
CONCUR Test-of-Time Award for the Period 1994–97
Interview with Uwe Nestmann and Benjamin C. Pierce

Adam D. Barwell, Nobuko Yoshida

Imperial College London, UK

Francisco Ferreira

Royal Holloway, University of London and
Imperial College London, UK

Abstract

Last year, the CONCUR conference series inaugurated its Test-of-Time Award,

the purpose of which is to recognise important achievements in Concurrency

Theory that were published at the conference and have stood the test of time.

This year, Decoding Choice Encodings by Uwe Nestmann and Benjamin C.

Pierce was one of four papers chosen to receive the CONCUR Test-of-Time

Award for the periods 1994–1997 and 1996–1999 by a jury consisting of Rob

van Glabbeek (chair), Luca de Alfaro, Nathalie Bertrand, Catuscia Palamidessi,

and Nobuko Yoshida. This article is devoted to the engaging and interesting

interview conducted with Uwe Nestmann and Benjamin C. Pierce via video

conference.

Keywords:

Pi-Calculus, Encodings, Lambda-Calculus, Distributed Systems, Concurrent

Systems, Interview

“maybe you don’t know yet, but you will be known for this”1

2

— Kohei Honda13

1after the Nestmann’s presentation at the HLCL workshop, 1995.

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingJanuary 5, 2022



1. Introduction4

Four papers were awarded CONCUR’s Test-of-Time Award at this year’s5

conference2. The award, first issued in 2020, aims to recognise important6

achievements in concurrency theory that have stood the test of time since their7

publication at the CONCUR conference.8

Nestmann and Pierce’s 1996 paper, Decoding Choice Encodings [7], was9

recognised with the aforementioned award for making major strides in the study10

of the expressiveness of process calculi. It shows that, in a completely dis-11

tributed and asynchronous setting, input-guarded choice can be simulated by12

parallel composition. More precisely, the paper constructs a fully distributed13

and divergence-free encoding from the input-choice π-calculus into the asyn-14

chronous π-calculus. The correctness of this encoding is demonstrated by es-15

tablishing a semantic equivalence between a process and its encoding, thereby16

satisfying and strengthening the common quality criterion of full abstraction.17

As semantic equivalence it employs the asynchronous version of coupled simu-18

lation, and illuminates the surprising versatility of this notion by showing how19

it avoids the introduction of divergence in the encoding. This work formal-20

izes ideas stemming from the programming language PICT, and has been very21

influential in the area of expressiveness in concurrency.22

The study of the relative expressiveness of π-calculi began via the introduc-23

tion of the asynchronous π-calculus by Honda and Tokoro [4], and in subsequent24

work by Boudol [5]. The asynchronous π-calculus was presented as a subset of25

the original synchronous π-calculus [6], and Nestmann and Pierce’s paper pro-26

vides a compelling answer to the question of expressiveness of the family of27

π-calculi. Nestmann and Pierce’s work provides, for example, a positive result28

following the negative result presented by Palamidessi, which shows the impos-29

sibility of translating from the π-calculus with mixed choice into the π-calculus30

2Held online between 24 August 2021 and 27 August 2021. The other recipients of the

award were: Janin and Walukiewicz [1]; Bouajjani, Esparza, and Maler [2], and Alur, Hen-

zinger, Kupferman, and Vardi [3].

2



without mixed choice [8, 9]. Furthermore, the work by Nestmann and Pierce31

led to the first EXPRESS workshop [10] in 1997 that continues to explore this32

topic today.33

2. Interview34

Nobuko: Congratulations on receiving the CONCUR 2021 Test-of-Time35

Award for your 1996 paper Decoding Choice Encodings [7]. Could you tell us36

briefly what lead you to embark on studying the expressiveness of choice in the37

asynchronous π-calculus?38

Uwe: I built a typed λ-calculus with communication for my diploma thesis39

in 1991. It was capable of typing the Y -combinator, and I presented it at the40

Concurrency Club3 at the University of Edinburgh. The Club asked me who41

my supervisor was, but I didn’t have one at that time, being mostly self-driven.42

They advised me to get a supervisor first, and then look for a topic. I found43

Benjamin, who had this wonderful project at the time on trying to make a44

programming language out of the π-calculus (i.e. the PICT language [11, 12]).45

Choice encodings (or at least choice operators) played a role in PICT. He invited46

me to visit him in Paris.47

Benjamin: I was in Paris at the time as part of a “nested postdoc.” I did48

three postdocs after finishing my PhD at Carnegie Mellon University: one at49

the University of Edinburgh4, one at INRIA-Roquencourt in Paris5, and one50

at the University of Cambridge6. My time in Paris occurred during a leave of51

absence from Edinburgh.52

Uwe: I was in Paris for one week, and Benjamin told me to try program-

ming in his new language, PICT. I tried to write down the dining philosophers

problem [13], in such a way that a philosopher can pick up a fork from either

3A group of 15–30 people, then run by Perdita Stevens and Julian Bradfield.
4Between January 1992 and December 1994.
5Between September 1992 and May 1993
6Between January 1995 and August 1996.

3



side. More precisely, given some process definition

Phildet(f1, f2) = f1?x.f2?y.P

that represents a philosopher who deterministically picks up a fork one after the

other, I instead wanted to write

Phil(left, right) = Phildet(left, right) + Phildet(right, left)

which represents a philosopher picking up forks non-deterministically in either53

order. Unfortunately, PICT did not allow this.54

This interplay between choice and abstraction (and instantiation) was the55

start of it all from my point of view. I wrote up an exposé and I ended up actually56

working on just a third of that for my PhD thesis. Of course, at the time, there57

were technical reasons for Benjamin and Dave Turner being interested in choice58

constructs.59

Benjamin: Besides Robin Milner, Dave Turner is, of course, the most im-60

portant name that needs to be mentioned here. All of this was happening under61

the umbrella of Robin’s wonderful work on the π-calculus and the amazing group62

that he had assembled at the time. He had this incredible set of students, includ-63

ing Dave Turner, Davide Sangiorgi, and Peter Sewell, doing all sorts of things64

with π-calculus. Dave, besides being a first-class hacker, was also a really good65

theoretician. He truly married the two. He and I started talking at some point66

about what kind of programming language you would get if you treated the67

π-calculus in the same way that the Lisp people treated the λ-calculus. What68

that led to was a lot of different language designs based on different versions69

of the π-calculus, but we kept wanting to make it simpler and simpler. Partly70

because we were thinking of it as possibly even a distributed language, not just71

a concurrent language. As everybody knows, the choice operator – in the full-72

blown π-calculus or CCS sense – is not a real thing in distributed systems: it’s73

not implementable. So we were trying to make the underlying calculus simpler74

and simpler, and eventually wound up with this programming language with no75

choice operators at all. But, as Uwe discovered, there are things that you might76

4



want to do where choice is the natural primitive, such as the dining philoso-77

phers problem, which raises the question of how much of it can you get just78

by programming on top of plain parallel composition plus messages on chan-79

nels. We found that programming a restricted form of choice was a little tricky.80

However, what was really tricky was justifying that it was correct. The reason81

why it turned into a whole dissertation for Uwe was because the well-known82

notions of correctness that were lying around (e.g. full abstraction with respect83

to standard weak bisimilarities) did not apply to this situation. I remember84

being totally astonished at the length and technicality of the final proof that85

Uwe ended up doing.86

Nobuko: Did you imagine at the time that your award-winning paper would87

have so much impact on the area of expressiveness in concurrency theory, and88

how do you feel now?89

Benjamin: Maybe Uwe did; I did not. I think we were just following our90

noses.91

Uwe: I would say both “yes” and “no”. When it came to the CONCUR92

acceptance, I got the impression that we just about made it because the compe-93

tition was so tough and the π-calculus was really popular at that time. There94

were six or seven π-calculus papers accepted at the conference; I don’t know95

how many were in the submission pool. The tiny “yes” that I would like to say96

is because Kohei Honda foresaw it. When I gave the presentation at the Newton97

Institute just in the autumn of 1995 – that was the workshop that Benjamin98

organised on concurrent high-level languages7 – Kohei came to me after the talk99

and said something like, “maybe you don’t know yet, but you will be known for100

this”. I can’t remember the exact wording, but I think he called it Nestmann’s101

Theorem. It was my first time in front of this crowd of experts and then he tells102

me, a PhD student, something like that. I didn’t believe him, of course.103

7The High-level Concurrent Languages: Foundations and Verification Techniques (HLCL)

workshop was held between 2 October and 4 October 1995. It was organised by Benjamin C.

Pierce and Matthew Hennessy.

5



Benjamin: Kohei was ahead of his time in so many ways.104

Nobuko: Could you tell us what the research environment was like in Ed-105

inburgh, and the UK as a whole, at that time and how it has influenced the rest106

of your career?107

Benjamin: I arrived as a postdoc in Robin Milner’s group. I was his last108

postdoc whilst he was at the University of Edinburgh, and then travelled with109

him to the University of Cambridge, where Peter Sewell and I were his first110

postdocs. I would say that both Edinburgh and Cambridge at the time were111

just incredible, and still are. At Edinburgh, you had Robin Milner, Gordon112

Plotkin, Don Sannella, Rod Burstall, Colin Sterling, and Randy Pollack. You113

also had students around you like Martin Hofmann, Philippa Gardner, and114

Marcelo Fiore. The list goes on and on. It was just an incredible place. People115

talked about amazing, deep, mind-bending things all the time. It was particu-116

larly an amazing place for thinking about concurrency. There were a lot people117

breaking new ground.118

Nobuko: Benjamin, how did that experience influence your current re-119

search?120

Benjamin: For one thing, it solidified my interest in language design. The121

whole PICT experience was so fruitful. It was so much fun working with Dave122

Turner on implementing this interesting language. Both the design and pro-123

gramming that we did as part of PICT gave rise to so many interesting ques-124

tions. For example, it led us to think a lot about type systems for concurrency,125

and I can see echoes of those ideas in the work that you, Nobuko, and colleagues126

have done more recently with session types. Although I don’t consider myself a127

core concurrency researcher any more, the experience gave me an appreciation128

for the theory of concurrency that draws me back to the area time and time129

again.130

Nobuko: Uwe, how did it influence your research?131

6



Uwe: I did my PhD at the University of Erlangen-Nürnberg, which was132

not so known at that time for theory, especially not for concurrency theory. I133

had the opportunity by a bilateral travel exchange programme8 between these134

two universities pushed by my other supervisor, Terry Stroup, at that time.135

When I visited Edinburgh, not only was there so much competence around, but136

there was so much openness for any kind of idea. So much curiosity and joy.137

I was very lucky that I could visit the LFCS for a few days every couple of138

months. There, I was filled up with content and ideas. I also did a presentation139

in the π Club in Robin Milner’s tiny office, with almost ten people sitting140

around a tiny blackboard, listening to my ideas and my problems. It was just141

unbelievable at this time. That kind of culture and atmosphere was so great.142

In May or June 1995, since we’re talking about this particular paper, it was143

culminating in the crucial part where I was just before proving choice encodings144

correct. I only needed two ingredients. One came a week later by Davide145

Sangiorgi posting, for the first time, a short note on asynchronous bisimilarity146

(that eventually became [14]). The other was that we were rediscovering the147

notion of coupled similarity, mostly together in the π Club with Ole-Høgh Jensen148

and Robin Milner. Both Ole and Robin had different ideas and came to the149

same conclusion. I went back to Erlangen and found the old paper on coupled150

similarity [15] by Joachim Parrow and Peter Sjödin and, within a week, all of151

the pieces were mostly in place. I simply needed to write down the details and152

convince myself that it was correct. That was the crucial moment, and without153

Edinburgh, its culture, its openness, and the possibilities that it presented, the154

paper would not have happened, and maybe I would not even have become a155

professor at the Technische Universität Berlin. All because of this tiny situation156

and the congregation of bright people.157

Nobuko: Studying expressiveness this way was quite new at that time,158

8The travel exchange programme in question was called the Academic Research Collabora-

tion (ARC) and funded by both the British Council (BC) and the German Academic Research

Council (DAAD).

7



so you probably cared a lot about presentation and how to communicate your159

ideas. Do you have any comments about this aspect? I found that your paper160

remains very readable and very clearly written for such a subtle piece of work.161

How did you go about writing with this in mind? Aside from technical details.162

Uwe: I was a great fan of Benjamin’s presentation and communication163

skills at that time. I saw him on stage and read his papers, and I had the164

opportunity to interact with, and learn from, this impressive guy. I recently165

heard an aphorism that summarises what I learnt back then in trying to write166

this paper: “Do not try to write such that you are understood. Try to write167

such that you cannot be misunderstood.” It’s often underestimated how impor-168

tant the role of good notation is for getting things across. The same goes for169

graphical presentations. And then, polishing, polishing, polishing, polishing.170

“Get simpler sentences,” Benjamin always said. I’m German, you know, we171

like complicated constructions which are deeply nested, but I learnt to get it as172

simple as possible. Presentations were another thing. I found my presentation173

from the 1996 CONCUR conference, which had its table of contents written in174

the form ABCDE. Each letter was an initial of the concepts that I presented:175

Asynchronous Choice (setting and encoding), By Simulation (formulating cor-176

rectness notion), Coupled Simulation (getting it right. . . ), Decoding Encodings177

(for establishing simulations), and End (conclusion and further work). I like178

playing with words and I admire the power and joy of well-chosen language.179

Nobuko: I do remember your presentation. You highlighted coupled simu-180

lation as a part of Rob van Glabbeek’s famous diagram [16, 17].181

Benjamin: I have always cared a lot about good writing. Communicating182

ideas is really one of the most important parts of an academic’s job. So it183

feels important to acknowledge the people I learned about writing from. The184

first was Don Knuth – his level of attention to writing, among the many other185

things he did, is very inspiring for me. The other was John Reynolds, who was186

one of my two supervisors as a PhD student, my other supervisor being Robert187

Harper. John Reynolds is the most careful writer that I have ever worked closely188

with. He once gave me a draft of one of his papers to proofread, so I started189

8



reading it, and I couldn’t find anything to improve. That experience was both190

an inspiration and a humbling lesson to me.191

The biggest thing I’ve learned over the years about writing is that the biggest192

ingredient of good writing is exactly what Uwe brought to this paper: the193

willingness to iterate until it’s good. Good writers are people that stop polishing194

later than bad writers.195

Nobuko: How much of your later work has built on your award-winning196

paper? What follow-up result of yours are you most proud of and why?197

Uwe: I would like to mention three. Funnily, none of them were in the198

decade following the CONCUR paper. The reason may be because I was dragged199

into other projects, which were focussed on security protocols, π-calculus, and200

object calculi [18, 19]. By accident, I got back in contact with Ursula Goltz, who201

was one of my PhD referees: she was working on a project about synchronous202

and asynchronous systems. She asked me for literature because she knew I was203

digging deep in the 1980s about results on the first CSP implementations. Over204

the course of this project, I managed to directly build on my PhD work. I also205

found Kirstin Peters, who was a PhD student at the time, and who became206

interested in the same work. We found a number of remarkable observations207

having to do with distributed implementability and notions of distributability208

and what this may have to do with encodings between calculi. We discovered209

a hierarchy of calculi, where you can very easily see which of them are at the210

same level of distributed implementability. We found that the asynchronous π-211

calculus, like many others, is actually not fully implementable in a distributed212

system. There is the ESOP paper in 2013 [20], which I’m very proud of. Kirstin213

pushed this research much further.214

Another follow-up work concerns the notion of correctness that we were215

applying in the awarded paper. The work was primarily about a direct com-216

parison between terms and their translations. Not by plain full abstraction on217

two different levels and having an if-and-only-if, but a direct translation so you218

could not distinguish a term from its translation. This kind of observation led219

9



to a reevaluation of the research on what we actually want from an encoding.220

What is a good criterion for a good encoding? This culminated in the work221

with Daniele Gorla, where we criticised the notion of full abstraction in the222

sense that, whilst it’s a very important notion, you can easily misuse it and223

get to wrong, or useless, results. (We also emphasized the importance of op-224

erational correspondence, and Daniele went on to establish his, by now, quite225

standard and established set of criteria for what makes a good encoding [21].)226

That is a nice highly abstract paper with Daniele in Mathematical Structures227

in Computer Science in 2016 [22]. So also well, well after the CONCUR paper228

in 1996.229

Within the last two or three years, my PhD student, Benjamin Bisping,230

studied algorithms and implementations for checking coupled similarity [23].231

We found an amazing wealth of new views on these kinds of equivalences that232

are slightly weaker than weak bisimilarity. (Like Kirstin Peters and Rob van233

Glabbeek who further showed that coupled similarity is in fact very closely234

connected to encodings, in general [24].) So back to the roots, in a sense, to235

what we were doing 25 years ago. Seeing these developments is a lot of fun.236

We also published the survey article Coupled Similarity – The First 32 Years,237

for the Festschrift for Robert van Glabbeek [25]. It’s basically an advertising238

paper for this great notion of equivalence, which is highly underestimated. It is,239

in a sense, much better than weak bisimilarity. Especially if you’re interested in240

– and this is my favourite domain – distribution, distributability, and distributed241

implementations.242

Nobuko: Benjamin, do you have any further comments?243

Benjamin: The answer is a little more oblique for me. Besides the awarded244

paper, I haven’t written papers about choice encodings, and things like it. What245

it did for me, however, was to really solidify my interest in the asynchronous246

π-calculus as a foundation for programming languages – and as a foundation for247

thinking about concurrency – because the awarded paper, Uwe’s result, teaches248

us that the asynchronous π-calculus is more powerful than it looks – powerful249

10



enough to do a lot of programming in. It brings to mind the famous quote250

attributed to Einstein, “Make everything as simple as possible, but no simpler.”251

I felt like the asynchronous π-calculus was kind of “it” after seeing this result.252

That calculus then became the foundation for a lot of my later work on language253

design and type systems for concurrency.254

Uwe: The encodings we did back then went into what is now called the255

localised asynchronous π-calculus [26], but it simply wasn’t known back then.256

The localised asynchronous π-calculus is at a perfect level of distributed imple-257

mentability, as we now know.258

Nobuko: This is partly also work that Massimo Merro did with Davide259

Sangiorgi [27], right?260

Uwe: Yes, they did this few years later, towards the end of the 1990s.261

Nobuko: What uses of the notion and technique you developed in the262

awarded paper have you found in the literature that you found unexpected?263

What kind of application in other areas, such as programming languages, are264

there in general?265

Uwe: It was unexpected that the asynchronous π-calculus would be this266

foundational model. However, as I said earlier, it turned out that it is the267

localised asynchronous π-calculus that is really the foundation for this kind of268

implementability. It would be interesting to check, ultimately, how much of the269

design of PICT is based on the localised asynchronous π-calculus. The idea of270

the calculus is basically: you cannot receive on received names. You can only271

send on them, or pass them on.272

Benjamin: When you receive a name, you can’t receive on it?273

Uwe: You can only use a name you’ve received to send messages on, or to274

pass it on as an object. The point is that this is exactly what you get by syntax275

from the join calculus [28], which is the version that was done for distributed276

implementation. It’s also the same principle that is behind the Actor model [29].277

In the Actor model, you can never receive on received names, you can just send278

to actors, who have mail boxes, and they essentially run local input-guarded279

11



choice. These all reside on the same level in our hierarchy. There are very280

simple encodings between the Actor model (there is an Actor π-calculus by281

Agha and Thati [30]), the Join calculus, and the localised π-calculus. Moreover,282

there are distributability-preserving encodings between them. Thus they live283

at the same level. Conversely, the asynchronous π-calculus, i.e. without this284

locality principle, is not on the same level.285

Benjamin: Why?286

Uwe: Think about a distributed system. You need to route messages when287

you send them to participants. If there are many receivers sitting on different288

locations, you need to decide which one to route the message to. Maybe those289

locations are waiting on messages right now, or maybe not, but in essence you290

run a distributed consensus to find out which mailbox the message needs to go291

in. Here, the locality principle of actors, and join, and the localised π-calculus,292

to some extent, fixes the location of receivers, making the job of routing messages293

much simpler.294

Benjamin: So, the reason why that wouldn’t work is that, ultimately, you295

have to agree on where the receiver is. Indeed, also the fact that the receiver296

exists. If you know for certain that a receiver exists, then that’s probably297

equivalent to knowing where it is, but agreeing on that fact might be hard.298

Uwe: The consequences of an extension of that with fault tolerance. Or299

faults, and then tolerance.300

Benjamin: But if you don’t go that far, is there a theorem that says you301

cannot implement the asynchronous π-calculus in a distributed way?302

Uwe: I was talking about this hierarchy that we had in the ESOP paper [20].303

There are three levels, and there are two synchronisation patterns that make304

the difference between these levels. The level that distinguishes the localised305

π-calculus from the asynchronous π-calculus is what is called an M-structure306

[31, 20]. It’s known from the Petri net area, that’s why it was rediscovered307

with Ursula Goltz, and we found it in process calculi as well. Intuitively, the M-308

structure says: you have two independent actions that could be implemented on309

different (i.e. distributed) locations but if there is a third action that depends on310

12



resources that are shared with the other two, then they must all be implemented311

on the same location. As with an “M”, you have the “heads” on the top, they312

are the resources that you need. The legs on the two sides are independent, but313

there is an inner “leg” connecting the others. That is, in essence, the thinking314

in Petri nets. We have reformulated the M-pattern of Petri nets in terms of315

labelled transition systems in order to make it somewhat model-independent.316

As a result, we may then look for the occurrence of M-structures also within317

process calculi. This then amounts to looking for process expressions whose318

transition systems contain M-structures. We can reproduce these kinds of M-319

structures in the asynchronous π-calculus, but not in the localised π-calculus, the320

actor π-calculus, or the join calculus. And then we get to the other level in our321

hierarchy, which is where you find the mixed choice π-calculus, amongst others.322

There is another synchronisation pattern that makes a distinction between the323

level with the mixed choice π-calculus and the level with the asynchronous π-324

calculus. This is what we call a F pattern [20]. Intuitively, it can be thought of325

like the dining philosophers with at least five people. You need an odd number of326

participants, that can form two Ms, which you can put together in a circle. You327

then have a very simple criterion for distinguishing between these levels. As you328

can see, I’m very enthused about this paper, but it’s effectively a consequence329

of the awarded paper, only twenty years later. It plays on the same theme, and330

facilitates understanding more about distributed implementations.331

Nobuko: What do you think of the current state and future directions of332

the study of expressiveness in process calculi and, more generally, concurrency333

theory as a whole?334

Uwe: Back then, in Cambridge, I had many discussions with Peter Sewell.335

At the time, we joked by saying, “now we know how to do process calculi, we336

can do five of them for breakfast.” We know the techniques, we know how337

to write down the rules, we know what to look for in order to make it good.338

I would say that for studying encodings nowadays it’s at approximately the339

same level of maturity: we know what to look for when writing down encodings340

13



and the pitfalls to avoid. What I found most interesting today is that, often341

enough, the proximity between encodings and actual implementations is very342

close. This may be because the programming languages that we can use are343

much more mature. We can use convenient abstractions in order to more-or-344

less straightforwardly write down encodings.345

Regarding the current state and future directions, the EXPRESS/SOS work-346

shop [32] still exists. It attracts great papers. I think we had an impact on347

concurrent programming. For example, if you look at the Go programming lan-348

guage [33, 34], the concurrency primitives that you find are essentially a process349

calculus. It features message passing, choice, and even mixed choice.350

I cannot say right now that there are deep, deep, deep questions to be solved351

about encodings except for finding out what Robert van Glabbeek’s criteria [24]352

have to do with Daniele Gorla’s criteria [21]. There is an ongoing debate, but353

the issues are quite technical. What could use more research is typed languages,354

typed calculi, and typed encodings. It has been done, and we have many nice355

results, but I think there are still some open questions on what the ideal criteria356

should be for those.357

Nobuko: What advice would you give a young researcher interested in358

working on concurrency theory and process calculi today?359

Benjamin: My best advice for people that want to do theory is: keep one360

foot in practice. Don’t stop building things. That’s the way you find interesting361

problems. It’s the way you keep yourself grounded. It’s the way you make sure362

that the directions in which you’re looking and the questions that you’re asking363

have something to do with real systems. It’s the way to stay connected to reality364

whilst also generating great questions.365

Uwe: Having a foot in practice is also good for checking and finding mistakes366

in your reasoning. Apart from that, I would not like to push for any particular367

area for concurrency theory. Instead, my advice is to get the best possible368

supervisor that you can find and then work on his project. This is very general369

advice but be patient, dig deep, and never give up. It took me two years370

14



until the pieces fell together in one week. So be patient, dig deep, train your371

communication skills, and practice networking. What I found very useful for372

my own career was to learn the basics and the history of your field. Understand373

what has already been found, and what that means even twenty years after374

publication. I learned a lot from the early 1980s papers on first implementations375

of the communication primitives of CSP. There is one supposedly deadlock-free376

implementation of the generalized alternative command algorithm [35], which377

was discovered to be incorrect fourteen years later; it was not actually deadlock378

free [36]. So, in conclusion, work on hard problems, dig deep, be patient, and379

communicate well. This is also the best way to get help.380

Nobuko: This is the last question: what are the research topics that cur-381

rently excite you most?382

Benjamin: I will name two. One is machine-checked proofs about real383

software. Over the past fifteen or twenty years, the capabilities of proof assis-384

tants, and the community around them, have reached the point where you can385

use them to verify interesting properties of real software. This is an amazing386

opportunity that we are just beginning to exploit.387

On a more pragmatic level, I’m very interested lately in testing. Specifi-388

cally, specification-based (or property-based) testing in the style popularised by389

QuickCheck [37]. It’s a beautiful compromise between rigour and accessibility.390

Compared to the effort of fully verifying a mathematically stated property, it is391

both incredibly easier and lower-cost. Yet, you can get tremendous benefit from392

both the process of thinking about the specification in the mathematical way393

that we’re used to in this community, and from the process of testing against,394

for example, randomly generated or enumerated examples. It’s a sweet spot in395

the space of approaches to software quality.396

Nobuko: These things are still very difficult for concurrency and distributed397

systems. Do you have any thoughts on this, because proof assistants for concur-398

rency theory are, I think, still quite difficult compared to hand-written proof?399

Benjamin: Yes, in both verification and testing, concurrency is still hard. I400

15



don’t have a deep insight into why it is hard in the verification domain, beyond401

the obvious difficulty that the properties you want are subtle. However, in the402

testing domain, the reason is clear: the properties have too many quantifier403

alternations, which is hard for testing. Not impossible – not always impossible,404

anyway – but it raises hard challenges.405

Uwe: There’s a recurring pattern in what I like doing and that is always406

to do with looking at different levels of abstractions. You can think of it in407

terms of encodings or as a distributed system, and I was always wondering408

about the relation between global (higher-level) properties and local (lower-409

level) implementation of systems. Applying formal methods, formal models,410

and theories at this problem has always been what I’ve liked. I still do that,411

albeit more on fault-tolerant distributed algorithms. At best, doing mechanical412

verification of those. Mechanical verification is still hard and you can easily413

put PhD students into a miserable state by dragging them onto a problem414

that takes an awful lot of time, and then you get out one paper, with the415

proof in Isabelle (in our case). On the other hand, it’s increasingly a tool416

that we just use. The more you’ve done, using a proof assistant, the more417

you integrate it into your everyday life. Some students, as a standard, test418

their definitions and their theorems and do their proofs in Isabelle and we now419

even have undergraduate students using that. Bright ones, of course, but it’s420

increasingly becoming quotidian. Recently, we have also been interested in421

understanding how people learn how to do proofs. It’s a long, difficult, mental422

process and there are a number of theories about how this actually works, and423

whether this works. Furthermore, what is the impact of using proof assistants424

for learning how to do proofs? Does it actually help? Or does it actually hinder?425

Benjamin: Anecdotally, it would appear to turn people into hackers.426

Uwe: We’re talking about computer science students, not maths students.427

Programming is proving, proving is programming. This is of course a slogan428

from type theory, but one may actually use it as a motivation to write down first429

proofs, getting feedback from the proof assistant, and go from there. This is430

something we’re interested in, in actually understanding this process of learning431

16



how to do proofs.432

Nobuko: Thank you both very much for giving us your time.433

Acknowledgements434

We thank Uwe Nestmann and Benjamin C. Pierce for their time and as-435

sistance in the production of this interview. This work was supported by EP-436

SRC grants EP/T006544/1, EP/K011715/1, EP/K034413/1, EP/L00058X/1,437

EP/N027833/1, EP/N028201/1, EP/T006544/1, EP/T014709/1, EP/V000462/1,438

and NCSS/EPSRC VeTSS.439

References440

[1] D. Janin, I. Walukiewicz, On the expressive completeness of the proposi-441

tional mu-calculus with respect to monadic second order logic, in: U. Mon-442

tanari, V. Sassone (Eds.), CONCUR ’96, Concurrency Theory, 7th Inter-443

national Conference, Pisa, Italy, August 26-29, 1996, Proceedings, Vol.444

1119 of Lecture Notes in Computer Science, Springer, 1996, pp. 263–277.445

doi:10.1007/3-540-61604-7 60.446

[2] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown447

automata: Application to model-checking, in: A. W. Mazurkiewicz,448

J. Winkowski (Eds.), CONCUR ’97: Concurrency Theory, 8th Interna-449

tional Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, Vol.450

1243 of Lecture Notes in Computer Science, Springer, 1997, pp. 135–150.451

doi:10.1007/3-540-63141-0 10.452

[3] R. Alur, T. A. Henzinger, O. Kupferman, M. Y. Vardi, Alternating refine-453

ment relations, in: D. Sangiorgi, R. de Simone (Eds.), CONCUR ’98: Con-454

currency Theory, 9th International Conference, Nice, France, September455

8-11, 1998, Proceedings, Vol. 1466 of Lecture Notes in Computer Science,456

Springer, 1998, pp. 163–178. doi:10.1007/BFb0055622.457

17



[4] K. Honda, M. Tokoro, An object calculus for asynchronous communication,458

in: P. America (Ed.), ECOOP’91 European Conference on Object-Oriented459

Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp.460

133–147.461

[5] G. Boudol, Asynchrony and the Pi-calculus, Research Report RR-1702,462

INRIA (1992).463

URL https://hal.inria.fr/inria-00076939464

[6] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I,465

Information and Computation 100 (1) (1992) 1–40. doi:10.1016/0890-466

5401(92)90008-4.467

[7] U. Nestmann, B. C. Pierce, Decoding choice encodings, in: U. Montanari,468

V. Sassone (Eds.), CONCUR ’96: Concurrency Theory, Springer Berlin469

Heidelberg, Berlin, Heidelberg, 1996, pp. 179–194.470

[8] C. Palamidessi, Comparing the expressive power of the synchronous and471

the asynchronous π-calculus, in: Proceedings of the 24th ACM SIGPLAN-472

SIGACT Symposium on Principles of Programming Languages, POPL473

’97, Association for Computing Machinery, New York, NY, USA, 1997,474

p. 256–265. doi:10.1145/263699.263731.475

[9] C. Palamidessi, Comparing the expressive power of the synchronous and476

asynchronous π-calculi, Mathematical Structures in Computer Science477

13 (5) (2003) 685–719. doi:10.1017/S0960129503004043.478

[10] C. Palamidessi, J. Parrow (Eds.), International Workshop on Expressive-479

ness in Concurrency, EXPRESS 1997, Vol. 7 of Electronic Notes in The-480

oretical Computer Science, Elsevier B.V., Santa Margherita Ligure, Italy,481

1997.482

[11] B. C. Pierce, D. N. Turner, Pict language definition, Tech. rep. (1997).483

URL https://www.cis.upenn.edu/ bcpierce/papers/pict/pict-4.1/Doc/defn.ps.gz484

18



[12] B. C. Pierce, D. N. Turner, Proof, Language, and Interaction: Essays in485

Honour of Robin Milner, 2000, Ch. Pict: A Programming Language Based486

on the Pi-Calculus, pp. 455–494.487

[13] C. A. R. Hoare, Communicating sequential processes, Commun. ACM488

21 (8) (1978) 666–677. doi:10.1145/359576.359585.489

[14] R. M. Amadio, I. Castellani, D. Sangiorgi, On bisimulations for the asyn-490

chronous π-calculus, in: U. Montanari, V. Sassone (Eds.), CONCUR ’96:491

Concurrency Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996,492

pp. 147–162.493

[15] J. Parrow, P. Sjödin, Multiway synchronization verified with coupled simu-494

lation, in: W. Cleaveland (Ed.), CONCUR ’92, Springer Berlin Heidelberg,495

Berlin, Heidelberg, 1992, pp. 518–533.496

[16] R. J. van Glabbeek, The linear time — branching time spectrum ii, in:497

E. Best (Ed.), CONCUR’93, Springer Berlin Heidelberg, Berlin, Heidel-498

berg, 1993, pp. 66–81.499

[17] R. J. van Glabbeek, The linear time - branching time spectrum, in: J. C. M.500

Baeten, J. W. Klop (Eds.), CONCUR ’90 Theories of Concurrency: Unifi-501

cation and Extension, Springer Berlin Heidelberg, Berlin, Heidelberg, 1990,502

pp. 278–297.503

[18] M. Abadi, L. Cardelli, An imperative object calculus, in: P. D. Mosses,504

M. Nielsen, M. I. Schwartzbach (Eds.), TAPSOFT ’95: Theory and Prac-505

tice of Software Development, Springer Berlin Heidelberg, Berlin, Heidel-506

berg, 1995, pp. 469–485.507

[19] M. Abadi, L. Cardelli, A Theory of Objects, Monographs in Computer508

Science, Springer-Verlag New York, 1996.509

[20] K. Peters, U. Nestmann, U. Goltz, On distributability in process calculi,510

in: M. Felleisen, P. Gardner (Eds.), Programming Languages and Systems,511

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 310–329.512

19



[21] D. Gorla, Towards a unified approach to encodability and separation513

results for process calculi, Inf. Comput. 208 (9) (2010) 1031–1053.514

doi:10.1016/j.ic.2010.05.002.515

[22] D. Gorla, U. Nestmann, Full abstraction for expressiveness: history,516

myths and facts, Math. Struct. Comput. Sci. 26 (4) (2016) 639–654.517

doi:10.1017/S0960129514000279.518

[23] B. Bisping, U. Nestmann, Computing coupled similarity, in: T. Vojnar,519

L. Zhang (Eds.), Tools and Algorithms for the Construction and Analysis520

of Systems, Springer International Publishing, Cham, 2019, pp. 244–261.521

[24] K. Peters, R. J. van Glabbeek, Analysing and comparing encodability522

criteria, in: S. Crafa, D. Gebler (Eds.), Proceedings of the Combined523

22th International Workshop on Expressiveness in Concurrency and 12th524

Workshop on Structural Operational Semantics, EXPRESS/SOS 2015,525

Madrid, Spain, 31st August 2015, Vol. 190 of EPTCS, 2015, pp. 46–60.526

doi:10.4204/EPTCS.190.4.527

[25] B. Bisping, U. Nestmann, K. Peters, Coupled similarity: the first 32 years,528

Acta Informatica 57 (3-5) (2020) 439–463. doi:10.1007/s00236-019-00356-4.529

[26] M. Merro, J. Kleist, U. Nestmann, Local π-calculus at work: Mobile ob-530

jects as mobile processes, in: J. van Leeuwen, O. Watanabe, M. Hagiya,531

P. D. Mosses, T. Ito (Eds.), Theoretical Computer Science: Exploring New532

Frontiers of Theoretical Informatics, Springer Berlin Heidelberg, Berlin,533

Heidelberg, 2000, pp. 390–408.534

[27] M. Merro, D. Sangiorgi, On asynchrony in name-passing calculi, in: K. G.535

Larsen, S. Skyum, G. Winskel (Eds.), Automata, Languages and Program-536

ming, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 856–867.537

[28] C. Fournet, G. Gonthier, The reflexive cham and the join-calculus, in: Pro-538

ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of539

20



Programming Languages, POPL ’96, Association for Computing Machin-540

ery, New York, NY, USA, 1996, p. 372–385. doi:10.1145/237721.237805.541

[29] C. Hewitt, P. B. Bishop, R. Steiger, A universal modular ACTOR formal-542

ism for artificial intelligence, in: N. J. Nilsson (Ed.), Proceedings of the 3rd543

International Joint Conference on Artificial Intelligence. Standford, CA,544

USA, August 20-23, 1973, William Kaufmann, 1973, pp. 235–245.545

URL http://ijcai.org/Proceedings/73/Papers/027B.pdf546

[30] G. Agha, P. Thati, An algebraic theory of actors and its application to a547

simple object-based language, in: O. Owe, S. Krogdahl, T. Lyche (Eds.),548

From Object-Orientation to Formal Methods: Essays in Memory of Ole-549

Johan Dahl, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 26–550

57.551

[31] R. van Glabbeek, U. Goltz, J.-W. Schicke, On synchronous and552

asynchronous interaction in distributed systems, in: E. Ochmański,553

J. Tyszkiewicz (Eds.), Mathematical Foundations of Computer Science554

2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 16–35.555

[32] Proceedings combined 27th international workshop on expressiveness in556

concurrency and 17th workshop on structural operational semantics, Elec-557

tronic Proceedings in Theoretical Computer Science 322 (Aug 2020).558

doi:10.4204/eptcs.322.559

[33] R. Griesemer, R. Pike, K. Thompson, I. Taylor,560

R. Cox, J. Kim, A. Langley, Hey! ho! let’s go!,561

https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html562

(2009).563

[34] The Go Team, The Go Programming Language Specification,564

https://golang.org/ref/spec (2021).565

[35] G. N. Buckley, A. Silberschatz, An effective implementation for the gener-566

21



alized input-output construct of CSP, ACM Trans. Program. Lang. Syst.567

5 (2) (1983) 223–235. doi:10.1145/69624.357208.568

[36] D. Kumar, A. Silberschatz, A counter-example to an algorithm for the569

generalized input-output construct of CSP, Inf. Process. Lett. 61 (6) (1997)570

287. doi:10.1016/S0020-0190(97)00040-9.571

[37] K. Claessen, J. Hughes, Quickcheck: A lightweight tool for random test-572

ing of haskell programs, in: Proceedings of the Fifth ACM SIGPLAN In-573

ternational Conference on Functional Programming, ICFP ’00, Associa-574

tion for Computing Machinery, New York, NY, USA, 2000, p. 268–279.575

doi:10.1145/351240.351266.576

22


