Compiling First-Order Functions to Session-Typed Parallel Code

David Castro-Perez
Imperial College London
London, UK
d.castro-perez@imperial.ac.uk

Nobuko Yoshida
Imperial College London
London, UK
n.yoshida@imperial.ac.uk

Abstract

Building correct and efficient message-passing parallel programs still poses many challenges. The incorrect use of message-passing constructs can introduce deadlocks, and a bad task decomposition will not achieve good speedups. Current approaches focus either on correctness or efficiency, but limited work has been done on ensuring both. In this paper, we propose a new parallel programming framework, PAlg, which is a first-order language with participant annotations that ensures deadlock-freedom by construction. PAlg programs are coupled with an abstraction of their communication structure, a global type from the theory of multiparty session types (MPST). This global type serves as an output for the programmer to assess the efficiency of their achieved parallelisation. PAlg is implemented as an EDSL in Haskell, from which we: 1. compile to low-level message-passing C code; 2. compile to sequential C code, or interpret as sequential Haskell functions; and, 3. infer the communication protocol followed by the compiled message-passing program. We use the properties of global types to perform message reordering optimisations to the compiled C code. We prove the extensional equivalence of the compiled code, as well as protocol compliance. We achieve linear speedups on a shared-memory 12-core machine, and a speedup of 16 on a 2-node, 24-core NUMA.

Keywords multiparty session types, parallelism, arrows

1 Introduction

Structured parallel programming is a technique for parallel programming that requires the use of high-level parallel constructs, rather than low-level send/receive operations [52; 62]. A popular approach to structured parallelism is the use of algorithmic skeletons [20; 36], i.e. higher-order functions that implement common patterns of parallelism. Programming in terms of high-level constructs rather than low-level send/receive operations is a successful way to avoid common concurrency bugs by construction [38]. One limitation of structured parallelism is that it restricts programmers to use a set of fixed, predefined parallel constructs. This is

[^0]problematic if a function does not match one of the available parallel constructs, or if a program needs to be ported to an architecture where some of the skeletons have not been implemented. Unlike previous structured parallelism approaches, we do not require the existence of an underlying library or implementation of common patterns of parallelism.
In this paper, we propose a structured parallel programming framework whose front-end language is a first-order language based on the algebra of programming [2; 3]. The algebra of programming is a mathematical framework that codifies the basic laws of algorithmics, and it has been successfully applied to e.g. program calculation techniques [4], datatype-generic programming [35], and parallel computing [66]. Our framework produces message-passing parallel code from program specifications written in the front-end language. The programmer controls how the program is parallelised by annotating the code with participant identifiers. To make sure that the achieved parallelisation is satisfactory, we produce as an output a formal description of the communication protocol achieved by a particular parallelisation. This formal description is a global type, introduced by Honda et al. [42] in the theory of Multiparty Session Types (MPST). We prove that the parallelisation, and any optimisation performed to the low-level code respects the inferred protocol. The properties of global types justify the message reordering done by our back-end. In particular, we permute send and receive operations whenever sending does not depend on the values received. This is called asynchronous optimisation [57], and removes unnecessary synchronisation, while remaining communication-safe.

1.1 Overview

Figure 1. Overview
Our framework has three layers: (1) Parallel Algebraic Language (PAlg), a point-free first-order language with participant annotations, which describe which process is in charge of executing which part of the computation; (2) Message

Passing Monad (Mp), a monadic language that represents low-level message-passing parallel code, from which we generate parallel C code; and (3) global types (from MPST), a formal description of the protocol followed by the output Mp code. Fig. 1 shows how these layers interact. PAlg, highlighted in green, is the input to our framework; and Mp and global types (MPST), highlighted in yellow, are the outputs. We prove that the generated code behaves as prescribed by the global type, and any low-level optimisation performed on the generated code must respect the protocol. As an example, we show below a parallel mergesort. mergesort.

```
msort :: (CVal a, CAlg f) => Int -> f [a] [a]
msort n = fix n $ \ms x -> vlet (vsize x) $ \sz ->
    if sz <= 1 then x
    else vlet (sz / 2) $ \sz2 ->
        vlet (par ms $ vtake sz2 x) $ \xl ->
        vlet (par ms $ vdrop sz2 x) $ \xr ->
        app merge $ pair (sz, pair (xl, xr))
```

The return type of msort, f [a] [a], is the type of first-order programs that take lists of values [a], and return [a]. Constraint CAlg restricts the kind of operations that are allowed in the function definition. The integer parameter to function fix is used for rewriting the input programs, limiting the depth of recursion unrolling. par is used to annotate the functions that we want to run at different processes, and function app is used to run functions at the same participant as their inputs. In case this input comes from different participants, first all values are gathered at any of them, and then the function is applied. We can instantiate f either as a sequential program, as a parallel program, or as an MPST protocol. We prove that the sequential program, and output parallel programs are extensionally equal, and that the output parallel program complies with the inferred protocol. For example, interpreting msort 1 as a parallel program produces C code that is extensionally equal to its sequential interpretation, and behaves as the following protocol:

This is a depth 1 divide-and-conquer, where p_{1} divides the task, sends the sub-tasks to p_{2} and p_{3}, and combines the results. If the input is small, p_{1} produces the result directly.

Our prototype implementation is a tagless-final encoding [9] in Haskell of a point-free language. Constraint CAlg is a first-order form of arrows [45; 61], with a syntactic sugar layer that allows us to write code closer to (point-wise) idiomatic Haskell. The remainder of the paper focuses on the language underlying CAlg.

Why Multiparty Session Types There are both practical and theoretical advantages. On the theoretical side, the theory of multiparty session types ensures deadlock-freedom and
protocol compliance. The MPST theory guarantees that the code that we generate complies with the inferred protocol (Theorem 5.2), which greatly simplifies the proof of extensional equivalence (Theorem 5.3), by allowing us to focus on representative traces, instead of all possible interleavings of actions. On the practical side, we perform message reordering optimisation based on the global types [57]. Moreover, an explicit representation of the communication protocol is a valuable output for programmers, since it can be used to assess a parallelisation. (Fig. 4).

1.2 Outline and Contributions

§2 defines the Algebraic Functional Language (Alg), a language inspired by the algebra of programming, that we use as a basis for our work; §3 proposes the Parallel Algebraic Language (PAlg), our front-end language, as an extension of Alg with participant annotations; $\S 4$ introduces a protocol inference relation that associates PAIg expressions with MPST protocols, specified as global types. We prove that the inferred protocols are deadlock-free: i.e. every send has a matching receive. Moreover, we use the global types to justify message reordering optimisations, while preserving communication safety; $\S 5$ develops a translation scheme which generates message-passing code from PAlg, that we prove to preserve the extensionality of the input programs; §6 demonstrates our approach using a number of examples. We will provide as an artifact our working prototype implementation, and the examples that we used in §6, with instructions on how to replicate our experiments.

2 Algebraic Functional Language

This section describes the Algebraic Functional Language (Alg) and its combinators. In functional programming languages, it is common to provide these combinators as abstractions defined in a base language. For example, one such combinator is the split function (\triangle), also known as fanout, or (\&\&\&), in the arrow literature [45] and Control. Arrow Haskell package [61]. Programming in terms of these combinators, avoiding explicit mention of variables is known as point-free programming. Another approach is to translate code written in a pointed style, i.e. with explicit use of variables, to a point-free style [23; 44]. This translation can be fully automated [23; 29]. In our approach, we define common pointfree combinators as syntactic constructs of Alg, and require programs to be implemented in this style. Our implementation provides a layer of syntactic sugar for programmers to refer to variables explicitly, as shown in msort in $\S 1$, but that builds internally a point-free representation.

2.1 Syntax

$$
\begin{aligned}
F_{1}, F_{2} & ::=1|\mathrm{Ka}| F_{1}+F_{2} \mid F_{1} \times F_{2} \\
a, b & :=1|\operatorname{int}| \ldots|a \rightarrow b| a+b|a \times b| F a \mid \mu F \\
e_{1}, e_{2} & :=f|v| \text { const } e|\operatorname{id}| e_{1} \circ e_{2}\left|\pi_{i}\right| e_{1} \Delta e_{2}\left|\iota_{i}\right| e_{1} \nabla e_{2} \\
& |F e| \operatorname{in}_{F} \mid \text { out }_{F} \mid \operatorname{rec}_{F} e_{1} e_{2}
\end{aligned}
$$

In our syntax, f_{1}, f_{2}, \ldots, capture atomic functions, which are functions of which we only know their types; v_{1}, v_{2} are values of primitive types (e.g. integer and boolean); e_{1}, e_{2}, \ldots, represent expressions; F_{1}, F_{2}, \ldots, are functors; and a, b, \ldots, are types. The syntax and semantics are standard [34;53].

Constant, identity functions, and function composition are const, id and o respectively. Products are represented using the standard pair notation: if $x: a$ and $y: b$, then $(x, y): a \times b$. The functions on product types are π_{i} and Δ, and they represent, respectively, the projections, and the split operation: $(f \Delta g)(x)=(f x, g x)$. Coproducts have two constructors, the injections t_{i}, that build values of type $a+b$. The ∇ combinator is the case operation: $\left(f_{1} \nabla f_{2}\right)\left(\iota_{i} x\right)=f_{i} x$. Products and coproducts can be generalised to multiple arguments: $a \times b \times c$ is isomorphic to $a \times(b \times c)$, and to $(a \times b) \times c$. We use $\prod_{i \in[1, n]} a_{i}$ as notation for the product of more than two types; similarly we use \sum for coproducts. The Π notation binds tighter than any other construct. Whenever $\forall i, j \in I, a_{i}=a_{j}=a$, we use the notation $\prod_{n} a$ as a synonym for $\prod_{i \in[1, n]} a_{i}$.

Functors are objects that take types into types, and functions to functions, such that identities and compositions are preserved. In this work, we focus on polynomial functors [31], which are defined inductively: I is the identity functor, and takes a type a to itself; $K b$ is the constant functor, and takes any type to $b ; F_{1} \times F_{2}$ is the product functor, and takes a type a to $F_{1} a \times F_{2} a ; F_{1}+F_{2}$ is the coproduct functor, and takes a type to a coproduct type. A term F e behaves as mapping term e to the I positions in F. For example, if $F=\mathrm{K} a \times \mathrm{I} \times \mathrm{I}$, then applying $F e$ to (x, y, z) yields $(x, e y, e z)$.

Recursion is captured by combinators in, out, rec, and type μF. We use standard isorecursive types [31; 47; 53], where μF is isomorphic to $F \mu F$, and the isomorphism is given by the combinators in_{F} (roll) and out ${ }_{F}$ (unroll). For any polynomial functor $F, \mu F$, and strict functions in_{F} and out F_{F} are guaranteed to exist. In our implementation, $i n_{F}$ is just a constructor (like $\operatorname{inj} j_{i}$). Recursion is $\operatorname{rec}_{F} e_{1} e_{2}$, and it is known as a hylomorphism [53]. A hylomorphism captures a divide-and-conquer algorithm, with a structure described by F, where e_{1} is the conquer term and e_{2} the divide term. Using hylomorphisms requires us to work in a semantic interpretation with algebraic compactness, i.e. in which carriers of initial F-algebras and terminal F-coalgebras coincide (or are isomorphic). Hylomorphisms and exponentials ap : $(a \rightarrow b) \times a \rightarrow b$ allow the definition of a general fixpoint operator [54]. Working with hylomorphisms implies that our input programs may not terminate. We guarantee that, given a terminating input program, we will not produce a non-terminating parallelisation (Theorem 5.3).
Example 2.1 (MergeSort in Alg). Assume a type Ls of lists of elements of type a. Functor $T=\mathrm{K}(\mathrm{Ls})+\mathrm{I} \times \mathrm{I}$ captures the recursive structure of $\mathrm{ms}: \mathrm{Ls} \rightarrow$ Ls. When splitting some $l:$ Ls, we may find one of the two cases described by T : an empty or singleton list, Ls, or a list of size ≥ 2, that
can be split in two halves Ls \times Ls. Assume that a functions $\mathrm{spl}: \mathrm{Ls} \rightarrow T \mathrm{Ls}$, and a function $\mathrm{mrg}: T \mathrm{Ls} \rightarrow \mathrm{Ls}$. We define $\mathrm{ms}=\mathrm{rec}_{T} \mathrm{mrg}$ spl. By the definition of rec:

$$
\begin{aligned}
\mathbf{m s} & =\operatorname{rec}_{T}(\mathrm{id} \nabla \mathrm{mrg}) \mathrm{spl}=(\mathrm{id} \nabla \mathrm{mrg}) \circ T\left(\mathrm{rec}_{T} \mathrm{mrg} \mathrm{spl}\right) \circ \mathrm{spl} \\
& =(\mathrm{id} \nabla \mathrm{mrg}) \circ\left(\mathrm{id}+\left(\mathrm{rec}_{T} \mathrm{mrg} \mathrm{spl}\right) \times\left(\mathrm{rec}_{T} \mathrm{mrg} \mathrm{spl}\right)\right) \circ \mathrm{spl} \\
& =(\mathrm{id} \nabla \mathrm{mrg} \circ(\mathrm{~ms} \times \mathrm{ms})) \circ \mathrm{spl}
\end{aligned}
$$

Function ms first applies spl. Then, if the list was empty or singleton, it returns the input unmodified. Otherwise, ms applies recursively to the first and second halves. Finally, mrg returns a pair of sorted lists.

3 Parallel Algebraic Language

In the previous section we introduced Alg, a point-free functional language. In this section, we extend this language with participant annotations. Annotations occur both at the type and expression levels: at the type level, annotations represent where the data of the respective type is; at the expression level, it represents by whom the computation is performed. This language extension is called PAlg.

The implicit dataflow of the Alg (or PAlg) constructs determines which interactions must take place to evaluate an annotated program. To illustrate this, we use the Cooley-Tukey Fast-Fourier Transform algorithm [21]. The Cooley-Tukey algorithm is based on the observation that an FFT of size n, fft_{n} can be described as the combination of two FFTs of size $n / 2$. We focus its high-level structure:

$$
\left(\operatorname{add} \mathrm{p}_{1} \Delta \operatorname{sub}_{1} \mathrm{p}_{2}\right) \circ\left(\left(\mathrm{fft}_{n / 2} @_{p_{3}} \circ \pi_{1}\right) \Delta\left(\left(\exp \circ \mathrm{fft}_{n / 2}\right) @_{p_{4}} \circ \pi_{2}\right)\right)
$$

Assume that the input is a pair of vectors that contain the deinterleaved input, i.e. elements at even positions on the left, and odd positions on the right. We first compute the fft of size $n / 2$ to the even and odd elements at p_{3} and p_{4} respectively. Then, the first half of the output is produced by adding the results pairwise (at p_{1}), and the second half by subtracting them (at p_{2}). In order to evaluate this expression, we need to know where is the input data. This is specified by the programmer as an annotated type, which we call interface. Suppose that the interface specifies that the even elements are at p, and the odd elements at p^{\prime}. The interface that represents this scenario is (vec $\times v e c) @\left(p \times p^{\prime}\right)$, i.e. an annotated pair of vectors, with the first component at p, and the second component at p^{\prime}. By keeping track of the locations of the data, we obtain type (vec \times vec) $@\left(p_{1} \times p_{2}\right)$, which is the output (or codomain) interface the PAlg expression. We also refer to the annotations (e.g $p_{1} \times p_{2}$) as interfaces, whenever there is no ambiguity. We write $\mathrm{fft}_{n}:(\mathrm{vec} \times \mathrm{vec}) @\left(p \times \mathrm{p}^{\prime}\right) \rightarrow(\mathrm{vec} \times \mathrm{vec}) @\left(\mathrm{p}_{1} \times \mathrm{p}_{2}\right)$ to represent the input and output interfaces of fft_{n}.

Consider now $e_{1} @ p_{1} \nabla e_{2} @ p_{2}$. The output interface of this expression is either p_{1} or p_{2}, depending on whether the input is the result of applying t_{1} or t_{2}. We represent such interfaces using unions: $e_{1} @ \mathrm{p}_{1} \nabla e_{2} @ \mathrm{p}_{2}:(a+b) @ \mathrm{p} \rightarrow c @\left(\mathrm{p}_{1} \cup \mathrm{p}_{2}\right)$. Since p contains a value of a sum type $a+b, \mathrm{p}$ is responsible for notifying both p_{1} and p_{2} which branch needs to be taken in the
control flow. Incorrectly notifying the necessary participants will produce incorrect parallelisations that might deadlock. For example, consider the expression $e_{0} @ p_{0} \circ\left(e_{1} @ \mathrm{p}_{1} \nabla e_{2} @ \mathrm{p}_{2}\right)$. Assuming that the input at p, p needs to notify p_{0}, otherwise p_{0} will be stuck. To avoid such cases, and to compute the interfaces of an expression, we define a type system for PAlg.

3.1 Syntax of PAlg

$$
\begin{gathered}
I::=\mathrm{p}\left|\iota_{i} I\right| I \times I \quad R:=I \mid R \cup \overrightarrow{\mathrm{p}} R \quad P::=R \rightarrow R \\
\mathrm{e}::=e @ \mathrm{p}|[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]| \mathrm{id}|\mathrm{e} \circ \mathrm{e}| \pi_{i}|\mathrm{e} \Delta \mathrm{e}| \iota_{i} \mid \mathrm{e} \nabla \mathrm{e}
\end{gathered}
$$

The syntax of PAIg is that of AIg, extended with participant annotations (red). Note that certain Alg constructs can only occur under annotations (e@p), e.g: in, out and rec. This implies that recursive functions need to be annotated at a single participant. To parallelise recursive functions, they need first to be rewritten into a suitable form, and then annotate the resulting expression. At the moment, we support automatic recursion unrolling up to a user-specified depth. We provide an overview of the main syntactic constructs of PAlg: annotations, interfaces, and annotated functions.

Annotations are ranged over by R, R^{\prime}, \ldots. We define them in two layers, I, or simple annotations that cannot contain choices (\cup), and R. This way, we ensure that choices only occur at the topmost level. Simple annotations are: participant ids p , that identify processes; products of interfaces $I_{1} \times I_{2}$; and tagged interfaces $\iota_{i} I$, that keep track of the branch of the choice that led to I. A choice $R_{1} \cup \vec{P} R_{2}$ describes an scenario that is the result of a branch in the control flow, where a value can be found at either R_{1} or R_{2}. Here, $\overrightarrow{\mathrm{p}}=\mathrm{p}_{1} \cdots \mathrm{p}_{n}$ are the participants whose behaviour depends on the path in the control flow. Finally, arrows P of the form $R_{1} \rightarrow R_{2}$ represent the input/output annotations of a parallel program.

Interfaces are annotated types. They range over A, B, \ldots, and are of the form $a @ R$, which means that values of type a are distributed across R. We require annotated types to be well-formed, $\mathrm{WF}(a @ R)$, which implies that the structure of a matches that of R. We write I to represent one-hole contexts for interfaces, with $\mathcal{I}[\mathrm{p}]$ representing the interface that results of placing p at the hole in I.

Annotated functions are ranged over by e, e^{\prime}. The annotations are introduced using $e @ p$, where e is an unannotated Alg expression, and p is a single participant identifier. These annotations need to be set by the programmer, but their introduction can be also automated. Additionally, we introduce the choice point annotations: $[p \oplus \vec{p}]$. This annotation specifies that p performs a choice, and notifies \vec{p}. Choice points can be introduced fully automatically by collecting all participants whose behaviour depends on the value of a sum type.

3.2 Interfaces

An interface represents a state in a concurrent system: the set of participants, and the types of the values that they
contain. We use mappings from participants to values to represent such states: $V:=[p \mapsto v]_{p \in \mathcal{P}}$. The programmer, additionally to writing an Alg (PAlg) expression, will need to provide an input interface, i.e. where is the input to the parallel program. Consider, for example, the interface int p_{i}. Given a concurrent system with participants $\mathrm{p}_{o} \cdots \mathrm{p}_{n}$, we know that p_{i} contains a value of type int: $\left[\cdots p_{i} \mapsto 42 \cdots\right]$. An interface with a product of participants $(a \times b) @\left(\mathrm{p}_{1} \times \mathrm{p}_{2}\right)$ represents a state in which p_{1} contains an element of type a, and p_{2} an element of type b, e.g a possible state represented by (int $\times \mathrm{vec}) @\left(\mathrm{p}_{1} \times \mathrm{p}_{2}\right)$ is: $\left[\cdots \mathrm{p}_{1} \mapsto 42 \cdots \mathrm{p}_{2} \mapsto[1,1,2, \ldots] \cdots\right]$. An interface $t_{i} I$ represents the same state as interface I, but we statically know that this state was reached after an i th injection. Then, if a participant requires the value at I, this participant will apply the necessary injections to the received values. Finally, an interface $a @\left(R_{1} \cup \overrightarrow{\mathrm{P}} R_{2}\right)$ means that the state might be either R_{1} or R_{2}, and that all participants $\overrightarrow{\mathrm{p}}$ should be notified of the state.

Well-formedness The above examples are of well-formed interfaces: int@ p_{i}, (int \times vec $) @\left(p_{1} \times p_{2}\right)$. Well-formedness ensures that interfaces represent valid states. Generally, $a @ R$ is well-formed if a matches the structure of R. For example, int $@\left(\mathrm{p}_{1} \times \mathrm{p}_{2}\right)$ is ill-formed, since a single integer cannot be at two different participants. An interface $a @\left(R_{1} \cup R_{2}\right)$ requires that both $a @ R_{1}$ and $a @ R_{2}$ are well-formed. So, (vec \times $\mathrm{vec}) @\left(\left(p_{1} \times p_{2}\right) \cup p_{3}\right)$ is well-formed because we can have vec p_{1} and vec@ p_{2}, or $($ vec \times vec $) @ p_{3}$. However, int $@\left(\left(p_{1} \times\right.\right.$ $\left.\left.p_{2}\right) \cup p_{3}\right)$ is ill-formed, because int $\varrho\left(p_{1} \times p_{2}\right)$ is ill-formed.

3.3 Typing of Parallel Algebraic Language

We introduce a relation that associates Alg expressions with potential parallelisations PAlg, and their interfaces. This relation can be seen as a type system for both Alg and PAlg. As a type system for PAIg, this relation provides a way to check or infer the output interface of some e. By using this relation as a type system for Alg, we can explore potential parallelisations of some input expression e. Additionally, the type system ensures that all choice point annotations contain every participant that depends on each particular choice.

Typing Rules A judgement of the form $\vdash e \Rightarrow \mathrm{e}: A \rightarrow B$ means that the PAlg expression e is one potential parallelisation of the AIg expression e, with domain interface A and codomain interface B. The intuition of a judgement $\vdash e \Rightarrow \mathrm{e}: a @ R_{1} \rightarrow b @ R_{2}$ is that the participants in e collectively apply computation e to the value of type a distributed across R_{1}, and produce a value of type b distributed across R_{2}. We sometimes omit e and write $\vdash \mathrm{e}: A \rightarrow B$. We ensure that given any e and e such that they are typeable against interfaces $a @ R_{a} \rightarrow b @ R_{b}$, then e must have type $a \rightarrow b$.
Lemma 3.1. If $e \Rightarrow \mathrm{e}: a @ R_{a} \rightarrow b @ R_{b}$, then $e: a \rightarrow b$.
The typing rules (Fig. 2) must ensure that the participants involved in a choice are notified, and that Alg expressions
are correctly expanded. Rule Choice specifies that a choice point may be introduced at any point when a participant contains a value of a sum-type. In such cases p sends the tag of the sum-type value to any other participant whose behaviour depends on it. After the choice point, the interface is $I\left[\iota_{1} \mathrm{p}\right] \cup^{\vec{p}} I\left[\iota_{2} \mathrm{p}\right]$, with the constraint that the participants in \mathcal{I} [p] must be in $\overrightarrow{\mathrm{p}}$. Rule Alt specifies that e must be the parallelisation of e, considering both A_{1} and A_{2} as input interfaces. The output interface is the union of B_{1} and B_{2}. Any participant in e must be notified of the choice pids $(\mathrm{e}) \subseteq \overrightarrow{\mathrm{p}}$, to make sure that they perform the interactions that correspond to the correct A_{i}. Rule Alg specifies that given any e and participant $\mathrm{p}, e @ p$ is a valid parallelisation, with output interface $b @ p$. Finally, rule Ext is crucial for exploring potential parallelisations. It states that if e is the parallelisation of e_{2}, and e_{2} is extensionally equal to e_{1}, then e is also a parallelisation of e_{1}. The undecidability of this rule requires that the programmer specifies rewriting strategies both for checking and inference.

Rewriting and Annotation Strategies We use rewriting strategies when exploring potential parallelisations of functions. This is inference problem (2) below. Let ?i be metavariables. The two inference problems that we are interested in are: 1 . Solving $\vdash e \Rightarrow \mathrm{e}: A \rightarrow$?0 obtains the output interface for e, with input interface A. 2. Solutions of $\vdash e \Rightarrow$?0 : A ? 1 are potential parallelisations of e, and their output interface. Solving (1) is straightforward. Problem (2) requires to decide how to introduce role annotations (rule Alg), how to perform rewritings (rule Ext), and where to introduce choice points (rule Сноісе). Introducing choice points is straightforward: we introduce them as early as possible, as soon as an input interface contains a sum-type at a participant. For introducing annotations and doing Alg rewritings, the programmer has to specify annotation and rewriting strategies. At the moment, our tool allows the developer to introduce annotations explicitly, or to select sub-expressions that will be annotated with fresh new participants. The rewriting strategies that our current implementation supports are unrollings of recursive definitions. However, our tool is extensible: the equivalences used in the rewritings are a parameter.

Example 3.2 (Mergesort). Consider the mergesort definition $\mathrm{ms}=\mathrm{rec}_{T} \mathrm{mrg} \mathrm{spl}$. Solutions to the inference problem $\vdash \mathrm{ms} \Rightarrow$? $0: \mathrm{Ls} @_{0} \rightarrow$? 1 provide the alternative parallelisations of ms. By choosing a rewriting strategy that unrolls ms once, and annotates any remaining instances of ms at fresh new participants, we produce the following PAlg expression:

```
\(\vdash(\mathrm{id} \nabla(\mathbf{m r g} \circ(\mathbf{m s} \times \mathbf{m s}))) \circ \mathrm{spl}\)
    \(\Rightarrow\left(i d \nabla\left(m r g @ \mathrm{p}_{1} \circ\left(\mathrm{~ms}_{\mathrm{@}}^{2} \mathrm{p}_{2} \circ \pi_{1} @ \mathrm{p}_{1}\right) \Delta\left(\mathrm{ms}_{\mathrm{p}} \mathrm{p}_{3} \circ \pi_{2} @ \mathrm{p}_{1}\right)\right)\right)\)
        \(\circ\left[p_{1} \oplus p_{1} p_{2} p_{3}\right] \circ \operatorname{spl}_{1} p_{1}\)
    \(: \operatorname{Ls} @_{0} \rightarrow \operatorname{Ls}_{0} \mathrm{p}_{1} \cup^{\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}} \mathrm{Ls}^{\mathrm{C}} \mathrm{p}_{1}\)
```


Alt
$\vdash e \Rightarrow \mathrm{e}: A_{1} \rightarrow B_{1} \quad \vdash e \Rightarrow \mathrm{e}: A_{2} \rightarrow B_{2} \quad A_{1} \neq A_{2} \quad \mathrm{pids}(\mathrm{e}) \subseteq \vec{r}$
$\vdash e \Rightarrow \mathrm{e}: A_{1} \cup \overrightarrow{\mathrm{P}} A_{2} \rightarrow B_{1} \cup \overrightarrow{\mathrm{P}} B_{2}$
Choice

Figure 2. Typing rules of PAlg (selected)

4 Multiparty Session Types for PAlg

The dataflow of the PAlg constructs determine the communication protocol of the annotated expression. However, it is hard to manually check what this communication structure is. Recall the mergesort PAlg expression of §3, ms, and suppose that we want to produce a parallelisation for a 32 -core machine. Then, we might be interested in using a 5 -unfolding of ms , so that we have ms executing concurrently on all of the cores. How do we know, for such cases, that we produced a sensible parallelisation? As an example, suppose we use an annotation strategy that produces the following code:

```
(id \nabla(mrg@\mp@subsup{p}{1}{}\circ(ms@\mp@subsup{p}{2}{}\circ\mp@subsup{\pi}{1}{}@\mp@subsup{p}{1}{})\Delta(ms@\mp@subsup{p}{2}{}\circ\mp@subsup{\pi}{2}{}@\mp@subsup{p}{1}{})))
    \circ[\mp@subsup{p}{1}{}\oplus\mp@subsup{p}{1}{}\mp@subsup{p}{2}{}]\circspI@\mp@subsup{p}{1}{}:Ls@\mp@subsup{p}{0}{}->Ls@\mp@subsup{p}{1}{}\cup\mp@subsup{\cup}{1}{}\mp@subsup{p}{2}{}
```

Notice that this example will run correctly, and produce the expected result. However, the achieved PAlg expression is not parallel! If we represent the implicit dataflow of this expression as explicit communication, the reason becomes apparent. We use global types from multiparty session types to provide an explicit representation of the communication structure of the program:

$$
\begin{aligned}
& \mathrm{p}_{0} \rightarrow \mathrm{p}_{1}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}\left\{\iota_{1} .\right. \text { end; } \\
& \left.\quad \iota_{2} \cdot \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{2} \rightarrow \mathrm{p}_{1}: \text { Ls } \times \text { Ls. end }\right\}
\end{aligned}
$$

This global type represents the following protocol: 1. participant p_{0} sends a list to $p_{1} ; 2$. p_{1} sends to p_{2} either t_{1} or ι_{2}, and if the label is ι_{1}, the protocol ends; 3. if p_{1} sent ι_{2}, then p_{1} sends to p_{2} two lists, in two different interactions; and 4. p_{2} replies with a message to p_{1} with a pair of lists. It is clear from this protocol that p_{1} and p_{2} are dependent on each others' messages, and that p_{2} cannot perform any computation in parallel. The larger the expression is, the harder avoiding these wrong annotations will become. By changing the annotation strategy, we produce the following parallel structure, where p_{2} and p_{3} can operate in parallel:

$$
\begin{aligned}
& \mathrm{p}_{0} \rightarrow \mathrm{p}_{1}: \text { Ls. } \mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{2} \mathrm{p}_{3}\right\}\left\{\iota_{1} . \text { end } ;\right. \\
& \left.\quad \iota_{2} . \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: \text { Ls. } \mathrm{p}_{2} \rightarrow \mathrm{p}_{1}: \text { Ls. } \mathrm{p}_{3} \rightarrow \mathrm{p}_{1}: \text { Ls. end }\right\}
\end{aligned}
$$

This abstraction of the communication protocol of an achieved parallelisation is therefore useful as an output for the programmer. Additionally, these global types are a contract that
can be enforced on the generated code. We use this for proving that our back-end is correct, but also for applying lowlevel code optimisations (e.g. message reordering) guided by this global type, ensuring that they do not introduce any run-time error. For example, when we find in a global type $p_{1} \rightarrow p_{2} . p_{2} \rightarrow p_{3}$, we mark the send/receive actions for p_{2} as point of potential optimisation. If the messages exchanged do not depend on each other, we permute them, performing first the send action, so that p_{2} is not blocked by a receive action. This is known as asynchronous optimisation [57].

4.1 Multiparty Session Types

Our global types are based on the most commonly used in the literature [22]. We start with a set of participant identifiers, $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots$, and a set of labels, $\iota_{1}, \iota_{2}, \ldots$. These are considered as natural numbers: participant identifiers uniquely identify an independent unit of computation, e.g. thread or process ids; and labels are tags that differentiate branches in the data/control flow. The syntax of global (G) and local (L) types in MPST is given as:

```
\(G::=\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a . G \mid \mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{j}\right\}_{j \in[2, n]}:\left\{\iota_{i} \cdot G_{i}\right\}_{i \in I}\)
    \(|\mu X . G| X \mid\) end
```

$L::=\mathrm{p}!\langle a\rangle . L|\mathrm{p} ?(a) . L| \mathrm{p} \&\left\{\iota_{i} \cdot L_{i}\right\}_{i \in I} \mid\left\{\mathrm{p}_{j}\right\}_{j \in[2, n]} \oplus\left\{\iota_{i} \cdot L_{i}\right\}_{i \in I}$
$|\mu X . L| X \mid$ end

Global type $\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a . G$ denotes data interactions from p_{1} to p_{2} with value of type a; Branching is represented by $\mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{j}\right\}_{j \in[2, n]}:\left\{\iota_{i} \cdot G_{i}\right\}_{i \in I}$ with actions ι_{i} from p_{1} to all $\mathrm{p}_{j}, j \in[2, n]$. end represents a termination of the protocol. $\mu X . G$ represents a recursive protocol, which is equivalent to [$\mu X . G / X] G$. We assume recursive types are guarded.

Each participant in G represents a different participant in a parallel process. Local session types represent the communication actions performed by each participant, i.e. the role of the participant. Since each participant has a unique role, we sometimes refer to them interchangeably. The send type $\mathrm{p}!\langle a\rangle . L$ expresses the action of sending of a value of type a to p followed by interactions specified by L. The receive type $\mathrm{p} ?(a) . L$ is the dual, where a value with type a is received from p. The selection type represents the transmission to all p_{j} of label ι_{i} chosen in the set of labels $(i \in I)$ followed by L_{i}. The branching type is its dual. pids $(G) /$ pids (L) denote the set of participants that occur in G / L.

Projection We use a standard definition of projection that uses the full merging operator [24; 27], which allows more well-formed global types than the original projection rules [42]. We write $G \upharpoonright \mathrm{p}$ for the projection of G onto the role of p. We illustrate the projection with an interaction $p_{0} \rightarrow$ $\mathrm{p}_{1}: a . G$. The projection onto p_{0} is $\mathrm{p}_{1}!\langle a\rangle .\left(G \upharpoonright \mathrm{p}_{0}\right)$, the projection onto p_{1} is $\mathrm{p}_{0} ?(a) \cdot\left(G \upharpoonright \mathrm{p}_{1}\right)$, and the projection onto any other role p is $G \upharpoonright p$. Projection on choices is similar, with the difference that whenever the role is not at the receiving or sending ends of the choice, the different branches must be merged. Two local types can be merged when they

$$
\begin{aligned}
& \text { Choice } \\
& \bar{\vDash} \overline{\mathrm{p}} \oplus \overrightarrow{\mathrm{p}}] \Leftarrow a[b+c] @ I[\mathrm{p}] \sim \mathrm{p} \rightarrow\{\overrightarrow{\mathrm{p}} \backslash \mathrm{p}\}\left\{\iota_{1} \text {. end; } \iota_{2} \text {. end }\right\} \\
& \stackrel{\text { Alt }}{\vDash} \stackrel{\mathrm{e}}{\stackrel{\mathrm{~A}}{ } \stackrel{A_{1} \sim G_{1} \quad \vDash \mathrm{e} \Leftarrow A_{2} \sim G_{2} \quad \text { Alg }}{ } \quad \vdash e: a \rightarrow b} \\
& \frac{\vDash \mathrm{e} \Leftarrow A_{1} \sim G_{1} \quad \vDash \mathrm{e} \Leftarrow A_{2} \sim G_{2}}{\vDash \mathrm{e} \Leftarrow A_{1} \cup^{\overrightarrow{\mathrm{p}}} A_{2} \sim G_{1} \cup G_{2}} \quad \frac{\vdash e: a \rightarrow b}{\vDash e @ \mathrm{p} \Leftarrow a @ I \sim[a @ I \sim \mathrm{p}]} \\
& {\left[a @ \mathrm{p}_{1} \leadsto \mathrm{p}_{2}\right]=\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a \text {. end, if } \mathrm{p}_{1} \neq \mathrm{p}_{2} ;[a @ \mathrm{p} \leadsto \mathrm{p}]=\text { end; }} \\
& {\left[(a \times b) @\left(I_{a} \times I_{b}\right) \leadsto \mathrm{p}\right]=\left[a @ I_{a} \leadsto \mathrm{p}\right] \stackrel{\left[b @ I_{b} \leadsto \mathrm{p}\right] \text {; and }, ~ ; ~}{\text { a }}} \\
& {\left[\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \leadsto \mathrm{p}\right]=\left[a_{i} @ I \sim \mathrm{p}\right]}
\end{aligned}
$$

Figure 3. Protocol Relation (selected)
are the same, or they branch on the same role, and their continuations can be merged.

We use a standard definition of well-formedness that states that a global type is well formed if ts projection on all its roles is defined. We denote: $\operatorname{WF}(G)=\forall \mathrm{p} \in \operatorname{pids}(G), \exists L, G \upharpoonright \mathrm{p}=L$.

4.2 Protocol Relation

We introduce now the set of rules that associate a PAlg expression and domain interface with their global type (Fig. 3). We extend the syntax of global types with $G_{1} \cup \vec{p} G_{2}$ to represent the external choices, i.e. G_{i} are the continuations for both branches of a previous choice that affects \vec{p}. We also extend the local types, and projection rules $\left(G_{1} \cup \vec{p} G_{2}\right)=$ $G_{1} \upharpoonright \mathrm{p} \cup \overrightarrow{\mathrm{P}} G_{2} \upharpoonright \mathrm{p}$, and the notion of well-formedness. We say that an external choice is well-formed, $\operatorname{WF}\left(G_{1} \cup \overrightarrow{\mathrm{p}} G_{2}\right)$, if $\mathrm{WF}\left(G_{1}\right), \mathrm{WF}\left(G_{2}\right)$, and for all $\mathrm{p} \notin \overrightarrow{\mathrm{p}}, G_{1} \upharpoonright \mathrm{p}=G_{2} \upharpoonright \mathrm{p}$. We omit the annotation of the participants involved in the choice whenever it is not needed. The relation $\vDash p \Leftarrow A \sim(G, B)$ specifies that the parallel code for p and input interface A will behave as global type G, and output interface B (Fig. 3). The rules are similar to the typing rules of PAlg.

Example 4.1 (Mergesort Protocol). The protocol for Example 3.2 is obtained by solving:
$\vDash\left(\operatorname{id} \nabla\left(m r g @ p_{1} \circ\left(m s @ p_{2} \circ \pi_{1} @ p_{1}\right) \Delta\left(m s @ p_{3} \circ \pi_{2} @ p_{1}\right)\right)\right) \circ\left[p_{1} \oplus\right.$ $\left.\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}\right] \circ \mathrm{spl}^{\left(\mathrm{p}_{1}\right.} \Leftarrow \mathrm{Ls}$ @ $_{1} \sim$? $\mathbf{0}$.

$$
\begin{aligned}
& \mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{2} \mathrm{p}_{3}\right\}\left\{\begin{array}{l}
\left\{\begin{array}{l}
\iota_{1} \cdot \mathrm{end} ; \\
\iota_{2} \cdot \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: \text { Ls.end }
\end{array}\right\} \stackrel{\circ}{\left(\mathrm{end} \cup\left(\mathrm{p}_{2} \rightarrow \mathrm{p}_{1}: \text { Ls. } \mathrm{p}_{3} \rightarrow \mathrm{p}_{1}: \text { Ls.end }\right)\right)} \\
=\mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{2} \mathrm{p}_{3}\right\}\left\{\begin{array}{l}
\iota_{1} \cdot \mathrm{end} ; \\
l_{2} \cdot \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \\
\mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: \text { Ls. } \\
\mathrm{p}_{2} \rightarrow \mathrm{p}_{1}: \text { Ls. } \\
\mathrm{p}_{3} \rightarrow \mathrm{p}_{1}: \text { Ls.end }
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

4.3 Correctness

We guarantee that for e s.t. $\vdash e \Rightarrow \mathrm{e}: A \rightarrow B$, with A and B well-formed, there exists a protocol G and that it is well-formed and deadlock-free.

Lemma 4.2. [Existence of Associated Global Type] For all $\mathrm{WF}(A)$, if $\vdash \mathrm{e}: A \rightarrow B$, then there exists G s.t. $\vDash \mathrm{e} \Leftarrow A \sim G$.

Lemma 4.3. [Protocol Deadlock-Freedom] For all WF(A), if $\vdash \mathrm{e}: A \rightarrow B$ and $\vDash \mathrm{e} \Leftarrow A \sim G$, then $\mathrm{WF}(G)$.

Remark. Since the local type abstracts the behaviour of multiparty typed processes, a well-formed global type ensures the end-point processes (programs) typed by that global type are guaranteed to satisfy the properties (such as safety and deadlock-freedom) of local types [27; 43].

5 Code Generation

This section addresses the problem of generating low-level parallel code from PAlg expressions. We prove that the generated code complies with its inferred protocol, which has several implications: (1) code generation does not introduce any concurrency errors, and the parallel code is therefore deadlock-free; and (2) we can prove that the generated code is extensionally equal to the input expression by considering only a representative trace, since any valid interleaving of actions must respect this protocol. The target language of our tool is an indexed monad, the Message Passing Monad ($M p$). From Mp, we implement our low-level C backend. We implement an untyped version of Mp as a deep embedding in Haskell, and session typing on top of it. This is suitable for code generation: we only generate parallel code if the monadic actions are typeable against the respective local types. Our definition of $M p$ has significant differences to other embeddings of session types in Haskell, such as the Session monad by Neubauer and Thiemann [58]. First, our Mp monad is deeply embedded in Haskell, and secondly, we use type indices instead of an encoding of session types in terms of type classes. Our approach is better suited for compilation since we manipulate session types, and postpone session typing until code generation.

5.1 Message Passing Monad

Mp comprises four basic operations: send, receive, choice and branching, with a standard (asynchronous) semantics. Additionally, for composing actions that depend on the same choice, we introduce case expressions. Our definition of $M p$ is based on the free monad construction:

$$
\begin{aligned}
v & :=x|(v, v)| \iota_{i} v|\cdots| \text { ev } \\
m_{i}: & =\operatorname{ret} v \mid \text { send } \mathrm{p} v m \mid \operatorname{recv} \mathrm{p} \text { a } f \mid \operatorname{sel} \overrightarrow{\mathrm{p}} v f_{1} f_{2} \\
& \mid \text { brn p } m_{1} m_{2} \mid \text { case } f_{1} f_{2} \quad f::=\lambda x . m
\end{aligned}
$$

Values v are either primitive values, tagged values $t_{i} v$, pairs of values, or the result of applying an Alg expression e to a value. We use standard notation for the monadic unit (ret), bind (\gg) and Kleisli composition: $f_{1} \gg f_{2}=\lambda x . f_{1} x \gg f_{2}$. The message-passing constructs are standard, except sel, brn and case, which are used for performing choices, and composing actions that depend on the same choice.

Each monadic computation f or m has a type $m: \operatorname{Mp} L a$, where a is the return type of m, and L is the type index of Mp , and it represents the local type that corresponds to the behaviour of the term m. There is almost a one to one correspondence between the terms L and the monadic actions m, so we omit the full definition. The types of the constructs that deal with choices use a new type, \uplus, that is isomorphic to sum types, but that can only be constructed and eliminated by using the corresponding monadic constructs:

$$
\begin{aligned}
& \text { sel } \overrightarrow{\mathrm{p}}: a+b \rightarrow\left(a \rightarrow M \mathrm{Mp} L_{1} c_{1}\right) \rightarrow\left(b \rightarrow M \mathrm{M} L_{2} c_{2}\right) \\
& \rightarrow M \mathrm{Mp}\left(\overrightarrow{\mathrm{p}} \oplus\left\{\iota_{1} \cdot L_{1} ; \iota_{2} \cdot L_{2}\right\}\right)\left(c_{1} \uplus c_{2}\right) \\
& \text { brn } \mathrm{p}: \operatorname{Mp} L_{1} a_{1} \rightarrow M \mathrm{Mp} L_{2} a_{2} \\
& \rightarrow M \mathrm{Mp}\left(\mathrm{p} \&\left\{\iota_{1} \cdot L_{1} ; t_{2} \cdot L_{2}\right\}\right)\left(a_{1} \uplus a_{2}\right) \\
& \text { case }:\left(a \rightarrow M \mathrm{Mp} L_{1} c\right) \rightarrow\left(b \rightarrow M \mathrm{M} L_{2} d\right) \rightarrow a \uplus b \\
& \rightarrow \operatorname{Mp}\left(L_{1} \cup L_{2}\right)(c \uplus d)
\end{aligned}
$$

These constructs ensure that the tag used to build $a \uplus b$ indeed corresponds to the correct branch of the right choice. We use case to compose actions that depend on a previous choice. While this treatment of \uplus leads to unnecessary code duplication, our back-end easily optimises cases where we have case $f f$ to avoid code duplication.

Parallel programs We define the basic constructs of PAlg in a bottom-up way by manipulating parallel programs. Parallel programs are mappings from participants to their monadic action: $\mathrm{E}::=\left[\mathrm{p}_{i} \mapsto m_{i}\right]_{i \in I}$. If $m_{i}: M \mathrm{M} L_{i} a_{i}$ for all $i \in I$, then we write $\left[\mathrm{p}_{i} \mapsto m_{i}\right]_{i \in I}: M \mathrm{p}\left[\mathrm{p}_{i} \mapsto L_{i}\right]_{i \in I}\left[\mathrm{p}_{i} \mapsto a_{i}\right]_{i \in I}$. The semantics of both local types and monadic actions is defined in terms of such collections of actions or local types, and shared queues of values W, or queues of types Q, e.g. $\langle E, W\rangle \sim^{\ell}\left\langle E^{\prime}, W^{\prime}\right\rangle$ is a transition from E to E^{\prime}, and shared queues W to W^{\prime} with observable action ℓ. We prove a standard safety theorem (Theorem 5.1 below) that guarantees that if a participant does a transition with some observable action, then so does the type index.

Theorem 5.1. [Soundness] Assume E: Mp C A, m:Mp La and W : Q. Suppose $\langle\mathrm{E}[r \mapsto m], W\rangle \sim^{\ell}\left\langle\mathrm{E}\left[r \mapsto m^{\prime}\right], W^{\prime}\right\rangle$. Then there exists $\langle C[r \mapsto L], Q\rangle \rightarrow^{\ell}\left\langle C\left[r \mapsto L^{\prime}\right], Q^{\prime}\right\rangle$ such that $W^{\prime}: Q^{\prime}$ and $m^{\prime}: M p L^{\prime} a$.

Mp code generation The translation scheme for Mp code generation is done recursively on the structure of PAlg expressions. It takes a PAlg expression e, an interface A, and produces a mapping from all participants in e and A to their respective monadic continuations. We write $\llbracket e \rrbracket(A)$, and guarantee that $\llbracket \mathrm{e} \rrbracket(A): A \rightarrow M p G B$, if $\vDash \mathrm{e} \Leftarrow A \sim(G, B)$. This means that if e induces protocol G with interfaces $A \rightarrow B$, then the generated code behaves as G, with interfaces A and B. Code generation follows a similar structure to global type inference, and is defined by building PAlg constructs as Mp parallel programs. For example, the translation of e@p : $a @ I \rightarrow B$ requires to define the interactions from an interface I that gathers a type a at p : $(a @ I \sim \mathrm{p}): a @ I \rightarrow M \mathrm{p}[a @ I \sim \mathrm{p}](a @ \mathrm{p})$. The definition
is analogous to that of $[a @ I \leadsto p]$. The remaining of the translation is straightforward, so we skip the details.

We prove two main correctness results. We guarantee that the generated code behaves as its inferred protocol (Theorem 5.2). We also guarantee that regardless of the annotations and interfaces chosen for e, the parallel code always produces the same result as the sequential implementation (Theorem 5.3).

Theorem 5.2. [Protocol Conformance of the Generated Code] $I f \vDash \mathrm{e} \Leftarrow A \sim G$, then $\llbracket \mathrm{e} \rrbracket(A)$ complies with protocol G.

Theorem 5.3. [Extensionality] Assume $e \Rightarrow \mathrm{e}: a @ \mathrm{p} \rightarrow b @ R$ and x : a initially at p . If $e x=y$, then the execution of $\llbracket \mathrm{e} \rrbracket(\mathrm{p})$ also produces y, distributed across R.

Example 5.4 (MergeSort Code Generation). We show below the code generation for $\mathbf{m s}$ (Example 3.2), with p_{1} as domain interface:
$\mathrm{p}_{1} \mapsto \lambda x . \operatorname{sel}\left\{\mathrm{p}_{2}, \mathrm{p}_{3}\right\}(\operatorname{spl} x)(\lambda x . \operatorname{ret} x)$
$\left(\lambda x\right.$. send $p_{2}\left(\pi_{1} x\right) \gg \lambda y$. send $p_{3}\left(\pi_{2} x\right) \gg \lambda_{-}$.
$\operatorname{recv} \mathrm{p}_{2} \operatorname{Ls} \gg \lambda x$. $\operatorname{recv} \mathrm{p}_{3} \operatorname{Ls} \gg \lambda y$. ret $\left.(\operatorname{mrg}(x, y))\right)$
$\mathrm{p}_{2,3} \mapsto \lambda x$. brn $\mathrm{p}_{1}($ ret $x)\left(\right.$ recv $\mathrm{p}_{1} \mathrm{Ls} \gg \lambda x$. send $\left.\mathrm{p}_{1}(\mathrm{~ms} x)\right)$

6 Parallel Algorithms and Evaluation

We evaluate our approach using a number of parallel algorithms derived from Alg expressions, and the speedups achieved. The purpose of this is twofold: (i) showing that our approach achieves speedups for an input sequential algorithm, with naïve annotation strategies, and limited optimisations (Fig. 5), and (ii) illustrating the practical value of providing a global type that describes the parallel strategy achieved by a particular annotation strategy (Fig. 4). We run all our experiments on 2 NUMA nodes, 12 cores per node and 62GB of memory, using Intel Xeon CPU E5-2650 v4 @ 2.20 GHz chips. We run our experiments first restricting the execution to a single node to avoid NUMA effects, and then on the 2 NUMA nodes.

6.1 Benchmarks

Mergesort Mergesort is the usual divide-and-conquer algorithm, using a tree-like parallel reduce.

Cooley-Tukey FFT We use a recursive Cooley-Tukey algorithm. The algorithm starts by splitting the elements of the list into those that are at even and odd positions. Then, it recursively computes the FFT of them, and finally combines the results. To generate a butterfly pattern, we use: products of size n, to store the results of the subsequent interleavings; product associativity to produce a perfect tree; and asynchronous optimisations.

Dot Product The dot product algorithm zips the inputs, multiplies them pairwise, and then adds them by folding the result. We use products of size n to derive a scatter-gather.

Figure 4. Benchmarks: potential parallelisations.

Additional Algorithms We implemented scalar prod, that recursively splits a matrix into sub-matrices, distributes them to different workers, and then multiplies their elements by a scalar, and quicksort, with a divide-and-conquer structure.

6.2 Evaluation

We translate Mp monadic actions to C using pthreads and shared buffers for communication, and we have a preliminary compilation of the first-order sequential terms to C . We compile the generated C code using gcc version 4.8.5. We take the average of 50 repetitions for each benchmark. Our benchmarks achieve reasonable speedups against the sequential C implementations. Fig. 5 presents the speedups against the number of participants for different input sizes, and Fig. 6 present a summary of our speedups for large inputs of size $>10^{9}$. We show below an analysis of these results, by plotting the speedups against two factors: 1 . the number of participants (threads) produced by a particular annotation and recursion unrolling, named K; and 2 . the input size, e.g. number of elements in the input list.

Increasing the number of threads (parameter K), increases the speedups obtained, up to a certain value that depends on the amount of available cores and the input size. For benchmarks that work better with dynamic task creation, our tool does not currently achieve good performance (e.g. quicksort). For FFT, our tool produces the usual butterfly pattern from a straightforward recursive definition, that we can achieve a speedup of 12 when running on a single shared-memory node. The rest of the examples are limited either by Amdahl's law (justified by their global types in Fig. 4), or by the overhead of the communication and pthread creation with respect to the cost of the computations, but still achieve speedups of up to 7 and 8 on 12 cores. We can observe that there is a slow down after creating a much larger number of participants than the ones required. This usually depends on how evenly we can distribute the data amongst workers, and whether

Figure 5. Benchmark speedups, run in 2 NUMA nodes with 12 cores each. The X-axis is the number of workers of the parallel program generated from a set of annotations and recursion unrolling. We show the results for 4 different input sizes.

Figure 6. Achieved speedups
the amount of workers can be evenly scheduled to different cores. We observe that we can achieve further speedups when running our benchmarks in the 2 NUMA nodes. Overall, we observe that our annotation strategies enable good speedups over the sequential implementation, with relatively little effort. Global types can be used to detect optimisation opportunities that yield efficient parallelisations, such as the Butterfly topology in Fig. 4. Without message-reordering based on the session types, FFT participant p_{3} would need to wait for p_{1} 's message before sending its part to p_{1}, i.e. p_{3} 's local type would be $\mathrm{p}_{1} ?(\mu L) . \mathrm{p}_{1}!\langle\mu L\rangle \ldots$. This means that p_{3} 's local computation would only become available to p_{1} after
it p_{1} finishes its own local computation, thus sequentialising the code. Asynchronous permutations [16; 57] allow us to permute such actions, and still have communication safety, i.e. $\mathrm{p}_{1}!\langle\mu L\rangle . \mathrm{p}_{1} ?(\mu L) \ldots$.. Global types capture the structure of the parallelisation, which can in some cases be used to justify the achieved speedups. For example, we can observe that the mergesort global type contains a part that needs to happen sequentially (p_{0} and the last merging point in p_{1}), and this will prevent us from achieving linear speedups.

7 Related Work

López et al. [50] develop a verification framework for MPI/C inspired by MPST by translating parameterised protocol specifications to protocols in VCC [19]. They focus on verification, not on code or protocol generation. Ng et al. [59; 60] use parameterised MPST [25] to generate an MPI backbone in C that encapsulates the whole protocol (i.e., every endpoint), and merges it with user-supplied computation kernels. Several authors (e.g. [10]) generate skeleton API from extensions of Scribble (www.scribble.org). Their approach requires the protocol to be specified beforehand, and it is not extracted from sequential code. Unlike ours, none of the above work formally defines code generation or proves its correctness.

Structured parallelism includes the use of high-level constructs in languages with implicit/data parallelism [5;1215; 46; 64], algorithmic skeleton APIs [1;18; 20; 36; 48], and DSLs/APIs that compile to parallel code [$8 ; 11 ; 28 ; 63 ; 69$]. Besides safety, such approaches are often highly optimised.

However, most rely on using a fixed, predetermined range of patterns, typically by design with respect to their application domains. By contrast, our work only relies on send/receive operations, which makes it highly portable, and can be easily extended to support further parallel structures by extending the annotation strategies. Optimisations for structured parallel approaches also require to study and define a set of equivalences between patterns [6;7;41]. In contrast, our approach does not require the definition of new sets of equivalences, since these are derived from program equivalences. Lift is a new language for portable parallel code generation, based on a small set of expressive parallel primitives [40; 67; 68]. Currently, their backend focuses on generating high-performance OpenCL code, while our approach focuses on placing computations on different participants of a concurrent/distributed system. Both approaches could be combined: annotations can be used to generate a highlevel message-passing layer that distributes tasks to multiple nodes in a GPU cluster, using the global type to minimise communication costs; then, the code at each participant can be compiled to high-performance GPU code using Lift.

Elliott exploits the idea of giving functional programs multiple interpretations in different categories, and shows examples of applications to multiple domains, including parallelism $[29 ; 30]$. Our approach is similar in the sense that we allow the specifications of first-order functional programs to have multiple different interpretations, but we focus on generating parallel code, and provide a finer-grained control over the parallelisations by adding participant annotations. There is a large body of literature in using program equivalences to derive parallel implementations, e.g. [17; 32; 37; 39; 49; 51; 55; 56; 65; 66]. Our framework is orthogonal, in that we focus on tying a low-level C back-end with global types. Our front-end, however, supports some basic form of rewritings, and we plan to extend it in the future with more interesting ones from the literature.

8 Conclusions and Future Work

We have presented a novel approach to protocol inference and code generation. By using this approach, we can reason about extensionality of the parallel programs, and alternative mappings of computations to participants. We produce the parallel program global type, i.e. its communication protocol, that acts as a contract for the low-level code, can be used to pin-point potential optimisations, or assessing the suitability of a parallelisation. This approach has several benefits: 1. our message-passing code is deadlock-free by construction, since it follows the data-flow of the program, and the optimisations must respect the global type; 2 . we prove that our parallelisations are extensionally equivalent to the input function. Additionally, PAIg code could be used for further multiple purposes, such as parallel GPU/FPGA code generation, by combining our approach with other state of the art
code generation techniques. We will study this for future work.
Though our approach can already generate representative parallel protocols, our framework is extensible. E.g. we can extend our framework with dynamic participants to handle dynamic task generation [26], and we plan to use this to capture a wider range of communication patterns for parallel computing, such as load-balancing or work-stealing. We plan to study the extension of our back-end to heterogeneous architectures, e.g. GPU clusters, or FPGAs. Our prototype generates code that can achieve speedups against sequential implementations, the optimisations that we support are very basic, and our generated code can be very large. We plan to introduce optimisations that reduce the amount messages exchanged, further message reorderings guided by the global type, and optimisations of the size of the generated code. Finally, we plan to study the instrumentation of global types to estimate statically the speedups of different parallelisations, and optimise communication costs.

Acknowledgements

We thank Shuhao Zhang for his contributions to the C backend, described in [70]. We thank Francisco Ferreira for the helpful discussions in the early stages of this work. This work was supported in part by EPSRC projects EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1, and EP/T006544/1.

References

[1] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Massimo Torquati. 2011. Accelerating Code on Multicores with FastFlow. In Proc. of 17th International Euro-Par Conference (Euro-Par 2011) (LNCS), Vol. 6853. Springer, 170-181.
[2] John Backus. 1978. Can Programming Be Liberated from the Von Neumann Style?: A Functional Style and Its Algebra of Programs. Commun. ACM 21, 8 (Aug. 1978), 613-641.
[3] Richard Bird and Oege De Moor. 1996. The algebra of programming. In NATO ASI DPD. 167-203.
[4] R. S. Bird. 1989. Algebraic Identities for Program Calculation. Comput. f. 32, 2 (01 1989), 122-126.
[5] Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun. ACM 39, 3 (1996), 85-97.
[6] Christopher Brown, Marco Danelutto, Kevin Hammond, Peter Kilpatrick, and Archibald Elliott. 2014. Cost-Directed Refactoring for Parallel Erlang Programs. International fournal of Parallel Programming 42, 4 (01 Aug 2014), 564-582.
[7] Christopher Brown, Kevin Hammond, Marco Danelutto, and Peter Kilpatrick. 2012. A Language-independent Parallel Refactoring Framework. In Proc. of the 5th Workshop on Refactoring Tools (WRT '12). ACM, New York, NY, USA, 54-58.
[8] Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2011. A Heterogeneous Parallel Framework for Domain-Specific Languages. In Proc. of 2011 Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT'11). IEEE, 89-100.
[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler Typed Languages. 7. Funct. Program. 19, 5 (2009), 509-543.
[10] David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed Programming Using Role Parametric Session Types in Go. In 46th Symp. on Principles of Programming Languages (POPL'19), Vol. 3. ACM, 29:1-29:30.
[11] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-Specific Approach to Heterogeneous Parallelism. In Proc. of the 16th Symp. on Principles and Practice of Parallel Programming (PPoPP'11). ACM, 35-46.
[12] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones, Gabriele Keller, and Simon Marlow. 2007. Data Parallel Haskell: a Status Report. In Proc. of the POPL 2007 Workshop on Declarative Aspects of Multicore Programming, (DAMP’07) (2007). ACM, 10-18.
[13] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel Programmability and the Chapel Language. IFHPCA 21, 3 (2007), 291-312.
[14] Rohit Chandra. 2001. Parallel Programming in OpenMP. Morgan Kaufmann
[15] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: an Object-Oriented Approach to Non-Uniform Cluster Computing. In Proc. of the 20th Conf. on Object-Oriented Programming, Systems, Languages, and Applications, (OOPSLA05). ACM, San Diego, CA, USA, 519-538.
[16] Tzu-chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. 2017. On the Preciseness of Subtyping in Session Types. Logical Methods in Computer Science Volume 13, Issue 2 (June 2017).
[17] Yun-Yan Chi and Shin-Cheng Mu. 2011. Constructing List Homomorphisms from Proofs. In Proc. APLIAS '11: Asian Symposium on Programming Languages \& Systems. 74-88.
[18] Philipp Ciechanowicz and Herbert Kuchen. 2010. Enhancing Muesli’s Data Parallel Skeletons for Multi-core Computer Architectures. In 12th Intl. Conf. on High Performance Computing and Communications, (HPCC'10). IEEE, 108-113.
[19] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In Proc. of the 22nd Intl. Conf. on Theorem Proving in Higher Order Logics, (TPHOLs 2009) (LNCS), Vol. 5674. Springer, 23-42.
[20] Murray Cole. 1988. Algorithmic skeletons : a structured approach to the management of parallel computation. Ph.D. Dissertation. University of Edinburgh, UK.
[21] James W Cooley and John W Tukey. 1965. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of computation 19, 90 (1965), 297-301.
[22] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asynchronous Session Types. In 15th International School on Formal Methods for the Design of Computer, Communication and Software Systems: Multicore Programming (LNCS), Vol. 9104. Springer, 146-178
[23] Alcino Cunha, Jorge Sousa Pinto, and José Proença. 2006. A Framework for Point-Free Program Transformation. In Proc. of 17th Intl. Workshop on Implementation and Application of Functional Languages (IFL 2005). Springer, 1-18.
[24] Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In CONCUR 2012 - Concurrency Theory. Springer, 272286.
[25] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Parameterised Multiparty Session Types. Logical Methods in Computer Science 8, 4 (2012).
[26] Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic Multirole Session Types (POPL'11). ACM, New York, NY, USA, 435-446.
[27] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characterisation and Synthesis of Global Session Types. In 40th International Colloquium on Automata, Languages and Programming (LNCS), Vol. 7966. Springer, 174-186.
[28] Zach DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: a Domain Specific Language for Building Portable Meshbased PDE Solvers. In Conference on High Performance Computing Networking, Storage and Analysis, SC 2011. ACM, 9:1-9:12.
[29] Conal Elliott. 2017. Compiling to Categories. Proc. ACM Program. Lang. 1, ICFP, Article 27 (Aug. 2017), 27 pages.
[30] Conal Elliott. 2017. Generic functional parallel algorithms: Scan and FFT. Proc. ACM Program. Lang. 1, ICFP, Article 48 (Sept. 2017), 24 pages.
[31] Maarten M. Fokkinga and Erik Meijer. 1991. Program Calculation Properties of Continuous Algebras. Number CS-R91 in Report / Department of Computer Science. CWI.
[32] Jeremy Gibbons. 1996. Computing Downwards Accumulations on Trees Quickly. Theoretical Computer Science 169, 1 (1996), 67-80.
[33] Jeremy Gibbons. 1996. The Third Homomorphism Theorem. Journal of Functional Programming ($7 F P$) 6, 4 (1996), 657-665.
[34] Jeremy Gibbons. 2002. Calculating Functional Programs. In Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. Springer, Chapter 5, 151-203.
[35] Jeremy Gibbons. 2007. Datatype-Generic Programming. In DatatypeGeneric Programming. Springer, 1-71.
[36] Horacio González-Vélez and Mario Leyton. 2010. A survey of algorithmic skeleton frameworks: high-level structured parallel programming enablers. Softw., Pract. Exper. 40, 12 (2010), 1135-1160.
[37] Sergei Gorlatch. 1999. Extracting and Implementing List Homomorphisms in Parallel Program Development. Science of Computer Programming 33, 1 (1999), 1 - 27.
[38] Sergei Gorlatch. 2004. Send-receive Considered Harmful: Myths and Realities of Message Passing. ACM Trans. Program. Lang. Syst. 26, 1 (Jan. 2004), 47-56.
[39] Sergei Gorlatch and Christian Lengauer. 1995. Parallelization of Divide-and-Conquer in the Bird-Meertens Formalism. Formal Aspects of Computing 7, 6 (1995), 663-682.
[40] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High Performance Stencil Code Generation with Lift. In Proc. of the 2018 Intl. Symp. on Code Generation and Optimization (CGO 2018). ACM, New York, NY, USA, 100-112.
[41] Kevin Hammond, Marco Aldinucci, Christopher Brown, Francesco Cesarini, Marco Danelutto, Horacio González-Vélez, Peter Kilpatrick, Rainer Keller, Michael Rossbory, and Gilad Shainer. 2013. The ParaPhrase Project: Parallel Patterns for Adaptive Heterogeneous Multicore Systems. Springer, 218-236.
[42] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proc. of 35th Symp. on Princ. of Prog. Lang. (POPL '08). ACM, New York, NY, USA, 273-284.
[43] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. F. ACM 63, 1 (2016), 9:1-9:67.
[44] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. 1996. Deriving Structural Hylomorphisms from Recursive Definitions. In Proc. ICFP '96: ACM Int. Conf. on Functional Programming (ICFP '96). ACM, New York, NY, USA, 73-82.
[45] John Hughes. 2000. Generalising monads to arrows. Science of Computer Programming 37, 1 (2000), 67 - 111.
[46] Guy L. Steele Jr. 2005. Parallel Programming and Parallel Abstractions in Fortress. In 14th International Conference on Parallel Architecture and Compilation Techniques (PACT 2005), 17-21 September 2005, St. Louis, MO, USA. IEEE Computer Society, 157.
[47] Daniel J. Lehmann and Michael B. Smyth. 1981. Algebraic Specification of Data Types: A Synthetic Approach. Mathematical Systems Theory

14, 1 (01 Dec 1981), 97-139.
[48] Mario Leyton and José M. Piquer. 2010. Skandium: Multi-core Programming with Algorithmic Skeletons. In Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, PDP 2010, Pisa, Italy, February 17-19, 2010. IEEE Computer Society, 289-296.
[49] Yu Liu, Zhenjiang Hu, and Kiminori Matsuzaki. 2011. Towards Systematic Parallel Programming over Mapreduce. In Proc. Euro-Par 2011: European Conference on Parallelism. 39-50.
[50] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2015. Protocol-Based Verification of Message-Passing Parallel Programs. In Proc. of the 2015 Intl. Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'15). ACM, 280-298.
[51] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. 2017. Calculating Parallel Programs in Coq Using List Homomorphisms. International fournal of Parallel Programming 45, 2 (01 Apr 2017), 300-319.
[52] Michael McCool, Arch Robison, and James Reinders. 2012. Structured parallel programming: patterns for efficient computation. Elsevier.
[53] Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire. In Functional Programming Languages and Computer Architecture. Springer, 124-144.
[54] Erik Meijer and Graham Hutton. 1995. Bananas in Space: Extending Fold and Unfold to Exponential Types. In Proceedings of the Seventh International Conference on Functional Programming Languages and Computer Architecture (FPCA '95). ACM, New York, NY, USA, 324-333.
[55] Akimasa Morihata. 2013. A Short Cut to Parallelization Theorems. In Proc. ICFP 2013: 18th Int. Conf. on Functional Programming. 245-256.
[56] Akimasa Morihata and Kiminori Matsuzaki. 2010. Automatic Parallelization of Recursive Functions using Quantifier Elimination. In Proc. FLOPS '10: Functional and Logic Programming. 321-336.
[57] Dimitris Mostrous and Nobuko Yoshida. 2009. Session-Based Communication Optimisation for Higher-Order Mobile Processes. In Proc. of the 9th Intl. Conf on Typed Lambda Calculi and Applications (LNCS), Vol. 5608. Springer, 203-218.
[58] Matthias Neubauer and Peter Thiemann. 2004. An Implementation of Session Types. In Practical Aspects of Declarative Languages, 6th International Symposium, PADL 2004, Dallas, TX, USA, Fune 18-19, 2004, Proceedings. 56-70.
[59] Nicholas Ng, José Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. 2015. Protocols by Default - Safe MPI Code Generation Based on Session Types. In Proc. of the 24th Intl. Conf. on Compiler Construction (LNCS), Vol. 9031. Springer, 212-232.
[60] Nicholas Ng and Nobuko Yoshida. 2015. Pabble: parameterised Scribble Service Oriented Computing and Applications 9, 3-4 (2015), 269-284.
[61] Ross Paterson. 2018. arrows: Arrow classes and transformers. http: //hackage.haskell.org/package/arrows-0.4.4.2.
[62] Fethi A. Rabhi and Sergei Gorlatch (Eds.). 2003. Patterns and Skeletons for Parallel and Distributed Computing. Springer.
[63] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. In Proc. of Conf. on Programming Language Design and Implementation, PLDI '13. ACM, 519-530.
[64] James Reinders. 2007. Intel threading building blocks - outfitting $C++$ for multi-core processor parallelism. O'Reilly.
[65] Rodrigo C. O. Rocha, Luís Fabrício Wanderley Góes, and Fernando Magno Quintão Pereira. 2016. An Algebraic Framework for Parallelizing Recurrence in Functional Programming. In Proc. of the 20th Brazilian Symposium on Programming Languages, SBLP 2016 (LNCS), Vol. 9889. Springer, 140-155
[66] David B Skillicorn. 1993. The Bird-Meertens Formalism as a Parallel Model. Springer.
[67] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating Performance Portable Code Using Rewrite Rules. In Proc ICFP 2015: 20th ACM Conf. on Functional Prog. Lang. and Comp. Arch. 205-217.
[68] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a functional data-parallel IR for high-performance GPU code generation. In Proceedings of the 2017 International Symposium on Code Generation and Optimization, CGO 2017, Austin, TX, USA, February 4-8, 2017. ACM, 74-85.
[69] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf, Hassan Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and Kunle Olukotun. 2011. OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning. In Proc. of the 28th Intl. Conf. on Machine Learning (ICML'11). Omnipress, 609-616.
[70] Shuhao Zhang. 2019. Session Arrows: A Session-Type Based Framework For Parallel Code Generation. Master's thesis. Imperial College London.

A Further Definitions

A. 1 Algebraic Functional Language

$$
\begin{aligned}
& F_{1}, F_{2}::=\mathrm{I}|\mathrm{~K} a| F_{1}+F_{2} \mid F_{1} \times F_{2} \\
& a, b::=1|\operatorname{int}| \ldots|a \rightarrow b| a+b|a \times b| F a \mid \mu F \\
& e_{1}, e_{2}::=f|v| \text { const } e \mid \text { id }\left|e_{1} \circ e_{2}\right| \pi_{i}\left|e_{1} \Delta e_{2}\right| \iota_{i} \mid e_{1} \nabla e_{2} \\
& |F e| \operatorname{in}_{F} \mid \text { out }_{F} \mid \operatorname{rec}_{F} e_{1} e_{2} \\
& \frac{f: a \rightarrow b \in \Gamma}{\vdash f: a \rightarrow b} \quad \frac{\vdash e: a}{\vdash \text { const } e: b \rightarrow a} \quad \overline{\vdash \text { id }: a \rightarrow a} \\
& \overline{\vdash \operatorname{in}_{F}: F \mu F \rightarrow \mu F} \quad \overline{\vdash \text { out }_{F}: \mu F \rightarrow F \mu F} \\
& \frac{\vdash e_{1}: b \rightarrow c}{\vdash e_{1} \circ e_{2}: a \rightarrow c} \quad \stackrel{+e_{2}: a \rightarrow b}{\vdash \pi_{i}: a_{1} \times a_{2} \rightarrow a_{i}} \\
& \frac{\vdash e_{1}: a \rightarrow b \quad \vdash e_{2}: a \rightarrow c}{\vdash e_{1} \Delta e_{2}: a \rightarrow b \times c} \quad \frac{i \in[1,2]}{\vdash \iota_{i}: a_{i} \rightarrow a_{1}+a_{2}} \\
& \frac{\vdash e_{1}: a \rightarrow c \quad \vdash e_{2}: b \rightarrow c}{\vdash e_{1} \nabla e_{2}: a+b \rightarrow c} \quad \frac{\vdash e: a \rightarrow b}{\vdash F e: F a \rightarrow F b} \\
& \frac{\vdash e_{1}: F b \rightarrow b \quad \vdash e_{2}: a \rightarrow F a}{\vdash \operatorname{rec}_{F} e_{1} e_{2}: a \rightarrow b}
\end{aligned}
$$

Figure 7. Syntax and types of Alg.

A.1.1 Properties of Alg Constructs

Alg constructs are characterised by well-known properties. Sum and product functions, are uniquely determined by their universal properties. Composition and identity must satisfy the associativity and cancellation properties. These basic properties are summarised in Fig. 9. Functors preserve identities and composition, and rec satisfy the hylomorphism laws (Fig. 9b). The laws of hylomorphisms can be used to perform some common program optimisations. For example, the well-known deforestation transformation can be

Constant, Identity and Composition

const $e=\lambda x . e \quad \mathrm{id}=\lambda x . x \quad e_{1} \circ e_{2}=\lambda x . e_{1}\left(e_{2} x\right)$

Products

$\pi_{i}=\lambda\left(x_{1}, x_{2}\right) . x_{i}, i \in[1,2] e_{1} \Delta e_{2}=\lambda x .\left(e_{1} x, e_{2} x\right)$
$e_{1} \times e_{2}=\left(e_{1} \circ \pi_{1}\right) \Delta\left(e_{2} \circ \pi_{2}\right)$

Coproducts

$$
\begin{gathered}
\iota_{i}=\lambda x . \operatorname{inj}_{i} x \quad e_{1} \nabla e_{2}=\lambda\left(\operatorname{inj}_{i} x\right) . e_{i} x \\
e_{1}+e_{2}=\left(\iota_{1} \circ e_{1}\right) \nabla\left(\iota_{2} \circ e_{2}\right)
\end{gathered}
$$

> Functors $$
\begin{array}{l}\text { I } a=a \\ \mathrm{I} ~ \\ \mathrm{I} a b=e \\ \mathrm{~K} a \\ \mathrm{~K} a=\mathrm{id}\end{array}
$$ $\left(F_{1} \dagger F_{2}\right) a=F_{1} a \dagger F_{2} a, \quad\left(F_{1} \dagger F_{2}\right) e=F_{1} e \dagger F_{2} e$

Recursion

$$
\operatorname{in}_{F}=\lambda x \cdot \operatorname{in}_{F} x \quad \text { out }_{F}=\lambda\left(\operatorname{in}_{F} x\right) . x
$$

$$
\operatorname{rec}_{F} e_{1} e_{2}=f \text { where } f=e_{1} \circ F f \circ e_{2}
$$

Figure 8. Semantics of Alg combinators.
derived from the hylomorphism equation, and the properties of functors. Particularly, it is an instance of Equations A. 11 and A. 7 in Fig. 9. From the universal properties of Δ and ∇ (Fig. 9a), a number of equivalences can be derived, e.g.: $\pi_{i} \circ e_{1} \Delta e_{2}=e_{i} ;\left(\pi_{1} \circ e\right) \Delta\left(\pi_{2} \circ e\right)=e$; $\pi_{1} \Delta \pi_{2}=\mathrm{id} ;\left(e_{1} \times e_{2}\right) \circ\left(e_{3} \Delta e_{4}\right)=\left(e_{1} \circ e_{3}\right) \Delta\left(e_{2} \circ e_{4}\right) ;$ $e_{1} \nabla e_{2} \circ \iota_{i}=e_{i} ;\left(e \circ \iota_{1}\right) \nabla\left(e \circ \iota_{2}\right)=e \iota_{1} \nabla \iota_{2}=\mathrm{id}$; and $\left(e_{1} \nabla e_{2}\right) \circ\left(e_{3}+e_{4}\right)=\left(e_{1} \circ e_{3}\right) \nabla\left(e_{2} \circ e_{4}\right)$ where $i \in\{1,2\}$. The properties of combinators provide a formal framework for equational reasoning that can be used as a basis for doing program transformations [31; 34; 53]. These properties have been used for parallelising functions, e.g. [17; 33; 55]. In this paper, we use $=_{\text {ext }}$ for the equations in 9 , to distinguish them from the syntactic equality (=).

A. 2 Parallel Algebraic Language

A.2.1 Typing rules

Rules Id, Comp, Proj_{i} and Split are standard. The main feature of this type system is the use of eta-expanded sumtypes and unions of interfaces to deal with choices. Rule Choice specifies that a choice point may be introduced at any point when a participant contains a value of a sumtype. In such cases p sends the tag of the sum-type value to any other participant whose behaviour depends on it. After the choice point, the interface is $I\left[\iota_{1} \mathrm{p}\right] \cup \overrightarrow{\mathrm{P}} I\left[\iota_{2} \mathrm{p}\right]$, with the constraint that the participants in $\mathcal{I}[\mathrm{p}]$ must be in $\overrightarrow{\mathrm{p}}$. Rule Alt specifies that e must be the parallelisation of e, considering both A_{1} and A_{2} as input interfaces. The output interface is the union of B_{1} and B_{2}. Any participant in e must be notified of the choice pids $(\mathrm{e}) \subseteq \overrightarrow{\mathrm{p}}$, to make sure that they perform the interactions that correspond to the correct A_{i}. Rule Join is the same as rule Alt, but we do not require the participants in e to be notified of the choice, since the input interface is the same in both branches of the choice. Rule INJ_{i} is used to tag an interface with the i-th injection. Then, rule CASE_{i} specifies that if e_{i} is the parallelisation of e_{i}, then $\mathrm{e}_{1} \nabla \mathrm{e}_{2}$ is a parallelisation of $e_{1} \nabla e_{2}$, given the tagged

Example A. 1 (Rewriting and annotation strategies). We illustrate how rewriting and annotation strategies work by showing the mergesort (ms) example. Consider the mergesort definition $\mathrm{ms}=\mathrm{rec}_{T} \mathrm{mrg}$ spl. Solutions to the inference problem $\vdash \mathrm{ms} \Rightarrow$? $0: \mathrm{Ls}^{\mathrm{C}} \mathrm{p}_{0} \rightarrow$? 1 provide the alternative parallelisations of ms. The only two rules that can be applied are Alg or Ext. By rule Alg, we can annotate ms at some $\mathrm{p}_{1}: \vdash \mathrm{ms} \Rightarrow \mathrm{ms}$ @ $\mathrm{p}_{1}: \mathrm{Ls} @_{0} \rightarrow \mathrm{Ls} @ \mathrm{p}_{1}$. Alternatively, we can use the hylomorphism equation, and apply rule Exт:

$$
\mathrm{ms}=\mathrm{rec}_{T} \mathrm{mrg} \mathrm{spl}=\mathrm{mrg} \circ T \mathrm{~ms} \circ \mathrm{spl}=\mathrm{mrg} \circ
$$

$$
(i d+\mathrm{ms} \times \mathrm{ms}) \circ \mathrm{spl}
$$

We decide which of the rules to apply by querying a collection of rewriting hints, that we call rewriting strategy. This collection of hints is of the form [$\left.e_{1}: r w_{1}, \ldots\right]$, and must be specified by the programmer. The rewritings $r w_{i}$ are essentially proofs that $e_{i}={ }_{\text {ext }} e_{i}^{\prime}$, by applying equations in Fig. 9. Once a hint is used, it is removed from the collection of hints. For the mergesort example, if we use the rewriting strategy [ms : unroll 1], we will apply rule Ext, unroll the hylomorphism equation once, and continue with an empty strategy [].

$$
\begin{gathered}
\vdash \mathrm{mrg} \circ(\mathrm{id}+\mathrm{ms} \times \mathrm{ms}) \circ \mathrm{spl} \Rightarrow ? 0: \mathrm{Ls@}_{0} \rightarrow ? 1 \\
\mathrm{~ms}=_{\text {ext }} \mathrm{mrg} \circ(\mathrm{id}+\mathrm{ms} \times \mathrm{ms}) \circ \mathrm{spl} \\
\vdash \mathrm{~ms} \Rightarrow ? 0: \mathrm{Ls} \mathrm{p}_{0} \rightarrow ? 1
\end{gathered}
$$

With an empty rewriting strategy, the only possibility once we find the atomic function spl is to use rule Alg. To select a participant, we query the annotation strategy. The annotation strategy is a collection of expressions that we require to place at distinct participants. Suppose that our annotation strategy is $\{\mathrm{spl}\}$. Then, we would need to select a fresh participant $\mathrm{p}_{1}: \vdash \mathrm{spl} \Rightarrow \mathrm{spl}_{1} \mathrm{p}_{1}: \mathrm{Ls}^{(} \mathrm{p}_{0} \rightarrow((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @_{1}$. If the annotation strategy does not contain spl, then we would select any participant from the input interface, to minimise the amount of messages exchanged: $\vdash \mathrm{spl} \Rightarrow \mathrm{spl}_{\mathrm{C}} \mathrm{p}_{0}: \mathrm{Ls}_{\mathrm{C}} \mathrm{p}_{0} \rightarrow$ $((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @ \mathrm{p}_{0}$. Suppose that the annotation strategy is $\{s p l\}$. Then, after spl we have a sum type at p_{1}. This requires us to introduce a choice point:

$$
\begin{align*}
& \text { id } \circ e=e \circ \text { id }=e \tag{A.4}\\
& F\left(e_{1} \circ e_{2}\right)=F e_{1} \circ F e_{2} \tag{A.2}\\
& F \text { id }=\mathrm{id} \tag{A.3}\\
& e_{1} \circ\left(e_{2} \circ e_{3}\right)=\left(e_{1} \circ e_{2}\right) \circ e_{3} \tag{A.1}\\
& f=e_{1} \Delta e_{2} \Leftrightarrow \pi_{1} \circ e=e_{1} \wedge \pi_{2} \circ e=e_{2} \tag{A.5}\\
& e=e_{1} \nabla e_{2} \Leftrightarrow e \circ \iota_{1}=e_{1} \wedge e \circ \iota_{2}=e_{2} \tag{A.6}\\
& \text { (a) Basic Properties of Combinators } \\
& e_{3} \circ e_{4}=\operatorname{id} \Rightarrow\left(\operatorname{rec}_{F} e_{1} e_{3}\right) \circ\left(\operatorname{rec}_{F} e_{4} e_{2}\right)=\operatorname{rec}_{F} e_{1} e_{2} \tag{A.9}\\
& \eta: F_{1} \rightarrow F_{2} \Rightarrow \operatorname{rec}_{F_{1}}\left(e_{1} \circ \eta\right) e_{2}=\operatorname{rec}_{F_{2}} e_{1}\left(\eta \circ e_{2}\right) \tag{A.8}\\
& \operatorname{rec}_{F} \text { in out }=\mathrm{id}_{\mu} F \tag{A.7}\\
& e_{1}, e_{2} \text { strict } \Rightarrow \operatorname{rec}_{F} e_{1} e_{2} \text { strict } \tag{A.10}
\end{align*}
$$

(b) Hylomorphism Laws

Figure 9. Properties of point-free combinators

$$
\begin{gathered}
\vdash \mathrm{mrg} \circ(\mathrm{id}+\mathrm{ms} \times \mathrm{ms}) \Rightarrow ? 0 \\
:((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @\left(\iota_{1} \mathrm{p}_{1} \cup^{? 3} \iota_{2} \mathrm{p}_{1}\right) \rightarrow ? 1
\end{gathered}
$$

By collecting all constraints of the form $\left\{p_{1}\right\} \subseteq ? 3$, we can fully determine what is the minimum list of participants ?3 that we require. To conclude our example, we show the end result of applying the rest of the rules. The final structure follows a divide-and-conquer parallel structure, that may bypass p_{2} and p_{3} if the input list is empty or singleton.

```
fmrg\circ(id + ms }\times\textrm{ms}
    mrg@\mp@subsup{p}{1}{}\circ(id+(ms@\mp@subsup{p}{2}{}\circ\mp@subsup{\pi}{1}{}@\mp@subsup{p}{1}{})\Delta(ms@\mp@subsup{p}{3}{}\circ\mp@subsup{\pi}{2}{}@\mp@subsup{p}{1}{}))
        \circ[\mp@subsup{p}{1}{}\oplus\mp@subsup{p}{1}{}\mp@subsup{p}{2}{}\mp@subsup{p}{3}{}]\circ\mp@subsup{\operatorname{spl@p}}{1}{}
```


Definition A. 2 (Product and Injection of Choice Interfaces). We sometimes write $A \times B$ to represent the product of interfaces that contain choices. We do the product of the respective interfaces, after performing first the choices in A, and then the choices in B :

$$
\begin{aligned}
& \left(R_{1} \cup \overrightarrow{\mathrm{p}} R_{2}\right) \times R_{3}=\left(R_{1} \times R_{3}\right) \cup \overrightarrow{\mathrm{p}}\left(R_{2} \times R_{3}\right) \\
& I_{1} \times\left(R_{1} \cup \overrightarrow{\mathrm{p}} R_{2}\right)=\left(I_{1} \times R_{1}\right) \cup \overrightarrow{\mathrm{p}}\left(I_{1} \times R_{2}\right)
\end{aligned}
$$

We also write injections of interfaces that contain choices:

$$
\iota_{i}\left(R_{1} \cup \overrightarrow{\mathrm{P}} R_{2}\right)=\iota_{i} R_{1} \cup \overrightarrow{\mathrm{P}} \iota_{i} R_{2}
$$

Definition A. 3 (Well-formedness of interfaces: WF $(a @ R)$). Interface $a @ R$ is well formed if R matches the structure of a :

$$
\begin{gathered}
\overline{\mathrm{WF}(a @ \mathrm{p})} \quad \frac{\mathrm{WF}\left(a_{i} @ I\right)}{\mathrm{WF}\left(\left(a_{1}+a_{2}\right) @\left(t_{i} I\right)\right)} \frac{\mathrm{WF}\left(a @ I_{1}\right) \quad \mathrm{WF}\left(b @ I_{2}\right)}{\mathrm{WF}\left((a \times b) @\left(I_{1} \times I_{2}\right)\right)} \\
\frac{\mathrm{WF}\left(a @ R_{1}\right) \quad \mathrm{WF}\left(a @ R_{2}\right)}{\mathrm{WF}\left(a @\left(R_{1} \cup \overrightarrow{\mathrm{p}} R_{2}\right)\right)}
\end{gathered}
$$

For well-formed interfaces, we sometimes propagate the annotation down the type structure, e.g. $a @ R_{1} \times b @ R_{2}$ is notation for $(a \times b) @\left(R_{1} \times R_{2}\right)$. We also define sums of interfaces $a @ R_{1}+\overrightarrow{\mathrm{P}} b @ R_{2}$ as notation for $(a+b) @\left(\iota_{1} R_{1} \cup \overrightarrow{\mathrm{P}} \iota_{2} R_{2}\right)$.

$$
\begin{aligned}
& \text { Join } \\
& \stackrel{\vdash e \Rightarrow \mathrm{e}: A \rightarrow B}{\vdash e \Rightarrow \mathrm{e}: A \cup \overrightarrow{\mathrm{p}} A \rightarrow B \cup \overrightarrow{\mathrm{p}} B}
\end{aligned}
$$

Alt

$$
\frac{\vdash e \Rightarrow \mathrm{e}: A_{2} \rightarrow B_{2} \quad A_{1} \neq A_{2} \quad \text { pids }(\mathrm{e}) \subseteq \vec{r}}{\vdash e \Rightarrow \mathrm{e}: A_{1} \cup \overrightarrow{\mathrm{p}} A_{2} \rightarrow B_{1} \cup \overrightarrow{\mathrm{p}} B_{2}}
$$

$$
\mathrm{INJ}_{i} \quad \text { ID }
$$

$$
\overline{\vdash \iota_{i} \Rightarrow \iota_{i}: a @ I \rightarrow a @\left(\iota_{i} I\right)} \quad \overline{\vdash \mathrm{id} \Rightarrow \mathrm{id}: A \rightarrow A}
$$

Proj $_{i}$

$$
\overline{\vdash \pi_{i} \Rightarrow \pi_{i}:\left(a_{1} \times a_{2}\right) @\left(I_{1} \times I_{2}\right) \rightarrow a_{i} @ I_{i}}
$$

Сомp

CASE_{i}

$$
\frac{\vdash e_{i} \Rightarrow \mathrm{e}_{i}: a_{i} @ I \rightarrow B}{\vdash e_{1} \nabla e_{2} \Rightarrow \mathrm{e}_{1} \nabla \mathrm{e}_{2}:\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \rightarrow B}
$$

Split

$\frac{\vdash e_{1} \Rightarrow \mathrm{e}_{1}: a @ I \rightarrow B \quad \vdash e_{2} \Rightarrow \mathrm{e}_{2}: a @ I \rightarrow C}{\vdash e_{1} \Delta e_{2} \Rightarrow \mathrm{e}_{1} \Delta \mathrm{e}_{2}: a @ I \rightarrow B \times C}$

Сhoice

$$
\begin{aligned}
& \vdash e \Rightarrow \mathrm{e}: a @\left(\mathcal{I}\left[\iota_{1} \mathrm{p}\right] \cup^{\mathrm{p}} \mathcal{I}\left[\iota_{2} \mathrm{p}\right]\right) \rightarrow B \\
& \operatorname{pids}(\mathcal{I}[\mathrm{p}]) \subseteq \overrightarrow{\mathrm{p}} \quad \operatorname{tyAt}(I, a)=b+c \\
& \stackrel{+e \Rightarrow \mathrm{e} \circ[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]: a @ I[\mathrm{p}] \rightarrow B}{ }
\end{aligned}
$$

Figure 10. Typing rules of PAIg
Definition A. 4 (Projection Rules $(G \upharpoonright \mathrm{p})$ and Merging $\left.\left(L_{1} \sqcap L_{2}\right)\right)$. Projection defines how to obtain the local type L of a participant p in a global type $G: G \upharpoonright \mathrm{p}$.

$$
\begin{aligned}
& \left(\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a . G\right) \upharpoonright \mathrm{p} \\
& = \begin{cases}\mathrm{p}_{2}!\langle a\rangle .(G \mid \mathrm{p}) & \text { if } \mathrm{p}=\mathrm{p}_{1} \neq \mathrm{p}_{2} \\
\mathrm{p}_{1} ?(a) .(G \mid \mathrm{p}) & \text { if } \mathrm{p}=\mathrm{p}_{2} \neq \mathrm{p}_{1} \\
G \upharpoonright \mathrm{p} & \text { otherwise }\end{cases} \\
& \left(\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}:\left\{l_{i} \cdot G_{i}\right\}_{i \in I}\right) \upharpoonright \mathrm{p} \\
& = \begin{cases}\mathrm{p}_{2} \oplus\left\{l_{i} \cdot G_{i} \mid \mathrm{p}\right\} & \text { if } \mathrm{p}=\mathrm{p}_{1} \\
\mathrm{p}_{1} \&\left\{l_{i} \cdot G_{i} \mid \mathrm{p}\right\} & \text { if } \mathrm{p}=\mathrm{p}_{2} \\
\prod_{i \in I}\left(G_{i} \mid \mathrm{p}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

```
\(\mathrm{p} \&\left\{l_{i} \cdot L_{i}\right\}_{i \in I} \sqcap \mathrm{p} \&\left\{l_{j} . L_{j}^{\prime}\right\}_{j \in J}\)
    \(=\mathrm{p} \&\left\{l_{k} \cdot L_{k} \sqcap L_{k}^{\prime}\right\}_{k \in I \cap J} \cup\left\{l_{l} \cdot L_{l}\right\}_{l \in I \backslash J} \cup\left\{l_{m} . L_{m}\right\}_{m \in J \backslash I}\)
\(\mu X . L_{1} \sqcap \mu X . L_{2}=\mu X .\left(L_{1} \sqcap L_{2}\right) \quad L \sqcap L=L\)
```

Projection onto a role is not necessarily defined. Particularly, projecting $\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}:\left\{l_{i} . G_{i}\right\}$ onto p , with $\mathrm{p} \neq \mathrm{p}_{1}$ and $\mathrm{p} \neq \mathrm{p}_{2}$, is only defined if the projection of all G_{i} onto p can be merged. Two local types can be merged only if they are the same, or if they branch on the same role p, and their continuations can be merged. For example, p_{3} 's local type of the global type: $\mu X . \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}\left\{l_{1} \cdot \mathrm{p}_{2} \rightarrow \mathrm{p}_{3}: l_{2} \cdot \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: l_{3} \cdot X, l_{4} \cdot \mathrm{p}_{2} \rightarrow\right.$ $\left.\mathrm{p}_{3}: l_{5} \cdot \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: l_{6} \cdot \mathrm{end}\right\}$ is $\mu X \cdot \mathrm{p}_{2} \&\left\{l_{2} \cdot \mathrm{p}_{1} \&\left\{l_{3} \cdot X\right\}, l_{4} \cdot \mathrm{p}_{2} \&\right.$ $\left.\left\{l_{5} \cdot \mathrm{p}_{1} \&\left\{l_{6} . \mathrm{end}\right\}\right\}\right\}$.

Definition A.5. LTS for Local Type Configurations

```
\(\langle C, Q\rangle \leadsto^{\ell}\left\langle C^{\prime}, Q^{\prime}\right\rangle C=\left[p_{i} \mapsto L_{i}\right]_{i \in I} Q=\left[p_{i} \mathrm{p}_{j} \mapsto w\right]_{i \in I, j \in I}\)
\(\left\langle C\left[\mathrm{p}_{0} \mapsto \mathrm{p}_{1}!\langle a\rangle . L\right], Q\left[\mathrm{p}_{0} \mathrm{p}_{1} \mapsto w\right]\right\rangle\)
            \(\rightarrow{ }^{\mathrm{p}_{0} \mathrm{p}_{1}!\langle a\rangle}\left\langle C\left[\mathrm{p}_{0} \mapsto L\right], Q\left[\mathrm{p}_{0} \mathrm{p}_{1} \mapsto a \cdot w\right]\right\rangle\)
\(\left\langle C\left[\mathrm{p}_{0} \mapsto \mathrm{p}_{1} ?(a) . L\right], Q\left[\mathrm{p}_{1} \mathrm{p}_{0} \mapsto w \cdot a\right]\right\rangle\)
            \(\rightarrow \mathrm{p}_{0} \mathrm{p}_{1} ?(a)\left\langle C\left[\mathrm{p}_{0} \mapsto L\right], Q\left[\mathrm{p}_{1} \mathrm{p}_{0} \mapsto w\right]\right\rangle\)
\(\left\langle C\left[\mathrm{p}_{0} \mapsto \mathrm{p}_{1} \oplus\left\{\iota_{i} . L_{i}\right\}_{i \in I}\right], Q\left[\mathrm{p}_{0} \mathrm{p}_{1} \mapsto w\right]\right\rangle\)
    \(\rightarrow{ }^{\mathrm{p}_{0} \mathrm{p}_{1} \oplus l_{i}}\left\langle C\left[\mathrm{p}_{0} \mapsto L_{i}\right], Q\left[\mathrm{p}_{0} \mathrm{p}_{1} \mapsto l_{i} \cdot w\right]\right\rangle\)
\(\left\langle C\left[\mathrm{p}_{0} \mapsto \mathrm{p}_{1} \&\left\{\iota_{i} \cdot L_{i}\right\}_{i \in I}\right], Q\left[\mathrm{p}_{1} \mathrm{p}_{0} \mapsto w \cdot l_{i}\right]\right\rangle\)
    \(\rightarrow \mathrm{p}_{0} \mathrm{p}_{1} \& l_{i}\left\langle C\left[\mathrm{p}_{0} \mapsto L_{i}\right], Q\left[\mathrm{p}_{1} \mathrm{p}_{0} \mapsto w\right]\right\rangle\)
```

Definition A. 6 (Interface projection: $A \upharpoonright \mathrm{p}$). The projection of interface A onto role p is the part of interface A that is located at p . We define the projection for $a @ R$ inductively on the structure of R :

$$
\begin{aligned}
& a @ \mathrm{p}_{0} \upharpoonright \mathrm{p}_{1}=\left\{a, \text { if } \mathrm{p}_{0}=\mathrm{p}_{1} ; 1, \text { otherwise }\right\} \\
& (a \times b) @\left(R_{1} \times R_{2}\right) \upharpoonright \mathrm{p}=\left(a @ R_{1} \upharpoonright \mathrm{p}\right) \times\left(b @ R_{2} \upharpoonright \mathrm{p}\right) \\
& \left(a_{1}+a_{2}\right) @\left(t_{i} R\right) \upharpoonright \mathrm{p}=\left(a_{i} @ R \upharpoonright \mathrm{p}\right) \\
& a @\left(R_{1} \cup \overrightarrow{\mathrm{p}} R_{2}\right) \upharpoonright \mathrm{p}= \\
& \begin{cases}\left(a @ R_{1}\right) \upharpoonright \mathrm{p} \uplus\left(a @ R_{2}\right) \upharpoonright \mathrm{p} & \text { if } \mathrm{p} \in \overrightarrow{\mathrm{p}} \\
a^{\prime} & \text { if } a^{\prime}=\left(a @ R_{1}\right) \upharpoonright \mathrm{p}=\left(a @ R_{2}\right) \upharpoonright \mathrm{p}\end{cases}
\end{aligned}
$$

A. 3 MPST

Definition A. 7 (Label Broadcasting). We define a macro that represents the broadcasting of a label to multiple participants in a choice. We write

- $\mathrm{p} \rightarrow\left\{\mathrm{p}_{j}\right\}_{j \in[1, n]}:\left\{\iota_{i} \cdot G_{i}\right\}_{i \in I}$ for $\mathrm{p} \rightarrow \mathrm{p}_{1}\left\{\iota_{i} \cdot \mathrm{p} \rightarrow \mathrm{p}_{2}\left\{\iota_{i}\right.\right.$ $\left.\left.\ldots \mathrm{p} \rightarrow \mathrm{p}_{n}\left\{\iota_{i} . G_{i}\right\} \ldots\right\}\right\}_{i \in I}$; and
- $\left\{\mathrm{p}_{j}\right\}_{j \in[1, n]} \oplus\left\{\iota_{i} . L_{i}\right\}_{i \in I}$ for $\mathrm{p}_{1} \oplus\left\{\iota_{i} \cdot \mathrm{p}_{2} \oplus\left\{\iota_{i} \ldots . \mathrm{p}_{n} \oplus\right.\right.$ $\left.\left.\left\{\iota_{i} . L_{i}\right\} \ldots\right\}\right\}_{i \in I}$.
It is straightforward to show that $\left(\mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{j}\right\}_{j \in J}:\left\{\iota_{i} \cdot G_{i}\right\}_{i \in I}\right) \mid$ $\mathrm{p}_{2}=\left\{\mathrm{p}_{j}\right\}_{j \in J} \oplus\left\{\iota_{i} . G_{i} \upharpoonright \mathrm{p}_{2}\right\}_{i \in I}$, if $\mathrm{p}_{1}=\mathrm{p}_{2}$, and $\left(\mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{j}\right\}_{j \in J}:\right.$ $\left.\left\{\iota_{i}, G_{i}\right\}_{i \in I}\right) \upharpoonright \mathrm{p}_{2}=\mathrm{p}_{1} \&\left\{\iota_{i} \cdot G_{i} \upharpoonright \mathrm{p}_{2}\right\}_{i \in I}$, if $\mathrm{p}_{2}=\mathrm{p}_{j}$ for some $j \in J$.

The relation $\vDash p \Leftarrow A \sim G$ associates p and A with the global type G (Fig. 11).

Rules $\mathrm{Id}_{\mathrm{I}} \mathrm{InJ}_{i}, \mathrm{Proj}_{i}$, and CASE_{i} are straightforward. Rule Comp associates two PAlg expressions with the sequencing
of their respective global types, $G_{1} \AA G_{2}$. The sequencing produces the global type that results of performing first G_{1}, and then G_{2}, by taking into account branching and choices:

$$
\left.\begin{array}{rl}
\text { end } ; G & =G \\
\left(\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a \cdot G_{1}\right) ; G_{2} & =\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a .\left(G_{1} ; G_{2}\right) \\
\left(\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}\left\{\iota_{i} \cdot G_{1}\right\}\right) ; G_{2} & =\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}\left\{l_{i} \cdot G_{1} ; G_{2}\right\}
\end{array}\right\}
$$

Rule Сhoice turns a choice point of p with dependencies \vec{p} into a global type choice: p notifies all participants in \vec{p} of the branch in the protocol that they need to take. Rule Alt associates p with two protocols, G_{1} and G_{2}, whenever the input interface is a choice of A_{1} and A_{2}. Each G_{i} is the continuation that corresponds to the i-th branch of the choice that led to interface A_{i}. Note that contrary to the typing rules of Fig. 2, there is no rule Join. This is because Join was only used to avoid adding too many participants to a choice. However, at this point, these participants are known, and specified at the choice points. Rule Split associates a split of PAlg expressions with the sequence of the respective interactions. The rule uses [$G_{2} /$ end $] G_{1}$ instead of ${ }_{9}$, because if G_{1} contains a global type choice, then the interactions described by G_{2} must be done after every branch in G_{1}. Since both G_{1} and G_{2} start from the same input interface, any choice in either G_{i} must be independent of any choice in the other G_{j}. Finally, rule Alg specifies that if the input interface is $a @ I$, and the expression is $e @ p$, then the protocol comprises the sequence of interactions from all participants in I to participant p.

Example A. 8 (Mergesort Protocol). Recall the PAlg expression inferred for ms in Example A.1:

$$
\begin{aligned}
& \vdash \mathrm{mrg} \circ(\mathrm{id}+\mathrm{ms} \times \mathrm{ms}) \\
& \Rightarrow m r g @ p_{1} \circ\left(i d+\left(m s @ p_{2} \circ \pi_{1} @ p_{1}\right) \Delta\left(m s @ p_{3} \circ \pi_{2} @ p_{1}\right)\right) \\
& \circ\left[p_{1} \oplus p_{1} p_{2} p_{3}\right] \circ \operatorname{spl}_{1} p_{1}
\end{aligned}
$$

 $\left.\left.\pi_{2} @ p_{1}\right)\right) \circ\left[p_{1} \oplus \mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}\right] \circ$ spl@ $p_{1} \Leftarrow \operatorname{Ls} \mathrm{p}_{0} \sim$? 0 .
The first step is a straightforward application of Comp. The case for $\left[p_{1} \oplus p_{1} p_{2} p_{3}\right]$ is the result of applying rule Choice. To help readability, we use different colors for the left and the right branches:

$$
\begin{aligned}
& \vDash\left[\mathrm{p}_{1} \oplus \mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}\right] \\
& \quad \Leftarrow((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @_{1} \sim \mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{2} \mathrm{p}_{3}\right\}\left\{\iota_{1} . \mathrm{end} ; \iota_{2} . \mathrm{end}\right\}
\end{aligned}
$$

At this point, the input interface is:

$$
((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @\left(\iota_{1} \mathrm{p}_{1}\right) \cup^{\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}}((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @\left(\iota_{2} \mathrm{p}_{1}\right)
$$

This means that we need to obtain two sub-protocols, for the left and the right branches respectively. The left branch is solved by applying rule $\mathrm{I}_{\mathrm{N}}^{1} 1$, while the right branch is solved by rules Case, INJ_{2}, Split, Comp and Alg:

Choice

$$
\left[a @ \mathrm{p}_{1} \leadsto \mathrm{p}_{2}\right]=\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: a . \text { end, if } \mathrm{p}_{1} \neq \mathrm{p}_{2} ;[a @ \mathrm{p} \leadsto \mathrm{p}]=\text { end }
$$

$$
\left[(a \times b) @\left(I_{a} \times I_{b}\right) \leadsto \mathrm{p}\right]=\left[a @ I_{a} \leadsto \mathrm{p}\right] ;\left[b @ I_{b} \leadsto \mathrm{p}\right] ; \text { and }
$$

$$
\left[\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \leadsto \mathrm{p}\right]=\left[a_{i} @ I \leadsto \mathrm{p}\right]
$$

Figure 11. Protocol relation

$$
\begin{aligned}
& \vDash \mathrm{id}+\left(\mathrm{ms} @ \mathrm{p}_{2} \circ \pi_{1} @ \mathrm{p}_{1}\right) \Delta\left(\mathrm{ms} @ \mathrm{p}_{3} \circ \pi_{2} @ \mathrm{p}_{1}\right) \\
& \quad \Leftarrow((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @\left(\iota_{1} \mathrm{p}_{1}\right) \sim \text { end } \\
& \vDash \mathrm{id}+\left(\mathrm{ms} @ \mathrm{p}_{2} \circ \pi_{1} @ \mathrm{p}_{1}\right) \Delta\left(\mathrm{ms}^{2} \mathrm{p}_{3} \circ \pi_{2} @ \mathrm{p}_{1}\right) \\
& \quad \Leftarrow((1+a)+\mathrm{Ls} \times \mathrm{Ls}) @\left(\iota_{2} \mathrm{p}_{1}\right) \sim \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: \text { Ls.end }
\end{aligned}
$$

The interface at this point is $((1+a)+\operatorname{Ls} \times \operatorname{Ls}) @\left(\iota_{1} \mathrm{p}_{1} \cup \mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}\right.$ $\left.\iota_{2}\left(p_{2} \times p_{3}\right)\right)$. For the last expression, $m r g @ p_{1}$, we produce the following protocol: end $\cup p_{2} \rightarrow p_{1}:$ Ls. $p_{3} \rightarrow p_{1}$: Ls.end. This is because, on the left branch, the input is still at p_{1}, so no communication is required. On the right branch, the input is a product of lists, one at p_{2}, and another one at p_{3}, and so they need to communicate with p_{1}. The final protocol is obtained by applying sequencing:

$$
\begin{aligned}
& \mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{2} \mathrm{p}_{3}\right\}\left\{\begin{array}{l}
\iota_{1} . \text { end; } \\
\iota_{2} . \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: \text { Ls.end }
\end{array}\right\} ; \\
& \left(\text { end } \cup\left(\mathrm{p}_{2} \rightarrow \mathrm{p}_{1}: \text { Ls. } \mathrm{p}_{3} \rightarrow \mathrm{p}_{1}: \text { Ls.end }\right)\right) \\
& =\mathrm{p}_{1} \rightarrow\left\{\mathrm{p}_{2} \mathrm{p}_{3}\right\}\left\{\begin{array}{c}
\iota_{1} \cdot \mathrm{end} ; \\
\iota_{2} \cdot \mathrm{p}_{1} \rightarrow \mathrm{p}_{2}: \text { Ls. } \mathrm{p}_{1} \rightarrow \mathrm{p}_{3}: \text { Ls. } \\
\mathrm{p}_{2} \rightarrow \mathrm{p}_{1}: \text { Ls. } \mathrm{p}_{3} \rightarrow \mathrm{p}_{1}: \text { Ls.end }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \vDash[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}] \Leftarrow a[b+c] @ I[\mathrm{p}] \sim \mathrm{p} \rightarrow\{\overrightarrow{\mathrm{p}} \backslash \mathrm{p}\}\left\{\iota_{1} \text {. end; } \iota_{2} \text {. end }\right\} \\
& \mathrm{CASE}_{i} \\
& \frac{\vDash \mathrm{e}_{i} \Leftarrow a_{i} @ I \sim G}{\vDash \mathrm{e}_{1} \nabla \mathrm{e}_{2} \Leftarrow\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \sim G} \\
& \text { Alt } \\
& \frac{\vDash \mathrm{e} \Leftarrow A_{1} \sim G_{1} \quad \vDash \mathrm{e} \Leftarrow A_{2} \sim G_{2}}{\vDash \mathrm{e} \Leftarrow A_{1} \cup^{\overrightarrow{\mathrm{P}}} A_{2} \sim G_{1} \cup G_{2}} \\
& \text { Alg } \\
& \vdash e: a \rightarrow b \\
& \bar{\vDash} \mathrm{e} \mathrm{p} \Leftarrow a @ I \sim[a @ I \leadsto \mathrm{p}] \\
& \text { Comp } \\
& \frac{\vDash \mathrm{e}_{2} \Leftarrow A \sim G_{2} \quad \vDash \mathrm{e}_{1} \Leftarrow B \sim G_{1} \quad \vdash \mathrm{e}_{2}: A \rightarrow B}{\vDash \mathrm{e}_{1} \circ \mathrm{e}_{2} \Leftarrow A \sim G_{2} \circ G_{1}} \\
& \text { Split } \\
& \vDash \mathrm{e}_{i} \Leftarrow a @ I \sim G_{i} \quad(i=1,2) \\
& \vDash \mathrm{e}_{1} \Delta \mathrm{e}_{2} \Leftarrow a @ I \sim\left[G_{2} / \mathrm{end}\right] G_{1}
\end{aligned}
$$

A. 4 Mp

Mp comprises four basic operations: send, receive, choice and branching, with a standard (asynchronous) semantics. Additionally, for composing actions that depend on the same choice, we introduce case expressions.

```
v ::= x| (v,v)| | iv v|\cdots|ev
mi::= ret v|m>> f| send p v| recv p a| sel \vec{p}v\mp@subsup{f}{1}{}\mp@subsup{f}{2}{}
    | brn p m m m}\mp@subsup{m}{2}{|}\mathrm{ case f}\mp@subsup{f}{1}{}\mp@subsup{f}{2}{}\quadf::=\lambdax.
```

Values v are either primitive values, tagged values $t_{i} v$, pairs of values, or the result of applying an Alg expression e to a value. We use standard notation for the monadic unit (ret) and bind (\gg). The term $\lambda x . m$ is a monadic continuation. We write $\lambda_{-} . m$ when the continuation discards the result of the previous monadic action. We use the standard Kleisli composition: $f_{1} \Longrightarrow f_{2}=\lambda x . f_{1} x \gg f_{2}$.

The message-passing constructs are standard, except sel, brn and case, which are used for performing choices, and composing actions that depend on the same choice. We explain them in detail below. We include select and branching as syntactic constructs to simplify the typeability of parallel code against local types, but their semantics can be defined in terms of standard pattern matching, plus send and receive operations.

Each monadic computation f or m has a type $m: \operatorname{Mp} L a$, where a is the return type of m, and L is the type index of Mp , and it represents the local type that corresponds to the behaviour of the term m. There is almost a one to one correspondence between the terms L and the monadic actions m, so we refer the reader to Appendix A (Fig. 16) for the full definition.

Composing Choices The types of the constructs that deal with choices use a new type, \uplus, that is isomorphic to sum types, but that can only be constructed and eliminated by using the following monadic constructs:

$$
\begin{aligned}
& \text { sel } \overrightarrow{\mathrm{p}}: a+b \rightarrow\left(a \rightarrow M \mathrm{Mp} L_{1} c_{1}\right) \rightarrow\left(b \rightarrow M \mathrm{M} L_{2} c_{2}\right) \\
& \rightarrow M \mathrm{Mp}\left(\overrightarrow{\mathrm{p}} \oplus\left\{\iota_{1} \cdot L_{1} ; \iota_{2} \cdot L_{2}\right\}\right)\left(c_{1} \uplus c_{2}\right) \\
& \text { brn } \mathrm{p}: \operatorname{Mp} L_{1} a_{1} \rightarrow M \mathrm{Mp} L_{2} a_{2} \\
& \rightarrow M \mathrm{Mp}\left(\mathrm{p} \&\left\{\iota_{1} \cdot L_{1} ; t_{2} \cdot L_{2}\right\}\right)\left(a_{1} \uplus a_{2}\right) \\
& \text { case }:\left(a \rightarrow M \mathrm{Mp} L_{1} c\right) \rightarrow\left(b \rightarrow M \mathrm{M} L_{2} d\right) \rightarrow a \uplus b \\
& \rightarrow \operatorname{Mp}\left(L_{1} \cup L_{2}\right)(c \uplus d)
\end{aligned}
$$

These constructs ensure that the tag used to build $a \uplus b$ indeed corresponds to the correct branch of the right choice. We use case to compose actions that depend on a previous choice. It may seem that this treatment of \uplus leads to unnecessary code duplication, e.g. the only possibility to compose a single action f after a branch is using case: brn $\mathrm{p} m_{1} m_{2} \gg$ case $f f$. Our back-end easily optimises those cases to avoid code duplication.

By the definition of the monadic bind, when we compose a branch or select with a case expression, the final local type cannot contain \cup. To illustrate this, consider $m_{1}: M p L_{1}(a \uplus b)$ and $f_{2}: a \uplus b \rightarrow \mathrm{Mp}\left(L_{2} \cup L_{3}\right)(c \uplus d)$. The local type of $m_{1} \gg f_{2}$ must be $L_{1} \circ\left(L_{2} \cup L_{3}\right)$. But that is only defined if L_{1} contains a branch or select. Therefore, $m_{1} \gg f_{2}$ is only well-typed if f_{2} is a case expression on the tag introduced by the topmost branch or select of m_{1}.

Parallel programs We define the basic constructs of PAIg in a bottom-up way by manipulating parallel programs. Parallel programs are mappings from participants to their monadic action: $\mathrm{E}::=\left[\mathrm{p}_{i} \mapsto m_{i}\right]_{i \in I}$. If $m_{i}: M \mathrm{p} L_{i} a_{i}$ for all $i \in I$, then we write $\left[\mathrm{p}_{i} \mapsto m_{i}\right]_{i \in I}: M \mathrm{Mp}\left[\mathrm{p}_{i} \mapsto L_{i}\right]_{i \in I}\left[\mathrm{p}_{i} \mapsto a_{i}\right]_{i \in I}$. The semantics of both local types and monadic actions is defined in terms of such collections of actions or local types, and shared queues of values W, or queues of types Q, e.g. $\langle\mathrm{E}, W\rangle \sim^{\ell}\left\langle\mathrm{E}^{\prime}, W^{\prime}\right\rangle$ is a transition from E to E^{\prime}, and shared queues W to W^{\prime} with observable action ℓ. We prove a standard safety theorem (Theorem 5.1 below) that guarantees that if a participant does a transition with some observable action, then so does the type index.

Theorem 5.1. [Soundness] Assume E: Mp C A, m: Mp La and $W: Q$. Suppose $\langle\mathrm{E}[r \mapsto m], W\rangle \sim^{\ell}\left\langle\mathrm{E}\left[r \mapsto m^{\prime}\right], W^{\prime}\right\rangle$. Then there exists $\langle C[r \mapsto L], Q\rangle \rightarrow^{\ell}\left\langle C\left[r \mapsto L^{\prime}\right], Q^{\prime}\right\rangle$ such that $W^{\prime}: Q^{\prime}$ and $m^{\prime}: M p L^{\prime} a$.

Notations and Operations for Parallel Programs We simplify the notation for E , when all L_{i} are projections of the same global type, and the a_{i} are projections of the same interface. We define the projection of an interface at a participant, $A \upharpoonright \mathrm{p}$, to be the part of A that is at p (Appendix A.6). Whenever we have $m_{\mathrm{p}}: M \mathrm{p}(G \upharpoonright \mathrm{p})(A \upharpoonright \mathrm{p})$ for all participants in $\mathrm{p} \in G$, we use the notation $\left[\mathrm{p} \mapsto m_{\mathrm{p}}\right]_{\mathrm{p} \in \mathrm{pids}(G)}: \operatorname{Mp} G A$. This means that the collection of all actions m_{p} behave as prescribed by G, and produce their result in interface A. Finally, if we have $\mathrm{E}=\left[\mathrm{p} \mapsto f_{\mathrm{p}}: A \upharpoonright \mathrm{p} \rightarrow \mathrm{Mp}(G \upharpoonright \mathrm{p})(B \upharpoonright \mathrm{p})\right]_{\mathrm{p} \in \mathrm{pids}(G)}$, we write $\mathrm{E}: A \rightarrow \mathrm{Mp} G B$.

Parallel programs have a default value for participants that are not in their domain. Unless otherwise specified, this default value is the identity. For example, $\mathrm{E}(\mathrm{p})=f$ if $\mathrm{E}=\mathrm{E}^{\prime}[\mathrm{p} \mapsto f]$, and $\mathrm{E}(\mathrm{p})=\lambda x$.ret x if $\mathrm{p} \notin \mathrm{E}$. We specify the default value using the underscore character as a key in the mapping from participants to monadic actions: $\left[_\mapsto f\right.$].

Distributed Values and Execution We define the execution of a parallel program on a distributed value below. A distributed value $V: a @ R$ is a mapping from participants to the value that they hold in the respective interface: $\left[\mathrm{p}_{i} \mapsto\left(v_{i}:(a @ R) \upharpoonright \mathrm{p}_{i}\right)\right]_{i \in I}:(a @ R)$. Additionally, we require unit to be the default value, so if $\mathrm{p} \notin \operatorname{pids}(R)$, then $V(\mathrm{p})=()$.

Definition A. 9 (Execution). Given $\mathrm{E}=\left[\mathrm{p}_{i} \mapsto f_{i}\right]_{i \in I}$ and $X=\left[\mathrm{p}_{j} \mapsto x_{j}\right]_{j \in J}$, we define $\mathrm{E}(X)=\left[\mathrm{p}_{i} \mapsto f_{i} X\left(\mathrm{p}_{i}\right)\right]_{i \in I}$, with $X\left(\mathrm{p}_{i}\right)=x_{i}$ if $i \in J$, or $X\left(\mathrm{p}_{i}\right)=()$ otherwise. Given $Y=$
[$\left.\mathrm{p}_{k} \mapsto y_{k}\right]_{k \in K}$, we say that $P(X)$ executes to $Y, P(X) \sim^{*} Y$, if there is a trace $\langle P(X), \emptyset\rangle \sim^{*}\left\langle\left[\mathrm{p}_{i} \mapsto \operatorname{ret} Y\left(\mathrm{p}_{i}\right)\right]_{i \in I}, \emptyset\right\rangle$. We write $P(X)=Y$, whenever there is a unique Y s.t. for all Z, $P(X) \sim^{*} Z$ implies that $Z=Y$.

Composition and Identity Composition is defined as the standard Kleisli composition, extended to parallel programs as follows: $E_{1}>E_{2}=\left[p \mapsto E_{1}(p) \gg E_{2}(p)\right]_{p \in E_{1} \cup E_{2}}$. Then, $E_{2} \circ$ $E_{1}=E_{1} \Longrightarrow E_{2}$. Identity is simply the empty program with just the default value, id $=[]$.

Split and Projection The split operation is the participantwise split, and the i-th projection is the environment with the projection i as the default value:

$$
\begin{aligned}
& \mathrm{E}_{1} \Delta \mathrm{E}_{2}=\left[\mathrm{p} \mapsto \lambda x . \mathrm{E}_{1}(\mathrm{p}) x \geqslant \approx \lambda y . \mathrm{E}_{2}(\mathrm{p}) x \geqslant \equiv \lambda z . \operatorname{ret}(y, z)\right]_{\mathrm{p} \in \mathrm{E}_{1} \cup \mathrm{E}_{2}} . \\
& \pi_{i}=\left[-\mapsto \lambda x . \operatorname{ret}\left(\pi_{i} x\right)\right]
\end{aligned}
$$

Case and Injection Case expressions will never occur during code generation, since they will be resolved by choices. Injections only tag a branch in the protocol, and so we define them as the identity: $\iota_{i}=[]$.

Choices Choices are performed by the participant holding a value of a sum-type, and the tag is notified to the list of participants that depend on them. The definition uses functions $\operatorname{get}_{I}(x)$ and $\operatorname{put}_{I}(y, x)$ to extract the value of a sum-type from the hole of a one-hole context I (§3.1), and to replace the value at the hole respectively.

$$
\begin{aligned}
& {\left[\mathrm{p}_{0} \oplus \mathrm{p}_{0} \mathrm{p}_{1} \cdots \mathrm{p}_{n}\right]=} \\
& \left.\qquad \begin{array}{l}
\mathrm{p}_{0} \mapsto \lambda x \cdot \operatorname{sel}\left(\mathrm{p}_{1} \cdots \mathrm{p}_{n}\right)\left(\operatorname{get}_{I}(x)\right) \\
\quad\left(\lambda y \cdot \operatorname{ret}\left(\operatorname{put}_{I}(y, x)\right)\right)\left(\lambda y . \operatorname{ret}\left(\operatorname{put}_{I}(y, x)\right)\right) \\
\mathrm{p}_{1} \mapsto \lambda x \cdot \operatorname{brn} \mathrm{p}(\operatorname{ret} x)(\operatorname{ret} x) ; \\
\cdots \\
\mathrm{p}_{n} \mapsto \lambda x . \operatorname{brn} \mathrm{p}(\operatorname{ret} x)(\operatorname{ret} x)
\end{array}\right]
\end{aligned}
$$

The presence of type \uplus means that we might require to perform a case expression to inspect the result of a previous choice: we define $E_{1} \uplus \vec{p} E_{2}$ for this.

$$
E_{1} \uplus \vec{p} E_{2}=\left[p \mapsto \lambda x \text {. case } E_{1}(p) E_{2}(p)\right]_{p \in \vec{p}} \cup\left(E_{1} \cup E_{2}\right) \backslash\{\vec{p}\}
$$

The definition of $\uplus \overrightarrow{\mathrm{p}}$ means that the participants involved in a choice will perform a case expression to inspect which branch they need to take, while the rest of the participants will continue as specified by either E_{1} or E_{2}. Note $\left(E_{1} \cup E_{2}\right)(p)$ will produce $E_{2}(p)$, if $p \in E_{1} \cap E_{2}$. This will not be an issue during code generation: any participant that is not involved in a choice will have the same continuation in both branches.

A. 5 Mp code generation

The translation scheme for Mp code generation (Fig. 12) is done recursively on the structure of PAlg expressions. It takes a PAIg expression e, an interface A, and produces a mapping from all participants in e and A to their respective monadic continuations. We write $\llbracket \mathrm{e} \rrbracket(A)$, and guarantee that $\llbracket \mathrm{e} \rrbracket(A): A \rightarrow \operatorname{Mp} G B$, if $\vDash \mathrm{e} \Leftarrow A \sim(G, B)$. This means that if e induces protocol G with interfaces $A \rightarrow B$, then the generated code behaves as G, with interfaces A and B.

Code generation follows a similar structure to global type inference. For code generation, we require a partial function $\operatorname{cod}(\mathrm{e}, A)$ that infers the codomain interface of e using Fig. 2.

The translation to $M p$ requires to define the interactions from an interface I that gathers a type a at $\mathrm{p}:(a @ I \sim \mathrm{p})$: $a @ I \rightarrow \mathrm{Mp}[a @ I \sim \mathrm{p}](a @ p)$. The definition is analogous to that of $[a @ I \leadsto p]$. The remaining of the translation is straightforward, built on top of the previous definitions.

```
\(\left(a @ p_{1} \leadsto \mathrm{p}_{0}\right) \quad=\left[\mathrm{p}_{1} \mapsto \lambda x\right.\).send \(x \mathrm{p}_{0} \mathrm{p}_{0} \mapsto \lambda_{-} \cdot\).recv \(\left.\mathrm{p}_{1} a\right]\)
\(\left(\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \leadsto \mathrm{p}\right)=\left(a_{i} @ I \leadsto \mathrm{p}\right) \Rightarrow\left[\mathrm{p} \mapsto \lambda x\right.\). ret \(\left.\left(l_{i} x\right)\right]\)
\(\left((a \times b) @\left(I_{1} \times I_{2}\right) \sim \mathrm{p}\right)=\left(a @ I_{1} \leadsto \mathrm{p}\right) \times\left(b \varrho_{2} \leadsto \mathrm{p}\right)\)
                                    \(\Rightarrow\left[\mathrm{p}_{i} \mapsto \lambda_{-} \cdot \operatorname{ret}()\right]_{\mathrm{p}_{i} \in \operatorname{pids}\left(I_{1} \times I_{2}\right) \backslash\{\mathrm{p}\}}\)
\(\llbracket i d \rrbracket(a @ I) \quad=[] \quad \llbracket \iota i \rrbracket(a @ I)=[]\)
\(\llbracket e @ p \rrbracket(a @ I) \quad=(a @ I \leadsto \mathrm{p}) \gg \mathrm{p} \mapsto \lambda x\). ret \((e x)]\)
\(\llbracket \mathrm{e}_{1} \Delta \mathrm{e}_{2} \rrbracket(a @) \quad=\llbracket \mathrm{e}_{1} \rrbracket(a @) \Delta \llbracket \mathrm{e}_{2} \rrbracket(a @ I)\)
\(\llbracket \mathrm{e}_{1} \circ \mathrm{e}_{2} \rrbracket(A) \quad=\llbracket \mathrm{e}_{2} \rrbracket(A)>\llbracket \mathrm{e}_{1} \rrbracket\left(\operatorname{cod}\left(\mathrm{e}_{2}, A\right)\right)\)
\(\llbracket \mathrm{e}_{1} \nabla \mathrm{e}_{2} \rrbracket\left(\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right)\right)=\llbracket \mathrm{e}_{i} \rrbracket\left(a_{i} @ I\right)\)
\(\llbracket \pi_{i} \rrbracket\left((a \times b) @\left(I_{1} \times I_{2}\right)\right)=\pi_{i}\)
\(\llbracket[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}] \rrbracket(a @ \mathcal{I}[\mathrm{p}]) \quad=[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]\)
\(\llbracket \mathrm{e} \rrbracket\left(a @\left(R_{1} \cup \overrightarrow{\mathrm{P}} R_{2}\right)\right) \quad=\llbracket \mathrm{e} \rrbracket\left(a @ R_{1}\right) \uplus \overrightarrow{\mathrm{P}} \llbracket \mathrm{e} \rrbracket\left(a @ R_{2}\right)\)
```

Figure 12. Translating PAlg to Mp code.

Protocol Compliance Theorem 5.2 guarantees that the generated code follows the protocol inferred using the relation in Fig. 3. This fact is enough to guarantee that the generated code is deadlock-free. Moreover, we can use it to prove that the generated code is extensionally equal to the input Alg expression. We state this in Theorem 5.3.

Theorem 5.2. [Protocol Conformance of the Generated Code] If $\vDash \mathrm{e} \Leftarrow A \sim G$, then $\llbracket \mathrm{e} \rrbracket(A)$ complies with protocol G.

This theorem is proved by induction on the structure of the derivation \vDash, and by the definition of \upharpoonright. This result guarantees that the generated code corresponds to the protocol inferred from e. Since the protocol inferred from e is deadlock-free, then so is the generated code. See Appendix B.3.

Extensional Equivalence Additionally to deadlock-freedom and protocol compliance, we prove that if e is the annotation of e, then running the code generated from e on x produces the same result as evaluating e on x. This guarantees that, regardless of the annotations and interfaces chosen for e, the parallel code always produces the same result as the sequential implementation. We show the statement below, in Theorem 5.3, and refer to Appendix \boldsymbol{C} for the full proof.

We specify the extensionality theorem on runnable parallel programs, which are those with a single entry/exit point, i.e. a master worker p_{m} that starts the computation, and gathers the results. Suppose we call this master worker p_{m}. Given any e, we can guarantee that p_{m} is the entry point by setting it to be the domain interface: $\vdash \mathrm{e}: a @ \mathrm{p}_{m} \rightarrow b @ R$. To make it the exit point, we need to make sure that it is the codomain interface. We can do this by forcing the participants in R to
send their values to p_{m} as follows: $\vdash \mathrm{id} \mathrm{p}_{m} \circ \mathrm{e}: a @ \mathrm{p}_{m} \rightarrow b @ R$. However, and due to the presence of choices, the codomain interface may contain \cup. For example, if e : $a @ \mathrm{p}_{m} \rightarrow b @\left(I_{1} \cup \overrightarrow{\mathrm{p}}\right.$
 with $\mathrm{p}_{m} \in \overrightarrow{\mathrm{p}}$. This means that $b @\left(\mathrm{p}_{m} \cup \overrightarrow{\mathrm{p}} \mathrm{p}_{m}\right) \upharpoonright \mathrm{p}_{m}=b \uplus b$. To obtain a single value of type b, we use function join : $a \uplus a \rightarrow$ a, which is equivalent to id ∇ id for regular sum-types. We lift it to a monadic action, $\operatorname{join}(R)$, to join all branches in R :

$$
\begin{aligned}
& \operatorname{join}(I)=[] \quad \operatorname{join}\left(R_{1} \cup \overrightarrow{\mathrm{p}} R_{2}\right)=\operatorname{join}\left(R_{1}\right) \uplus \overrightarrow{\mathrm{P}} \text { join }\left(R_{2}\right) \gg[\mathrm{p} \mapsto \\
& \lambda x . \operatorname{ret}(\text { join } x)]_{\mathrm{p} \in \overrightarrow{\mathrm{p}}}
\end{aligned}
$$

Note that $\operatorname{join}\left(R_{1} \cup \overrightarrow{\mathrm{p}} R_{2}\right)$ is only defined if $\left(a @ R_{1} \upharpoonright \mathrm{p}\right)=$ $\left(a @ R_{2} \upharpoonright \mathrm{p}\right)$ for all roles. The runnable parallel program for $\mathrm{e}: a @ \mathrm{p}_{m} \rightarrow b @ R, J \llbracket \mathrm{e} \rrbracket\left(\mathrm{p}_{m}\right)$, is defined as follows:

$$
J \llbracket \mathrm{e} \rrbracket\left(\mathrm{p}_{m}\right)=\llbracket i d @_{\mathrm{p}}^{m} \circ \mathrm{e} \rrbracket\left(a @_{m}\right) \gg=\left[\mathrm{p}_{m} \mapsto \operatorname{join}(R)\right] .
$$

Our extensionality statement specifies that executing the runnable parallel program for e, with master p and value x, produces value ex at p.

Theorem 5.3. [Extensionality] Assume $e \Rightarrow \mathrm{e}: a @ p \rightarrow b @ R$ and x : a initially at p. If $e x=y$, then the execution of $\llbracket \mathrm{e} \rrbracket(p)$ also produces y, distributed across R.

Example A. 10 (MergeSort Code Generation). We start with the annotated ms from Example A.1, and we use p_{1} as master role to avoid the initial communication from p_{0} to p_{1} :

```
pms \(=m r g @_{1} \circ\left(\mathrm{id}+\left(\mathbf{m s} @_{2} \circ \pi_{1} @ \mathrm{p}_{1}\right) \Delta\left(\mathrm{ms}^{\left.\left(\mathrm{p}_{3} \circ \pi_{2} @ \mathrm{p}_{1}\right)\right)}\right.\right.\)
    \(\circ\left[p_{1} \oplus p_{1} p_{2} p_{3}\right] \circ s p l @_{1}: L s @ p_{1} \rightarrow L s @ p_{1} \cup{ }^{p_{1} p_{2} p_{3}} L_{s} \mathrm{p}_{1}\)
```

Note that $\llbracket i d @ p_{1} \circ \mathrm{pms} \rrbracket$ would be equivalent to $\llbracket p m s \rrbracket$ because the output interface is already of the form $p_{1} \cup p_{1}$. Therefore, for simplicity, we show 【pms】, and use it to produce the runnable parallel program. Fig. 14 show the code generation process using a table, where the i-th column is the current code for participant p_{i}, and the last column shows the expression and input interface that we are translating next.
From this point, we need to produce the code for the two branches. The left branch is straightforward, and is simply λx. ret x for all participants. The result for the right branch is show in Fig. 15:

Next, we combine both branches using case, and compose it with the previous result. To avoid unnecessarily patternmatching expressions such as case, we optimise the code using rules of the form:
sel $\overrightarrow{\mathrm{p}} f_{1} f_{2} \gg$ case $f_{3} f_{4}=\operatorname{sel} \overrightarrow{\mathrm{p}}\left(f_{1} \gg f_{3}\right)\left(f_{2} \gg f_{4}\right)$. Additionally, we optimise all instances of e.g. ($x,()$) using the fact that $1 \times a \cong a \times 1 \cong a$. We show below the code for all p_{i}, after composing it with join $\left(p_{1} \cup \cup^{p_{1} p_{2} p_{3}} p_{1}\right)$, and applying these optimisations. We use different colours to highlight the different branches of the protocol:

$$
\begin{aligned}
& \mathrm{p}_{1} \mapsto \operatorname{sel}\left\{\mathrm{p}_{2}, \mathrm{p}_{3}\right\}(\mathrm{spl} v)\left(\lambda x \text {. ret }\left(\operatorname{mrg}\left(\iota_{1} x\right)\right)\right)\left(\lambda x \text {. send } \mathrm{p}_{2}\left(\pi_{1} x\right) \gg \sum \lambda \text {. send } \mathrm{p}_{3}\left(\pi_{2} x\right) \gg \lambda_{-}\right. \text {. } \\
& \left.\operatorname{recv} \mathrm{p}_{2} \operatorname{Ls} \gg \lambda x \text {. recv } \mathrm{p}_{3} \mathrm{Ls} \ggg \lambda y \text {. ret }\left(\operatorname{mrg}\left(\iota_{2}(x, y)\right)\right)\right) \gg \lambda x \text {. ret }(\text { join } x) \\
& \left.\mathrm{p}_{2} \mapsto \operatorname{brn} \mathrm{p}_{1}(\text { ret } x)\left(\text { recv } \mathrm{p}_{1} \operatorname{Ls} \gg=\lambda x \text {. ret }(\mathrm{ms} x) \ggg \lambda x \text {. send } \mathrm{p}_{1} x\right) \gg \lambda x \text {. ret (join } x\right) \\
& \left.\mathrm{p}_{3} \mapsto \operatorname{brn~}_{1}(\text { ret } x)\left(\operatorname{recv} \mathrm{p}_{1} \mathrm{Ls} \gg \lambda x \text {. ret }(\mathrm{ms} x) \gg \lambda x \text {. send } \mathrm{p}_{1} x\right) \gg \lambda x \text {. ret (join } x\right) \\
& \mathrm{p}_{1} \mapsto \operatorname{send} \mathrm{p}_{2}\left(\pi_{1}\left(v_{1}, v_{2}\right)\right) \gg \sum \lambda y \text {. send } \mathrm{p}_{3}\left(\pi_{2}\left(v_{1}, v_{2}\right)\right) \gg \lambda_{-} \text {. recv } \mathrm{p}_{2} \text { Ls } \gg \lambda x \text {. recv } \mathrm{p}_{3} \operatorname{Ls} \gg \sum \lambda y \text {. } \\
& \operatorname{ret}\left(\operatorname{br}_{2}\left(\operatorname{mrg}\left(\iota_{2}(x, y)\right)\right)\right) \gg \lambda x \text {. ret }(\text { join } x) \\
& \mathrm{p}_{2} \mapsto \operatorname{recv} \mathrm{p}_{1} \mathrm{Ls} \gg \lambda x \text {. } \operatorname{ret}(\operatorname{ms} x) \gg \lambda x \text {. send } \mathrm{p}_{1} x \gg \lambda x \text {. ret }\left(\operatorname{br}_{2} x\right) \gg \lambda x \text {. ret }(\text { join } x) \\
& \left.\mathrm{p}_{3} \mapsto \operatorname{recv} \mathrm{p}_{1} \mathrm{Ls} \gg \lambda x . \operatorname{ret}(\operatorname{ms} x) \gg \lambda x \text {. send } \mathrm{p}_{1} x \gg \lambda \lambda x \text {. ret }\left(\mathrm{br}_{2} x\right) \gg \sum \lambda x \text {. ret (join } x\right) \\
& \mathrm{p}_{1} \mapsto \operatorname{recv} \mathrm{p}_{2} L s \gg \lambda x \text {. recv } \mathrm{p}_{3} \operatorname{Ls} \gg \lambda y \text {. ret }\left(\operatorname{br}_{2}\left(\operatorname{mrg}\left(\iota_{2}(x, y)\right)\right)\right) \geqslant \lambda \lambda x \text {. ret }(\text { join } x) \\
& \mathrm{p}_{2} \mapsto \operatorname{ret}\left(\mathrm{~ms} v_{1}\right) \gg=\lambda x \text {. send } \mathrm{p}_{1} x \gg=\lambda x \text {. ret }\left(\mathrm{br}_{2} x\right) \gg \lambda x \text {. ret }(\text { join } x) \\
& \left.\mathrm{p}_{3} \mapsto \operatorname{ret}\left(\mathrm{~ms} v_{2}\right) \gg 2 \lambda x \text {. send } \mathrm{p}_{1} x \gg=\lambda x \text {. ret }\left(\mathrm{br}_{2} x\right) \gg \lambda x \text {. ret (join } x\right) \\
& \mathrm{p}_{1} \mapsto \operatorname{ret}\left(\operatorname{mrg}\left(\iota_{2}\left(\mathbf{m s} v_{1}, \operatorname{ms} v_{2}\right)\right)\right)=\operatorname{ret}(\operatorname{mrg}((\mathrm{id}+\mathbf{m s} \times \mathbf{m s})(\mathrm{spl} v)))=\operatorname{ret}(\mathbf{m s} v) \\
& \mathrm{p}_{2} \mapsto \operatorname{ret}() \mid \mathrm{p}_{3} \mapsto \operatorname{ret}()
\end{aligned}
$$

Figure 13. Step-by-step execution of the parallel code for ms . Input is $\left[\mathrm{p}_{1} \mapsto v\right]$, with $\mathrm{spl} v=\iota_{2}\left(v_{1}, v_{2}\right)$.

p_{1}	p_{2}	p_{3}	
$\lambda x . \operatorname{ret} x$	$\lambda x . \operatorname{ret} x$	λx. ret x	λx. ret x

Figure 14. Example Translation

Figure 15. Right branch for mergesort.
$\mathrm{p}_{1} \mapsto \lambda x . \operatorname{sel}\left\{\mathrm{p}_{2}, \mathrm{p}_{3}\right\}(\operatorname{spl} x)\left(\lambda x . \operatorname{ret}\left(\operatorname{mrg}\left(\iota_{1} x\right)\right)\right)$
$\left(\lambda x\right.$. send $\mathrm{p}_{2}\left(\pi_{1} x\right) \gg \lambda y$. send $\mathrm{p}_{3}\left(\pi_{2} x\right) \gg \lambda_{-}$. $\left.\operatorname{recv} \mathrm{p}_{2} \operatorname{Ls} \gg \lambda x . \operatorname{recv} \mathrm{p}_{3} \mathrm{Ls} \gg \lambda y . \operatorname{ret}\left(\operatorname{mrg}\left(\iota_{2}(x, y)\right)\right)\right)$ $\gg \lambda x$. ret (join x)
$\mathrm{p}_{2} \mapsto \lambda x . \operatorname{brn} \mathrm{p}_{1}($ ret $x)\left(\operatorname{recv} \mathrm{p}_{1} \mathrm{Ls} \gg \lambda \lambda x . \operatorname{ret}(\mathrm{ms} x) \ggg \lambda x\right.$. send $\left.\mathrm{p}_{1} x\right) \gg \lambda x$. ret $($ join $x)$
$\mathrm{p}_{3} \mapsto \lambda x$. brn $\mathrm{p}_{1}(\operatorname{ret} x)\left(\operatorname{recv} \mathrm{p}_{1} \mathrm{Ls} \gg \lambda x\right.$. $\operatorname{ret}(\mathrm{ms} x) \gg \lambda x$. send $\left.\mathrm{p}_{1} x\right) \gg \lambda x . \operatorname{ret}($ join $x)$
We show in Figure 13 the step-by-step execution of this code on distributed value [$\mathrm{p}_{1} \mapsto v$], with spl $v=\iota_{2}\left(v_{1}, v_{2}\right)$. The final result is equal to p_{1} applying ms directly on the input.

Typing Mp against Local Types We define a relation between Mp code and the local type that captures their communication behaviour (Fig. 16). We define a judgement of the form $\Gamma \vdash m: M p L a$, where $M p L a$ is the type of an $M p$ expression that conforms to protocol L and returns a value of type a. The types are parameterised by a variable l that represents a local type continuation. The rules in Fig. 16 are straightforward, since they relate in a one-to-one way to the constructs of local types.

Semantics The operational semantics of Mp terms is standard, and mirrors that of the local type configurations in [27].

The operational semantics is defined as an LTS with transitions of the form $\left\langle\left[p_{i} \mapsto m_{i}\right]_{i \in I}, W\right\rangle \sim^{\ell}\left\langle\left[p_{i} \mapsto m_{i}^{\prime}\right]_{i \in I}, W^{\prime}\right\rangle$. Here $\ell::=\mathrm{p}_{0} \mathrm{p}_{1}!\langle a\rangle\left|\mathrm{p}_{0} \mathrm{p}_{1} ?(a)\right| \mathrm{p}_{0} \mathrm{p}_{1} \oplus \iota_{i} \mid \mathrm{p}_{0} \mathrm{p}_{1} \& \iota_{i}$ is the observable action that takes place, and represents, respectively, p_{0} sends to p_{1} a value of type a, p_{1} receives from $\mathrm{p}_{0}, \mathrm{p}_{0}$ sends label i to p_{1}, and p_{1} receives label i from p_{0}. We use the special symbol ϵ to represent that no communication took place. Finally, W is a mapping from ordered pairs of roles to unbounded buffers that contain the data sent between participants.

Definition A.11. LTS for Mp Terms $\langle P, W\rangle \sim^{\ell}\left\langle P^{\prime}, W^{\prime}\right\rangle$, P, W transitions to P^{\prime}, W^{\prime} with action ℓ. The transition rules are defined in Fig. 17.

Similarly, we define $\langle C, Q\rangle \rightarrow^{\ell}\left\langle C^{\prime}, Q^{\prime}\right\rangle$ for the LTS of local type configurations (App. A). Here, C is a collection of local types, $C=\left[\mathrm{p}_{i} \mapsto L_{i}\right]_{i \in I}$, and Q is a mapping from ordered pairs of roles to unbounded buffers that contain types of the data exchanged. We also say that W is compatible with $Q, W: Q$, if for all pair $\mathrm{p}_{1} \mathrm{p}_{2}$, if $w_{1} \cdots w_{n}=W\left(\mathrm{p}_{1} \mathrm{p}_{2}\right)$ then $a_{1} \cdots a_{n}=Q\left(\mathrm{p}_{1} \mathrm{p}_{2}\right)$, and for all $i, w_{i}: a_{i}$.
Definition A. 12 (Get/Set for Types from One Hole Contexts). Whenever a role performs a choice, we have a type

Select

$$
\Gamma \vdash v: a+b
$$

$\Gamma \vdash f_{1}: a \rightarrow M \mathrm{M} L_{1} c_{1} \quad \Gamma \vdash f_{2}: b \rightarrow M p L_{2} c_{2}$
$\overline{\Gamma \vdash \operatorname{sel} v\left\{r_{j}\right\}_{j \in J} f_{1} f_{2}: \operatorname{Mp}\left(\left\{\mathrm{p}_{j}\right\}_{j \in J} \oplus\left\{\iota_{1} . L_{1} ; \iota_{2} . L_{2}\right\}\right)\left(c_{1} \uplus c_{2}\right)}$

> CASE $\frac{\Gamma \vdash f_{1}: a_{1} \rightarrow M \mathrm{Mp} L_{1} b_{1} \quad \Gamma \vdash f_{2}: a_{2} \rightarrow M \mathrm{Mp} L_{2} b_{2}}{\Gamma \vdash \text { case } f_{1} f_{2}: a_{1} \uplus a_{2} \rightarrow \operatorname{Mp}\left(L_{1} \cup L_{2}\right)\left(b_{1} \uplus b_{2}\right)}$

Figure 16. Typing rules for Mp code.
with one hole, $a @ I[p]$, with a sum-type at the hole $(b+c) @ p$. The code for p requires to extract the sum type from the type a, and to set the value at the hole pointed by I. This is because p may occur deep in $\mathcal{I}[\mathrm{p}]$ and, therefore $a @ I[\mathrm{p}] \upharpoonright \mathrm{p}$ may be different to $b+c$. We achieve this with the following families of functions, get ${ }_{I}: a \rightarrow \operatorname{typeAt}(I, a)$, and $\operatorname{put}_{I}: c \times a \rightarrow \operatorname{substTy}(\mathcal{I}, a, c)$, where typeAt and substTy get/set the type at the hole in I.

B Deadlock-Freedom

B. 1 Proof of Lemma 4.2

Lemma 4.2. [Existence of Associated Global Type] For all $\mathrm{WF}(A)$, if $\vdash \mathrm{e}: A \rightarrow B$, then there exists G s.t. $\vDash \mathrm{e} \Leftarrow A \sim G$.

Proof. By induction on the structure of the derivation $\vdash \mathrm{e}$: $A \rightarrow B$.
Case Join. $\vdash e \Rightarrow \mathrm{e}: A \cup \overrightarrow{\mathrm{p}} A \rightarrow B \cup \overrightarrow{\mathrm{p}} B$. By the $\mathrm{IH}, \vDash \mathrm{e} \Leftarrow$ $A \sim G$. By rule Alt, $\vDash \mathrm{e} \Leftarrow A \cup^{\overrightarrow{\mathrm{P}}} A \sim G \cup G$.

Case Alg. $\vdash e \Rightarrow e @ p: a @ I \rightarrow b @$. By Alg, $\vDash e @ r \Leftarrow a @ I \sim$ $[a @ I \sim r]$.
Case Inj_{i}. By $^{\mathrm{InJ}_{i}}, \vDash \iota_{i} \Leftarrow A \sim$ end.
Case Alt. $\vdash e \Rightarrow \mathrm{e}: A_{1} \cup \overrightarrow{\mathrm{P}} A_{2} \rightarrow B_{1} \cup \overrightarrow{\mathrm{p}} B_{2}$, with pids $(\mathrm{e}) \subseteq \overrightarrow{\mathrm{p}}$. By the $\mathrm{IH}, \vDash \mathrm{e} \Leftarrow A_{1} \sim G_{1}$ and $\vDash \mathrm{e} \Leftarrow A_{2} \sim G_{2}$. By Alt, $\vDash \mathrm{e} \Leftarrow A_{1} \cup A_{2} \sim G_{1} \cup \overrightarrow{\mathrm{P}} G_{2}$.
Case Id. By $\vDash \mathrm{id} \Leftarrow a @ I \sim$ end.

Case Choice. $\vdash e \Rightarrow[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]: a @ I[\mathrm{p}] \rightarrow a @\left(\mathcal{I}\left[\begin{array}{ll}\iota_{1} & \mathrm{p}] \cup \overrightarrow{\mathrm{p}}\end{array}\right.\right.$
 $\{\vec{p}\}\left\{\iota_{1}\right.$. end; ι_{2}. end $\}$.
Case Proj_{i}. By rule $\operatorname{Proj}_{i}, \vDash \pi_{i} \Leftarrow A_{1} \times A_{2} \sim$ end.
Case Comp. $\vdash e_{1} \circ e_{2} \Rightarrow \mathrm{e}_{1} \circ \mathrm{e}_{2}: A \rightarrow C$. This implies that $\vdash e_{1} \Rightarrow \mathrm{e}_{1}: B \rightarrow C$ and $\vdash e_{2} \Rightarrow \mathrm{e}_{2}: A \rightarrow B$. By the IH , $\vDash \mathrm{e}_{2} \Leftarrow A \sim G_{2}$, and $\vDash \mathrm{e}_{1} \Leftarrow B \sim G_{1}$. We proceed by induction on the size of B. The base case is $b @ I_{2}$. In this case, A must be $a @ I_{1}$, so G_{1} must not be U or contain any choices. Therefore, $G_{1} \circ G_{2}$ is defined, and equal to [$G_{2} /$ end] G_{1}. If $B=b @\left(R_{21} \cup R_{22}\right)$, then $G_{2}=G_{21} \cup G_{22}$. There are two cases: (1) $G_{1}=G_{11} \cup G_{12}$, or (2) there is a choice in G_{1}, i.e. $G_{1}=\left[\mathrm{p} \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{1} . G_{11} ; \iota_{2} . G_{12}\right\} / \mathrm{end}\right] G_{1}^{\prime}$. In the first case, we have that $\vDash \mathrm{e}_{1} \Leftarrow a @ R_{1 i} \sim G_{1 i}$, and $\vDash \mathrm{e}_{2} \Leftarrow a @ R_{2 i} \sim G_{2 i}$, which by the IH implies that $G_{1 i} \circ G_{2 i}$ is defined. Therefore, $\left(G_{11} \cup G_{12}\right) \circ\left(G_{21} \cup G_{22}\right)=\left(G_{11} \circ G_{21}\right) \cup\left(G_{12} \circ G_{22}\right)$. In the second case, there must be two sub-expressions of $\mathrm{e}_{1}, \mathrm{e}_{11}$ and e_{12} s.t. $\mathrm{e}_{11} \Leftarrow a @ I \sim G_{1}^{\prime}$, and $\mathrm{e}_{12} \circ[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}] \Leftarrow d @ I[\mathrm{p}] \sim$ $\mathrm{p} \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{1}, G_{11} ; \iota_{2} . G_{12}\right\}$, with $\mathrm{e}_{12}: d @ I\left[\iota_{i} \mathrm{p}\right] \rightarrow b @ R_{2 i}$ and $\mathrm{e}_{12} \Leftarrow d @ I\left[\iota_{i} \mathrm{p}\right] \sim G_{1 i}$. By the IH, $G_{1 i} \circ G_{2 i}$ must be defined, which implies that $\mathrm{p} \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{1} . G_{11} ; \iota_{2} . G_{12}\right\} \circ\left(G_{21} \cup G_{22}\right)$ is defined, and therefore $G_{1} \stackrel{\circ}{\circ}\left(G_{21} \cup G_{22}\right)$ is also defined.
Case CASE $. \vdash e_{1} \nabla e_{2} \Rightarrow \mathrm{e}_{1} \nabla \mathrm{e}_{2}: \iota_{i} A \rightarrow B$. By inversion, $\vdash e_{i} \Rightarrow \mathrm{e}_{i}: A \rightarrow B$. By the $\mathrm{IH}, \vDash \mathrm{e}_{i} \Leftarrow A \sim G$. By CASE ${ }_{i}$, $\vDash \mathrm{e}_{1} \nabla \mathrm{e}_{2} \Leftarrow \iota_{i} A \sim G$.

Case Split. $\vdash_{\text {det }} e_{1} \Delta e_{2} \Rightarrow \mathrm{e}_{1} \Delta \mathrm{e}_{2}: a @ I \rightarrow B \times C$. By inversion, $\vdash e_{1} \Rightarrow \mathrm{e}_{1}: a @ I \rightarrow B$ and $\vdash e_{2} \Rightarrow \mathrm{e}_{2}: a @ I \rightarrow C$. By the $\mathrm{IH}, \vDash \mathrm{e}_{1} \Leftarrow a @ I \sim G_{1} \vDash \mathrm{e}_{2} \Leftarrow a @ I \sim G_{2}$. Therefore, $\vDash \mathrm{e}_{1} \Delta \mathrm{e}_{2} \Leftarrow a @ I \sim\left[G_{2} /\right.$ end $] G_{1}$.

B. 2 Proof of Lemma 4.3

Lemma 4.3. [Protocol Deadlock-Freedom] For all WF(A), if $\vdash \mathrm{e}: A \rightarrow B$ and $\vDash \mathrm{e} \Leftarrow A \sim G$, then $\mathrm{WF}(G)$.

Proof. By induction on the structure of the derivation $\vdash \mathrm{e}$: $a @ I \rightarrow B$.

Case Join. $\vdash e \Rightarrow \mathrm{e}: A \cup \overrightarrow{\mathrm{p}} A \rightarrow B \cup \overrightarrow{\mathrm{p}} B$. By case analysis, the only possibility for G is that it is obtained via the Join protocol rule: $\vDash \mathrm{e} \Leftarrow A \cup A \sim G$. By the Join typing rule, $\vdash e \Rightarrow \mathrm{e}: A \rightarrow B$. By the Join protocol rule. $\vDash \mathrm{e} \Leftarrow A \cup^{\overrightarrow{\mathrm{P}}} A \sim$ $G \cup G$. By the $\mathrm{IH}, \mathrm{WF}(G)$, therefore $\mathrm{WF}(G \cup G)$.
Case Alg. $\vdash e \Rightarrow e @ p: a @ I \rightarrow b @ p$. By case analysis, \vDash $e @ p \Leftarrow a @ I \sim[a @ I \leadsto \mathrm{p}]$. By definition, $\mathrm{WF}([a @ I \leadsto \mathrm{p}])$.
$\underline{\text { Case } \operatorname{InJ}_{i}} . \vDash \iota_{i} \Leftarrow a @ I \sim$ end. Trivial WF(end).
Case Alt. $\vdash e \Rightarrow \mathrm{e}: A_{1} \cup \overrightarrow{\mathrm{P}} A_{2} \rightarrow B_{1} \cup \overrightarrow{\mathrm{P}} B_{2}$, with getRoles $(\mathrm{e}) \subseteq$ $\overrightarrow{\mathrm{p}}, \vdash e \Rightarrow \mathrm{e}: A_{1} \rightarrow B_{1}, \vdash e \Rightarrow \mathrm{e}: A_{2} \rightarrow B_{2}$, and $A_{1} \neq A_{2}$. We know, by a straightforward induction on the typing rules for PAIg, that if $\vdash \mathrm{e}: A_{1} \cup \overrightarrow{\mathrm{P}} A_{2} \rightarrow B$, and $A_{1} \neq A_{2}$, then pids $\left(A_{i}\right) \subseteq$ $\overrightarrow{\mathrm{p}}$. By the Alt protocol rule, $\vDash \mathrm{e} \Leftarrow A_{1} \cup \overrightarrow{\mathrm{p}} A_{2} \sim G_{1} \cup \overrightarrow{\mathrm{p}} G_{2}$, with $\vDash \mathrm{e} \Leftarrow A_{1} \sim G_{1} \vDash \mathrm{e} \Leftarrow A_{2} \sim G_{2}$. By the IH, WF $\left(G_{1}\right)$ and

$$
\begin{aligned}
& \langle P, W\rangle \sim^{\ell}\left\langle P^{\prime}, W^{\prime}\right\rangle \quad P=\left[\mathrm{p}_{i} \mapsto m_{i}\right]_{i \in I} \quad W=\left[\mathrm{p}_{i} \mathrm{p}_{j} \mapsto w\right]_{i \in I, j \in I} \\
& \frac{\langle P[\mathrm{p} \mapsto \mathrm{~m}], W\rangle \leadsto^{\ell}\left\langle P\left[\mathrm{p} \mapsto m^{\prime}\right], W^{\prime}\right\rangle}{\langle P[\mathrm{p} \mapsto m \gg f], W\rangle \sim^{\ell}\left\langle P\left[\mathrm{p} \mapsto m^{\prime} \gg f\right], W^{\prime}\right\rangle} \quad\langle P[\mathrm{p} \mapsto \operatorname{ret} v \gg f], W\rangle \leadsto^{\epsilon}\langle P[\mathrm{p} \mapsto f v], W\rangle \\
& \left\langle P\left[\mathrm{p}_{1} \mapsto \operatorname{send} \mathrm{p}_{2}(v: a)\right], W\left[\mathrm{p}_{1} \mathrm{p}_{2} \mapsto w\right]\right\rangle \leadsto{ }^{\mathrm{p}} \mathrm{p}_{2}!\langle a\rangle\left\langle P\left[\mathrm{p}_{1} \mapsto \operatorname{ret}()\right], W\left[\mathrm{p}_{1} \mathrm{p}_{2} \mapsto v \cdot w\right]\right\rangle \\
& \left\langle P\left[\mathrm{p}_{1} \mapsto \operatorname{recv} \mathrm{p}_{2} a\right], W\left[\mathrm{p}_{2} \mathrm{p}_{1} \mapsto w \cdot v\right]\right\rangle \leadsto{ }^{\mathrm{p}_{2} \mathrm{p}_{1} ?(a)}\left\langle P\left[\mathrm{p}_{1} \mapsto \operatorname{ret} v\right], W\left[\mathrm{p}_{2} \mathrm{p}_{1} \mapsto w\right]\right\rangle \\
& \left\langle P\left[p_{0} \mapsto \operatorname{sel}\left(\iota_{i} v\right)\{ \} f_{1} f_{2}\right], W\right\rangle \sim^{\epsilon} \quad\left\langle P\left[p_{0} \mapsto f_{i} v \gg \lambda x \text {. ret }\left(\operatorname{br}_{i} x\right)\right], W\right\rangle \\
& \left\langle P\left[\mathrm{p}_{0} \mapsto \operatorname{sel}\left(\iota_{i} v\right)\left\{\mathrm{p}_{1} \cdots \mathrm{p}_{n}\right\} f_{1} f_{2}\right], W\left[\mathrm{p}_{0} \mathrm{p}_{1} \mapsto w\right]\right\rangle \leadsto \mathrm{p}_{0} \mathrm{p}_{1} \oplus \iota_{i}\left\langle P\left[\mathrm{p}_{0} \mapsto \operatorname{sel}\left(\iota_{i} v\right)\left\{\mathrm{p}_{2} \cdots \mathrm{p}_{n}\right\} f_{1} f_{2}\right], W\left[\mathrm{p}_{0} \mathrm{p}_{1} \mapsto l_{i} \cdot w\right]\right\rangle \\
& \left\langle P\left[\mathrm{p}_{1} \mapsto \operatorname{brn} \mathrm{p}_{2} m_{1} m_{2}\right], W\left[\mathrm{p}_{2} \mathrm{p}_{1} \mapsto w \cdot l_{i}\right]\right\rangle \leadsto \mathrm{p}_{2} \mathrm{p}_{1} \& \iota_{i}\left\langle P\left[\mathrm{p}_{1} \mapsto m_{i} \gg \lambda x . \operatorname{ret}\left(\operatorname{br}_{i} x\right)\right], W\left[\mathrm{p}_{2} \mathrm{p}_{1} \mapsto w\right]\right\rangle \\
& \left\langle P\left[\mathrm{p}_{1} \mapsto \text { case } f_{1} f_{2}\left(\mathrm{br}_{i} v\right)\right], W\right\rangle \leadsto^{\epsilon} \quad\left\langle P\left[\mathrm{p}_{1} \mapsto f_{i} v\right], W\right\rangle
\end{aligned}
$$

Figure 17. Rules for the LTS of $M p$ terms
$\operatorname{get}_{[J}(x)=x \quad \operatorname{get}_{I \times I}(x)=\operatorname{get}_{I}\left(\pi_{1} x\right) \quad \operatorname{get}_{I \times I}(x)=\operatorname{get}_{I}\left(\pi_{2} x\right) \quad \operatorname{get}_{l_{i} I}(x)=\operatorname{get}_{I}(x)$
$\operatorname{put}_{[J}(x, y)=x \quad \operatorname{put}_{I \times I}(x, y)=\left(\operatorname{put}_{I}\left(x, \pi_{1} y\right), \pi_{2} y\right) \quad \operatorname{put}_{I \times I}(x, y)=\left(\pi_{1} y, \operatorname{put}_{I}\left(x, \pi_{2} y\right)\right) \quad \operatorname{put}_{t_{i} I}(x, y)=\operatorname{put}_{I}(x, y)$
Figure 18. Get/Set for Types from One Hole Contexts
$\mathrm{WF}\left(G_{2}\right)$. Since $\operatorname{pids}\left(G_{i}\right) \subseteq \operatorname{pids}(p) \cup \operatorname{pids}\left(A_{1}\right) \cup \operatorname{pids}\left(A_{2}\right) \subseteq$ $\operatorname{pids}(r), \mathrm{WF}\left(G_{1} \cup \overrightarrow{\mathrm{P}} G_{2}\right)$.
Case ID. Trivial by WF(end).
Case Choice. $\vdash e \Rightarrow \mathrm{e} \circ[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]: a @ I[\mathrm{p}] \rightarrow B_{1} \cup \overrightarrow{\mathrm{p}} B_{2}$, where pids $(\mathrm{e}) \subseteq \overrightarrow{\mathrm{p}}$, and $\mathcal{I}[\mathrm{p}] \subseteq \overrightarrow{\mathrm{p}}$. By the Choice and Alt typing rules, $\vdash e \Rightarrow \mathrm{e}: a @ I\left[\begin{array}{ll}\iota_{i} & \mathrm{p}] \rightarrow B_{i} \text {. By inver- }\end{array}\right.$ sion, the protocol rule must be also Choice: $\vDash[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}] \Leftarrow$ $a @ I[\mathrm{p}] \sim \mathrm{p} \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{i} . G_{i}\right\}_{i \in[1,2]}$. By the Choice protocol rule, $\vDash \mathrm{e} \Leftarrow a @ I\left[\begin{array}{ll}\iota_{i} & \mathrm{p}]\end{array} G_{i}\right.$. By the $\operatorname{IH}, \mathrm{WF}\left(G_{i}\right)$. Since $\operatorname{pids}\left(G_{i}\right) \subseteq \operatorname{pids}(\mathrm{e}) \cup \operatorname{pids}\left(\mathcal{I}[\mathrm{p}) \subseteq \overrightarrow{\mathrm{p}}\right.$, then for all $\mathrm{p}^{\prime} \in G_{i}$, $\left(\mathrm{p} \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{i}, G_{i}\right\}_{i \in[1,2]}\right) \upharpoonright \mathrm{p}^{\prime}$ must be defined. Therefore, $\mathrm{WF}\left(\mathrm{p} \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{i} . G_{i}\right\}_{i \in[1,2]}\right)$.
Case Proj_{i}. Trivial by WF(end).
Case Comp. $\vdash e_{1} \circ e_{2} \Rightarrow \mathrm{e}_{1} \circ \mathrm{e}_{2}: A \rightarrow C$, with $\vdash e_{1} \Rightarrow \mathrm{e}_{1}$: $B \rightarrow C$ and $\vdash e_{2} \Rightarrow \mathrm{e}_{2}: A \rightarrow B$. By inversion, the only possible protocol rule is also Comp. Therefore, $\vDash \mathrm{e}_{1} \circ \mathrm{e}_{2} \Leftarrow$ $A \sim G_{2} \circ G_{1}$, with $\vDash \mathrm{e}_{2} \Leftarrow A \sim G_{2}$ and $\vDash \mathrm{e}_{1} \Leftarrow B \sim G_{1}$. By the $\operatorname{IH}, \operatorname{WF}\left(G_{1}\right)$ and $\mathrm{WF}\left(G_{2}\right)$. Also, by the induction on the derivation of \vdash, we know that $A_{1} \cup \overrightarrow{\mathrm{P}} A_{2}$, if $A_{1} \neq A_{2}$, then $\operatorname{pids}\left(A_{i}\right) \subseteq \overrightarrow{\mathrm{p}}$. This implies that if G_{1} is $G_{11} \cup \overrightarrow{\mathrm{p}} G_{12}$, then either the projection onto p of $G_{1 i}$ is the same, or $\mathrm{p} \in \overrightarrow{\mathrm{p}}$. By the Choice rule, G must be of the form $G^{\prime}\left[p \rightarrow \overrightarrow{\mathrm{p}}\left\{\iota_{i} . G_{i}\right\}_{i \in[1,2]}\right]$, therefore, for for all $\mathrm{p}^{\prime} \in \operatorname{pids}\left(G_{1 i}\right)$, the projection of (G_{2} ㅇ $\left.\left(G_{11} \cup G_{12}\right)\right) \upharpoonright \mathrm{p}^{\prime}$ must be defined, which implies that $G_{2} \circ G_{1}$ is defined.

Case $\mathrm{CASE}_{i} . \vdash e_{1} \nabla e_{2} \Rightarrow \mathrm{e}_{1} \nabla \mathrm{e}_{2}: a @\left(\iota_{i} I\right) \rightarrow B$ and \vDash $\mathrm{e}_{1} \nabla \mathrm{e}_{2} \Leftarrow a @\left(\iota_{i} I\right) \sim G$. By the CASE_{i} protocol and typing rules, $\vDash \mathrm{e}_{i} \Leftarrow A \sim G$ and $\vdash e_{i} \Rightarrow \mathrm{e}_{i}: A \rightarrow B$. We conclude by the IH that $\mathrm{WF}(G)$.

Case Split. $\vdash e_{1} \Delta e_{2} \Rightarrow \mathrm{e}_{1} \Delta \mathrm{e}_{2}: A \rightarrow(b \times c) @\left(R_{1} \times R_{2}\right)$ and $\vDash \mathrm{e}_{1} \Delta \mathrm{e}_{2} \Leftarrow A \sim\left[G_{2} / \mathrm{end}\right] G_{1}$. By the IH, we know that
$\mathrm{WF}\left(G_{1}\right)$ and $\mathrm{WF}\left(G_{2}\right)$. By straightforward induction on the structure of G_{1}, if $\mathrm{WF}\left(G_{i}\right)$, then $\mathrm{WF}\left(\left[G_{2} /\right.\right.$ end $\left.] G_{1}\right)$.

B. 3 Proof of Theorem 5.2

Theorem 5.2. [Protocol Conformance of the Generated Code] $I f \vDash \mathrm{e} \Leftarrow A \sim G$, then $\llbracket \mathrm{e} \rrbracket(A)$ complies with protocol G.

Proof. By induction on the structure of the derivation $\vDash \mathrm{e} \Leftarrow$ $A \sim G$.

Case Alt. $\vDash \mathrm{e} \Leftarrow A_{1} \cup \overrightarrow{\mathrm{P}} A_{2} \sim G_{1} \cup \overrightarrow{\mathrm{P}} G_{2}$, with $\vDash \mathrm{e} \Leftarrow$ $A_{1} \sim G_{1}, \vDash \mathrm{e} \Leftarrow A_{2} \sim G_{2}$. By the IH, $\llbracket \mathrm{e} \rrbracket\left(A_{i}\right):\left(A_{i} \upharpoonright\right.$ $\mathrm{p}) \rightarrow \mathrm{Mp}\left(G_{i} \upharpoonright \mathrm{p}\right)\left(B_{i} \upharpoonright \mathrm{p}\right)$. Moreover, we know that if $\mathrm{p} \notin \overrightarrow{\mathrm{p}}$, then $\llbracket \mathrm{e} \rrbracket\left(A_{1}\right)(\mathrm{p})=\llbracket \mathrm{e} \rrbracket\left(A_{2}\right)(\mathrm{p})$, and $G_{1} \upharpoonright \mathrm{p}=G_{2} \upharpoonright \mathrm{p}$. Therefore, by the definition of $\mathrm{E}_{1} \uplus \mathrm{E}_{2}, \llbracket \mathrm{e} \rrbracket\left(A_{1}\right) \uplus \overrightarrow{\mathrm{p}} \llbracket \mathrm{e} \rrbracket\left(A_{2}\right)$: $\operatorname{Mp}\left(G_{1} \cup^{\overrightarrow{\mathrm{P}}} G_{2}\right)\left(B_{1} \cup \overrightarrow{\mathrm{p}} B_{2}\right)$.

Case ID. \vDash id $\Leftarrow a @ I \sim$ end. By the definition of $\llbracket \rrbracket$, $\llbracket \mathrm{id} \rrbracket(a @ I)=[]: a @ I \rightarrow$ Mp end $a @ I$.
$\underline{\text { Case } \mathrm{INJ}_{i}} . \vDash \iota_{i} \Leftarrow a @ I \sim$ end. By definition, $\llbracket \iota_{i} \rrbracket(A)=[]:$ $a @ I \rightarrow M p$ end $\left(a @\left(l_{i} I\right)\right)$.

Case Alg. $\vDash e @_{e} \Leftarrow a @ I \sim\left[a @ I \sim \mathrm{p}_{e}\right]$, with $e: a \rightarrow b$. We prove by straightforward induction on the structure of I that $f=\left(a @ I \leadsto \mathrm{p}_{e}\right): a @ I \rightarrow \mathrm{Mp}\left[a @ I \leadsto \mathrm{p}_{e}\right]\left(a \mathrm{p}_{e}\right)$: if $I=\mathrm{p}$, then $\left[\mathrm{p} \mapsto \lambda x\right.$. send $\mathrm{p}_{e} x, \mathrm{p}_{e} \mapsto \lambda_{-}$. recv $\left.\mathrm{p} a\right]$, which clearly follows $\left[a @ p \sim \mathrm{p}_{e}\right]$; if $I=I_{1} \times I_{2}$, then a must be $a_{1} \times$ a_{2}, and we have by the IH that $\left(a_{i} @ I_{i} \leadsto \mathrm{p}_{e}\right): \mathrm{Mp}\left[a_{i} @ I_{i} \leadsto\right.$ $\left.\mathrm{p}_{e}\right]\left(a_{i} @ \mathrm{p}_{e}\right)$; and, finally, if $I=\iota_{i} I^{\prime}$, then $a=a_{1}+a_{2}$, and $\left(a_{i} @ I \sim \mathrm{p}_{e}\right): M \mathrm{p}\left[a_{i} @ I \sim \mathrm{p}_{e}\right]\left(a_{i} @ \mathrm{p}_{e}\right)$, which composed with $\left[\mathrm{p}_{e} \mapsto \lambda x\right.$. ret $\left.\left(\iota_{i} x\right)\right]$ has type $\operatorname{Mp}\left[\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \leadsto\right.$ $\left.\mathrm{p}_{e}\right]\left(\left(a_{1}+a_{2}\right) \varrho_{i} \mathrm{p}_{e}\right)$.

Case Comp. $\vDash \mathrm{e}_{1} \circ \mathrm{e}_{2} \Leftarrow A \sim G_{2} \circ G_{1}$. By the Comp rule, $\vDash \mathrm{e}_{2} \Leftarrow A \sim G_{2}$ and $\vDash \mathrm{e}_{1} \Leftarrow B \sim G_{1}$. By the IH, $\llbracket \mathrm{e}_{2} \rrbracket(A)$: $A \rightarrow M \mathrm{Mp} G_{2} B$ and $\llbracket \mathrm{e}_{1} \rrbracket(B): B \rightarrow M \mathrm{M} G_{1} C$. Since $G_{2}{ }_{9} G_{1}$ is well-formed, then $\llbracket \mathrm{e}_{2} \rrbracket(A) \Longrightarrow \llbracket \mathrm{e}_{1} \rrbracket(B): A \rightarrow \mathrm{Mp}\left(G_{2} \circ G_{1}\right) C$, since for all p,
$\llbracket \mathrm{e}_{2} \rrbracket(A): A \upharpoonright \mathrm{p} \rightarrow \mathrm{Mp} G_{2}(B \upharpoonright \mathrm{p})$ and $\llbracket \mathrm{e}_{1} \rrbracket(B): B \upharpoonright$ $\mathrm{p} \rightarrow \mathrm{Mp} G_{1}(C \upharpoonright \mathrm{p})$, so $\llbracket \mathrm{e}_{2} \rrbracket(A) \Longrightarrow \llbracket \mathrm{e}_{1} \rrbracket(B): A \upharpoonright \mathrm{p} \rightarrow$ $\operatorname{Mp}\left(G_{1} \stackrel{\circ}{9} G_{2}\right)(C \upharpoonright \mathrm{p})$.

Case Choice.
$\vDash[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}] \Leftarrow a @ I\left[\mathrm{p}_{c}\right] \sim \mathrm{p}_{c} \rightarrow\{\overrightarrow{\mathrm{p}}\}\left\{\iota_{i} . \text { end }\right\}_{i \in[1,2]}$.
By the definition of $[p \oplus \vec{p}]$,
$\mathrm{p} \mapsto \lambda x . \operatorname{sel}\{\overrightarrow{\mathrm{p}}\}\left(\operatorname{get}_{I}(x)\right)\left(\lambda y \cdot \operatorname{ret}\left(\operatorname{put}_{I}(y, x)\right)\right)$
$\left(\lambda y \cdot \operatorname{ret}\left(\operatorname{put}_{I}(y, x)\right)\right)$,
which has type $a @ \mathcal{I}[\mathrm{p}] \upharpoonright \mathrm{p} \rightarrow \mathrm{Mp}\left(\{\overrightarrow{\mathrm{p}}\} \oplus\left\{\iota_{i} \text {. end }\right\}_{i \in[1,2]}\right)$, and $\mathrm{p}^{\prime} \in \overrightarrow{\mathrm{p}}, \mathrm{p}^{\prime} \mapsto \lambda x$. brn $\mathrm{p}($ ret $x)$ (ret x), which has type $a @ I[\mathrm{p}] \upharpoonright \mathrm{p}^{\prime} \rightarrow \mathrm{Mp}\left(\mathrm{p} \&\left\{\iota_{i} \text {. end }\right\}_{i \in[1,2]}\right)$. Therefore $[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]:$ $a @ I\left[\mathrm{p}_{c}\right] \rightarrow \operatorname{Mp}\left(\mathrm{p}_{c} \rightarrow\{\overrightarrow{\mathrm{p}}\}\left\{\iota_{i} . \text { end }\right\}_{i \in[1,2]}\right) a @\left(\mathcal{I}\left[\iota_{i} \mathrm{p}_{c}\right] \cup \mathrm{p} \overrightarrow{\mathrm{p}}\right.$ $\left.\mathcal{I}\left[\iota_{i} \mathrm{p}_{c}\right]\right)$.

Case $\mathrm{CASE}_{i} . \vDash \mathrm{e}_{1} \nabla \mathrm{e}_{2} \Leftarrow\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right) \sim G$. Then,
$\vDash \mathrm{e}_{i} \Leftarrow a_{i} @ I \sim G$. By the IH, $\llbracket \mathrm{e}_{i} \rrbracket\left(a_{i} @ I\right):\left(a_{i} @ I\right) \rightarrow \operatorname{Mp} G B$. But by the definition of $\llbracket \rrbracket, \llbracket \mathrm{e}_{1} \nabla \mathrm{e}_{2} \rrbracket\left(\left(a_{1}+a_{2}\right) @\left(\iota_{i} I\right)\right):\left(\left(a_{1}+\right.\right.$ $\left.\left.a_{2}\right) @\left(\iota_{i} I\right)\right) \rightarrow M p G B$.

Case $\operatorname{ProJ}_{i} . \vDash \pi_{i} \Leftarrow A_{1} \times A_{2} \sim$ end. By definition,
$\llbracket \pi_{i} \rrbracket\left(A_{1} \times A_{2}\right)=\left[_\mapsto \lambda x\right.$. ret $\left.\left(\pi_{i} x\right)\right]: A_{1} \times A_{2} \rightarrow$ Mp end A_{i}.

Case Split. $\vDash \mathrm{e}_{1} \Delta \mathrm{e}_{2} \Leftarrow A \sim\left[G_{2} /\right.$ end $] G_{1}$. Then, $\vDash \mathrm{e}_{1} \Leftarrow$ $A \sim G_{1}$, and $\vDash \mathrm{e}_{2} \Leftarrow A \sim G_{2}$. By the $\mathrm{IH}, \llbracket \mathrm{e}_{1} \rrbracket(A): A \rightarrow$ $M p G_{1} B$ and $\llbracket \mathrm{e}_{2} \rrbracket(A): A \rightarrow M \mathrm{p} G_{2} C$. By definition, $\llbracket \mathrm{e}_{1} \Delta \mathrm{e}_{2} \rrbracket(A)=\llbracket \mathrm{e}_{1} \rrbracket(A) \Delta \llbracket \mathrm{e}_{2} \rrbracket(A):$
$A \rightarrow \operatorname{Mp}\left(\left[G_{2} /\right.\right.$ end $\left.] G_{1}\right)(B \times C)$.

C Extensionality

Each monadic m represents the code for an individual process. The parallel composition of the set of monadic actions generated from a PAlg expression e : $A \rightarrow B$, each applied to the corresponding value of type $v: A \upharpoonright p$ represents an execution of the parallel algorithm on an input of type a, if $a @ R=A$. Recall from Sec. 5 that the transitions are of the form $\langle P, W\rangle \sim^{\ell}\left\langle P^{\prime}, W^{\prime}\right\rangle$, where P is an environment that contains the code executed by all roles that collaborate to compute the parallel algorithm, and W represents the shared unbounded buffers used by each pair of participants to communicate. We write w for such buffers, where \emptyset is the empty buffer, $v \cdot w$ is the buffer w extended with value v at the leftmost position, and $w \cdot v$ is the buffer w extended with value v at the rightmost position.

Definition C. 1 (Type buffers). We write $Q=\left[\mathrm{p}_{i} \mathrm{p}_{j} \rightarrow\right.$ $q]_{i \in I, j \in I}$, where q is a buffer of types, that can be either \emptyset, $a \cdot q$ or $q \cdot a$. Note that values include singleton types that represent labels: $l_{i}: l_{i}$. We say that a buffer $w=v_{1} \cdots v_{n}$ contains types $q=a_{1} \cdots a_{m}, w: q$ if: $n=m$ and $v_{i}: a_{i}$ for all $i \in[1, n]$. We say that $W: Q$ if for all pairs of roles, $\mathrm{p}_{i} \mathrm{p}_{j}$, $W\left(\mathrm{p}_{i} \mathrm{p}_{j}\right): Q\left(\mathrm{p}_{i} \mathrm{p}_{j}\right)$.

Theorem 5.1. [Soundness] Assume E: Mp C A, m: Mp La and $W: Q$. Suppose $\langle\mathrm{E}[r \mapsto m], W\rangle \sim^{\ell}\left\langle\mathrm{E}\left[r \mapsto m^{\prime}\right], W^{\prime}\right\rangle$.

Then there exists $\langle C[r \mapsto L], Q\rangle \rightarrow^{\ell}\left\langle C\left[r \mapsto L^{\prime}\right], Q^{\prime}\right\rangle$ such that $W^{\prime}: Q^{\prime}$ and $m^{\prime}: M p L^{\prime} a$.

Proof. Straightforward induction on L_{i}, and case analysis on m_{i} and the rules \leadsto and \rightarrow, since there is a one-to-one correspondence between the rules syntactic constructs in $M p$ and the local types. For \leadsto we need to take several ϵ transitions until communication ℓ happens.

Lemma C.2. Assume $G, A, B, X: A$, and $f_{i}: A \upharpoonright \mathrm{p}_{i} \rightarrow$ $\operatorname{Mp}\left(G \upharpoonright \mathrm{p}_{i}\right)\left(B \upharpoonright \mathrm{p}_{i}\right)$ for all $i \in I$. Let $P=\left[\mathrm{p}_{i} \mapsto f_{i}\right]_{i \in I}$ then there is a unique Y s.t. $P(X)=Y$.

Proof. Straightforward consequence of Lemma 5.1, and Theorem 3.1 in [27]. We know that the traces for G can only differ in the order of the actions, and that this order must preserve the dependencies laid out by G. Therefore, there the result of any possible execution must respect the data dependencies specified by G.

Lemma C.3. If $(P, W) \Downarrow X$ and $\langle P, W\rangle \leadsto\left\langle P^{\prime}, W^{\prime}\right\rangle$, then $\left(P^{\prime}, W^{\prime}\right) \Downarrow X$.

Theorem 5.3. [Extensionality] Assume $e \Rightarrow \mathrm{e}: a @ \mathrm{p} \rightarrow b @ R$ and x : a initially at p . If $x=y$, then the execution of $\llbracket \mathrm{e} \rrbracket(\mathrm{p})$ also produces y, distributed across R.

Proof. We prove the following generalised statement. Let $e: a \rightarrow b$ s.t. $e \Rightarrow \mathrm{e}: A \rightarrow B, x: a$, and \vec{i} s.t. $\delta_{A}^{\vec{i}}(x)$ is defined. Then, there is \vec{j}, s.t. $\llbracket \mathrm{e} \rrbracket(A)\left(\delta_{A}^{\vec{i}}(x)\right)=\delta_{B}^{\vec{j}}(\llbracket e \rrbracket x)$. We define $\delta_{A}^{\vec{i}}(x): A$ as follows:

$$
\begin{array}{ll}
\delta_{I}^{\epsilon}(x) & =\delta_{I}(x), \\
\delta_{R_{1} \cdots i_{n} R_{2}}^{i_{1}}(x) & =\operatorname{br}_{i}^{\mathrm{p}}\left(\delta_{R_{i_{1}}}^{i_{2} \cdots i_{n}}(x)\right) \\
\delta_{\mathrm{p}}(x) & =[\mathrm{p} \mapsto x] \\
\delta_{I_{1} \times I_{2}}(x, y) & =\left[\mathrm{p} \mapsto \delta_{I_{1}}(x)(\mathrm{p}) \times \delta_{I_{2}}(y)(\mathrm{p})\right]_{\mathrm{p} \in \operatorname{pids}\left(I_{1} \times I_{2}\right)} \\
\delta_{\iota_{i} I}\left(l_{i} x\right) & =\delta_{I}(x)
\end{array}
$$

We proceed by induction on the structure of the derivation $\vdash e \Rightarrow \mathrm{e}: A \rightarrow B$:

- Case Join. We have $\vdash e \Rightarrow \mathrm{e}: A \cup \overrightarrow{\mathrm{p}} A \rightarrow B \cup \overrightarrow{\mathrm{p}} B$ with \vdash $e \Rightarrow \mathrm{e}: A \rightarrow B$. By definition, $\llbracket \mathrm{e} \rrbracket(A \cup \overrightarrow{\mathrm{P}} A)=\llbracket \mathrm{e} \rrbracket(A) \uplus \overrightarrow{\mathrm{p}}$ $\llbracket \mathrm{e} \rrbracket(A)$. We have that $\delta_{A \cup \vec{p} A}^{i \cdot \vec{i}}(x)=\mathrm{bf}_{i_{1}}\left(\delta_{A}^{\vec{i}}(x)\right)$. Then, by the induction hypothesis, there exists \vec{j} s.t.

$$
\begin{aligned}
& \llbracket \mathrm{e} \rrbracket(A \cup \overrightarrow{\mathrm{p}} A)\left(\delta_{A \cup \vec{i} A}^{i \cdot \vec{i}}(x)\right) \\
& =\left(\llbracket \mathrm{e} \rrbracket(A) \uplus \uplus^{\overrightarrow{\mathrm{p}}} \llbracket \mathrm{e} \rrbracket(A)\right)\left(\mathrm{br}_{i}^{\overrightarrow{\mathrm{p}}} \delta_{A}^{\vec{i}}(x)\right) \\
& =\operatorname{br}_{i}^{\overrightarrow{\mathrm{p}}} \llbracket \mathrm{e} \rrbracket(A)\left(\delta_{A}^{\vec{i}}(x)\right) \\
& =\operatorname{br}_{i}^{\overrightarrow{\mathrm{p}}}\left(\delta_{B}^{\vec{j}}(\llbracket e \rrbracket x)\right) \\
& =\delta_{B \cup \overrightarrow{\mathrm{p}} B}^{i \cdot \overrightarrow{\vec{j}}}(\llbracket e \rrbracket x)
\end{aligned}
$$

- Case Alt. We have $\vdash e \Rightarrow \mathrm{e}: A_{1} \cup \overrightarrow{\mathrm{P}} A_{2} \rightarrow B_{1} \cup \overrightarrow{\mathrm{P}} B_{2}$ with $\vdash e \Rightarrow \mathrm{e}: A_{1} \rightarrow B_{1}, \vdash e \Rightarrow \mathrm{e}: A_{2} \rightarrow B_{2}$ and $A_{1} \neq$ A_{2}. Then, $\llbracket \mathrm{e} \rrbracket\left(A_{1} \cup^{\overrightarrow{\mathrm{p}}} A_{2}\right)\left(\delta_{A_{1} \cup \overrightarrow{\mathrm{P}} A_{2}}^{i \cdot \vec{\cdot}}(x)\right)=\left(\llbracket \mathrm{e} \rrbracket\left(A_{1}\right) \uplus \overrightarrow{\mathrm{p}}\right.$
$\left.\llbracket \mathrm{e} \rrbracket\left(A_{2}\right)\right)\left(\operatorname{br}_{i}^{\overrightarrow{\mathrm{p}}}\left(\delta_{A_{i}}^{\vec{i}}(x)\right)\right)=\operatorname{br}_{i}^{\overrightarrow{\mathrm{p}}} \llbracket \mathrm{e} \rrbracket\left(A_{i}\right)\left(\delta_{A_{i}}^{\vec{i}}(x)\right) . \mathrm{Fi}-$ nally, by the induction hypothesis, there exists \vec{j} s.t. $\operatorname{br}_{i}^{\vec{p}} \llbracket e \rrbracket\left(A_{i}\right)\left(\delta_{A_{i}}^{\vec{i}}(x)\right)=\operatorname{br}_{i}^{\vec{p}} \delta^{\vec{j}}\left(B_{i}\right)(\llbracket e \rrbracket x)=\delta^{i \cdot \vec{j}}\left(B_{1} \cup \vec{p}\right.$ $\left.B_{2}\right)(\llbracket e \rrbracket x)$.
- Case Alg. We have $\vdash e \Rightarrow e @ p: a @ I \rightarrow b @ p$, with $\vdash e: a \rightarrow b$. Then, $\llbracket e @ p \rrbracket_{a @ I}\left(\delta_{I}(x)\right)=\left[\mathrm{p}_{i} \mapsto(a @ I \leadsto\right.$ p) $\delta_{I}(x)$, by straightforward induction on I, there exists a trace $\left\langle\left(\left[\mathrm{p}_{i} \mapsto(a @ I \sim \mathrm{p})\left(\mathrm{p}_{i}\right)\right]\right.\right.$
$\left.\gg[\mathrm{p} \mapsto \lambda x \cdot \operatorname{ret}(e x)]) \delta_{I}(x), W\right\rangle \leadsto^{\ell_{1} \cdots \ell_{m}}\left\langle\left[p_{i} \mapsto\right.\right.$ ret $\left.\left.v_{i}\right], W^{\prime}\right\rangle$, with $v_{i}=()$ for all i s.t. $\mathrm{p}_{i} \neq \mathrm{p}$, and $v_{j}=\llbracket e \rrbracket x$ for $\mathrm{p}_{j}=\mathrm{p}$. By Theorem 5.2, the only possible interleavings of actions of $\llbracket e @ p \rrbracket$ must follow the protocol $[a @ I \leadsto p]$. Since this implies that send/receive operations must happen respecting the data dependencies, any possible trace must yield the same result.
- Case InJ. $\vdash \iota_{i} \Rightarrow \iota_{i}: A \rightarrow \iota_{i} A$ straightforward since $\llbracket \iota_{i} \rrbracket(A)\left(\delta_{A}(x)\right)=\delta_{l_{i} A}\left(\iota_{i} x\right)$.
- Case Id. \vdash id \Rightarrow id : $A \rightarrow A$ straightforward, since $\llbracket \mathrm{id} \rrbracket(A)\left(\delta_{A}(x)\right)=\delta_{A}(\mathrm{id} x)$.
- Case Proj. $\vdash \pi_{i} \Rightarrow \pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}$ straightforward, since $\llbracket \pi_{i} \rrbracket\left(A_{1} \times A_{2}\right)\left(\delta_{A_{1} \times A_{2}}(x)\right)=\delta_{A_{i}}\left(\pi_{i} x\right)$.
- Case Comp. $\vdash e_{1} \circ e_{2} \Rightarrow \mathrm{e}_{1} \circ \mathrm{e}_{2}: A \rightarrow C$ with $\vdash e_{1} \Rightarrow$ $\mathrm{e}_{1}: B \rightarrow C$ and $\vdash e_{2} \Rightarrow \mathrm{e}_{2}: A \rightarrow B$. A straightforward consequence of Theorem 5.2 is that if E_{1} behaves as G_{1} and E_{2} as G_{2}, then $\left(\mathrm{E}_{1} \circ \mathrm{E}_{2}\right)(X)=\mathrm{E}_{2}\left(\mathrm{E}_{1}(X)\right)$, since the permutations of actions of $\mathrm{E}_{1} \circ \mathrm{E}_{2}$ must respect $G_{1} \circ G_{2}$. Then, by the definition of $\llbracket \rrbracket, \llbracket \mathrm{e}_{1} \circ \mathrm{e}_{2} \rrbracket(A)\left(\delta_{A}^{\vec{i}}(x)\right)=$ $\llbracket \mathrm{e}_{1} \rrbracket(B)\left(\llbracket \mathrm{e}_{2} \rrbracket(A)\left(\delta_{A}^{\vec{i}}(x)\right)\right)$ By the induction hypothesis: $\llbracket \mathrm{e}_{1} \rrbracket(B)\left(\llbracket \mathrm{e}_{2} \rrbracket(A)\left(\delta_{A}^{\vec{i}}(x)\right)\right)=\llbracket \mathrm{e}_{1} \rrbracket_{B}\left(\delta_{B}^{\vec{j}}\left(\llbracket e_{2} \rrbracket x\right)\right)=$ $\left.\delta_{C}^{\vec{k}}\left(\llbracket e_{1} \rrbracket\left(\llbracket e_{2} \rrbracket x\right)\right)=\delta_{C}^{\vec{k}}\left(\llbracket e_{1} \circ e_{2} \rrbracket x\right)\right)$.
- Case Case_{i}. We have $\vdash e_{1} \nabla e_{2} \Rightarrow \mathrm{e}_{1} \nabla \mathrm{e}_{2}: t_{i} A \rightarrow B$, with $\vdash e_{i} \Rightarrow \mathrm{e}_{i}: A \rightarrow B$. Note that $\left(\delta_{l_{i}} A(x)\right)$ is only defined if $x=\iota_{i} x^{\prime}$. Then, by definition,
$\llbracket \mathrm{e}_{1} \nabla \mathrm{e}_{2} \rrbracket\left(l_{i} A\right)\left(\delta_{l_{i} A}\left(l_{i} x^{\prime}\right)\right)=\llbracket \mathrm{e}_{i} \rrbracket(A)\left(\delta_{A}\left(x^{\prime}\right)\right)$.
By the $\mathrm{IH}, \llbracket \mathrm{e}_{i} \rrbracket(A)\left(\delta_{A}\left(x^{\prime}\right)\right)=\delta(B)\left(\llbracket e_{i} \rrbracket x^{\prime}\right)=\delta(B)\left(\llbracket e_{1} \nabla\right.$ $\left.e_{2} \rrbracket\left(\iota_{i} x^{\prime}\right)\right)=\delta(B)\left(\llbracket e_{1} \nabla e_{2} \rrbracket x\right)$.
- Case Split. We have $\vdash e_{1} \Delta e_{2} \Rightarrow \mathrm{e}_{1} \Delta \mathrm{e}_{2}: A \rightarrow B \times C$, with $\vdash e_{2} \Rightarrow \mathrm{e}_{2}: A \rightarrow C$ and $\vdash e_{1} \Rightarrow \mathrm{e}_{1}: A \rightarrow C$. By definition, $\llbracket \mathrm{e}_{1} \Delta \mathrm{e}_{2} \rrbracket(A)=\llbracket \mathrm{e}_{1} \rrbracket(A) \Delta \llbracket \mathrm{e}_{2} \rrbracket(A)$. By Theorem 5.2, we know that this behaves as $G_{1} \stackrel{\circ}{9} G_{2}$, if $p_{1} \sim G_{1}$ and $p_{2} \sim G_{2}$. Therefore, we assume again that the interleavings of the subtraces must not affect the data dependencies. Then,
$\left(\llbracket \mathrm{e}_{1} \rrbracket(A)\left(\delta_{A}(x)\right)\right) \Delta\left(\llbracket \mathrm{e}_{2} \rrbracket(A)\left(\delta_{A}(x)\right)\right)=\delta_{B}^{\vec{j}}\left(\llbracket e_{1} \rrbracket x\right) \Delta$ $\delta_{C}^{\vec{k}}\left(\llbracket e_{2} \rrbracket x\right)=\delta_{B \times C}^{\vec{j} \cdot \vec{k}}\left(\llbracket e_{1} \Delta e_{2} \rrbracket x\right)$.
- Case Choice. We have $\vdash e \Rightarrow[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}]: a @ I[\mathrm{p}] \rightarrow$ $a @\left(\mathcal{I}\left[\iota_{1} \mathrm{p}\right] \cup^{\vec{p}} \mathcal{I}\left[\iota_{2} \mathrm{p}\right]\right)$. We have two cases:

1. $\mathrm{p} \mapsto \lambda x$. sel $\left(\operatorname{get}_{I}(x)\right)\{\overrightarrow{\mathrm{p}}\}\left(\lambda y \cdot \operatorname{put}_{I}(y, x)\right)\left(\lambda y \cdot \operatorname{put}_{I}(y, x)\right)$
2. $\forall \mathrm{p}^{\prime}, \mathrm{p}^{\prime} \neq \mathrm{p} \wedge \mathrm{p}^{\prime} \in \overrightarrow{\mathrm{p}}, \mathrm{p}^{\prime} \mapsto \lambda x$. brn $\mathrm{p}(\operatorname{ret} x)(\operatorname{ret} x)$ By case analysis, if $\operatorname{get}_{I}(x)=\iota_{i} v$, then we have:
3. $\mathrm{p} \mapsto \mathrm{br}_{i}\left(\operatorname{put}_{\mathcal{I}}(v, x)\right)$
4. $\forall \mathrm{p}^{\prime}, \mathrm{p}^{\prime} \neq \mathrm{p} \wedge \mathrm{p}^{\prime} \in \overrightarrow{\mathrm{p}}, \mathrm{p}^{\prime} \mapsto \operatorname{ret}\left(\mathrm{br}_{i} x\right)$

This is clearly $[\mathrm{p} \oplus \overrightarrow{\mathrm{p}}] \delta_{I[\mathrm{p}]}(x)=\operatorname{br}_{i}^{\overrightarrow{\mathrm{p}}} \delta_{I\left[t_{i} \mathrm{p}\right]}(x)=$ $\delta_{I\left[\iota_{1} \mathrm{p}\right] \cup \overrightarrow{\mathrm{p}} I\left[\iota_{2} \mathrm{p}\right]}^{i}(x)$.

D Generated Code

We show now the generated code for mergesort, unrolling the recursive function once.

D. 1 Input Alg expression

```
fftTree :: forall n. SINat n -> Int
            -> Tree n (D [Complex Double])
                :=> Tree n (D [Complex Double])
fftTree SZ w
    = lift (intlit SZ &&& (lit w &&& id)
                >>> prim "baseFFT")
fftTree (SS x) w
    = withCDict (cdictTree @(D [Complex Double]) x)
            $
        {- Recursive FFT to EVENS and ODDS-}
        (fftTree x w
            *** fftTree x (w + 2^ toInteger x))
    {- Multiply right side by exponential -}
        >>> id
            *** mapTree x (lit ps2x &&& id >>> mapExp)
                0
        >>>
        {- zipWith add (swap arguments to force butterfly
            pattern
        - &&& zipWith sub
        -}
        zipTree x True lvl w addc
        &&& zipTree x False lvl (w + 2^ toInteger x)
            subc
    where
        lvl :: Int
        lvl = fromInteger (toInteger (SS x) + 1)
        ps2x :: Int
        ps2x = 2 ^ toInteger (SS x)
```

fft :: SINat n -> (D [Complex Double]) :=> D [
Complex Double]
fft $n=$
withCDict (cdictTree @(D [Complex Double]) n)
\$
tsplit n deinterleave >>> fftTree n 0 >>> tfold
n (append @@ 0)
fft5 :: D [Complex Double] :=> D [Complex
Double]

fft5 = withSize 5 fft

Listing 1. Fragment of FFT.hs

D. 2 Main C Code and Atomic Functions

These need to be implemented by the programmer.

```
#include "FFT.h"
#include <inttypes.h>
#include <errno.h>
#include <string.h>
#include <sys/time.h>
#include <stdlib.h>
#include <math.h>
#define REPETITIONS 50
#define BENCHMARKSEQ(s, f) { \
    time = 0; \
    time_diff = 0; \
    time_old = 0; \
    var = 0; \
    for(int i=0; i<REPETITIONS; i++){ \
        in = randvec(s, size); \
        start = get_time(); \
        out = f(in); \
        end = get_time(); \
        free_fftvec(in); \
        time_diff = end - start; \
        time_old = time; \
        time += (time_diff - time)/(i+1); \
        var += (time_diff - time) * (time_diff -
            time_old); \
    } \
    printf("\tK:%d\n", s); \
    printf("\t\tmean: %f\n", time); \
    printf("\t\tstddev: %f\n", REPETITIONS<=1? 0: sqrt(
            var / (REPETITIONS - 1))); \
}
#define WARMUP(f) { \
    for(int i=0; i<REPETITIONS; i++){ \
        in = randvec(0, size); \
        out = f(in); \
        free_fftvec(in); \
    } \
}
double PI = atan2(1, 1) * 4;
int num_stages;
int num_workers;
vec_cplx_t **stages;
```

```
vec_cplx_t zip_add(
        pair_pair_int_int_pair_vec_cplx_vec_cplx_t in)
        {
    int lvl = in.fst.fst;
    int wid = in.fst.snd;
    vec_cplx_t l = in.snd.fst;
    vec_cplx_t r = in.snd.snd;
    vec_cplx_t lout = stages[lvl][wid];
    for(int i = 0; i < l.size; i++){
        lout.elems[i] = l.elems[i] + r.elems[i];
    }
    return lout;
}
vec_cplx_t zip_sub(
        pair_pair_int_int_pair_vec_cplx_vec_cplx_t in)
        {
    int lvl = in.fst.fst;
    int wid = in.fst.snd;
    vec_cplx_t l = in.snd.fst;
    vec_cplx_t r = in.snd.snd;
    vec_cplx_t lout = stages[lvl][wid];
    for(int i = 0; i < l.size; i++){
        lout.elems[i] = l.elems[i] - r.elems[i];
    }
    return lout;
}
vec_cplx_t cat(pair_vec_cplx_vec_cplx_t in){
    in.fst.size *= 2;
    return in.fst;
}
void _fft(cplx_t buf[], cplx_t out[], int n, int
        step)
{
    if (step < n) {
        _fft(out, buf, n, step * 2);
        _fft(out + step, buf + step, n, step * 2);
        for (int i = 0; i < n; i += 2 * step) {
            cplx_t t = cexp(-I * PI * i / n) * out[i +
                    step];
            buf[i / 2] = out[i] + t;
            buf[(i + n)/2] = out[i] - t;
        }
    }
}
```

void show(const char * s, vec_cplx_t in) \{
printf("\%s", s);
for (int $i=0 ; i<i n . s i z e ; i++$)
if (!cimag(in.elems[i]))
printf("\%g ", creal(in.elems[i]));

```
    else
        printf("(%g, %g) ", creal(in.elems[i]), cimag(
                in.elems[i]));
    printf("\n");
}
void showstep(int stp, const char * s, vec_cplx_t
            in) {
    printf("%s", s);
    for (int i = 0; i < in.size; i+=stp)
        if (!cimag(in.elems[i]))
            printf("%g ", creal(in.elems[i]));
        else
            printf("(%g, %g) ", creal(in.elems[i]), cimag(
                    in.elems[i]));
    printf("\n");
}
vec_cplx_t baseFFT(pair_int_pair_int_vec_cplx_t in
            )
{
            int lvl = in.fst;
            int wid = in.snd.fst;
            cplx_t *buf = stages[lvl][wid].elems;
            int n = in.snd.snd.size;
    _fft(buf, in.snd.snd.elems, n, 1);
    return stages[lvl][wid];
}
vec_cplx_t seqfft(vec_cplx_t in)
{
    pair_int_pair_int_vec_cplx_t i = {1, {0, in}};
    return baseFFT(i);
}
vec_cplx_t map_exp(pair_int_pair_int_vec_cplx_t iv
            ){
    int i = iv.snd.fst;
    int ps2x = iv.fst;
    vec_cplx_t in = iv.snd.snd;
    int step = i * in.size;
    for(int k = 0; k < in.size; k++){
        in.elems[k] = in.elems[k] * cexp (2 * - I *
                PI * (k + step) / (ps2x * in.size));
    }
    return in;
}
void free_fftvec(){
    for(int i = 0; i < num_stages; i++){
        free(stages[i][0].elems);
        free(stages[i]);
```

```
}
    free(stages);
}
pair_vec_cplx_vec_cplx_t deinterleave(
            pair_int_int_t iin){
    int wl = iin.fst;
    int wr = iin.snd;
    int mid = stages[0][wl].size/2;
    stages[1][wl].size = mid;
    stages[1][wr].size = mid;
    stages[1][wr].elems = stages[1][wl].elems + mid;
    for(int i = 0; i < stages[0][wl].size; i+= 2){
        stages[1][wl].elems[i/2] = stages[0][wl].elems
            [i];
        stages[1][wr].elems[i/2] = stages[0][wl].elems
            [i+1];
}
    memcpy(stages[0][wl].elems, stages[1][wl].elems,
        stages[0][wl].size * sizeof(cplx_t));
    stages[0][wr].elems = stages[0][wl].elems + mid;
    stages[0][wr].size = mid;
    for (int i = 2; i < num_stages; i++){
        memcpy(stages[i][wl].elems, stages[1][wl].
            elems, stages[0][wl].size * sizeof(cplx_t))
            ;
        stages[i][wl].size = mid;
        stages[i][wr].elems = stages[i][wl].elems +
            mid;
        stages[i][wr].size = mid;
    }
    stages[0][wl].size = mid;
    return (pair_vec_cplx_vec_cplx_t) { stages[0][wl
        ], stages[0][wr] };
}
```

vec_cplx_t randvec(int depth, size_t s)\{
num_workers $=$ depth $<=1 ? 1: 1 \ll$ depth -1 ;
num_stages = depth <= 1? 2 : $1+$ depth ;
stages $=\left(v e c _c p l x _t ~ * *\right) m a l l o c\left(n u m _s t a g e s ~ * ~\right.$
$\boldsymbol{\operatorname { s i z e o f }}(\mathrm{vec}$ _cplx_t *));
for (int $\left.i=0 ; i<n u m _s t a g e s ; i++\right)\{$
stages[i] = (vec_cplx_t *)malloc(num_workers *
$\boldsymbol{\operatorname { s i z e o f }}(\mathrm{vec}$ _cplx_t)$)$;
stages[i][0].elems $=\left(c p l x _t *\right) c a l l o c(s, ~ s i z e o f ~$
(cplx_t));
\}
stages[0][0].size $=\mathrm{s}$;

```
    srand(time(NULL));
    for (int i = 0; i < s; i++) {
        double rand_r = (double)rand() / (double)
            RAND_MAX;
        double rand_i = (double)rand() / (double)
            RAND_MAX;
        stages[0][0].elems[i] = rand_r + rand_i * I;
    }
    for(int j = 1; j < num_stages; j++) {
        memcpy(stages[j][0].elems, stages[0][0].
            elems, s * sizeof(vec_cplx_t));
        stages[j][0].size = s / num_workers;
    }
    for(int i = 0; i < num_stages; i++) {
        for(int j = 1; j < num_workers; j++) {
            stages[i][j] = stages[i][j-1];
        }
    }
    return stages[0][0];
}
void usage(const char *nm){
    printf("Usage: %s <input_size >\n", nm);
    exit(-1);
}
int main(int argc, const char *argv[]) {
    setbuf(stdout, NULL);
    if (argc <= 1) {
        usage(argv[0]);
    }
    char *endptr = NULL;
    errno = 0;
    size_t size = strtoimax(argv[1],&endptr,10);
    size = (size_t) 1 << (long)ceil(log2(size));
    size = size < 256? 256:size;
    if (errno != 0) {
        printf("%s", strerror(errno));
        usage(argv[0]);
    }
    if (endptr != NULL && *endptr != 0) {
        usage(argv[0]);
    }
    vec_cplx_t in, out;
    /* allocate memory*/
    in = randvec(size, size);
    /* calling generated fft5 */
```

```
    out = fft5(in);
    show("Result: ", out);
    free_fftvec();
}
```


D. 3 Automatically Generated C Code

```
#ifndef __FFT__
#define __FFT__
#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>
#include<complex.h>
typedef double _Complex cplx_t;
typedef struct vec_cplx {
    cplx_t * elems; size_t size;
    } vec_cplx_t;
typedef struct q_vec_cplx {
    volatile unsigned int q_size;
    int q_head;
    int q_tail;
    pthread_mutex_t q_mutex;
    pthread_cond_t q_full;
    pthread_cond_t q_empty;
        vec_cplx_t q_mem[1];
    } q_vec_cplx_t;
```

void q_vec_cplx_put(q_vec_cplx_t *, vec_cplx_t);
vec_cplx_t q_vec_cplx_get(q_vec_cplx_t *);
typedef enum unit \{
Unit
\} unit_t;
typedef struct pair_int_vec_cplx \{
int fst; vec_cplx_t snd;
\} pair_int_vec_cplx_t;
typedef struct pair_int_pair_int_vec_cplx \{
int fst; pair_int_vec_cplx_t snd;
\} pair_int_pair_int_vec_cplx_t;
vec_cplx_t baseFFT(pair_int_pair_int_vec_cplx_t);
vec_cplx_t ffte(vec_cplx_t);
vec_cplx_t fft1 (vec_cplx_t);
typedef struct pair_int_int \{

```
            int fst; int snd;
            } pair_int_int_t;
typedef struct pair_vec_cplx_vec_cplx {
            vec_cplx_t fst; vec_cplx_t snd;
            } pair_vec_cplx_vec_cplx_t;
pair_vec_cplx_vec_cplx_t deinterleave(
        pair_int_int_t);
vec_cplx_t cat(pair_vec_cplx_vec_cplx_t);
typedef struct
    pair_pair_int_int_pair_vec_cplx_vec_cplx {
                pair_int_int_t fst;
                    pair_vec_cplx_vec_cplx_t snd;
            }
            pair_pair_int_int_pair_vec_cplx_vec_cplx_t
            ;
vec_cplx_t zip_add(
    pair_pair_int_int_pair_vec_cplx_vec_cplx_t);
vec_cplx_t map_exp(pair_int_pair_int_vec_cplx_t);
vec_cplx_t zip_sub(
    pair_pair_int_int_pair_vec_cplx_vec_cplx_t);
vec_cplx_t fft2(vec_cplx_t);
vec_cplx_t fft3(vec_cplx_t);
vec_cplx_t fft4(vec_cplx_t);
vec_cplx_t fft5(vec_cplx_t);
vec_cplx_t fft6(vec_cplx_t);
vec_cplx_t fft7(vec_cplx_t);
vec_cplx_t fft8(vec_cplx_t);
```


\#endif

Listing 2. Generated FFT.h

\#include "FFT.h"

q_vec_cplx_t ch0 = \{ 0, 0, 0, \{ \} \};
q_vec_cplx_t ch2 = \{ 0, 0, 0, \{ \} \};
q_vec_cplx_t ch3 $=\{0,0,0,\{ \}\} ;$
vec_cplx_t fft2_part_0(vec_cplx_t v_s)

```
{
    pair_int_int_t v_t;
    v_t.fst = 0;
    v_t.snd = 1;
    pair_vec_cplx_vec_cplx_t v_u;
    v_u = deinterleave(v_t);
    vec_cplx_t v_v;
    v_v = v_u.fst;
    q_vec_cplx_put(&ch0, v_v);
    vec_cplx_t v_w;
    v_w = v_u.snd;
    q_vec_cplx_put(&ch2, v_w);
    vec_cplx_t v_x;
    v_x = q_vec_cplx_get(&ch1);
    vec_cplx_t v_y;
    v_y = q_vec_cplx_get(&ch3);
    pair_vec_cplx_vec_cplx_t v_z;
    v_z.fst = v_x;
    v_z.snd = v_y;
    vec_cplx_t v_aa;
    v_aa = cat(v_z);
    return v_aa;
}
```

q_vec_cplx_t ch4 $=\{0,0,0,\{ \}\} ;$
q_vec_cplx_t ch5 = \{ 0, 0, 0, \{ \} \};
unit_t fft2_part_1()
\{
vec_cplx_t v_ba;
v_ba = q_vec_cplx_get(\&ch0);
pair_int_pair_int_vec_cplx_t v_ca;
v_ca.fst = 1;
pair_int_vec_cplx_t v_da;
v_da.fst = 0;
v_da.snd = v_ba;
v_ca.snd = v_da;
vec_cplx_t v_ea;
v_ea = baseFFT(v_ca);
q_vec_cplx_put(\&ch4, v_ea);
vec_cplx_t v_fa;
v_fa = q_vec_cplx_get(\&ch5);
pair_pair_int_int_pair_vec_cplx_vec_cplx_t
v_ga;
pair_int_int_t v_ha;
v_ha.fst = 2;
v_ha.snd = 0;
v_ga.fst = v_ha;
pair_vec_cplx_vec_cplx_t v_ia;
v_ia.fst = v_ea;
v_ia.snd = v_fa;
v_ga.snd = v_ia;
vec_cplx_t v_ja;

```
    v_ja = zip_ad(v_ga);
    q_vec_cplx_put(&ch1, v_ja);
    return Unit;
unit_t fft2_part_2()
{
    vec_cplx_t v_ka;
    v_ka = q_vec_cplx_get(&ch2);
    pair_int_pair_int_vec_cplx_t v_la;
    v_la.fst = 1;
    pair_int_vec_cplx_t v_ma;
    v_ma.fst = 1;
    v_ma.snd = v_ka;
    v_la.snd = v_ma;
    vec_cplx_t v_na;
    v_na = baseFFT(v_la);
    pair_int_pair_int_vec_cplx_t v_oa;
    v_oa.fst = 2;
    pair_int_vec_cplx_t v_pa;
    v_pa.fst = 0;
    v_pa.snd = v_na;
    v_oa.snd = v_pa;
    vec_cplx_t v_qa;
    v_qa = map_exp(v_oa);
    q_vec_cplx_put(&ch5, v_qa);
    vec_cplx_t v_ra;
    v_ra = q_vec_cplx_get(&ch4);
    pair_pair_int_int_pair_vec_cplx_vec_cplx_t
        v_sa;
    pair_int_int_t v_ta;
    v_ta.fst = 2;
    v_ta.snd = 1;
    v_sa.fst = v_ta;
    pair_vec_cplx_vec_cplx_t v_ua;
    v_ua.fst = v_ra;
    v_ua.snd = v_qa;
    v_sa.snd = v_ua;
    vec_cplx_t v_va;
    v_va = zip_sub(v_sa);
    q_vec_cplx_put(&ch3, v_va);
    return Unit;
void * fun_thread_1_1(void * arg)
    fft2_part_1();
    return NULL;
void * fun_thread_2(void * arg)
    fft2_part_2();
    return NULL;
```

\}
\}
\{
\}
\{

```
}
vec_cplx_t fft2(vec_cplx_t v_wa)
{
    vec_cplx_t v_xa;
    pthread_t thread1;
    pthread_t thread2;
    pthread_create(&thread1, NULL, fun_thread_1_1,
            NULL);
    pthread_create(&thread2, NULL, fun_thread_2,
        NULL);
    v_xa = fft2_part_0(v_wa);
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);
    return v_xa;
}
```


Listing 3. Fragment of generated FFT.c

E Artifact Appendix

E. 1 Abstract

This artifact provides a prototype implementation of PAlg, embedded in Haskell, along with a number of benchmarks used to test the scalability of our approach. We provide scripts to regenerate the execution time measurements that we used in our paper. This will allow to evaluate our results on any multi-core shared-memory architecture.

We also provide a small tutorial that is meant to guide a programmer, step-by-step, in the implementation of a message-passing parallel algorithm using our library. The tutorial includes a guide on how to visualise the global types that correspond to the achieved parallelisations, as well as any asynchronous optimisations applicable to the generated message-passing code.

E. 2 Artifact check-list (meta-information)

- Algorithm: Message-passing C code generation from firstorder Haskell functions. Global type inference of the communication protocol followed by the parallelisation.
- Program: Haskell libraries Language. CAlg, noindent Language.CAlg.CSyn and dependencies, as well as session-arrc, to compile to C Haskell functions built using such libraries.
- Compilation: GHC $>=8.6 \& \&<8.8$, and C compiler that supports C11.
- Transformations: Compilation to C, and asynchronous optimisation pass.
- Binary: Source code and scripts included to generate the binaries from the sources.
- Data set: Included original run-time measurements for comparison.
- Hardware: We used a 12-core Intel Xeon CPU E5-2650 v4 @ 2.20 GHz . We recommend a shared-memory architecture, with uniform access times, to measure the overheads of our approach, not message latencies.
- Execution: We include a script to run the benchmarks.
- Output: Benchmark execution times.
- Experiments: Small, representative benchmarks of common parallel algorithms.
- How much memory required (approximately)?: 64GB for using the maximum benchmark input size.
- How much time is needed to complete experiments (approximately)?: 5 days on the hardware stated in §E.3.2.
- Publicly available?: Yes.
- Code licenses (if publicly available)?: BSD-3.

E. 3 Description

E.3.1 How delivered

We provide a docker image with the necessary dependencies: https: //imperialcollegelondon.box.com/v/cc20-artifact-p43. After downloading, the image can be loaded using:
\$ sudo docker load -i cc20-artifact-p43.docker
To run the image, run the command:
\$ sudo docker run -ti cc20-artifact-p43
File README.md inside the docker image contains additional instructions. Our benchmarks, source code and scripts are also publicly available on Github, in https://github.com/session-arr/sessionarr.

E.3.2 Hardware dependencies

We used a 12-core Intel Xeon CPU E5-2650 v4 @ 2.20GHz. We recommend using a shared-memory architecture, with uniform access times, to measure the overheads of our approach, not message latencies.

E.3.3 Software dependencies

All our dependencies are listed in the Dockerfile in our public repository. We list them below. To compile our tool:

1. $\mathrm{GHC}>=8.6$ (not tested with $\mathrm{GHC}>=8.8$)
2. stack Version 1.9.1

To run our experiments:

1. C compiler that supports C 11 (tested with GCC $>=4.8 \& \&<$ 8.3)
2. glibc (tested with versions $>=2.17 \& \&<2.29$)
3. numactl

To generate the graphs:

1. python $(==2.7)$
2. python-matplotlib $(==2)$
3. python-pint $(==0.7)$

E.3.4 Data sets

We include as part of the artifact the raw data that we obtained for our benchmarks. These are included under
benchmarks/<bench_name>/data/t_<num_cores>, where <num_cores> is either 12 or 24 . There is additionally a file t_48, that uses all full 24 cores + hyperthreading. The structure of the files is:

```
size: <size>
    K: seq
            mean: <avg_execution_time>
            stddev: <std_dev>
    K: 1
        mean: ...
        stddev: ...
    ...
```

Keyword size denotes the size of the inputs for the particular benchmark. Keyword mean is the average execution time. Keyword stddev is the standard deviation. We write K : to denote the number of recursion unfoldings used to produce the parallel version.

Examples of global types for each benchmark are under benchmarks/<bench_name>/protocol/
<bench_name>_<fun_name>.mpst, where <fun_name> is the function name in <bench_name>. hs that corresponds to this protocol.

E. 4 Installation

Note: this section can be omitted if using our docker image.
We recommend using Stack (https://docs.haskellstack.org/en/stable/ README/\#how-to-install). To build our tool:

```
$ git clone \
    https://github.com/session-arr/session-arr
$ cd session-arr
$ stack build
```

There is no need to install the tool. However, to install it, run:
\$ stack install
This will copy the binary session-arre to a local directory, usually $\$\{H O M E\} /$. local/bin.

Manual compilation and installation using GHC is also possible, but we discourage it. Read session-arr/package. yaml to find out which haskell packages are required.

E. 5 Experiment workflow

E.5.1 Automatic

We included script session-arr/benchmark. sh to compile and run all the benchmarks used in the paper. To customise the amount of cores, the number of repetitions per experiment and the maximum input size, run:

\$ CORES=<ncores> REPETITIONS=<nreps> \}

MAXSIZE=<nsize> ./benchmark.sh
The defaults are:

1. CORES: number of physical cores on your machine
2. REPETITIONS: 50
3. MAXSIZE: 30

The script requires that MAXSIZE ≥ 15.
Note: using MAXSIZE $=30$ requires a machine with a large amount of memory. We run our experiments on a machine with 64GB of memory.

E.5.2 Manual

Clone and build the repository:
\$ git clone \}
https://github.com/session-arr/session-arr
\$ cd session-arr
\$ stack build
Navigate to one of the benchmarks
\$ cd examples/FFT
Here, there should be two files: FFT.hs and main.c.
\$ ls
FFT.hs main.c run.sh
To run our tool, run session-arrc using stack, with the .hs file as input.

```
$ stack exec session-arrc -- FFT.hs
```

The tool should output the list of functions found in module FFT. hs that are going to be compiled to C, and produce two files FFT. C and FFT. h. The interface file contains the type definitions and function signatures of the functions in FFT.c. Finally, compile main. c:
\$ gcc FFT.c main.c -o bench -lpthread -lm
To configure the number of repetitions, recompile the benchmark as follows:

```
$ gcc FFT.c main.c -DREPETITIONS=<num_reps> \
    -o bench -lpthread -lm
```

You may use run. sh to run the benchmark on a range of inputs. The usage is:

```
$ ./run.sh <num_cores> <max_size>
```

For example, ./run.sh 210 will run the benchmark with sizes 2^{9} and 2^{10}. The maximum size must be >9. To generate the graphs, you need measurements using at least 7 different sizes, i.e. size must be >14.

Running each benchmark manually Pass a valid input size to bench, the output looks as follows (run in a 4-core machine):

```
$ ./bench $((2**17))
    K: seq
        mean: 0.039446
        stddev: 0.000713
    K: 4
        mean: 0.011952
        stddev: 0.000636
```

Save all execution times to files with the format described in §E.3.4, as follows:

```
$ mkdir data
$ echo "size: <size1>" >> data/t_<num_cores>
$ ./bench <size1> >> data/t_<num_cores>
$ ...
$ echo "size: <sizeN>" >> data/t_<num_cores>
$ ./bench <sizeN> >> data/t_<num_cores>
```

Ensure that there are measurements with at least $N>14$ sizes.
Plotting the speedups: Navigate to examples/. The speedups can be plotted using scripts plotall.sh and plot.py, these will regenerate the graphs used in our paper. The usage is
./plotall.sh BENCHMARK_DIR CORES, where CORES is the number of cores used for the experimental workflow. For example:
\$./plotall.sh FFT 4
This will generate the graphs for FFT run on 4 cores under examples/plots.

E. 6 Evaluation and expected result

If you followed the experiment workflow, you should find under examples/plots a series of graphs with the speedups for each benchmark. To visualise them, we recommend copying them to a local directory, by running docker cp from outside the docker container:
\$ docker cp \}
<NM>:/home/cc20-artifact/session-arr/examples/plots \} <DIR>

Here, <NM> is the container name obtained via docker ps -a, and <DIR> is the destination path.

Outcome When run on similar hardware to the one that we describe in the paper, following our workflow, comparable speedups and scalability to the ones that we reported in the paper should be observed.

Note: for more reliable results, execution should be done outside the docker container. Use the container to generate all C code, then copy it running docker cp from outside the container, as well as the necessary scripts run. sh, and proceed locally. If you decide to run the experiments locally, please check §E.3.3 and ensure that you have all required software.

E. 7 Experiment customization

Several aspects can be customised in the benchmark source code, execution scripts and compilation options:

- Annotations to functions in the .hs files should produce different parallelisations.
- Files main. c can be compiled using different numbers of repetitions using -DREPETITIONS=<num_reps>.
- The script benchmark. sh can be run with such number of repetitions, to reduce execution times. The maximum input size for the benchmarks, and the number of cores can also be customised:
\$ cd session-arr
\$ REPETITIONS=<num_reps> CORES=<cores> \} MAXSIZE=<max_size> ./benchmark.sh

E. 8 Methodology

Submission, reviewing and badging methodology:

- http://cTuning.org/ae/submission-20190109.html
- http://cTuning.org/ae/reviewing-20190109.html
- https://www.acm.org/publications/policies/ artifact-review-badging

[^0]: CC' '20, February 22-23, 2020, San Diego, CA, USA
 2020. ACM ISBN 978-1-4503-7120-9/20/02...\$15.00
 https://doi.org/10.1145/3377555.3377889

