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Abstract. We propose a new programming model that supports a composition-
ality of choreographies. The key of our approach is the introduction of partial
choreographies, which can mix global descriptions with communications among
external peers. We prove that if two choreographies are composable, then the
endpoints independently generated from each choreography are also composable,
preserving their typability and deadlock-freedom. The usability of our framework
is demonstrated by modelling an industrial use case implemented in a tool for
Web Services, Jolie.

1 Introduction

Choreography-based programming is a powerful paradigm for designing communicat-
ing systems where the flow of communications is defined from a global viewpoint,
instead of separately specifying the behaviour of each endpoint (peer). The local be-
haviour of the endpoints can then be automatically generated by means of EndPoint
Projection (EPP). This paradigm has been used in standards [21, 4] and language imple-
mentations [11, 19, 20, 8]. Choreographies impact significantly the quality of software:
they lower the chance for programming errors and ease their detection [16, 6, 7].

Previous works provide models for programming implementations of communicat-
ing systems with choreographies [6, 7]. These models come with a type discipline for
checking choreographies against protocol specifications given as session types [12],
which are used to verify that the global behaviour of a choreography implements the
expected communication flows. For example, a programmer may express a protocol
using a multiparty session type [13] (or global type) such as the following one:

B -> C : 〈string〉; C -> B : 〈int〉; B -> T :

{
ok : B -> T : 〈string〉; T -> B : 〈date〉,

quit : end

}
Above, B, C and T are roles and abstractly represent endpoints in a system. In the proto-
col, a buyer B sends the name of a product to a catalogue C, which replies with the price
for that product. Then, B notifies the transport role T of whether the price is accepted or
not. In the first case (label ok), B sends also a delivery address to T and T replies with
the expected delivery date. Otherwise (label quit), the protocol terminates immediately.

To the best of our knowledge, all previous choreography programming models
(e.g., [7, 6]) require the programmer to implement the behaviour of all roles in a pro-
tocol where it is used; e.g., it would not be possible to write the choreography of a
system that uses the protocol above but gives the implementations only of roles C and
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T, to make those reusable by other programs as software libraries through an API. This
seriously hinders the applicability of choreographies in industrial settings, where the
interoperability of different systems developed independently is the key. In particular,
it is not currently possible to:

– use choreographies to develop software libraries that implement subsets of roles in
protocols such that they can be reused from other systems;

– reuse an existing software library that implements subsets of roles in protocols from
inside a choreography.

To tackle the issues above, we ask: Can we design a choreography model in which
the EPP of a choreography can be composed with other existing systems? The main
problem is that existing choreography models rely on the complete knowledge of the
implementation details of all endpoints to ensure that the systems generated by EPP will
behave correctly. This complete knowledge is not available when independently devel-
oped implementations of distributed protocols need to be composed. In order to answer
our question, we build a model for developing partial choreographies. Partial chore-
ographies implement the behaviour of subsets of the roles in the protocols they use.
Endpoint implementations are then automatically generated from partial choreogra-
phies and composed with other systems, with the guarantee that their overall execution
will follow the intended protocols and the behaviour of the originating choreographies.

Main contributions. We provide the following contributions:
Compositional Choreographies. We introduce a new programming model for chore-
ographies in which the implementation of some roles in protocols can be omitted (§ 3).
These partial choreographies can then be composed with others through message pass-
ing. Our model allows to describe both choreographies with many participants or just a
single endpoint. We provide a notion of EPP that produces correct endpoint code from
a choreography, and we show that the EPP of a choreography preserves its composi-
tional properties (§ 5). Our model introduces shared channel mobility to choreogra-
phies, which gains a dynamism when two protocols are composed.
Typing. We provide a type system for checking choreographies against protocol speci-
fications given as multiparty session types [13]. The type system ensures that the com-
position of different programs implements the intended protocols correctly (§ 4), and
that our EPP produces code that follows the behaviour of the originating choreogra-
phies. Our framework guarantees that the EPP is still typable (§ 5); therefore, the EPP
is reusable as a “black box” composable with other systems and the result of the com-
position can be checked for errors by referring only to types.
Deadlock-freedom and Progress among Composed Choreographies. In the presence
of partial choreographies, we prove that we can (i) capture the existing methodologies
for deadlock-freedom in complete choreographies as in [6, 7] and (ii) extend the notion
of progress for incomplete systems investigated in [13] to choreographies (§ 5). Our
results demonstrate for the first time that choreographies can be effectively used also as
a tool for progress in a compositional setting, offering a new viewpoint for investigating
progress and giving a fresh look to the results in [6, 7].

Proofs, auxiliary definitions, and other resources are posted at [1], including an
implementation of our use case (§ 2) with Jolie [15, 18].
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2 Motivations: a Use Case of Compositional Choreographies

We present motivations for this study by reporting a use case from our industry collabo-
rators [14], and informally introducing our model. For clarity, we discuss only its most
relevant parts. An extended version can be found at [1].

In our use case a buyer company needs to purchase a product from one of many
available seller companies. The use case has two aspects that previous choreography
models cannot handle: (i) the system of the buyer company is developed independently
from those of the seller companies, and use the latter as software modules without
revealing internal implementation details; (ii) depending on the desired product, the
buyer company selects a suitable seller company at runtime. We address these issues
with partial choreographies. A partial choreography implements a subset of the roles in
a protocol, leaving the implementation of the other roles to an external system. External
systems can be discovered at runtime. In our case, the buyer company will select a seller
and then run the protocol from the introduction by implementing only the buyer role B,
and rely on the external seller system to implement the other two roles C and T.
Buyer Choreography. We now define a choreography for the buyer company, CB .

CB =

1. u[U] starts pd[PD] : a(k); u[U].prod -> pd[PD].x : k;
2. pd[PD] starts r[R] : b(k′); pd[PD].x -> r[R].y : k′; r[R].find(y) -> pd[PD].z : k′;
3. pd[B] req C, T : z(k′′); pd[B].x -> C : k′′; C -> pd[B].price : k′′;
4. if check(price)@pd then
5. pd[B] -> T : k′′ ⊕ ok; pd[PD] -> u[U] : k[del]; pd[PD] -> u[U] : k〈k′′[B]〉;
6. u[B].addr -> T : k′′; T -> u[B].ddate : k′′

7. else
8. pd[B] -> T : k′′ ⊕ quit; pd[PD] -> u[U] : k[quit]

Above, a purchase in the buyer company is initiated by a user process u. In Line 1, pro-
cess u and the freshly created process pd (for purchasing department) start a session k
by synchronising on shared channel a. Each process is annotated with the role it plays in
the protocol that the session implements. Then, still in Line 1, u sends the product prod
the user wishes to buy to pd. In Line 2 pd starts a new session k′ with a fresh process r
(a service registry) through shared channel b. Then, pd forwards the product name to r,
which replies with the shared channel of the seller to contact for the purchase.

We refer to statements such as those in Lines 1-2 as complete, since they describe
the behaviour of all participants, both sender and receiver(s). On the other hand, the
continuation in Lines 3-8 is a partial choreography that relies on the selected external
seller to implement the protocol shown in the introduction and perform the purchase.

The partial choreography in Lines 3-8 is depicted as a sequence chart in Fig. 1.a,
where dashed lines indicate interactions with external participants. In Line 3 pd re-
quests a synchronisation on the shared channel stored in its local variable z to create
the new session k′′, declaring that it will play role B and that it expects the environ-
ment to implement roles C and T. Session k′′ proceeds as specified by the protocol in
the introduction. First, pd sends the product name stored in x through session k′′ to the
external process that is playing role C (the product catalogue executed by the seller com-
pany). Observe that here we do not specify the process name of the receiver, since that
will be established by the external seller system. Then, pd waits to receive the price for
the product from the external process playing role C in k′′. In Line 4, pd checks whether
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Fig. 1. Sequence charts for buyer (a), seller (b), and their composition (c).

the price is acceptable; if so, in Line 5 pd tells the external process playing role T (the
transport process executed by the seller company) and user u (which remains internal to
the buyer choreography) to proceed with the purchase (labels ok and del respectively).
Still in Line 5, pd delegates to u the continuation of session k′′ in its place, as role B. In
Line 6, the user sends her address to T and receives a delivery date. If the price is not
acceptable, Line 7, then in Line 8 pd informs the others to quit the purchase attempt.

Seller Choreography and Composition. We define now a choreography for a seller
that can be contacted by CB . Let the find function in CB return shared channel c for
electronic products, and c′ for other products; we refer to the choreographies of the re-
spective seller companies as CS and C ′S . Below, we define CS (C ′S , omitted, is similar).

CS =

1. acc c[C], t[T] : c(k′′); B -> c[C].x2 : k′′; c[C].price(x2) -> B : k′′;

2. B -> t[T] : k′′&

{
ok : B -> t[T].daddr : k′′; t[T].time(daddr) -> B : k′′

quit : 0

}
The choreography CS , depicted as a sequence chart in Fig. 1.b, starts by accepting the
creation of session k′′ through shared channel c, offering to spawn two fresh processes
c and t. Choreographies starting with an acceptance act as replicated, modelling typical
always-available modules. The acceptance in Line 1 would synchronise with the request
made by CB in the case z = c. Afterwards, c expects to receive the product name from
the process playing B in session k′′, and replies with the respective price. In Line 2, t
(the process for the transport) waits for either label ok or quit. In the first case, t also
waits for a delivery address and then sends back the expected time of arrival.

From the code ofCB andCS and, graphically, from their respective sequence charts
we can see that they are compatible: sending actions match receiving actions on the
other side and vice versa. Our model can recognise this by using roles in protocols as
interfaces between partial choreographies (§ 4). The code for buyer and seller compa-
nies can be composed in a network with the parallel operator | as: C = CB | CS | C ′S .
Parallel composition allows partial terms in different choreographies to communicate.
In (§ 3, Semantics) we formalise a semantics for choreography composition. To give
the intuition behind our semantics, let us consider the sequence charts in Fig. 1.a and
Fig. 1.b; their composition will behave as the sequence chart in Fig. 1.c.
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C ::= η;C (seq) | C1 | C2 (par)
| if e@p thenC1 elseC2 (cond) | (νr) C (res)
| recX(x̃@p, k̃, p̃) = C2 inC1 (rec) | X(x̃@p, k̃, p̃) (call)
| 0 (inact) | A -> q : k&{li :Ci}i∈I (branch)

η ::= p starts q̃ : a(k) (start) | p.e -> q.x : k (com)
| p -> q : k[l] (sel) | p -> q : k〈k′[A]〉 (del)
| p req B̃ : u(k) (req) | acc q̃ : a(k) (acc)
| p.e -> B : k (com-s) | A -> q.x : k (com-r)
| p -> B : k〈k′[C]〉 (del-s) | A -> q : k(k′[C]) (del-r)
| p -> B : k ⊕ l (sel-s)

p, q ::= p[A] u ::= x | a

Fig. 2. Compositional Choreographies.

3 Compositional Choreographies

This section introduces our model for compositional choreographies, a calculus where
complete and partial actions can be freely interleaved.

Syntax. Fig. 2 defines the syntax of our calculus. C is a choreography, η is a complete
or partial action, p is a typed process identifier made by a process identifier p and a role
annotation A, k is a session identifier, and a is a shared channel. A term η;C denotes a
choreography that may execute action η and then proceed as C. In the productions for
η, terms (start), (com), (sel) and (del) are complete actions, whereas all the others are
partial. In the productions for C, term (branch) is also partial.
Complete Actions. Term (start) initiates a session: process p starts a new multiparty ses-
sion through shared channel a and tags it with a fresh identifier k. p is already running
and dubbed active process, while q̃ (which we assume nonempty) is a set of bound ser-
vice processes that are freshly created. A, B̃ represent the respective roles played by the
processes in session k. Term (com) denotes a communication where process p sends,
on session k, the evaluation of a first-order expression e to process q, which binds it to
its local variable x. Expressions may be shared channel names, capturing shared chan-
nel mobility. In (sel), p communicates to q its selection of branch l. Term (del) models
session mobility: process p delegates to q through session k its role C in session k′.
Partial Actions. In term (req), process p is willing to start a new session k by synchro-
nising through shared channel a with some other external processes. p is willing to play
role A in the session and expects the other processes to play the other roles B̃. (req) terms
are supposed to synchronise with always-available service processes, modelled by term
(acc). In term (acc), processes q̃ are dynamically spawned whenever requested by a
matching (req) term on the same shared channel a. Term (com-s) models the sending of
a message from a process p to an external process playing role B in session k. Dually,
in (com-r) process q receives a message intended for B in session k from the external
process playing role A. (del-s) and (del-r) model, respectively, the sending and receiving
of a delegation of role C in session k′. (sel-s) models the sending of a selection of label
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l. (sel-s) can synchronise with a (branch) term, which offers a choice on multiple labels.
Once a label li is selected, (branch) proceeds by executing its continuation Ci.
Other terms. In term (cond), process p evaluates condition e to choose the continuation
C1 or C2. Term (res) restricts the usage of a name r to a choreography C. r can be any
name, i.e., a process identifier p, a session identifier k, or a shared channel a. Term (par)
models the parallel composition of choreographies, allowing partial actions to interact
through the network. The other terms are standard: terms (rec), (call) and (inact) model,
respectively, a recursive procedure, a recursive call, and termination.

For clarity, we have annotated process identifiers with roles in all communications.
Technically, this is necessary only for terms (start), (req) and (acc) since roles can be
inferred from session identifiers in all other terms (cf. [7]).

Semantics. We give semantics to choreographies with a labelled transition system (lts),
whose rules are defined in Fig. 3 and whose labels λ are defined as:

λ ::= η | A -> q : k&l | if@p | (νr) λ

We distinguish between labels representing complete or partial actions with the respec-
tive sets CAct and PAct. CAct is the smallest set containing all η that are complete ac-
tions and the labels of the form if@p, closed under restrictions (νr). PAct is the smallest
set containing all η that are partial actions and the labels of the form A -> q : k&l, sim-
ilarly closed under restriction of names. We also use other auxiliary definitions. fc(C)
returns the set of all session/role pairs k[A] such that k is free in C and there is a process
performing an action as role A in session k in C. rc(λ) is defined only for partial la-
bels that are not (req) or (acc), and returns the session/role pair of the intended external
sender or receiver of λ; e.g., rc(p.e -> B : k) = k[B]. fn and bn denote the sets of free
and bound names in a label or a term. snd(η) returns the name of the sender process
in η, and is undefined if η has no sender process (e.g., when η is a (com-r)). rcv(η),
instead, returns the session/role pair k[A] where k is the session used in η and A is the
role of the receiver (similarly for rcv(λ)). fc(λ) is as fc(C), but applied on labels.

We comment the rules. Rule bC|ACTe handles actions that can be simply consumed.
Rule bC|STARTe starts a session with a global action, by restricting the names of the newly
created session identifier k and processes q̃. Rule bC|COMe handles the communication of
a value by substituting, in the continuation C, the binding occurrence x under process
identifier q with value v (evaluated from expression e). Similarly, rules bC|COM-Se and
bC|COM-Re implement the respective partial sending and receiving actions of a communi-
cation. In rule bC|BRANCHe, process q receives a selection on a branching label and proceeds
accordingly. Rules bC|CONDe, bC|RESe, and bC|CTXe are standard. Rule bC|PARe makes global
actions observable and blocks partial actions if their counterpart is in the parallel branch
C2. In rule bC|EQe, the relation R can either be the swapping relation 'C , which swaps
terms that describe the behaviour of different processes [7], or the structural congruence
≡, which handles name restriction and recursion unfolding (see [1]).

Rule bC|SYNCe is the main rule and enables two choreographies to perform compatible
sending/receiving partial actions λ and λ′ to interact and realise a global action, defined
by λ ◦ λ′. Function ◦ : PAct× PAct→ CAct is formally defined by the rules below:

p[A] -> B : k〈v〉 ◦ A -> q[B] : k〈v〉 = p[A] -> q[B] : k〈v〉
p[A] -> B : k〈k′[C]〉 ◦ A -> q[B] : k(k′[C]) = p[A] -> q[B] : k〈k′[C]〉
p[A] -> B : k ⊕ l ◦ A -> q[B] : k&l = p[A] -> q[B] : k[l]
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bC|ACTe η 6∈ {(com), (com-s), (com-r), (start), (acc)} ⇒ η;C
η−→ C

bC|STARTe η = p starts q̃[B] : a(k) ⇒ η;C
η−→ (νk, q̃) C

bC|COMe η = p.e -> q[B].x : k ⇒ η;C
p -> q[B]:k〈v〉−−−−−−−−−→ C[v/x@q] (e ↓ v)

bC|COM-Se p.e -> B : k;C
p -> B:k〈v〉−−−−−−−→ C (e ↓ v)

bC|COM-Re A -> q[B].x : k;C
A -> q[B]:k〈v〉−−−−−−−−→ C[v/x@q]

bC|BRANCHe A -> q : k&{li :Ci}i∈I
A -> q:k&lj−−−−−−−→ Cj (j ∈ I)

bC|CONDe if e@p thenC1 elseC2
if@p−−−→ Ci (i = 1 if e ↓ true, i = 2 otherwise)

bC|RESe C
λ−→ C′ ⇒ (νr) C

(νr) λ−−−−→ (νr) C′

bC|CTXe C1
λ−→ C′1 ⇒ recX(x̃@p, k̃, p̃) = C2 inC1

λ−→ recX(x̃@p, k̃, p̃) = C2 inC′1

bC|PARe C1
λ−→ C′1 ⇒ C1 | C2

λ−→ C′1 | C2 ( λ ∈ CAct ∨ rc(λ) 6∈ fc(C2) )

bC|EQe R ∈ {≡,'C} C1 R C′1 C′1
λ−→ C′2 C′2 R C2 ⇒ C1

λ−→ C2

bC|SYNCe C1
λ−→ C′1 C2

λ′
−−→ C′2 ⇒ C1 | C2

λ◦λ′
−−−→ C′1 | C′2

bC|P-STARTe

i ∈ [1, n] {q̃} = {q̃1, . . . , q̃n}

{B̃} = {B̃1, . . . , B̃n} C′′ =
∏
i Ci

C
p req B̃:u(k)−−−−−−−−→ C′

Ci = acc q̃[B]i : a(k);C
′
i


⇒
C | C′′ λ−→ (νk, q̃)

(
C′ |

∏
i(C
′
i)
)
| C′′

( λ = p starts q̃[B]1, . . . , q̃[B]n : a(k) )

bC|ASYNCe C
λ−→ (ν r̃) C′ ⇒ η;C

λ−→ (ν r̃) η;C′

 snd(η) ∈ fn(λ) r̃ = bn(λ)
rcv(η) 6∈ fc(λ) r̃ 6∈ fn(η)

η 6∈ {(start), (acc)}


Fig. 3. Semantics of Compositional Choreographies.

Observe that if λ◦λ′ is not defined (the actions are incompatible), then the rule cannot be
applied. Similarly, bC|P-STARTemodels a session start by synchronising a partial choreogra-
phy that requests to start a session with other choreographies that can accept the request
on the same shared channel. The choreographies accepting the request remain available
afterwards, for reuse. Finally, rule bC|ASYNCemodels asynchrony, allowing the sender pro-
cess of an interaction η (snd(η)) to send a message and then proceed freely before the
intended receiver actually receives it. In the rule, we require asynchrony to preserve the
message ordering in a session wrt receivers with a causality check (rcv(η) 6∈ fc(λ)).

4 Typing Compositional Choreographies

We now present our typing discipline, which ensures that sessions in a choreography
follow protocol specifications given as global types [13, 3]. The key advances from
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previous work [7] are: (i) introduction of the typing rules for partial choreographies and
shared channel passing; and (ii) typing endpoints by local types, which offer transparent
compositional properties for the behaviour of each process.

Global and Local Types from [13, 3] are defined below:
G ::= A -> B : 〈U〉;G | A -> B : {li : Gi}i∈I | µ t . G | t | end

T ::= !A〈U〉;T | ?A〈U〉;T | ⊕ A{li : Ti}i∈I | &A{li : Ti}i∈I | µ t . T | t | end

S ::= G | int | bool · · · U ::= S | T
G is a global type. A -> B : 〈U〉;G abstracts a communication from role A to role B

with continuation G, where U is the type of the exchanged message. U can either be
a sort type S (used for typing values or shared channels), or a local type T (used for
typing session delegation). In A -> B : {li : Gi}i∈I , role A selects one label li offered
by role B and the global type proceeds as Gi. All other terms are standard.

T denotes a local type. !A〈U〉;T represents the sending of a message of type U to
role A, with continuation T . Dually, ?A〈U〉;T represents the receiving of a message of
type U from role A. ⊕A{li : Ti}i∈I and &A{li : Ti}i∈I abstract the selection and the
offering of some branches. The other terms are standard.

To relate a global type to the behaviour of an endpoint, we project a global type G
onto a local type that represents the behaviour of a single role. We write [[G]]A to denote
the projection of G onto the role A, which is defined following [10] (cf. [1]).

Type checking. We now introduce our type checking discipline for checking chore-
ographies against global types. We use two kinds of typing environments, the linear
session typing environments ∆ and the unrestricted service environments Γ :
∆ ::= ∆, k[A] :T | ∅ Γ ::= Γ, x@p :S | Γ,X : (Γ,∆) | Γ, p :k[A] | Γ, a :G〈A|B̃|C̃〉 | ∅
∆ is standard [3], where k[A] : T maps a local type T to a role A in a session k. In Γ ,
x@p :S types variable x of process p with type S. X : (Γ,∆) types recursive procedure
X . p : k[A] establishes that process p owns role A in session k. a : G〈A|B̃|C̃〉 types a
shared channel a with global type G: A is the role of the active process that starts the
session through a; B̃ are the roles of the service processes; C̃ are the roles, in B̃, that a
choreography implements for the shared channel a, enabling compositionality of ser-
vices. Whenever we write a : G〈A|B̃|C̃〉 in Γ , we assume that C̃ ⊆ B̃, A 6∈ B̃, and that
A, B̃ = roles(G). roles(G) returns the set of roles in a global type G.

We can write Γ, p : k[A] only if p is not associated to any other role in session k
in Γ (a process may only play one role per session). A process p may however appear
more than once in a same Γ , allowing processes to run multiple sessions. As usual, we
require all other kinds of occurrences in environments to have disjoint identifiers.

A typing judgement Γ ` C . ∆ establishes that a choreography C is well-typed.
Intuitively, C is well-typed if shared channels are used according to Γ and sessions are
used according to ∆. ∆ gives the session types of the free sessions in C. Following
the design idea that services should always be available, shared by other models [6, 7],
we assume that all (acc) terms in a choreography are not guarded by other actions. A
selection of the rules defining our typing judgement is reported in Fig. 4.

We comment the typing rules. Rule bT|STARTe types a (start); a :G〈A|B̃|B̃〉 checks that
the choreography should implement all roles in protocol G; processes q̃ are checked to
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bT|STARTe
Γ, a :G〈A|B̃|B̃〉, Γ ′ ` C . ∆,∆′ r[C] ∈ p[A], q̃[B]⇔

(
r :k[C] ∈ Γ ′ ∧ k[C] : [[G]]C ∈ ∆′ ) q̃ 6∈ Γ

Γ, a :G〈A|B̃|B̃〉 ` p[A] starts q̃[B] : a(k);C . ∆

bT|SELe
j ∈ I Γ ` p :k[A], q :k[B] Γ ` C . ∆, k[A] :Tj , k[B] :T

′
j

Γ ` p[A] -> q[B] : k[lj ];C . ∆, k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′
i}i∈I

bT|REQe
Γ ` x@p :G〈A|B̃|∅〉 Γ, p :k[A] ` C . ∆, k[A] : [[G]]A

Γ ` p[A] req B̃ : x(k);C . ∆
bT|PARe

Γ, Γi ` Ci . ∆i

Γ, Γ1 ◦ Γ2 ` C1 | C2 . ∆1, ∆2

bT|ACCe
Γ, a :G〈D|B̃|∅〉, Γ ′ ` C . ∆,∆′ r[C] ∈ q̃[A]⇔

(
r :k[C] ∈ Γ ′ ∧ k[C] : [[G]]C ∈ ∆′ ) q̃ 6∈ Γ

Γ, a :G〈D|B̃|Ã〉 ` acc q̃[A] : a(k);C . ∆

bT|COM-Se
Γ ` e@p :S Γ ` p :k[A] Γ ` C . ∆, k[A] :T q :k[B] 6∈ Γ

Γ ` p[A].e -> B : k;C . ∆, k[A] :!B〈S〉;T
bT|ZEROe

cosha(Γ ) ∆ end only

Γ ` 0 . ∆

bT|BRANCHe
i ∈ I Γ ` Ci . ∆, k[A] :Ti I ⊆ J p :k[A] 6∈ Γ

Γ ` A -> q[B] : k&{li :Ci}i∈I . ∆, k[B] : &B{lj : Tj}j∈J

Fig. 4. Typing Rules for Compositional Choreographies (selection).

be fresh (q̃ 6∈ Γ ); the continuation C is checked by updating Γ ′ and ∆′ respectively
with the process ownerships for their roles in k and the local types for their behaviour in
k. bT|SELe deals with selection, checking that the selected label lj is specified in the local
types. In rule bT|REQe, we check that the choreography requesting the services is not
responsible for implementing them, to avoid deadlocks due to the lack of services in
parallel required by rule bC|P-STARTe, and that the requesting process behaves as expected
by its role in the protocol. Conversely, bT|ACCe types an (acc) term by ensuring that all
the roles for which the choreography is responsible are implemented (the other checks
are similar to bT|STARTe). This distribution of the responsibilities for implementing the
different roles in a protocol is handled by rule bT|PARe, using the role distribution function
Γ1 ◦ Γ2. Formally, Γ1 ◦ Γ2 is defined as the union of Γ1 and Γ2 except for the typing of
shared channels with the same name, which are merged with the following rule:

a :G〈A|B̃|C̃〉 = a :G〈A|B̃|D̃〉 ◦ a :G〈A|B̃|Ẽ〉 (C̃ = D̃ ] Ẽ)

In rule bT|ZEROe we check that all responsibilities have been implemented and that the
sessions in∆ have been executed. Specifically, predicate cosha(Γ ) checks that for every
a :G〈A|B̃|C̃〉 in Γ either (i) C̃ = B̃, meaning that a was used only internally with (start)
terms; or (ii) C̃ = ∅, meaning that a is used compositionally in collaboration with
other choreographies and all roles that the current choreography is responsible for (C̃)
have been implemented correctly with (acc) terms. Rules bT|COM-Se and bT|BRANCHe type
respectively a sending action and a branching. They are very similar to their complete
versions since local types allow us to look at the behaviour of processes independently.
They also check that the counterpart for the partial action is not in the continuation, by
ensuring that there is not process q such that q plays the other role for session k in Γ ,
which could obviously lead to a deadlock because process p would not have another
process to communicate with in parallel as required by rule bC|SYNCe.
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Typing Expressiveness. Our typing system exploits the global information given by
complete terms and seamlessly falls back to typical session typing when dealing with
partial actions. In particular, bT|SELe judges that a choice in a protocol is implemented
correctly even if only one of the branches is actually followed. This is sound because
we are typing a complete term, and therefore we know that the other branches are not
used. This expressiveness is typical of choreography-based models [6, 7]. However,
such a global knowledge is not available in a partial choreography. For example, in
rule bT|BRANCHe we cannot know which branch will be selected by the sender and we must
therefore require that the receiver process supports at least all the branches specified by
the corresponding local type, as in standard session typing for endpoints [12, 13].
Properties. We conclude this section by presenting the expected main properties of
our type system. Below, to state session fidelity, we use the transition of local types
∆

α−→ ∆′ (defined as [13] and fully given in [1]), where α types a partial or complete
action. α ` λ judges that the label λ is for the same session as α and respects its roles
and carried type. We also extend our typing judgement with the extra environment Σ,
for handling session ownerships with asynchronous delegations at runtime (see [1]).

Theorem 1 (Typing Soundness). Let Γ ;Σ ` C . ∆. Then,

– (Subject Swap) C 'C C ′ implies Γ ;Σ ` C ′ . ∆.
– C

λ−→ C ′ implies that there exists ∆′ such that
• (Subject Reduction) Γ ′;Σ′ ` C ′ . ∆′ for some Γ ′, Σ′;
• (Session Fidelity) if λ is a communication on session k, then ∆ α−→ ∆′ with
α ` λ; else, ∆ = ∆′.

5 Properties of Compositional Choreographies

This section states the main properties of our framework wrt the execution of actual
systems composed by endpoints.
Endpoint Projection (EPP) generates correct endpoint code from a choreography. For-
mally, by endpoint code we refer to choreographies that do not contain complete ac-
tions. To define the complete EPP, we first define how the behaviour of a single process
in a choreography can be projected. We denote this process projection of a process p in
a choreography C with [[C]]p. Selected rules of process projection are given below:

[[p[A] starts q̃[B] : a(k);C]]r [[p[A].e -> q[B].x : k;C]]r

=


p[A] req B̃ : a(k); [[C]]r if r = p

acc r[C] : a(k); [[C]]r if r[C] ∈ q̃[B]
[[C]]r otherwise

=


p[A].e -> B : k; [[C]]r if r = p
A -> q[B].x : k; [[C]]r if r = q
[[C]]r otherwise

[[p[A].e -> B : k;C]]r [[A -> q[B].x : k;C]]r

=

{
p[A].e -> B : k; [[C]]r if r = p
[[C]]r otherwise

=

{
A -> q[B].x : k; [[C]]r if r = p
[[C]]r otherwise

[[if e@p thenC1 elseC2]]r [[A -> q[B] : k&{li :Ci}i∈I ]]r

=

{
if e@p then [[C1]]r else [[C2]]r if r = p
[[C1]]r t [[C2]]r otherwise

=

{
A -> q[B] : k&{li : [[Ci]]r}i∈I if r = q⊔
i∈I [[Ci]]r otherwise

Process projection follows the structure of the originating choreography. In a (start), we
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project the active process p to a request and the service processes q̃ to (always-available)
accepts. In a (com), the sender is projected to a partial sending action and the receiver
to a partial receiving action. The projections of (sel) and (del), omitted, follow the same
principle. Above we also report the rule for projecting (com-s) and (com-r) to exem-
plify how we treat partial choreographies: these are simply projected as they are for
their respective process, following the structure of the choreography. The projections
of conditionals and partial branchings are the only special cases. In a conditional, we
project it as it is for the process evaluating the condition, but for all other we merge their
behaviours with the merging partial operator t [6]. C t C ′ is defined only for partial
choreographies that define the behaviour of a single process and returns a choreogra-
phy isomorphic to C and C ′ up to branching, where all branches with distinct labels are
also included. We use t also in the projection of (branch) terms, where we require the
behaviour of all processes not receiving the selection to be merged. As an example, the
process projection for process u in the choreography CB from our example in § 2 is:

[[CB ]]u =

u[U] req PD : a(k); u[U].prod -> PD : k;

PD -> u[U] : k&


del : PD -> u[U] : k〈k′′[B]〉; u[B].addr -> T : k′′;

T -> u[U].ddate : k′′,
quit : 0


Using process projection, we can now define the EPP of a whole system. Since dif-

ferent service processes may be started through (start) terms on the same shared channel
and play the same role, we use t for merging their behaviours into a single service. We
identify these processes with the service grouping operator bCcaA , which computes the
set of all service process names in a start or a request in C on shared channel a playing
role A. Formally, EPP is the endofunction [[C]] defined in the following.

Definition 1 (Endpoint Projection). Let C ≡ (νã, k̃, p̃) Cf , where Cf does not con-
tain (res) terms. Then, the EPP of C is:

[[C]] = (νã)

(
(νk̃, p̃)

(∏
p∈fn(Cf )

[[Cf ]]p

)
|
∏
a,A

(⊔
p∈bCfcaA

[[Cf ]]p

))
The EPP of a choreography C is the parallel composition of (i) the projections of all
active processes and (ii) the merged projections of all service processes started under
same shared channel and role. EPP respects the following Lemma, which shows that
our model can adequately capture not only typical complete choreographies, but also
scale down to describing the behaviour of a single endpoint.

Lemma 1 (Endpoint Choreographies). Let C be restriction-free, contain only partial
terms, and be well-typed. If one of the following two conditions apply, then C = [[C]].

1. C = acc q[B] : a(k);C ′ and q is the only free process name in C ′;
2. otherwise, C has only one free process name.

We refer to choreographies that respect one of the two conditions above as endpoint
choreographies. They implement either the behaviour of a single always-available ser-
vice process (1), or that of a single free process (2). The EPP for these choreographies
is the identity since they already model the behaviour of only one endpoint.
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The projection of services may lead to undesirable behaviour if service roles for
shared channels are not distributed correctly. For example, if we put the choreography
CB from § 2 in parallel with a choreography with a conflicting service on shared chan-
nel b for role R (which is internally implemented in CB) we obtain a race condition,
even if protocols are correctly implemented. Consider the following choreography:

CR = acc h[R] : b(k′); PD -> h[R].x : k′; h[R].c -> PD : k′

If we put the projection of CB in parallel with that of CR, we get a race condition be-
tween the service processes r and h for role R on shared channel b. Hence, the projection
of process pd may synchronise with the service offered by CR for creating session k′,
instead of that by the projection of service process r in CB . Consequently, CB may not
follow its intended behaviour. The distribution of service roles performed by our type
system avoids this kind of situations. Observe that normal session typing cannot help
us in detecting these problems, because the service process h correctly implements the
same communication behaviour for session k′ as service process r.
Main Theorems. We can now present our main theorems. We build our results on the
foundation that the EPP of a choreography is still typable. As in previous work [16, 6, 7],
we need to consider that in the projection of complete choreographies, due to merging,
some projected processes may still offer branches that the original complete choreog-
raphy has discarded with a conditional. Therefore, we state our type preservation result
below under the minimal typing of choreographies `min, in which the branches in rules
bT|SELe and bT|BRANCHe are typed using the respective minimal branch types.

Theorem 2 (EPP Type Preservation). Let Γ `min C . ∆. Then, Γ `min [[C]] . ∆.

By Theorem 2, it follows that Theorem 1 applies also to the EPP of a choreography.
We use this result to prove that EPP correctly implements the behaviour of the originat-
ing choreography, by establishing a formal relation between their respective semantics.

Theorem 3 (EPP Theorem). Let C ≡ (νã, k̃, p̃) Cf , where Cf is restriction-free, be
well-typed. Then,

1. (Completeness) C λ−→ C ′ implies [[C]] λ−→� [[C ′]].
2. (Soundness) [[C]] λ−→ C ′ implies C λ−→ C ′′ and [[C ′′]] ≺ C ′.

Above, the pruning relation C ≺ C ′ is a strong typed bisimilarity [6] such that C has
some unused branches and always-available accepts. � is a shortcut for ≺ interpreted
in the opposite direction.
Deadlock-freedom and Progress. We introduce our results on deadlock-freedom and
progress mentioned in the Introduction. First, we define deadlock-freedom:

Definition 2 (Deadlock-freedom). We say that choreography C is deadlock-free if ei-
ther (i) C ≡ 0 or (ii) there exist C ′ and λ such that C λ−→ C ′ and C ′ is deadlock-free.

In our semantics (Fig. 3) complete terms can always be executed; therefore, choreogra-
phies that do not contain partial terms, or complete choreographies, are deadlock-free:

Theorem 4 (Deadlock-freedom for Complete Choreographies). Let C be a com-
plete choreography and contain no free variable names. Then, C is deadlock-free.
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By Theorems 3 and 4 we can obtain, as a corollary, that the EPP of well-typed complete
choreographies never deadlock.

Corollary 1 (Deadlock-freedom for EPP). Let C be a complete choreography, con-
tain no free variable names, and be well-typed. Then, [[C]] is deadlock-free.

Our model can also be used to talk of deadlock-freedom compositionally. In a com-
positional setting, a choreography may get stuck because of partial actions that need
to be executed in parallel composition with other choreographies. We say that a chore-
ography can progress if it can be composed with another choreography such that (i)
all free names can be restricted and the resulting system is still well-typed, ensuring
that protocols are implemented correctly; and (ii) the composition is deadlock-free.
Differently from deadlock-freedom for complete choreographies, progress for partial
choreographies does not follow directly from the semantics. For example, the follow-
ing choreography does not have the progress property:

A -> q[B] : k; p[A].e -> B : k

Above, q is waiting for a message on session k from A, but that role is implemented by
process p in the continuation. Thus, the two partial actions will never synchronise. As
shown in § 4, our type system takes care of checking that roles in sessions or services
are distributed correctly, avoiding cases such as this one and ensuring progress. In gen-
eral, if a well-typed choreographies does not contain inner (par) terms we know that it
can progress, since role distribution ensures that there exists a compatible environment.

Theorem 5 (Progress for Partial Choreographies). Let C be a choreography, be
well-typed, and contain no (par) terms. Then, there exists C ′ such that (ν r̃) (C | C ′)
with r̃ = fn(C | C ′), is well-typed and deadlock-free.

By Theorems 2 and 5, it follows as a corollary that also the EPP of a well-typed
choreography can progress:

Corollary 2 (Progress for EPP). Let C contain no free variable names, be well-typed,
and contain no (par) terms. Then, there exists C ′ such that (ν r̃) ([[C]] | C ′) with r̃ =
fn(C | C ′), is well-typed and deadlock-free.

Correctness of Choreography Composition. We end this section by presenting results
that allow to reason about the composition of choreographies.

Lemma 2 (Compositional EPP). Let C = C1 | C2 be well-typed. Then, [[C]] ≡
[[C1]] | [[C2]].

By combining Lemma 2 with the Theorems shown so far, we get the following corol-
lary, which summarises the properties for well-typed compositions of choreographies.

Corollary 3 (Compositional Choreographies). Let C | C ′ be well-typed. Then,

1. (EPP Type Preservation) [[C]] | [[C ′]] is well-typed.
2. (Completeness) C | C ′ λ−→ C ′′ implies [[C]] | [[C ′]] λ−→� [[C ′′]].
3. (Soundness) [[C]] | [[C ′]] λ−→ C ′′ implies C λ−→ C ′′′ and [[C ′′′]] ≺ C ′′.

Our corollary above formally addresses the issues mentioned in the Introduction. Chore-
ographies (C and C ′ in the corollary) can be developed independently and then their
respective projections can be composed.
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6 Related Work

Previous works have tackled the problem of defining a formal model for choreographies
and giving a correct EPP [7, 6]. The main difference wrt our work is compositionality:
previous models can only capture closed systems, and do not treat a methodology for
composing choreographies. A major difficulty wrt composition given by the approach
in [7] is that the EPP of a choreography could be untypable with known type systems
for session types. Typability of EPP is important to achieve composition, since a pro-
grammer may need to reuse a choreography after it has been projected. [7] is the only
previous work providing an asynchronous semantics for multiparty sessions in chore-
ographies; however, asynchrony is modelled in two different ways in the choreography
model and the endpoint model, raising complexity. As a consequence, the EPP Theorem
in [7] has a more complex formulation with weak transitions and confluence, whereas
ours can be formulated in a stronger form where EPP mimics its original choreography
step by step. [6] preserves typability of projections but does not handle neither asyn-
chrony nor multiparty sessions; instead, they type choreographies with binary sessions.
We have shown that choreographies can be made compositional by introducing partial
terms to perform message passing with the environment, and that it is possible to en-
sure typability of EPP in a multiparty and asynchronous setting. This is the first work
introducing a compositional multiparty session typing for choreographies, exploiting
the projection of global types onto local types. Finally, neither of [7, 6] handles shared
channel passing, and does not treat how to handle delegation in a compositional setting,
where sessions may be delegated to external or internal processes.

Multiparty session types have been previously used for typing endpoint programs [13,
3, 9]. In our setting, endpoint programs can be captured as special cases of partial
choreographies. Our global types are taken from [3]. Differently from our framework,
these works capture asynchronous communications with dedicated processes that model
order-preserving message queues. An approach more similar to ours can be found in
the notion of delayed input presented in [17]. [3] defines a type system for progress by
building additional restrictions on top of standard multiparty session typing; our model
yields a simpler analysis, since we can rely on the fact that complete terms in a chore-
ography do not get stuck. Nevertheless, [3] can capture sessions started by more than
one active thread. We leave an extension of our model in this direction as future work.

In [2] the authors use a concept similar to our partial choreographies for protocol
specifications, to allow a single process to implement more than one role in a protocol.
Differently from our approach, these are not fully-fledged system implementations but
abstract behavioural types, which are then used to type check endpoint code. In our set-
ting, the techniques in [2] can be seen as a more flexible way of handling the projection
from global types to local types. An extension of our type system to allow for a process
to play more than one role in a session as in [2, 9] is an interesting future work.

The relationship between choreographies and endpoints has been explored in, among
others, [5, 16, 13, 6, 7]. Our work distinguishes itself by adopting the same calculus for
describing choreographies and endpoints, simplifying the technical development.

Acknowledgements. Yoshida has been partially supported by the Ocean Observatories
Initiative and EPSRC EP/K011715/1, EP/K034413/1 and EP/G015635/1.



Compositional Choreographies 15

References

1. Additional Resources. http://www.itu.dk/people/fabr/papers/
compchor/.

2. P. Baltazar, L. Caires, V. T. Vasconcelos, and H. T. Vieira. A Type System for Flexible Role
Assignment in Multiparty Communicating Systems. In Proc. of TGC, 2012.

3. L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and N. Yoshida.
Global progress in dynamically interleaved multiparty sessions. In CONCUR, volume 5201
of LNCS, pages 418–433. Springer, 2008. Long version at http://www.di.unito.
it/˜dezani/papers/cdy12.pdf.

4. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/.
5. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration

conformance for system design. In Proc. of Coordination, volume 4038 of LNCS, pages
63–81. Springer-Verlag, 2006.

6. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered programming
for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.

7. M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty asynchronous global
programming. In POPL, pages 263–274, 2013.

8. Chor. Programming Language. http://www.chor-lang.org/.
9. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In Proc. of POPL, pages

435–446. ACM, 2011.
10. P.-M. Deniélou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised multiparty session types.

LMCS, 8(4), 2012.
11. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida. Scribbling interactions

with a formal foundation. In Proc. of ICDCIT, volume 6536 of LNCS, pages 55–75. Springer,
2011.

12. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138, Heidelberg, Germany, 1998. Springer-Verlag.

13. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In Proc. of
POPL, volume 43(1), pages 273–284. ACM, 2008.

14. italianaSoftware. http://www.italianasoftware.com/.
15. Jolie. Java Orchestration Language Interpreter Engine. http://www.jolie-lang.

org/.
16. I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between interaction- and

process-oriented choreographies. In Proc. of SEFM, pages 323–332. IEEE, 2008.
17. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Mathematical Struc-

tures in Computer Science, 14(5):715–767, 2004.
18. F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE. In Proc. of

ECOWS, pages 13–22, 2007.
19. PI4SOA. http://www.pi4soa.org, 2008.
20. Savara. JBoss Community. http://www.jboss.org/savara/.
21. W3C WS-CDL Working Group. Web services choreography description language version

1.0. http://www.w3.org/TR/ws-cdl-10/, 2004.


