not contain spl, then we would

select any participant from the input interface, to minimise

the amount of messages exchanged: ⊢ spl ⇒ spl@p0 : Ls@p0 →
((1 + a) + Ls × Ls)@p0. Suppose that the annotation strategy is

{spl}. Then, after splwe have a sum type at p1. This requires
us to introduce a choice point:

13

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

id ◦ e = e ◦ id = e (A.1)

F (e1 ◦ e2) = F e1 ◦ F e2 (A.2)

F id = id (A.3)

e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3 (A.4)

f = e1 △ e2 ⇔ π1 ◦ e = e1 ∧ π2 ◦ e = e2 (A.5)

e = e1 ▽ e2 ⇔ e ◦ ι1 = e1 ∧ e ◦ ι2 = e2 (A.6)

(a) Basic Properties of Combinators

e3 ◦ e4 = id ⇒ (recF e1 e3) ◦ (recF e4 e2) = recF e1 e2 (A.7)

η : F1 → F2 ⇒ recF1 (e1 ◦ η) e2 = recF2 e1 (η ◦ e2) (A.8)

recF in out = idµF (A.9)

e1, e2 strict ⇒ recF e1 e2 strict (A.10)

e1 strict ∧ e1 ◦ e3 = e5 ◦ F e1 ∧ e4 ◦ e2 = F e2 ◦ e6 ⇒ e1 ◦ (recF e3 e4) ◦ e2 = recF e5 e6 (A.11)

(b) Hylomorphism Laws

Figure 9. Properties of point-free combinators

⊢ mrg ◦ (id +ms ×ms) ⇒ ?0
: ((1 + a) + Ls × Ls)@(ι1 p1 ∪?3 ι2 p1) → ?1

{p1} ⊆ ?3

⊢ mrg ◦ (id +ms ×ms) ⇒ ?0 ◦ [p1 ⊕ ?3]
: ((1 + a) + Ls × Ls)@p1 → ?1 ∪?3 ?2

By collecting all constraints of the form {p1} ⊆ ?3, we can
fully determine what is the minimum list of participants ?3
that we require. To conclude our example, we show the end

result of applying the rest of the rules. The final structure

follows a divide-and-conquer parallel structure, that may

bypass p2 and p3 if the input list is empty or singleton.

⊢ mrg ◦ (id +ms ×ms)
⇒ mrg@p1 ◦ (id + (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1))

◦[p1 ⊕ p1p2p3] ◦ spl@p1
: Ls@p0 → Ls@p1 ∪p1p2p3 Ls@p1

Definition A.2 (Product and Injection of Choice Interfaces).
We sometimes write A × B to represent the product of inter-

faces that contain choices. We do the product of the respec-

tive interfaces, after performing first the choices in A, and
then the choices in B:

(R1 ∪
®p R2) × R3 = (R1 × R3) ∪

®p (R2 × R3)

I1 × (R1 ∪
®p R2) = (I1 × R1) ∪

®p (I1 × R2)

We also write injections of interfaces that contain choices:

ιi (R1 ∪
®p R2) = ιi R1 ∪

®p ιi R2

Definition A.3 (Well-formedness of interfaces: WF(a@R)).
Interface a@R is well formed if R matches the structure of a:

WF(a@p)

WF(ai@I)

WF((a1 + a2)@(ιi I))

WF(a@I1) WF(b@I2)

WF((a × b)@(I1 × I2))

WF(a@R1) WF(a@R2)

WF(a@(R1 ∪®p R2))

For well-formed interfaces, we sometimes propagate the

annotation down the type structure, e.g. a@R1 ×b@R2 is nota-

tion for (a × b)@(R1 × R2). We also define sums of interfaces

a@R1 +
®p b@R2 as notation for (a + b)@(ι1 R1 ∪

®p ι2 R2).

Join

⊢ e ⇒ e : A → B

⊢ e ⇒ e : A ∪®p A → B ∪®p B

Alt

⊢ e ⇒ e : A1 → B1
⊢ e ⇒ e : A2 → B2 A1 , A2 pids(e) ⊆ ®r

⊢ e ⇒ e : A1 ∪
®p A2 → B1 ∪

®p B2

Alg

⊢ e : a → b

⊢ e ⇒ e@p : a@I → b@p

Ext

⊢ e2 ⇒ e : a@I → B e1 =ext e2

⊢ e1 ⇒ e : a@I → B

Inji

⊢ ιi ⇒ ιi : a@I → a@(ιi I)

Id

⊢ id ⇒ id : A → A

Proji
i ∈ [1, 2]

⊢ πi ⇒ πi : (a1 × a2)@(I1 × I2) → ai@Ii

Comp

⊢ e1 ⇒ e1 : B → C ⊢ e2 ⇒ e2 : A → B

⊢ e1 ◦ e2 ⇒ e1 ◦ e2 : A → C

Casei
⊢ ei ⇒ ei : ai@I → B

⊢ e1 ▽ e2 ⇒ e1 ▽ e2 : (a1 + a2)@(ιi I) → B

Split

⊢ e1 ⇒ e1 : a@I → B ⊢ e2 ⇒ e2 : a@I → C

⊢ e1 △ e2 ⇒ e1 △ e2 : a@I → B ×C

Choice

⊢ e ⇒ e : a@(I[ι1 p] ∪®p I[ι2 p]) → B
pids(I[p]) ⊆ ®p tyAt(I,a) = b + c

⊢ e ⇒ e ◦ [p ⊕ ®p] : a@I[p] → B

Figure 10. Typing rules of PAlg

DefinitionA.4 (Projection Rules (G ↾ p) andMerging (L1⊓L2)).
Projection defines how to obtain the local type L of a partici-

pant p in a global type G: G ↾ p.

(p1 → p2 : a. G) ↾ p

=

p2!⟨a⟩. (G ↾ p) if p = p1 , p2
p1?(a). (G ↾ p) if p = p2 , p1
G ↾ p otherwise

(p1 → p2 : {li .Gi }i ∈I) ↾ p

=

p2 ⊕ {li .Gi ↾ p} if p = p1
p1 & {li .Gi ↾ p} if p = p2
⊓i ∈I (Gi ↾ p) otherwise

(µX .G) ↾ p =
{
µX .(G ↾ p) if G ↾ p , X ′, ∀X ′

end otherwise

(X) ↾ p = X end ↾ p = end

14

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

p & {li .Li }i ∈I ⊓ p & {lj .L
′
j }j ∈J

= p & {lk .Lk ⊓ L′k }k ∈I∩J ∪ {ll .Ll }l ∈I\J ∪ {lm .Lm}m∈J \I

µX .L1 ⊓ µX .L2 = µX .(L1 ⊓ L2) L ⊓ L = L

Projection onto a role is not necessarily defined. Particularly,

projecting p1 → p2 : {li .Gi } onto p, with p , p1 and p , p2,
is only defined if the projection of allGi onto p can bemerged.
Two local types can be merged only if they are the same, or

if they branch on the same role p, and their continuations

can be merged. For example, p3’s local type of the global

type: µX .p1 → p2{l1.p2 → p3 : l2.p1 → p3 : l3.X , l4.p2 →
p3 : l5.p1 → p3 : l6.end} is µX .p2 & {l2.p1 & {l3.X }, l4.p2 &
{l5.p1 & {l6.end}}}.

Definition A.5. LTS for Local Type Configurations

⟨C,Q⟩ {ℓ ⟨C ′,Q ′⟩ C = [pi 7→ Li]i ∈I Q = [pipj 7→ w]i ∈I , j ∈I

⟨C[p0 7→ p1!⟨a⟩. L],Q[p0p1 7→ w]⟩

→p0p1!⟨a ⟩ ⟨C[p0 7→ L],Q[p0p1 7→ a ·w]⟩

⟨C[p0 7→ p1?(a). L],Q[p1p0 7→ w · a]⟩

→p0p1?(a) ⟨C[p0 7→ L],Q[p1p0 7→ w]⟩

⟨C[p0 7→ p1 ⊕ {ιi .Li }i ∈I],Q[p0p1 7→ w]⟩

→p0p1⊕li ⟨C[p0 7→ Li],Q[p0p1 7→ li ·w]⟩

⟨C[p0 7→ p1 & {ιi .Li }i ∈I],Q[p1p0 7→ w · li]⟩

→p0p1&li ⟨C[p0 7→ Li],Q[p1p0 7→ w]⟩

Definition A.6 (Interface projection:A ↾ p). The projection

of interface A onto role p is the part of interface A that is

located at p. We define the projection for a@R inductively on

the structure of R:

a@p0 ↾ p1 = {a, if p0 = p1; 1, otherwise}
(a × b)@(R1 × R2) ↾ p = (a@R1 ↾ p) × (b@R2 ↾ p)
(a1 + a2)@(ιi R) ↾ p = (ai@R ↾ p)
a@(R1 ∪

®p R2) ↾ p ={
(a@R1) ↾ p ⊎ (a@R2) ↾ p if p ∈ ®p

a′ if a′ = (a@R1) ↾ p = (a@R2) ↾ p

A.3 MPST

Definition A.7 (Label Broadcasting). We define a macro

that represents the broadcasting of a label to multiple partic-

ipants in a choice. We write

• p → {pj }j ∈[1,n] : {ιi .Gi }i ∈I for p → p1{ιi .p → p2{ιi
. . . p → pn{ιi .Gi } . . .}}i ∈I ; and

• {pj }j ∈[1,n] ⊕ {ιi .Li }i ∈I for p1 ⊕ {ιi .p2 ⊕ {ιi pn ⊕

{ιi .Li } . . .}}i ∈I .

It is straightforward to show that (p1 → {pj }j ∈J : {ιi .Gi }i ∈I) ↾
p2 = {pj }j ∈J ⊕{ιi .Gi ↾ p2}i ∈I , if p1 = p2, and (p1 → {pj }j ∈J :
{ιi .Gi }i ∈I) ↾ p2 = p1 & {ιi .Gi ↾ p2}i ∈I , if p2 = pj for some

j ∈ J .

The relation ⊨ p ⇐ A ∼ G associates p and A with the

global type G (Fig. 11).

Rules Id, Inji , Proji , and Casei are straightforward. Rule

Comp associates two PAlg expressions with the sequencing

of their respective global types, G1 # G2. The sequencing

produces the global type that results of performing first G1,

and then G2, by taking into account branching and choices:

end #G = G
(p1 → p2 : a.G1) #G2 = p1 → p2 : a.(G1 #G2)

(p1 → p2{ιi .G1}) #G2 = p1 → p2{ιi .G1 #G2}

(p1 → p2

{
ι1.G1

ι2.G2

}
) # (G3 ∪G4) = p1 → p2

{
ι1.G1 #G3

ι2.G2 #G4

}
(G1 ∪G2) # (G3 ∪G4) = (G1 #G3) ∪ (G2 #G4)

Rule Choice turns a choice point of p with dependencies

®p into a global type choice: p notifies all participants in ®p
of the branch in the protocol that they need to take. Rule

Alt associates p with two protocols, G1 and G2, whenever

the input interface is a choice of A1 and A2. Each Gi is the

continuation that corresponds to the i-th branch of the choice
that led to interface Ai . Note that contrary to the typing

rules of Fig. 2, there is no rule Join. This is because Join

was only used to avoid adding too many participants to a

choice. However, at this point, these participants are known,

and specified at the choice points. Rule Split associates a

split of PAlg expressions with the sequence of the respective

interactions. The rule uses [G2/end]G1 instead of #, because
if G1 contains a global type choice, then the interactions

described byG2 must be done after every branch inG1. Since

both G1 and G2 start from the same input interface, any

choice in eitherGi must be independent of any choice in the

otherG j . Finally, rule Alg specifies that if the input interface

is a@I , and the expression is e@p, then the protocol comprises

the sequence of interactions from all participants in I to
participant p.

Example A.8 (Mergesort Protocol). Recall the PAlg expres-

sion inferred for ms in Example A.1:

⊢ mrg ◦ (id +ms ×ms)
⇒ mrg@p1 ◦ (id + (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1))

◦[p1 ⊕ p1p2p3] ◦ spl@p1
: Ls@p0 → Ls@p1 ∪p1p2p3 Ls@p1

We need to solve ⊨ mrg@p1 ◦ (id + (ms@p2 ◦ π1@p1) △ (ms@p3 ◦
π2@p1)) ◦ [p1 ⊕ p1p2p3] ◦ spl@p1 ⇐ Ls@p0 ∼ ?0.
The first step is a straightforward application of Comp. The

case for [p1 ⊕ p1p2p3] is the result of applying rule Choice.
To help readability, we use different colors for the left and

the right branches:

⊨ [p1 ⊕ p1p2p3]
⇐ ((1 + a) + Ls × Ls)@p1 ∼ p1 → {p2p3}{ι1.end; ι2.end}

At this point, the input interface is:

((1 + a) + Ls × Ls)@(ι1 p1) ∪p1p2p3 ((1 + a) + Ls × Ls)@(ι2 p1)
This means that we need to obtain two sub-protocols, for

the left and the right branches respectively. The left branch is

solved by applying rule Inj1, while the right branch is solved

by rules Case, Inj2, Split, Comp and Alg:

15

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

Id

⊨ id ⇐ a@I ∼ end

Inji

⊨ ιi ⇐ ai@I ∼ end

Proji
i ∈ [1, 2]

⊨ πi ⇐ (a1 × a2)@(I1 × I2) ∼ end

Choice

⊨ [p ⊕ ®p] ⇐ a[b + c]@I [p] ∼ p → {®p \ p}{ι1. end; ι2. end}

Casei
⊨ ei ⇐ ai@I ∼ G

⊨ e1 ▽ e2 ⇐ (a1 + a2)@(ιi I) ∼ G

Alt

⊨ e ⇐ A1 ∼ G1 ⊨ e ⇐ A2 ∼ G2

⊨ e ⇐ A1 ∪
®p A2 ∼ G1 ∪G2

Alg

⊢ e : a → b

⊨ e@p ⇐ a@I ∼ [a@I { p]

Comp

⊨ e2 ⇐ A ∼ G2 ⊨ e1 ⇐ B ∼ G1 ⊢ e2 : A → B

⊨ e1 ◦ e2 ⇐ A ∼ G2 #G1

Split

⊨ ei ⇐ a@I ∼ Gi (i = 1, 2)

⊨ e1 △ e2 ⇐ a@I ∼ [G2/end]G1

[a@p1 { p2] = p1 → p2 : a. end, if p1 , p2; [a@p { p] = end;
[(a × b)@(Ia × Ib) { p] = [a@Ia { p] # [b@Ib { p]; and

[(a1 + a2)@(ιi I) { p] = [ai@I { p]

Figure 11. Protocol relation

⊨ id + (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1)
⇐ ((1 + a) + Ls × Ls)@(ι1 p1) ∼ end

⊨ id + (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1)
⇐ ((1 + a) + Ls × Ls)@(ι2 p1) ∼ p1 → p2 : Ls.p1 → p3 : Ls.end

The interface at this point is ((1 + a) + Ls × Ls)@(ι1 p1 ∪p1p2p3

ι2 (p2 × p3)). For the last expression, mrg@p1, we produce the
following protocol: end ∪ p2 → p1 : Ls.p3 → p1 : Ls.end . This
is because, on the left branch, the input is still at p1, so no

communication is required. On the right branch, the input

is a product of lists, one at p2, and another one at p3, and
so they need to communicate with p1. The final protocol is
obtained by applying sequencing:

p1 → {p2p3}
{
ι1.end;
ι2.p1 → p2 : Ls.p1 → p3 : Ls.end

}
#(

end ∪ (p2 → p1 : Ls. p3 → p1 : Ls.end)
)

= p1 → {p2p3}

ι1.end;
ι2.p1 → p2 : Ls.p1 → p3 : Ls.

p2 → p1 : Ls. p3 → p1 : Ls.end

p1 p2

p3

p1⊕

A.4 Mp

Mp comprises four basic operations: send, receive, choice

and branching, with a standard (asynchronous) semantics.

Additionally, for composing actions that depend on the same

choice, we introduce case expressions.

v F x | (v,v) | ιi v | · · · | e v
mi F ret v | m≫=f | send p v | recv p a | sel ®p v f1 f2

| brn pm1 m2 | case f1 f2 f F λx .m

Values v are either primitive values, tagged values ιi v , pairs
of values, or the result of applying an Alg expression e to a

value. We use standard notation for the monadic unit (ret)
and bind (≫=). The term λx . m is a monadic continuation.

We write λ_. m when the continuation discards the result

of the previous monadic action. We use the standard Kleisli

composition: f1>=> f2 = λx . f1 x≫=f2.
The message-passing constructs are standard, except sel,

brn and case, which are used for performing choices, and

composing actions that depend on the same choice. We ex-

plain them in detail below. We include select and branching

as syntactic constructs to simplify the typeability of parallel

code against local types, but their semantics can be defined

in terms of standard pattern matching, plus send and receive
operations.

Each monadic computation f orm has a typem : Mp L a,
where a is the return type of m, and L is the type index

of Mp, and it represents the local type that corresponds

to the behaviour of the term m. There is almost a one to

one correspondence between the terms L and the monadic

actionsm, so we refer the reader to Appendix A (Fig. 16) for

the full definition.

Composing Choices The types of the constructs that deal

with choices use a new type, ⊎, that is isomorphic to sum

types, but that can only be constructed and eliminated by

using the following monadic constructs:

sel ®p : a + b → (a → Mp L1 c1) → (b → Mp L2 c2)
→ Mp (®p ⊕ {ι1.L1; ι2.L2}) (c1 ⊎ c2)

brn p : Mp L1 a1 → Mp L2 a2
→ Mp (p & {ι1.L1; ι2.L2}) (a1 ⊎ a2)

case : (a → Mp L1 c) → (b → Mp L2 d) → a ⊎ b
→ Mp (L1 ∪ L2) (c ⊎ d)

These constructs ensure that the tag used to build a⊎b indeed
corresponds to the correct branch of the right choice. We use

case to compose actions that depend on a previous choice. It

may seem that this treatment of ⊎ leads to unnecessary code

duplication, e.g. the only possibility to compose a single ac-

tion f after a branch is using case: brn pm1 m2≫=case f f .
Our back-end easily optimises those cases to avoid code

duplication.

16

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

By the definition of the monadic bind, when we compose

a branch or select with a case expression, the final local type

cannot contain∪. To illustrate this, considerm1 : Mp L1 (a ⊎ b)
and f2 : a ⊎ b → Mp (L2 ∪ L3) (c ⊎ d). The local type ofm1≫=f2
must be L1 # (L2 ∪ L3). But that is only defined if L1 contains
a branch or select. Therefore,m1≫=f2 is only well-typed if

f2 is a case expression on the tag introduced by the topmost

branch or select ofm1.

Parallel programs We define the basic constructs of PAlg
in a bottom-up way by manipulating parallel programs. Paral-
lel programs aremappings from participants to theirmonadic

action: EF [pi 7→mi]i ∈I . Ifmi : Mp Li ai for all i ∈ I , then
we write [pi 7→ mi]i ∈I : Mp [pi 7→ Li]i ∈I [pi 7→ ai]i ∈I .
The semantics of both local types and monadic actions is

defined in terms of such collections of actions or local types,

and shared queues of valuesW , or queues of types Q , e.g.
⟨E,W ⟩ {ℓ ⟨E′,W ′⟩ is a transition from E to E′, and shared

queuesW toW ′
with observable action ℓ. We prove a stan-

dard safety theorem (Theorem 5.1 below) that guarantees

that if a participant does a transition with some observable

action, then so does the type index.

Theorem 5.1. [Soundness] Assume E : Mp C A,m : Mp L a
andW : Q . Suppose ⟨E[r 7→ m],W ⟩ {ℓ ⟨E[r 7→ m′],W ′⟩.
Then there exists ⟨C[r 7→ L],Q⟩ →ℓ ⟨C[r 7→ L′],Q ′⟩ such
thatW ′

: Q ′ andm′
: Mp L′ a.

Notations and Operations for Parallel Programs We

simplify the notation for E, when all Li are projections of the
same global type, and the ai are projections of the same inter-
face. We define the projection of an interface at a participant,

A ↾ p, to be the part of A that is at p (Appendix A.6). When-

ever we havemp : Mp (G ↾ p) (A ↾ p) for all participants
in p ∈ G, we use the notation [p 7→ mp]p∈pids(G) : Mp G A.
This means that the collection of all actionsmp behave as pre-
scribed byG , and produce their result in interfaceA. Finally, if
we have E = [p 7→ fp : A ↾ p → Mp (G ↾ p) (B ↾ p)]p∈pids(G),

we write E : A → Mp G B.
Parallel programs have a default value for participants

that are not in their domain. Unless otherwise specified,

this default value is the identity. For example, E(p) = f if

E = E′[p 7→ f], and E(p) = λx .ret x if p < E. We specify the

default value using the underscore character as a key in the

mapping from participants to monadic actions: [_ 7→ f].

Distributed Values and Execution We define the exe-

cution of a parallel program on a distributed value below.

A distributed value V : a@R is a mapping from partici-

pants to the value that they hold in the respective interface:

[pi 7→ (vi : (a@R) ↾ pi)]i ∈I : (a@R). Additionally, we require
unit to be the default value, so if p < pids(R), then V (p) = ().

Definition A.9 (Execution). Given E = [pi 7→ fi]i ∈I and
X = [pj 7→ x j]j ∈J , we define E(X) = [pi 7→ fi X (pi)]i ∈I ,
with X (pi) = xi if i ∈ J , or X (pi) = () otherwise. Given Y =

[pk 7→ yk]k ∈K , we say that P(X) executes to Y , P(X) {∗ Y ,
if there is a trace ⟨P(X), ∅⟩ {∗ ⟨[pi 7→ ret Y (pi)]i ∈I , ∅⟩. We

write P(X) = Y , whenever there is a unique Y s.t. for all Z ,
P(X) {∗ Z implies that Z = Y .

Composition and Identity Composition is defined as the

standard Kleisli composition, extended to parallel programs

as follows: E1>=>E2 = [p 7→ E1(p)>=>E2(p)]p∈E1∪E2 . Then, E2 ◦
E1 = E1>=>E2. Identity is simply the empty program with just

the default value, id = [].

Split andProjection The split operation is the participant-

wise split, and the i-th projection is the environment with

the projection i as the default value:

E1 △ E2 = [p 7→ λx . E1(p) x≫=λy. E2(p) x≫=λz. ret(y, z)]p∈E1∪E2
πi = [_ 7→ λx . ret (πi x)]

.

Case and Injection Case expressions will never occur dur-

ing code generation, since they will be resolved by choices.

Injections only tag a branch in the protocol, and so we define

them as the identity: ιi = [].

Choices Choices are performed by the participant holding

a value of a sum-type, and the tag is notified to the list

of participants that depend on them. The definition uses

functions getI(x) and putI(y, x) to extract the value of a

sum-type from the hole of a one-hole context I (§3.1), and

to replace the value at the hole respectively.

[p0 ⊕ p0p1 · · · pn] =
p0 7→ λx . sel (p1 · · · pn) (getI (x))

(λy. ret (putI (y, x))) (λy. ret (putI (y, x)))
p1 7→ λx . brn p (ret x) (ret x);
. . .

pn 7→ λx . brn p (ret x) (ret x)

The presence of type ⊎ means that we might require to

perform a case expression to inspect the result of a previous

choice: we define E1 ⊎
®p E2 for this.

E1 ⊎
®p E2 = [p 7→ λx . case E1(p) E2(p)]p∈®p ∪ (E1 ∪ E2) \ {®p}

The definition of ⊎®p
means that the participants involved

in a choice will perform a case expression to inspect which

branch they need to take, while the rest of the participants

will continue as specified by either E1 or E2. Note (E1∪E2)(p)
will produce E2(p), if p ∈ E1 ∩ E2. This will not be an issue

during code generation: any participant that is not involved

in a choice will have the same continuation in both branches.

A.5 Mp code generation
The translation scheme for Mp code generation (Fig. 12)

is done recursively on the structure of PAlg expressions. It
takes a PAlg expression e, an interface A, and produces a

mapping from all participants in e and A to their respective

monadic continuations. We write JeK (A), and guarantee that
JeK (A) : A → Mp G B, if ⊨ e ⇐ A ∼ (G,B). This means

that if e induces protocol G with interfaces A → B, then
the generated code behaves as G, with interfaces A and B.

17

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

Code generation follows a similar structure to global type

inference. For code generation, we require a partial function

cod(e,A) that infers the codomain interface of e using Fig. 2.

The translation to Mp requires to define the interactions

from an interface I that gathers a type a at p: La@I { pM :

a@I → Mp [a@I { p] (a@p). The definition is analogous

to that of [a@I { p]. The remaining of the translation is

straightforward, built on top of the previous definitions.

La@p1 { p0M = [p1 7→ λx .send x p0p0 7→ λ_.recv p1 a]
L(a1 + a2)@(ιi I) { pM = Lai@I { pM>=>[p 7→ λx . ret (ιi x)]
L(a × b)@(I1 × I2) { pM = La@I1 { pM × Lb@I2 { pM

>=>[pi 7→ λ_.ret()]pi ∈pids(I1×I2)\{p}

JidK (a@I) = [] Jιi K (a@I) = []

Je@pK (a@I) = La@I { pM>=>[p 7→ λx . ret (e x)]
Je1 △ e2K (a@I) = Je1K (a@I) △ Je2K (a@I)
Je1 ◦ e2K (A) = Je2K (A)>=> Je1K (cod(e2,A))
Je1 ▽ e2K ((a1 + a2)@(ιi I)) = Jei K (ai@I)
Jπi K ((a × b)@(I1 × I2)) = πi
J[p ⊕ ®p]K (a@I[p]) = [p ⊕ ®p]
JeK (a@(R1 ∪®p R2)) = JeK (a@R1) ⊎®p JeK (a@R2)

Figure 12. Translating PAlg to Mp code.

Protocol Compliance Theorem 5.2 guarantees that the

generated code follows the protocol inferred using the re-

lation in Fig. 3. This fact is enough to guarantee that the

generated code is deadlock-free. Moreover, we can use it to

prove that the generated code is extensionally equal to the

input Alg expression. We state this in Theorem 5.3.

Theorem 5.2. [Protocol Conformance of the Generated Code]
If ⊨ e ⇐ A ∼ G, then JeK (A) complies with protocol G.

This theorem is proved by induction on the structure of the

derivation⊨, and by the definition of ↾. This result guarantees
that the generated code corresponds to the protocol inferred

from e. Since the protocol inferred from e is deadlock-free,
then so is the generated code. See Appendix B.3.

Extensional Equivalence Additionally to deadlock-freedom

and protocol compliance, we prove that if e is the annotation
of e , then running the code generated from e on x produces

the same result as evaluating e on x . This guarantees that,
regardless of the annotations and interfaces chosen for e, the
parallel code always produces the same result as the sequential
implementation. We show the statement below, in Theorem

5.3, and refer to Appendix C for the full proof.

We specify the extensionality theorem on runnable parallel
programs, which are those with a single entry/exit point, i.e.

amaster worker pm that starts the computation, and gathers

the results. Suppose we call this master worker pm . Given
any e, we can guarantee that pm is the entry point by setting

it to be the domain interface: ⊢ e : a@pm → b@R. To make it

the exit point, we need to make sure that it is the codomain

interface. We can do this by forcing the participants in R to

send their values to pm as follows: ⊢ id@pm◦e : a@pm → b@R.
However, and due to the presence of choices, the codomain

interface may contain∪. For example, if e : a@pm → b@(I1∪
®p

I2), with I1 , I2, then ⊢ id@pm ◦ e : a@pm → b@(pm ∪®p pm),
with pm ∈ ®p. This means that b@(pm ∪®p pm) ↾ pm = b ⊎b. To
obtain a single value of type b, we use function join : a⊎a →

a, which is equivalent to id ▽ id for regular sum-types. We

lift it to a monadic action, join(R), to join all branches in R:

join(I) = [] join(R1∪®pR2) = join(R1)⊎®pjoin(R2)≫=[p 7→

λx . ret (join x)]p∈®p

Note that join(R1 ∪
®p R2) is only defined if (a@R1 ↾ p) =

(a@R2 ↾ p) for all roles. The runnable parallel program for

e : a@pm → b@R, JJeK (pm), is defined as follows:

JJeK (pm) = Jid@pm ◦ eK (a@pm)≫=[pm 7→ join(R)].

Our extensionality statement specifies that executing the

runnable parallel program for e , with master p and value x ,
produces value e x at p.

Theorem 5.3. [Extensionality] Assume e ⇒ e : a@p → b@R

and x : a initially at p. If e x = y, then the execution of JeK (p)
also produces y, distributed across R.

ExampleA.10 (MergeSort Code Generation). We start with

the annotatedms from Example A.1, and we use p1 as master

role to avoid the initial communication from p0 to p1:

pms = mrg@p1 ◦ (id + (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1))
◦[p1 ⊕ p1p2p3] ◦ spl@p1 : Ls@p1 → Ls@p1 ∪p1p2p3 Ls@p1

Note that Jid@p1 ◦ pmsK would be equivalent to JpmsK be-

cause the output interface is already of the form p1 ∪ p1.
Therefore, for simplicity, we show JpmsK, and use it to pro-

duce the runnable parallel program. Fig. 14 show the code

generation process using a table, where the i-th column is the

current code for participant pi , and the last column shows

the expression and input interface that we are translating

next.

From this point, we need to produce the code for the two

branches. The left branch is straightforward, and is simply

λx . ret x for all participants. The result for the right branch

is show in Fig. 15:

Next, we combine both branches using case, and compose

it with the previous result. To avoid unnecessarily pattern-

matching expressions such as case, we optimise the code

using rules of the form:

sel ®p f1 f2≫=case f3 f4 = sel ®p (f1≫=f3) (f2≫=f4). Addition-

ally, we optimise all instances of e.g. (x, ()) using the fact

that 1 × a � a × 1 � a. We show below the code for all

pi , after composing it with join(p1 ∪p1p2p3 p1), and applying

these optimisations. We use different colours to highlight

the different branches of the protocol:

18

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

p1 7→ sel {p2, p3} (spl v) (λx . ret (mrg (ι1 x))) (λx . send p2 (π1 x)≫=λy. send p3 (π2 x)≫=λ_.
recv p2 Ls≫=λx . recv p3 Ls≫=λy. ret (mrg (ι2 (x,y))))≫=λx . ret (join x)

p2 7→ brn p1 (ret x) (recv p1 Ls≫=λx . ret (ms x)≫=λx . send p1 x)≫=λx . ret (join x)
p3 7→ brn p1 (ret x) (recv p1 Ls≫=λx . ret (ms x)≫=λx . send p1 x)≫=λx . ret (join x)

p1 7→ send p2 (π1 (v1,v2))≫=λy. send p3 (π2 (v1,v2))≫=λ_. recv p2 Ls≫=λx . recv p3 Ls≫=λy.
ret (br2 (mrg (ι2 (x,y))))≫=λx . ret (join x)

p2 7→ recv p1 Ls≫=λx . ret (ms x)≫=λx . send p1 x≫=λx . ret (br2 x)≫=λx . ret (join x)
p3 7→ recv p1 Ls≫=λx . ret (ms x)≫=λx . send p1 x≫=λx . ret (br2 x)≫=λx . ret (join x)

p1 7→ recv p2 Ls≫=λx . recv p3 Ls≫=λy. ret (br2 (mrg (ι2 (x,y))))≫=λx . ret (join x)
p2 7→ ret (ms v1)≫=λx . send p1 x≫=λx . ret (br2 x)≫=λx . ret (join x)
p3 7→ ret (ms v2)≫=λx . send p1 x≫=λx . ret (br2 x)≫=λx . ret (join x)

p1 7→ ret (mrg (ι2 (ms v1,ms v2))) = ret (mrg ((id +ms ×ms)(spl v))) = ret (ms v)
p2 7→ ret () | p3 7→ ret ()

Figure 13. Step-by-step execution of the parallel code for ms. Input is [p1 7→ v], with spl v = ι2 (v1,v2).

p1 p2 p3

λx . ret x λx . ret x λx . ret x Jspl@p1K (Ls@p1)

λx . ret (spl x) λx . ret x λx . ret x J[p1 ⊕ p1p2p3]K (((1 + a) + Ls × Ls)@p1)

λx . ret (spl x)≫=λx .sel {p2, p3}
(λx . ret x) (λx . ret x)

λx . brn {p1}
(λx . ret x) (λx . ret x)

λx . brn {p1}
(λx . ret x) (λx . ret x)

Jid + . . .K (((1 + a) + Ls × Ls)
@(ι1 p1 ∪p1p2p3 ι2 p2))

Figure 14. Example Translation

p1 p2 p3

λx . ret (π1 x)≫=λy. send p2 y≫=
λz. ret (π2 x)≫=λt . send p3 z≫=
λr . ret(z, r)

λ_.recv p1 Ls≫=
λx . ret (ms x)≫=λx . ret (x, ())

λ_.recv p1 Ls≫=
λx . ret (ms x)≫=λx . ret ((), x)

J(ms@p2 ◦ π1@p1)△
(ms@p3 ◦ π2@p1)K((Ls × Ls)@p1)

Figure 15. Right branch for mergesort.

p1 7→ λx . sel {p2, p3} (spl x) (λx . ret (mrg (ι1 x)))
(λx . send p2 (π1 x)≫=λy. send p3 (π2 x)≫=λ_.
recv p2 Ls≫=λx . recv p3 Ls≫=λy. ret (mrg (ι2 (x,y))))

≫=λx . ret (join x)
p2 7→ λx . brn p1 (ret x) (recv p1 Ls≫=λx . ret (ms x)≫=λx .

send p1 x)≫=λx . ret (join x)
p3 7→ λx . brn p1 (ret x) (recv p1 Ls≫=λx . ret (ms x)≫=λx .

send p1 x)≫=λx . ret (join x)

We show in Figure 13 the step-by-step execution of this code

on distributed value [p1 7→ v], with spl v = ι2 (v1,v2). The
final result is equal to p1 applying ms directly on the input.

TypingMp against Local Types We define a relation be-

tweenMp code and the local type that captures their com-

munication behaviour (Fig. 16). We define a judgement of

the form Γ ⊢m : Mp L a, whereMp L a is the type of anMp
expression that conforms to protocol L and returns a value

of type a. The types are parameterised by a variable l that
represents a local type continuation. The rules in Fig. 16 are

straightforward, since they relate in a one-to-one way to the

constructs of local types.

Semantics The operational semantics ofMp terms is stan-

dard, and mirrors that of the local type configurations in [27].

The operational semantics is defined as an LTS with transi-

tions of the form ⟨[pi 7→mi]i ∈I ,W ⟩ {ℓ ⟨[pi 7→m′
i]i ∈I ,W

′⟩.

Here ℓ F p0p1!⟨a⟩ | p0p1?(a) | p0p1 ⊕ ιi | p0p1 & ιi is the
observable action that takes place, and represents, respec-

tively, p0 sends to p1 a value of type a, p1 receives from p0, p0
sends label i to p1, and p1 receives label i from p0. We use the

special symbol ϵ to represent that no communication took

place. Finally,W is a mapping from ordered pairs of roles

to unbounded buffers that contain the data sent between

participants.

Definition A.11. LTS forMp Terms ⟨P,W ⟩ {ℓ ⟨P ′,W ′⟩ ,

P ,W transitions to P ′
,W ′

with action ℓ. The transition rules

are defined in Fig. 17.

Similarly, we define ⟨C,Q⟩ →ℓ ⟨C ′,Q ′⟩ for the LTS of

local type configurations (App. A). Here, C is a collection

of local types, C = [pi 7→ Li]i ∈I , and Q is a mapping from

ordered pairs of roles to unbounded buffers that contain types
of the data exchanged. We also say thatW is compatible with

Q ,W : Q , if for all pair p1p2, if w1 · · · wn = W (p1p2) then
a1 · ·· an = Q(p1p2), and for all i ,wi : ai .

Definition A.12 (Get/Set for Types from One Hole Con-

texts). Whenever a role performs a choice, we have a type

19

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

Ret

Γ ⊢ v : a

Γ ⊢ ret v : Mp end a

Send

Γ ⊢ v : a

Γ ⊢ send r v : Mp (p!⟨a⟩. end) 1

Recv

Γ ⊢ recv r a : Mp (p?(a). end) a

Abs

Γ, x : a ⊢m : Mp L b

Γ ⊢ λx .m : a → Mp L b

Bind

Γ ⊢m : Mp L1 a Γ ⊢ f : a → Mp L2 b

Γ ⊢m≫=f : ∀l2. Mp (L1 # L2) a

Branch

Γ ⊢m1 : Mp L1 a1 Γ ⊢m2 : Mp L2 a2

Γ ⊢ brn r m1 m2 : Mp (r & {ι1.L1; ι2.L2}) (a1 ⊎ a2)

Select

Γ ⊢ v : a + b
Γ ⊢ f1 : a → Mp L1 c1 Γ ⊢ f2 : b → Mp L2 c2

Γ ⊢ sel v {r j }j ∈J f1 f2 : Mp ({pj }j ∈J ⊕ {ι1.L1; ι2.L2}) (c1 ⊎ c2)

Case

Γ ⊢ f1 : a1 → Mp L1 b1 Γ ⊢ f2 : a2 → Mp L2 b2

Γ ⊢ case f1 f2 : a1 ⊎ a2 → Mp (L1 ∪ L2) (b1 ⊎ b2)

Figure 16. Typing rules for Mp code.

with one hole, a@I[p], with a sum-type at the hole (b + c)@p.
The code for p requires to extract the sum type from the

type a, and to set the value at the hole pointed by I. This is

because p may occur deep in I[p] and, therefore a@I[p] ↾ p
may be different to b + c . We achieve this with the follow-

ing families of functions, getI : a → typeAt(I,a), and
putI : c × a → substTy(I,a, c), where typeAt and substTy
get/set the type at the hole in I.

B Deadlock-Freedom
B.1 Proof of Lemma 4.2
Lemma 4.2. [Existence of Associated Global Type] For all
WF(A), if ⊢ e : A → B, then there exists G s.t. ⊨ e ⇐ A ∼ G.

Proof. By induction on the structure of the derivation ⊢ e :

A → B.

Case Join. ⊢ e ⇒ e : A ∪®p A → B ∪®p B. By the IH, ⊨ e ⇐

A ∼ G. By rule Alt, ⊨ e ⇐ A ∪®p A ∼ G ∪G.

Case Alg. ⊢ e ⇒ e@p : a@I → b@p. By Alg, ⊨ e@r ⇐ a@I ∼
[a@I { r].

Case Inji . By Inji , ⊨ ιi ⇐ A ∼ end.

Case Alt. ⊢ e ⇒ e : A1 ∪
®p A2 → B1 ∪

®p B2, with pids(e) ⊆ ®p.
By the IH, ⊨ e ⇐ A1 ∼ G1 and ⊨ e ⇐ A2 ∼ G2. By Alt,

⊨ e ⇐ A1 ∪A2 ∼ G1 ∪
®p G2.

Case Id. By ⊨ id ⇐ a@I ∼ end.

Case Choice. ⊢ e ⇒ [p ⊕ ®p] : a@I[p] → a@(I[ι1 p] ∪®p

I[ι2 p]). By rule Choice, ⊨ [p ⊕ ®p] ⇐ a@I[p] ∼ p →
{®p} {ι1. end; ι2. end}.

Case Proji . By rule Proji , ⊨ πi ⇐ A1 ×A2 ∼ end.

Case Comp. ⊢ e1 ◦ e2 ⇒ e1 ◦ e2 : A → C . This implies that

⊢ e1 ⇒ e1 : B → C and ⊢ e2 ⇒ e2 : A → B. By the IH,

⊨ e2 ⇐ A ∼ G2, and ⊨ e1 ⇐ B ∼ G1. We proceed by

induction on the size of B. The base case is b@I2. In this case,

Amust be a@I1, so G1 must not be ∪ or contain any choices.

Therefore, G1 # G2 is defined, and equal to [G2/end]G1. If

B = b@(R21 ∪ R22), then G2 = G21 ∪ G22. There are two

cases: (1) G1 = G11 ∪G12, or (2) there is a choice in G1, i.e.

G1 = [p → ®p{ι1. G11; ι2. G12}/end]G ′
1
. In the first case, we

have that ⊨ e1 ⇐ a@R1i ∼ G1i , and ⊨ e2 ⇐ a@R2i ∼ G2i ,

which by the IH implies that G1i #G2i is defined. Therefore,

(G11 ∪ G12) # (G21 ∪ G22) = (G11 # G21) ∪ (G12 # G22). In the

second case, there must be two sub-expressions of e1, e11
and e12 s.t. e11 ⇐ a@I ∼ G ′

1
, and e12 ◦ [p ⊕ ®p] ⇐ d@I[p] ∼

p → ®p{ι1. G11; ι2. G12}, with e12 : d@I[ιi p] → b@R2i and

e12 ⇐ d@I[ιi p] ∼ G1i . By the IH, G1i #G2i must be defined,

which implies that p → ®p{ι1. G11; ι2. G12} # (G21 ∪ G22) is

defined, and therefore G1 # (G21 ∪G22) is also defined.

Case Casei . ⊢ e1 ▽ e2 ⇒ e1 ▽ e2 : ιi A → B. By inversion,

⊢ ei ⇒ ei : A → B. By the IH, ⊨ ei ⇐ A ∼ G. By Casei ,

⊨ e1 ▽ e2 ⇐ ιi A ∼ G.

Case Split. ⊢det e1 △ e2 ⇒ e1 △ e2 : a@I → B × C . By
inversion, ⊢ e1 ⇒ e1 : a@I → B and ⊢ e2 ⇒ e2 : a@I → C .
By the IH, ⊨ e1 ⇐ a@I ∼ G1 ⊨ e2 ⇐ a@I ∼ G2. Therefore,

⊨ e1 △ e2 ⇐ a@I ∼ [G2/end]G1. □

B.2 Proof of Lemma 4.3
Lemma 4.3. [Protocol Deadlock-Freedom] For allWF(A), if
⊢ e : A → B and ⊨ e ⇐ A ∼ G, then WF(G).

Proof. By induction on the structure of the derivation ⊢ e :

a@I → B.

Case Join. ⊢ e ⇒ e : A ∪®p A → B ∪®p B. By case analysis,

the only possibility for G is that it is obtained via the Join

protocol rule: ⊨ e ⇐ A ∪ A ∼ G. By the Join typing rule,

⊢ e ⇒ e : A → B. By the Join protocol rule. ⊨ e ⇐ A∪®pA ∼

G ∪G. By the IH, WF(G), thereforeWF(G ∪G).

Case Alg. ⊢ e ⇒ e@p : a@I → b@p. By case analysis, ⊨
e@p ⇐ a@I ∼ [a@I { p]. By definition, WF([a@I { p]).

Case Inji . ⊨ ιi ⇐ a@I ∼ end. TrivialWF(end).

Case Alt. ⊢ e ⇒ e : A1∪
®pA2 → B1∪

®pB2, withдetRoles(e) ⊆
®p, ⊢ e ⇒ e : A1 → B1, ⊢ e ⇒ e : A2 → B2, and A1 , A2. We

know, by a straightforward induction on the typing rules for

PAlg, that if ⊢ e : A1∪
®pA2 → B, andA1 , A2, then pids(Ai) ⊆

®p. By theAlt protocol rule, ⊨ e ⇐ A1∪
®pA2 ∼ G1∪

®pG2, with

⊨ e ⇐ A1 ∼ G1 ⊨ e ⇐ A2 ∼ G2. By the IH, WF(G1) and

20

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

⟨P,W ⟩ {ℓ ⟨P ′,W ′⟩ P = [pi 7→mi]i ∈I W = [pipj 7→ w]i ∈I , j ∈I

⟨P[p 7→m], W ⟩ {ℓ ⟨P[p 7→m′], W ′⟩

⟨P[p 7→m≫=f], W ⟩ {ℓ ⟨P[p 7→m′
≫=f], W ′⟩

⟨P[p 7→ ret v≫=f], W ⟩ {ϵ ⟨P[p 7→ f v], W ⟩

⟨P[p1 7→ send p2 (v : a)], W [p1p2 7→ w]⟩ {p1p2!⟨a ⟩ ⟨P[p1 7→ ret ()], W [p1p2 7→ v ·w]⟩

⟨P[p1 7→ recv p2 a], W [p2p1 7→ w · v]⟩ {p2p1?(a) ⟨P[p1 7→ ret v], W [p2p1 7→ w]⟩

⟨P[p0 7→ sel (ιi v) {} f1 f2], W ⟩ {ϵ ⟨P[p0 7→ fi v≫= λx . ret (bri x)], W ⟩

⟨P[p0 7→sel(ιi v){p1 · ··pn } f1 f2],W [p0p1 7→w]⟩ {p0p1⊕ιi ⟨P[p0 7→sel(ιi v){p2 · ··pn } f1 f2],W [p0p1 7→li ·w]⟩

⟨P[p1 7→ brn p2 m1 m2], W [p2p1 7→ w · li]⟩ {
p2p1&ιi ⟨P[p1 7→mi≫= λx . ret (bri x)], W [p2p1 7→ w]⟩

⟨P[p1 7→ case f1 f2 (bri v)], W ⟩ {ϵ ⟨P[p1 7→ fi v], W ⟩

Figure 17. Rules for the LTS of Mp terms

get[](x) = x getI×I (x) = getI(π1 x) getI×I(x) = getI(π2 x) getιi I(x) = getI(x)

put[](x,y) = x putI×I (x,y) = (putI(x, π1 y), π2 y) putI×I(x,y) = (π1 y, putI(x, π2 y)) putιi I(x,y) = putI(x,y)

Figure 18. Get/Set for Types from One Hole Contexts

WF(G2). Since pids(Gi) ⊆ pids(p) ∪ pids(A1) ∪ pids(A2) ⊆

pids(r), WF(G1 ∪
®p G2).

Case Id. Trivial by WF(end).

Case Choice. ⊢ e ⇒ e ◦ [p ⊕ ®p] : a@I[p] → B1 ∪ ®pB2,

where pids(e) ⊆ ®p, and I[p] ⊆ ®p. By the Choice and

Alt typing rules, ⊢ e ⇒ e : a@I[ιi p] → Bi . By inver-

sion, the protocol rule must be also Choice: ⊨ [p ⊕ ®p] ⇐
a@I[p] ∼ p → ®p{ιi . Gi }i ∈[1,2]. By the Choice protocol

rule, ⊨ e ⇐ a@I[ιi p] ∼ Gi . By the IH, WF(Gi). Since

pids(Gi) ⊆ pids(e) ∪ pids(I[p) ⊆ ®p, then for all p′ ∈ Gi ,

(p → ®p{ιi . Gi }i ∈[1,2]) ↾ p′ must be defined. Therefore,

WF(p → ®p{ιi . Gi }i ∈[1,2]).

Case Proji . Trivial by WF(end).

Case Comp. ⊢ e1 ◦ e2 ⇒ e1 ◦ e2 : A → C , with ⊢ e1 ⇒ e1 :

B → C and ⊢ e2 ⇒ e2 : A → B. By inversion, the only

possible protocol rule is also Comp. Therefore, ⊨ e1 ◦ e2 ⇐
A ∼ G2 # G1, with ⊨ e2 ⇐ A ∼ G2 and ⊨ e1 ⇐ B ∼ G1.

By the IH, WF(G1) and WF(G2). Also, by the induction on

the derivation of ⊢, we know that A1 ∪
®p A2, if A1 , A2, then

pids(Ai) ⊆ ®p. This implies that ifG1 isG11∪
®pG12, then either

the projection onto p of G1i is the same, or p ∈ ®p. By the

Choice rule, G must be of the form G ′[p → ®p{ιi .Gi }i ∈[1,2]],

therefore, for for all p′ ∈ pids(G1i), the projection of (G2 #
(G11 ∪G12)) ↾ p′ must be defined, which implies thatG2 #G1

is defined.

Case Casei . ⊢ e1 ▽ e2 ⇒ e1 ▽ e2 : a@(ιi I) → B and ⊨

e1 ▽ e2 ⇐ a@(ιi I) ∼ G. By the Casei protocol and typing

rules, ⊨ ei ⇐ A ∼ G and ⊢ ei ⇒ ei : A → B. We conclude

by the IH that WF(G).

Case Split. ⊢ e1 △ e2 ⇒ e1 △ e2 : A → (b × c)@(R1 × R2)

and ⊨ e1 △ e2 ⇐ A ∼ [G2/end]G1. By the IH, we know that

WF(G1) and WF(G2). By straightforward induction on the

structure of G1, if WF(Gi), thenWF([G2/end]G1). □

B.3 Proof of Theorem 5.2
Theorem 5.2. [Protocol Conformance of the Generated Code]
If ⊨ e ⇐ A ∼ G, then JeK (A) complies with protocol G.

Proof. By induction on the structure of the derivation ⊨ e ⇐

A ∼ G.

Case Alt. ⊨ e ⇐ A1 ∪
®p A2 ∼ G1 ∪

®p G2, with ⊨ e ⇐

A1 ∼ G1, ⊨ e ⇐ A2 ∼ G2. By the IH, JeK (Ai) : (Ai ↾
p) → Mp (Gi ↾ p) (Bi ↾ p). Moreover, we know that if

p < ®p, then JeK (A1)(p) = JeK (A2)(p), and G1 ↾ p = G2 ↾ p.
Therefore, by the definition of E1 ⊎ E2, JeK (A1) ⊎

®p JeK (A2) :

Mp (G1 ∪
®p G2) (B1 ∪

®p B2).

Case Id. ⊨ id ⇐ a@I ∼ end. By the definition of J K,
JidK (a@I) = [] : a@I → Mp end a@I .

Case Inji . ⊨ ιi ⇐ a@I ∼ end. By definition, JιiK (A) = [] :

a@I → Mp end (a@(ιi I)).

Case Alg. ⊨ e@pe ⇐ a@I ∼ [a@I { pe], with e : a → b.
We prove by straightforward induction on the structure of

I that f = La@I { pe M : a@I → Mp [a@I { pe] (a@pe): if
I = p, then [p 7→ λx . send pe x, pe 7→ λ_. recv p a], which
clearly follows [a@p { pe]; if I = I1 × I2, then a must be a1 ×
a2, and we have by the IH that Lai@Ii { pe M : Mp [ai@Ii {
pe] (ai@pe); and, finally, if I = ιi I

′
, then a = a1 + a2, and

Lai@I { pe M : Mp [ai@I { pe] (ai@pe), which composed

with [pe 7→ λx . ret (ιi x)] has type Mp [(a1 + a2)@(ιi I) {
pe] ((a1 + a2)@ιi pe).

Case Comp. ⊨ e1 ◦ e2 ⇐ A ∼ G2 #G1. By the Comp rule,

⊨ e2 ⇐ A ∼ G2 and ⊨ e1 ⇐ B ∼ G1. By the IH, Je2K (A) :
A → Mp G2 B and Je1K (B) : B → Mp G1 C . SinceG2 #G1 is

well-formed, then Je2K (A)>=> Je1K (B) : A → Mp (G2 #G1) C ,
since for all p,

21

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

Je2K (A) : A ↾ p → Mp G2 (B ↾ p) and Je1K (B) : B ↾
p → Mp G1 (C ↾ p), so Je2K (A)>=> Je1K (B) : A ↾ p →

Mp (G1 #G2) (C ↾ p).

Case Choice.

⊨ [p ⊕ ®p] ⇐ a@I[pc] ∼ pc → {®p}{ιi . end}i ∈[1,2].
By the definition of [p ⊕ ®p],

p 7→ λx . sel {®p} (getI(x)) (λy. ret (putI(y, x)))
(λy. ret (putI(y, x))),

which has type a@I[p] ↾ p → Mp ({®p} ⊕ {ιi . end}i ∈[1,2]),
and p′ ∈ ®p, p′ 7→ λx . brn p (ret x) (ret x), which has type

a@I[p] ↾ p′ → Mp (p & {ιi . end}i ∈[1,2]). Therefore [p ⊕ ®p] :

a@I[pc] → Mp (pc → {®p}{ιi . end}i ∈[1,2]) a@(I[ιi pc] ∪p®p

I[ιi pc]).

Case Casei . ⊨ e1 ▽ e2 ⇐ (a1 + a2)@(ιi I) ∼ G. Then,

⊨ ei ⇐ ai@I ∼ G. By the IH, JeiK (ai@I) : (ai@I) → Mp G B.
But by the definition of J K, Je1 ▽ e2K ((a1+a2)@(ιi I)) : ((a1+
a2)@(ιi I)) → Mp G B.

Case Proji . ⊨ πi ⇐ A1 ×A2 ∼ end. By definition,

JπiK (A1 ×A2) = [_ 7→ λx . ret (πi x)] : A1 × A2 →

Mp end Ai .

Case Split. ⊨ e1 △ e2 ⇐ A ∼ [G2/end]G1. Then, ⊨ e1 ⇐
A ∼ G1, and ⊨ e2 ⇐ A ∼ G2. By the IH, Je1K (A) : A →

Mp G1 B and Je2K (A) : A → Mp G2 C . By definition,

Je1 △ e2K (A) = Je1K (A) △ Je2K (A) :
A → Mp ([G2/end]G1) (B ×C). □

C Extensionality
Each monadicm represents the code for an individual pro-

cess. The parallel composition of the set of monadic actions

generated from a PAlg expression e : A → B, each applied

to the corresponding value of type v : A ↾ p represents an

execution of the parallel algorithm on an input of type a, if
a@R = A. Recall from Sec. 5 that the transitions are of the

form ⟨P,W ⟩ {ℓ ⟨P ′,W ′⟩, where P is an environment that

contains the code executed by all roles that collaborate to

compute the parallel algorithm, andW represents the shared

unbounded buffers used by each pair of participants to com-

municate. We writew for such buffers, where ∅ is the empty

buffer, v · w is the buffer w extended with value v at the

leftmost position, and w · v is the buffer w extended with

value v at the rightmost position.

Definition C.1 (Type buffers). We write Q = [pipj →

q]i ∈I , j ∈I , where q is a buffer of types, that can be either ∅,

a · q or q · a. Note that values include singleton types that

represent labels: li : li . We say that a buffer w = v1 · · ·vn
contains types q = a1 · · ·am , w : q if: n = m and vi : ai for
all i ∈ [1,n]. We say thatW : Q if for all pairs of roles, pipj ,
W (pipj) : Q(pipj).

Theorem 5.1. [Soundness] Assume E : Mp C A,m : Mp L a
andW : Q . Suppose ⟨E[r 7→ m],W ⟩ {ℓ ⟨E[r 7→ m′],W ′⟩.

Then there exists ⟨C[r 7→ L],Q⟩ →ℓ ⟨C[r 7→ L′],Q ′⟩ such
thatW ′

: Q ′ andm′
: Mp L′ a.

Proof. Straightforward induction on Li , and case analysis

onmi and the rules{ and →, since there is a one-to-one

correspondence between the rules syntactic constructs in

Mp and the local types. For { we need to take several ϵ
transitions until communication ℓ happens. □

Lemma C.2. Assume G, A, B, X : A, and fi : A ↾ pi →

Mp (G ↾ pi) (B ↾ pi) for all i ∈ I . Let P = [pi 7→ fi]i ∈I then
there is a unique Y s.t. P(X) = Y .

Proof. Straightforward consequence of Lemma 5.1, and The-

orem 3.1 in [27]. We know that the traces for G can only

differ in the order of the actions, and that this order must

preserve the dependencies laid out by G. Therefore, there
the result of any possible execution must respect the data

dependencies specified by G. □

Lemma C.3. If (P,W) ⇓ X and ⟨P,W ⟩ { ⟨P ′,W ′⟩, then
(P ′,W ′) ⇓ X .

Theorem 5.3. [Extensionality] Assume e ⇒ e : a@p → b@R

and x : a initially at p. If e x = y, then the execution of JeK (p)
also produces y, distributed across R.

Proof. We prove the following generalised statement. Let

e : a → b s.t. e ⇒ e : A → B, x : a, and ®i s.t. δ ®iA(x) is defined.

Then, there is ®j, s.t. JeK (A)(δ ®iA(x)) = δ
®j
B (JeK x). We define

δ ®iA(x) : A as follows:

δϵI (x) = δI (x),

δ i1 · · ·in
R1∪

®pR2

(x) = br®pi (δ
i2 · · ·in
Ri

1

(x))

δp(x) = [p 7→ x]
δI1×I2 (x,y) = [p 7→ δI1 (x)(p) × δI2 (y)(p)]p∈pids(I1×I2)
διi I (ιi x) = δI (x)

We proceed by induction on the structure of the derivation

⊢ e ⇒ e : A → B:

• Case Join. We have ⊢ e ⇒ e : A∪®pA → B ∪®p B with ⊢

e ⇒ e : A → B. By definition, JeK (A∪®pA) = JeK (A)⊎®p

JeK (A). We have that δ i ·®i
A∪®pA

(x) = bfi1 (δ ®iA(x)). Then,

by the induction hypothesis, there exists ®j s.t.

JeK (A ∪®p A)(δ i ·®i
A∪®pA

(x))

= (JeK (A) ⊎®p JeK (A)) (br®pi δ
®i
A(x))

= br®pi JeK (A) (δ ®iA(x))
= br®pi (δ

®j
B (JeK x))

= δ i ·
®j

B∪®pB
(JeK x)

• Case Alt. We have ⊢ e ⇒ e : A1 ∪
®p A2 → B1 ∪

®p B2

with ⊢ e ⇒ e : A1 → B1, ⊢ e ⇒ e : A2 → B2 and A1 ,

A2. Then, JeK (A1 ∪
®p A2)(δ

i ·®i
A1∪

®pA2

(x)) = (JeK (A1) ⊎
®p

22

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

JeK (A2)) (br®pi (δ ®iAi (x))) = br®pi JeK (Ai) (δ ®iAi (x)). Fi-

nally, by the induction hypothesis, there exists ®j s.t.

br®pi JeK (Ai)(δ
®i
Ai
(x)) = br®pi δ ®j (Bi)(JeK x) = δ i · ®j (B1 ∪

®p

B2)(JeK x).
• Case Alg. We have ⊢ e ⇒ e@p : a@I → b@p, with
⊢ e : a → b. Then, Je@pKa@I (δI (x)) = [pi 7→ La@I {
pM δI (x), by straightforward induction on I , there ex-
ists a trace ⟨([pi 7→ La@I { pM(pi)]
≫=[p 7→ λx . ret(e x)]) δI (x),W ⟩ {ℓ1 · · ·ℓm ⟨[pi 7→

ret vi],W
′⟩, with vi = () for all i s.t. pi , p, and

vj = JeK x for pj = p. By Theorem 5.2, the only possi-

ble interleavings of actions of Je@pK must follow the

protocol [a@I { p]. Since this implies that send/re-

ceive operations must happen respecting the data de-

pendencies, any possible trace must yield the same

result.

• Case Inj. ⊢ ιi ⇒ ιi : A → ιi A straightforward since

JιiK (A) (δA (x)) = διi A(ιi x).
• Case Id. ⊢ id ⇒ id : A → A straightforward, since

JidK (A) (δA(x)) = δA (id x).
• Case Proj. ⊢ πi ⇒ πi : A1 ×A2 → Ai straightforward,

since JπiK (A1 ×A2) (δA1×A2
(x)) = δAi (πi x).

• Case Comp. ⊢ e1 ◦ e2 ⇒ e1 ◦ e2 : A → C with ⊢ e1 ⇒
e1 : B → C and ⊢ e2 ⇒ e2 : A → B. A straightforward

consequence of Theorem 5.2 is that if E1 behaves asG1

and E2 as G2, then (E1 # E2)(X) = E2(E1(X)), since the

permutations of actions of E1 # E2 must respectG1 #G2.

Then, by the definition of J K, Je1 ◦ e2K (A)(δ
®i
A(x)) =

Je1K (B) (Je2K (A) (δ ®iA(x))) By the induction hypoth-

esis: Je1K (B)(Je2K (A)(δ
®i
A(x))) = Je1KB (δ

®j
B (Je2K x)) =

δ
®k
C (Je1K(Je2K x)) = δ

®k
C (Je1 ◦ e2K x)).

• Case Casei . We have ⊢ e1 ▽ e2 ⇒ e1 ▽ e2 : ιi A → B,
with ⊢ ei ⇒ ei : A → B. Note that (διi A(x)) is only
defined if x = ιi x

′
. Then, by definition,

Je1 ▽ e2K (ιi A) (διi A(ιi x ′)) = JeiK (A) (δA(x ′)).

By the IH, JeiK (A) (δA(x ′)) = δ (B)(JeiK x ′) = δ (B)(Je1▽
e2K (ιi x ′)) = δ (B)(Je1 ▽ e2K x).

• Case Split. We have ⊢ e1 △ e2 ⇒ e1 △ e2 : A → B ×C ,
with ⊢ e2 ⇒ e2 : A → C and ⊢ e1 ⇒ e1 : A → C .
By definition, Je1 △ e2K (A) = Je1K (A) △ Je2K (A). By
Theorem 5.2, we know that this behaves as G1 #G2, if

p1 ∼ G1 and p2 ∼ G2. Therefore, we assume again that

the interleavings of the subtraces must not affect the

data dependencies. Then,

(Je1K (A) (δA(x))) △ (Je2K (A) (δA(x))) = δ
®j
B (Je1K x) △

δ
®k
C (Je2K x) = δ

®j · ®k
B×C (Je1 △ e2K x).

• Case Choice. We have ⊢ e ⇒ [p ⊕ ®p] : a@I[p] →

a@(I[ι1 p] ∪®p I[ι2 p]). We have two cases:

1. p 7→ λx . sel (getI(x)) {®p}(λy.putI(y, x))(λy.putI(y, x))

2. ∀p′, p′ , p ∧ p′ ∈ ®p, p′ 7→ λx . brn p (ret x) (ret x)
By case analysis, if getI(x) = ιi v , then we have:

1. p 7→ bri (putI(v, x))
2. ∀p′, p′ , p ∧ p′ ∈ ®p, p′ 7→ ret (bri x)

This is clearly [p ⊕ ®p] δI[p](x) = br®pi δI[ιi p](x) =

δ i
I[ι1 p]∪®pI[ι2 p]

(x).

□

D Generated Code
We show now the generated code for mergesort, unrolling

the recursive function once.

D.1 Input Alg expression

fftTree :: forall n. SINat n -> Int
-> Tree n (D [Complex Double])

:=> Tree n (D [Complex Double])
fftTree SZ w

= lift (intlit SZ &&& (lit w &&& id)
>>> prim "baseFFT")

fftTree (SS x) w

= withCDict (cdictTree @(D [Complex Double]) x)

$

{−Recursive FFT to EVENS and ODDS−}
(fftTree x w

*** fftTree x (w + 2^ toInteger x))

{− Multiply right side by exponential −}
>>> id

*** mapTree x (lit ps2x &&& id >>> mapExp)

0

>>>

{− zipWith add (swap arguments to force butterfly
pattern

− &&& zipWith sub
−}
zipTree x True lvl w addc

&&& zipTree x False lvl (w + 2^ toInteger x)

subc

where
lvl :: Int
lvl = fromInteger (toInteger (SS x) + 1)

ps2x :: Int
ps2x = 2 ^ toInteger (SS x)

fft :: SINat n -> (D [Complex Double]) :=> D [

Complex Double]
fft n =

withCDict (cdictTree @(D [Complex Double]) n)

$

tsplit n deinterleave >>> fftTree n 0 >>> tfold

n (append @@ 0)

fft5 :: D [Complex Double] :=> D [Complex
Double]

23

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

fft5 = withSize 5 fft

Listing 1. Fragment of FFT.hs

D.2 Main C Code and Atomic Functions
These need to be implemented by the programmer.

#include "FFT.h"

#include <inttypes.h>

#include <errno.h>

#include <string.h>

#include <sys/time.h>

#include <stdlib.h>

#include <math.h>

#define REPETITIONS 50

#define BENCHMARKSEQ(s, f) { \

time = 0; \

time_diff = 0; \

time_old = 0; \

var = 0; \

for(int i=0; i<REPETITIONS; i++){ \

in = randvec(s, size); \

start = get_time(); \

out = f(in); \

end = get_time(); \

free_fftvec(in); \

time_diff = end - start; \

time_old = time; \

time += (time_diff - time)/(i+1); \

var += (time_diff - time) * (time_diff -

time_old); \

} \

printf("\tK: %d\n", s); \

printf("\t \tmean: %f\n", time); \

printf("\t \ tstddev : %f\n", REPETITIONS<=1? 0: sqrt(

var / (REPETITIONS - 1))); \

}

#define WARMUP(f) { \

for(int i=0; i<REPETITIONS; i++){ \

in = randvec(0, size); \

out = f(in); \

free_fftvec(in); \

} \

}

double PI = atan2(1, 1) * 4;

int num_stages;

int num_workers;

vec_cplx_t **stages;

vec_cplx_t zip_add(

pair_pair_int_int_pair_vec_cplx_vec_cplx_t in)

{

int lvl = in.fst.fst;

int wid = in.fst.snd;

vec_cplx_t l = in.snd.fst;

vec_cplx_t r = in.snd.snd;

vec_cplx_t lout = stages[lvl][wid];

for(int i = 0; i < l.size; i++){

lout.elems[i] = l.elems[i] + r.elems[i];

}

return lout;

}

vec_cplx_t zip_sub(

pair_pair_int_int_pair_vec_cplx_vec_cplx_t in)

{

int lvl = in.fst.fst;

int wid = in.fst.snd;

vec_cplx_t l = in.snd.fst;

vec_cplx_t r = in.snd.snd;

vec_cplx_t lout = stages[lvl][wid];

for(int i = 0; i < l.size; i++){

lout.elems[i] = l.elems[i] - r.elems[i];

}

return lout;

}

vec_cplx_t cat(pair_vec_cplx_vec_cplx_t in){

in.fst.size *= 2;

return in.fst;

}

void _fft(cplx_t buf[], cplx_t out[], int n, int
step)

{

if (step < n) {

_fft(out, buf, n, step * 2);

_fft(out + step, buf + step, n, step * 2);

for (int i = 0; i < n; i += 2 * step) {

cplx_t t = cexp(-I * PI * i / n) * out[i +

step];

buf[i / 2] = out[i] + t;

buf[(i + n)/2] = out[i] - t;

}

}

}

void show(const char * s, vec_cplx_t in) {

printf("%s", s);

for (int i = 0; i < in.size; i++)

if (!cimag(in.elems[i]))

printf("%g ", creal(in.elems[i]));

24

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

else
printf("(%g, %g) ", creal(in.elems[i]), cimag(

in.elems[i]));

printf("\n");

}

void showstep(int stp, const char * s, vec_cplx_t

in) {

printf("%s", s);

for (int i = 0; i < in.size; i+=stp)

if (!cimag(in.elems[i]))

printf("%g ", creal(in.elems[i]));

else
printf("(%g, %g) ", creal(in.elems[i]), cimag(

in.elems[i]));

printf("\n");

}

vec_cplx_t baseFFT(pair_int_pair_int_vec_cplx_t in

)

{

int lvl = in.fst;

int wid = in.snd.fst;

cplx_t *buf = stages[lvl][wid].elems;

int n = in.snd.snd.size;

_fft(buf, in.snd.snd.elems, n, 1);

return stages[lvl][wid];

}

vec_cplx_t seqfft(vec_cplx_t in)

{

pair_int_pair_int_vec_cplx_t i = {1, {0, in}};

return baseFFT(i);

}

vec_cplx_t map_exp(pair_int_pair_int_vec_cplx_t iv

){

int i = iv.snd.fst;

int ps2x = iv.fst;

vec_cplx_t in = iv.snd.snd;

int step = i * in.size;

for(int k = 0; k < in.size; k++){

in.elems[k] = in.elems[k] * cexp (2 * - I *

PI * (k + step) / (ps2x * in.size));

}

return in;

}

void free_fftvec(){

for(int i = 0; i < num_stages; i++){

free(stages[i][0].elems);

free(stages[i]);

}

free(stages);

}

pair_vec_cplx_vec_cplx_t deinterleave(

pair_int_int_t iin){

int wl = iin.fst;

int wr = iin.snd;

int mid = stages[0][wl].size/2;

stages[1][wl].size = mid;

stages[1][wr].size = mid;

stages[1][wr].elems = stages[1][wl].elems + mid;

for(int i = 0; i < stages[0][wl].size; i+= 2){

stages[1][wl].elems[i/2] = stages[0][wl].elems

[i];

stages[1][wr].elems[i/2] = stages[0][wl].elems

[i+1];

}

memcpy(stages[0][wl].elems, stages[1][wl].elems,

stages[0][wl].size * sizeof(cplx_t));
stages[0][wr].elems = stages[0][wl].elems + mid;

stages[0][wr].size = mid;

for (int i = 2; i < num_stages; i++){

memcpy(stages[i][wl].elems, stages[1][wl].

elems, stages[0][wl].size * sizeof(cplx_t))
;

stages[i][wl].size = mid;

stages[i][wr].elems = stages[i][wl].elems +

mid;

stages[i][wr].size = mid;

}

stages[0][wl].size = mid;

return (pair_vec_cplx_vec_cplx_t) { stages[0][wl

], stages[0][wr] };

}

vec_cplx_t randvec(int depth, size_t s){

num_workers = depth <= 1? 1 : 1 << depth - 1;

num_stages = depth <= 1? 2 : 1 + depth ;

stages = (vec_cplx_t **)malloc(num_stages *

sizeof(vec_cplx_t *));

for (int i = 0; i < num_stages; i++){

stages[i] = (vec_cplx_t *)malloc(num_workers *

sizeof(vec_cplx_t));
stages[i][0].elems = (cplx_t *)calloc(s, sizeof

(cplx_t));

}

stages[0][0].size = s;

25

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

srand(time(NULL));

for (int i = 0; i < s; i++) {

double rand_r = (double)rand() / (double)
RAND_MAX;

double rand_i = (double)rand() / (double)
RAND_MAX;

stages[0][0].elems[i] = rand_r + rand_i * I;

}

for(int j = 1; j < num_stages; j++) {

memcpy(stages[j][0].elems, stages[0][0].

elems, s * sizeof(vec_cplx_t));
stages[j][0].size = s / num_workers;

}

for(int i = 0; i < num_stages; i++) {

for(int j = 1; j < num_workers; j++) {

stages[i][j] = stages[i][j-1];

}

}

return stages[0][0];

}

void usage(const char *nm){

printf("Usage: %s <input_size>\n", nm);

exit(-1);

}

int main(int argc, const char *argv[]) {

setbuf(stdout, NULL);

if (argc <= 1) {

usage(argv[0]);

}

char *endptr = NULL;

errno = 0;

size_t size = strtoimax(argv[1],&endptr,10);

size = (size_t) 1 << (long)ceil(log2(size));
size = size < 256? 256:size;

if (errno != 0) {

printf("%s", strerror(errno));

usage(argv[0]);

}

if (endptr != NULL && *endptr != 0) {

usage(argv[0]);

}

vec_cplx_t in, out;

/∗ allocate memory ∗/
in = randvec(size, size);

/∗ calling generated fft5 ∗/

out = fft5(in);

show("Result : ", out);

free_fftvec();

}

D.3 Automatically Generated C Code

#ifndef __FFT__

#define __FFT__

#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>
#include<complex.h>
typedef double _Complex cplx_t;

typedef struct vec_cplx {

cplx_t * elems; size_t size;

} vec_cplx_t;

typedef struct q_vec_cplx {

volatile unsigned int q_size;

int q_head;

int q_tail;

pthread_mutex_t q_mutex;

pthread_cond_t q_full;

pthread_cond_t q_empty;

vec_cplx_t q_mem[1];

} q_vec_cplx_t;

void q_vec_cplx_put(q_vec_cplx_t *, vec_cplx_t);

vec_cplx_t q_vec_cplx_get(q_vec_cplx_t *);

typedef enum unit {

Unit

} unit_t;

typedef struct pair_int_vec_cplx {

int fst; vec_cplx_t snd;

} pair_int_vec_cplx_t;

typedef struct pair_int_pair_int_vec_cplx {

int fst; pair_int_vec_cplx_t snd;

} pair_int_pair_int_vec_cplx_t;

vec_cplx_t baseFFT(pair_int_pair_int_vec_cplx_t);

vec_cplx_t fft0(vec_cplx_t);

vec_cplx_t fft1(vec_cplx_t);

typedef struct pair_int_int {

26

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

int fst; int snd;

} pair_int_int_t;

typedef struct pair_vec_cplx_vec_cplx {

vec_cplx_t fst; vec_cplx_t snd;

} pair_vec_cplx_vec_cplx_t;

pair_vec_cplx_vec_cplx_t deinterleave(

pair_int_int_t);

vec_cplx_t cat(pair_vec_cplx_vec_cplx_t);

typedef struct
pair_pair_int_int_pair_vec_cplx_vec_cplx {

pair_int_int_t fst;

pair_vec_cplx_vec_cplx_t snd;

}

pair_pair_int_int_pair_vec_cplx_vec_cplx_t

;

vec_cplx_t zip_add(

pair_pair_int_int_pair_vec_cplx_vec_cplx_t);

vec_cplx_t map_exp(pair_int_pair_int_vec_cplx_t);

vec_cplx_t zip_sub(

pair_pair_int_int_pair_vec_cplx_vec_cplx_t);

vec_cplx_t fft2(vec_cplx_t);

vec_cplx_t fft3(vec_cplx_t);

vec_cplx_t fft4(vec_cplx_t);

vec_cplx_t fft5(vec_cplx_t);

vec_cplx_t fft6(vec_cplx_t);

vec_cplx_t fft7(vec_cplx_t);

vec_cplx_t fft8(vec_cplx_t);

#endif

Listing 2. Generated FFT.h

#include "FFT.h"

q_vec_cplx_t ch0 = { 0, 0, 0, { } };

q_vec_cplx_t ch2 = { 0, 0, 0, { } };

q_vec_cplx_t ch3 = { 0, 0, 0, { } };

vec_cplx_t fft2_part_0(vec_cplx_t v_s)

{

pair_int_int_t v_t;

v_t.fst = 0;

v_t.snd = 1;

pair_vec_cplx_vec_cplx_t v_u;

v_u = deinterleave(v_t);

vec_cplx_t v_v;

v_v = v_u.fst;

q_vec_cplx_put(&ch0, v_v);

vec_cplx_t v_w;

v_w = v_u.snd;

q_vec_cplx_put(&ch2, v_w);

vec_cplx_t v_x;

v_x = q_vec_cplx_get(&ch1);

vec_cplx_t v_y;

v_y = q_vec_cplx_get(&ch3);

pair_vec_cplx_vec_cplx_t v_z;

v_z.fst = v_x;

v_z.snd = v_y;

vec_cplx_t v_aa;

v_aa = cat(v_z);

return v_aa;

}

q_vec_cplx_t ch4 = { 0, 0, 0, { } };

q_vec_cplx_t ch5 = { 0, 0, 0, { } };

unit_t fft2_part_1()

{

vec_cplx_t v_ba;

v_ba = q_vec_cplx_get(&ch0);

pair_int_pair_int_vec_cplx_t v_ca;

v_ca.fst = 1;

pair_int_vec_cplx_t v_da;

v_da.fst = 0;

v_da.snd = v_ba;

v_ca.snd = v_da;

vec_cplx_t v_ea;

v_ea = baseFFT(v_ca);

q_vec_cplx_put(&ch4, v_ea);

vec_cplx_t v_fa;

v_fa = q_vec_cplx_get(&ch5);

pair_pair_int_int_pair_vec_cplx_vec_cplx_t

v_ga;

pair_int_int_t v_ha;

v_ha.fst = 2;

v_ha.snd = 0;

v_ga.fst = v_ha;

pair_vec_cplx_vec_cplx_t v_ia;

v_ia.fst = v_ea;

v_ia.snd = v_fa;

v_ga.snd = v_ia;

vec_cplx_t v_ja;

27

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

v_ja = zip_add(v_ga);

q_vec_cplx_put(&ch1, v_ja);

return Unit;

}

unit_t fft2_part_2()

{

vec_cplx_t v_ka;

v_ka = q_vec_cplx_get(&ch2);

pair_int_pair_int_vec_cplx_t v_la;

v_la.fst = 1;

pair_int_vec_cplx_t v_ma;

v_ma.fst = 1;

v_ma.snd = v_ka;

v_la.snd = v_ma;

vec_cplx_t v_na;

v_na = baseFFT(v_la);

pair_int_pair_int_vec_cplx_t v_oa;

v_oa.fst = 2;

pair_int_vec_cplx_t v_pa;

v_pa.fst = 0;

v_pa.snd = v_na;

v_oa.snd = v_pa;

vec_cplx_t v_qa;

v_qa = map_exp(v_oa);

q_vec_cplx_put(&ch5, v_qa);

vec_cplx_t v_ra;

v_ra = q_vec_cplx_get(&ch4);

pair_pair_int_int_pair_vec_cplx_vec_cplx_t

v_sa;

pair_int_int_t v_ta;

v_ta.fst = 2;

v_ta.snd = 1;

v_sa.fst = v_ta;

pair_vec_cplx_vec_cplx_t v_ua;

v_ua.fst = v_ra;

v_ua.snd = v_qa;

v_sa.snd = v_ua;

vec_cplx_t v_va;

v_va = zip_sub(v_sa);

q_vec_cplx_put(&ch3, v_va);

return Unit;

}

void * fun_thread_1_1(void * arg)

{

fft2_part_1();

return NULL;

}

void * fun_thread_2(void * arg)

{

fft2_part_2();

return NULL;

}

vec_cplx_t fft2(vec_cplx_t v_wa)

{

vec_cplx_t v_xa;

pthread_t thread1;

pthread_t thread2;

pthread_create(&thread1, NULL, fun_thread_1_1,

NULL);

pthread_create(&thread2, NULL, fun_thread_2,

NULL);

v_xa = fft2_part_0(v_wa);

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

return v_xa;

}

Listing 3. Fragment of generated FFT.c

E Artifact Appendix
E.1 Abstract
This artifact provides a prototype implementation of PAlg,
embedded in Haskell, along with a number of benchmarks

used to test the scalability of our approach. We provide

scripts to regenerate the execution time measurements that

we used in our paper. This will allow to evaluate our results

on any multi-core shared-memory architecture.

We also provide a small tutorial that is meant to guide

a programmer, step-by-step, in the implementation of a

message-passing parallel algorithm using our library. The

tutorial includes a guide on how to visualise the global types

that correspond to the achieved parallelisations, as well as

any asynchronous optimisations applicable to the generated

message-passing code.

E.2 Artifact check-list (meta-information)
• Algorithm: Message-passing C code generation from first-

order Haskell functions. Global type inference of the com-

munication protocol followed by the parallelisation.

• Program: Haskell libraries Language.CAlg,
noindent Language.CAlg.CSyn and dependencies, as well

as session-arrc, to compile to C Haskell functions built

using such libraries.

• Compilation: GHC >= 8.6 && < 8.8, and C compiler that

supports C11.

• Transformations: Compilation to C, and asynchronous

optimisation pass.

• Binary: Source code and scripts included to generate the

binaries from the sources.

• Data set: Included original run-timemeasurements for com-

parison.

• Hardware: We used a 12-core Intel Xeon CPU E5-2650 v4

@ 2.20GHz. We recommend a shared-memory architecture,

with uniform access times, to measure the overheads of our

approach, not message latencies.

28

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22–23, 2020, San Diego, CA, USA

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

• Execution: We include a script to run the benchmarks.

• Output: Benchmark execution times.

• Experiments: Small, representative benchmarks of com-

mon parallel algorithms.

• How much memory required (approximately)?: 64GB

for using the maximum benchmark input size.

• How much time is needed to complete experiments
(approximately)?: 5 days on the hardware stated in §E.3.2.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: BSD-3.

E.3 Description
E.3.1 How delivered
We provide a docker image with the necessary dependencies: https:
//imperialcollegelondon.box.com/v/cc20-artifact-p43. After down-
loading, the image can be loaded using:

$ sudo docker load -i cc20-artifact-p43.docker

To run the image, run the command:

$ sudo docker run -ti cc20-artifact-p43

File README.md inside the docker image contains additional in-

structions. Our benchmarks, source code and scripts are also pub-

licly available on Github, in https://github.com/session-arr/session-
arr.

E.3.2 Hardware dependencies
We used a 12-core Intel Xeon CPU E5-2650 v4 @ 2.20GHz. We

recommend using a shared-memory architecture, with uniform ac-

cess times, to measure the overheads of our approach, not message

latencies.

E.3.3 Software dependencies
All our dependencies are listed in the Dockerfile in our public

repository. We list them below. To compile our tool:

1. GHC >= 8.6 (not tested with GHC >= 8.8)

2. stack Version 1.9.1

To run our experiments:

1. C compiler that supports C11 (tested with GCC >= 4.8 && <

8.3)

2. glibc (tested with versions >= 2.17 && < 2.29)

3. numactl

To generate the graphs:

1. python (== 2.7)

2. python-matplotlib (== 2)

3. python-pint (== 0.7)

E.3.4 Data sets
We include as part of the artifact the raw data that we obtained for

our benchmarks. These are included under

benchmarks/<bench_name>/data/t_<num_cores>, where
<num_cores> is either 12 or 24. There is additionally a file t_48,
that uses all full 24 cores + hyperthreading. The structure of the

files is:

size: <size>

K: seq

mean: <avg_execution_time>
stddev: <std_dev>

K: 1

mean: ...

stddev: ...

...

Keyword size denotes the size of the inputs for the particular

benchmark. Keyword mean is the average execution time. Keyword

stddev is the standard deviation. We write K: to denote the number

of recursion unfoldings used to produce the parallel version.

Examples of global types for each benchmark are under

benchmarks/<bench_name>/protocol/
<bench_name>_<fun_name>.mpst, where <fun_name> is the func-

tion name in <bench_name>.hs that corresponds to this protocol.

E.4 Installation
Note: this section can be omitted if using our docker image.

We recommend using Stack (https://docs.haskellstack.org/en/stable/
README/#how-to-install). To build our tool:

$ git clone \

https://github.com/session-arr/session-arr

$ cd session-arr

$ stack build

There is no need to install the tool. However, to install it, run:

$ stack install

This will copy the binary session-arrc to a local directory,

usually ${HOME}/.local/bin.
Manual compilation and installation using GHC is also possible,

but we discourage it. Read session-arr/package.yaml to find

out which haskell packages are required.

E.5 Experiment workflow
E.5.1 Automatic
We included script session-arr/benchmark.sh to compile and

run all the benchmarks used in the paper. To customise the amount

of cores, the number of repetitions per experiment and the maxi-

mum input size, run:

$ CORES=<ncores> REPETITIONS=<nreps> \

MAXSIZE=<nsize> ./benchmark.sh

The defaults are:

1. CORES: number of physical cores on your machine

2. REPETITIONS: 50
3. MAXSIZE: 30

The script requires that MAXSIZE ≥ 15.

Note: using MAXSIZE= 30 requires a machine with a large amount

of memory. We run our experiments on a machine with 64GB of

memory.

29

https://imperialcollegelondon.box.com/v/cc20-artifact-p43
https://imperialcollegelondon.box.com/v/cc20-artifact-p43
https://github.com/session-arr/session-arr
https://github.com/session-arr/session-arr
https://docs.haskellstack.org/en/stable/README/#how-to-install
https://docs.haskellstack.org/en/stable/README/#how-to-install

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

CC ’20, February 22–23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

E.5.2 Manual
Clone and build the repository:

$ git clone \

https://github.com/session-arr/session-arr

$ cd session-arr

$ stack build

Navigate to one of the benchmarks

$ cd examples/FFT

Here, there should be two files: FFT.hs and main.c.

$ ls

FFT.hs main.c run.sh

To run our tool, run session-arrc using stack, with the .hs file
as input.

$ stack exec session-arrc -- FFT.hs

The tool should output the list of functions found in module FFT.hs
that are going to be compiled to C, and produce two files FFT.c and
FFT.h. The interface file contains the type definitions and function

signatures of the functions in FFT.c. Finally, compile main.c:

$ gcc FFT.c main.c -o bench -lpthread -lm

To configure the number of repetitions, recompile the benchmark

as follows:

$ gcc FFT.c main.c -DREPETITIONS=<num_reps> \

-o bench -lpthread -lm

You may use run.sh to run the benchmark on a range of inputs.

The usage is:

$./run.sh <num_cores> <max_size>

For example, ./run.sh 2 10 will run the benchmark with sizes

2
9
and 2

10
. The maximum size must be > 9. To generate the

graphs, you need measurements using at least 7 different sizes, i.e.

size must be > 14.

Running each benchmark manually Pass a valid input size to

bench, the output looks as follows (run in a 4-core machine):

$./bench $((2**17))

K: seq

mean: 0.039446

stddev: 0.000713

...

K: 4

mean: 0.011952

stddev: 0.000636

...

Save all execution times to files with the format described in §E.3.4,

as follows:

$ mkdir data

$ echo "size: <size1>" >> data/t_<num_cores>

$./bench <size1> >> data/t_<num_cores>

$...

$ echo "size: <sizeN>" >> data/t_<num_cores>

$./bench <sizeN> >> data/t_<num_cores>

Ensure that there are measurements with at least N > 14 sizes.

Plotting the speedups: Navigate to examples/. The speedups can
be plotted using scripts plotall.sh and plot.py, these will re-

generate the graphs used in our paper. The usage is

./plotall.sh BENCHMARK_DIR CORES, where CORES is the number

of cores used for the experimental workflow. For example:

$./plotall.sh FFT 4

This will generate the graphs for FFT run on 4 cores under

examples/plots.

E.6 Evaluation and expected result
If you followed the experiment workflow, you should find under

examples/plots a series of graphs with the speedups for each

benchmark. To visualise them, we recommend copying them to a

local directory, by running docker cp from outside the docker

container:

$ docker cp \

<NM>:/home/cc20-artifact/session-arr/examples/plots \

<DIR>

Here, <NM> is the container name obtained via docker ps -a, and
<DIR> is the destination path.

Outcome When run on similar hardware to the one that we de-

scribe in the paper, following our workflow, comparable speedups

and scalability to the ones that we reported in the paper should be

observed.

Note: for more reliable results, execution should be done outside
the docker container. Use the container to generate all C code, then

copy it running docker cp from outside the container, as well as

the necessary scripts run.sh, and proceed locally. If you decide to

run the experiments locally, please check §E.3.3 and ensure that

you have all required software.

E.7 Experiment customization
Several aspects can be customised in the benchmark source code,

execution scripts and compilation options:

• Annotations to functions in the .hs files should produce

different parallelisations.

• Files main.c can be compiled using different numbers of

repetitions using -DREPETITIONS=<num_reps>.
• The script benchmark.sh can be run with such number of

repetitions, to reduce execution times. The maximum input

size for the benchmarks, and the number of cores can also

be customised:

$ cd session-arr

$ REPETITIONS=<num_reps> CORES=<cores> \

MAXSIZE=<max_size> ./benchmark.sh

E.8 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/
artifact-review-badging

30

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Outline and Contributions

	2 Algebraic Functional Language
	2.1 Syntax

	3 Parallel Algebraic Language
	3.1 Syntax of PAlg
	3.2 Interfaces
	3.3 Typing of Parallel Algebraic Language

	4 Multiparty Session Types for PAlg
	4.1 Multiparty Session Types
	4.2 Protocol Relation
	4.3 Correctness

	5 Code Generation
	5.1 Message Passing Monad

	6 Parallel Algorithms and Evaluation
	6.1 Benchmarks
	6.2 Evaluation

	7 Related Work
	8 Conclusions and Future Work
	References
	A Further Definitions
	A.1 Algebraic Functional Language
	A.2 Parallel Algebraic Language
	A.3 MPST
	A.4 Mp
	A.5 Mp code generation

	B Deadlock-Freedom
	B.1 Proof of Lemma 4.2
	B.2 Proof of Lemma 4.3
	B.3 Proof of Theorem 5.2

	C Extensionality
	D Generated Code
	D.1 Input Alg expression
	D.2 Main C Code and Atomic Functions
	D.3 Automatically Generated C Code

	E Artifact Appendix
	E.1 Abstract
	E.2 Artifact check-list (meta-information)
	E.3 Description
	E.4 Installation
	E.5 Experiment workflow
	E.6 Evaluation and expected result
	E.7 Experiment customization
	E.8 Methodology

