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Abstract ORCA is a garbage collection protocol for actor-based pro-
grams. Multiple actors may mutate the heap while the collector is run-
ning without any dedicated synchronisation. ORCA is applicable to any
actor language whose type system prevents data races and which sup-
ports causal message delivery. We present a model of ORCA which is
parametric to the host language and its type system. We describe the
interplay between the host language and the collector. We give invariants
preserved by ORCA, and prove its soundness and completeness.

1 Introduction

Actor-based systems are massively parallel programs in which individual actors
communicate by exchanging messages. In such systems it is essential to be able
to manage data automatically with as little synchronisation as possible. In pre-
vious work [9, 12], we introduced the ORCA protocol for garbage collection in
actor-based systems. ORCA is language-agnostic, and it allows for concurrent
collection of objects in actor-based programs with no additional locking or syn-
chronisation, no copying on message passing and no stop-the-world steps. ORCA
can be implemented in any actor-based system or language that has a type sys-
tem which prevents data races and that supports causal message delivery. There
are currently two instantiations of ORCA, one is for Pony [8, 11] and the other
for Encore [5]. We hypothesise that ORCA could be applied to other actor-based
systems that use static types to enforce isolation [7,21,28,36]. For libraries, such
as Akka, which provide actor-like facilities, pluggable type systems could be used
to enforce isolation [20].

This paper develops a formal model of ORCA. More specifically, the paper
contributions are:

1. Identification of the requirements that the host language must statically
guarantee;

2. Description and model of ORCA at a language-agnostic level;
3. Identification of invariants that ensure global consistency without synchron-

isation;
4. Proofs of soundness, i.e. live objects will not be collected, and proofs of

completeness, i.e. all garbage will be identified as such.



A formal model facilitates the understanding of how ORCA can be applied
to different languages. It also allows us to explore extensions such as shared
mutable state across actors [40], reduction of tracing of immutable references [12],
or incorporation of borrowing [4]. Alternative implementations of ORCA that
rely on deep copying (e.g., to reduce type system complexity) across actors on
different machines can also be explored through our formalism.

Developing a formal model of ORCA presents challenges:

Can the model be parametric in the host language? We achieved parametri-
city by concentrating on the effects rather than the mechanisms of the lan-
guage. We do not model language features, instead, we model actor beha-
viour through non-deterministic choice between heap mutation and object
creation. All other actions, such as method call, conditionals, loops etc., are
irrelevant.

Can the model be parametric in the host type system? We achieved parametri-
city by concentrating on the guarantees rather than the mechanism afforded
by the type system. We do not define judgments, but instead, assume the
existence of judgements which determines whether a path is readable or
writeable from a given actor. Through an (uninterpreted) precondition to
any heap mutation, we require that no aliasing lets an object writeable from
an actor be readable/writeable from any other actor.

How to relax atomicity? ORCA relies on a global invariant that relates the
number of references to any data object and the number of messages with a
path to that object. This invariant only holds if actors execute atomically.
Since we desire actors to run in parallel, we developed a more subtle, and
weaker, definition of the invariant.

The full proofs and omitted definitions are available in appendix [16].

2 Host Language Requirements

ORCA makes some assumptions about its host language, we describe them here.

2.1 Actors and Objects

Actors are active entities with a thread of control, while objects are data struc-
tures. Both actors and objects may have fields and methods. Method calls on
objects are synchronous, whereas method calls on actors amount to asynchron-
ous message sends — they all called behaviours. Messages are stored in a FIFO
queue. When idle, an actor processes the top message from its queue. At any
given point of time an actor may be either idle, executing a behaviour, or col-
lecting garbage.

Figure 1 shows actors α1 and α2, objects ω1 to ω4. In [16] we show how to
create this object graph in Pony. In 1(a), actor α1 points to object ω1 through
field f1 to ω2 through field f3, and object ω1 points to ω3 through field f5.
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Figure 1. Actors and objects. Full arrows are references, grey arrows are overwritten
references: references that no longer exist.

Actor Path Capapability Actor Path Capability
this.f1 write this.f2 tag

this.f1.f5 write this.f2.f5 ⊥
α1 this.f3 read α2 this.f4 read

this.f6 write
this.f6.f5 write

Figure 2. Capabilities. Heap mutation may modify what object is reachable through
a path, but not the path’s capability.

In 1(b), actor α1 creates ω4 and assigns it to this.f1.f5. In 1(c), α1 has given up
its reference to ω1 and sent it to act2 which stored it in field f6. Note that the
process of sending sent not only ω1 but also implicitily ω4.

2.2 Mutation, Transfer and Accessibility

Message passing is the only way to share objects. This falls out of the capability
system. If an actor shares an object with another actor, then either it gives up
the object or neither actor has a write capability to that object. For example,
after α1 sends ω1 to α2, it cannot mutate ω1. As a consequence, heap mutation
only decreases accessibility, while message sends can transfer accessibility from
sender to receiver. When sending immutable data the sender does not need to
transfer accessibility. However, when it sends a mutable object it cannot keep
the ability to read or to write the object. Thus, upon message send of a mutable
object, the actor must consume, or destroy, its reference to that object.

2.3 Capabilities and Accessibility

ORCA assumes that a host language’s type system assigns access rights to paths.
A path is a sequence of field names. We call these access rights capabilities.
We expect the following three capabilities; read, write, tag. The first two allow
reading and writing an object’s fields respectively. The tag capability only allows
identity comparison and sending the object in a message. The type system must
ensure that actors have no read-write races. This is natural for actor languages [5,
7, 11,21].
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Figure 2 shows capabilities assigned to the paths in Figure 1: α1.f1.f5 has
capability write, thus α1 can read and write to the object reachable from that
path. Note that capapabilities assigned to paths are immutable, while the con-
tents of those paths may change. For example, in Figure 1(a), α1 can write to
ω3 through path f1.f5, while in Figure 1(b) it can write to ω4 through the same
path. In Figures 1(a) and 1(b), α2 can use the address of ω1 but cannot read or
write it, due to the tag capability, and therefore cannot access ω3 (in 1(a)) nor
ω4 (in 1(b)). However, in Figure 1(c) the situation reverses: α2, which received
ω1 with write capability is now able to reach it through field f6, and therefore
ω4. Notice that the existence of a path from an actor to an object does not imply
that the object is accessible to the actor: In Figure 1(a), there is a path from
α2 to ω3, but α2 cannot access ω3. Capabilities protect against data races by
ensuring that if an object can be mutated by an actor, then no other actor can
access its fields.

2.4 Causality

ORCA uses messages to deliver protocol-related information, it thus requires
causal delivery. Messages must be delivered after any and all messages that
caused them. Causality is the smallest transitive relation, such that if a message
m′ is sent by some actor after it received or sent m, then m is a cause of m′.
Causal delivery entails that m′ be delivered after m.

For example, if actor α1 sends m1 to actor α2, then sends m2 to actor α3,
and α3 receives m2 and sends m3 to α2, then m1 is a cause of m2, and m2 is
a cause of m3. Causal delivery requires that α2 receive m1 before receiving m3.
No requirements are made on the order of delivery to different actors.

3 Overview of ORCA

We introduce ORCA and discuss how to localise the necessary information to
guarantee safe deallocation of objects in the presence of sharing. Every actor
has a local heap in which it allocates objects. An actor owns the objects it has
allocated, and ownership is fixed for an object’s life-time, but actors are free to
reference objects that they do not own. Actors are obligated to collect their own
objects once these are no longer needed. While collecting, an actor must be able
to determine whether an object can be deallocated using only local information.
This allows all other actors to make progress at any point.

3.1 Mutation and Collection

ORCA relies on capabilities for actors to reference objects owned by other actors
and to support concurrent mutation to parts of the heap that are not being
concurrently collected. Capabilities avoid the need for barriers.

I1 An object accessible with write capability from an actor is not accessible with
read or write capability from any other actor.
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This invariant ensures an actor, while executing garbage collection, can safely
trace any object to which it has read or write access without the need to protect
against concurrent mutation from other actors.

3.2 Local Collection

An actor can collect its objects based on local information without consulting
other actors. For this to be safe, the actor must know that an owned, locally
inaccessible, object is also globally inaccessible (i.e., inaccessible from any other
actors or messages)1. Shared objects are reference counted by their owner to
ensure:

I2 An object accessible from a message queue or from a non-owning actor has
reference count larger than zero in the owning actor.

Thus, a locally inaccessible object with a reference count of 0 can be collected.

3.3 Messages and Collection

I1 and I2 are sufficient to ensure that local collection is safe. Maintaining I2 is not
trivial as accessibility is affected by message sends. Moreover, it is possible for an
actor to share a read object with another actor through a message. What if that
actor drops its reference to the object? The object’s owner should be informed
so it can decrease its reference count. What happens when an actor receives
an object in a message? The object’s owner should be infomed, so that it can
increase its reference count. To reduce message traffic, ORCA uses distributed,
weighted, deferred reference counts. Each actor maintains reference counts that
tracks the sharing of its objects. It also maintains counts for “foreign objects”,
tracking references to objects owned by other actors. This reference count for
non-owning actors is what allows sending/receiving objects without having to
inform their owner while maintaining I2. For any object or actor ι, we denote
with LRC(ι) the reference count for ι in ι’s owner, and with FRC(ι) we denote
the sum of the reference counts for ι in all other actors. The counts do not reflect
the number of references, rather the existence of references:

I3 If a non-owning actor can access an object through a path from its fields or
call stack, its reference count for this object is greater than 0.

An object is globally accessible if it is accessible from any actor or from a message
in some queue. Messages include reference increment or decrement messages
— these are ORCA-level messages and they are not visible to applications. We
introduce two logical counters: AMC(ι) to account for the number of application
messages with paths to ι, and OMC(ι) to account for ORCA-level messages
with reference count increment and decrement requests. These counters are not
present at run-time, but they will be handy for reasoning about ORCA. The
1 For example, in Figure 1(c) ω4 in is locally inaccessible, but globally accessible.
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Figure 3. Black arrows are references, numbered in creation order. Blue solid arrows
are application messages and blue dashed arrows ORCA-level message.

owner’s view of an object is described by the LRC and the OMC, while the
foreign view is described by the FRC and the AMC. These two views must
agree:

I4 ∀ ι. LRC(ι) + OMC(ι) = AMC(ι) + FRC(ι)

I2, I3 and I4 imply that a locally inaccessible object with LRC = 0 can be
reclaimed.

3.4 Example

Consider actors Andy, Bart and Catalin, and steps from Figure 3.

Initial State Let ω be a newly allocated object. As it is only accessible to its
owning actor, Andy, there is no entry for it in any RC.

Sharing ω When Andy shares ω with Bart, ω is placed on Bart’s message queue,
meaning that AMC(ω) = 1. This is reflected by setting RCAndy(ω) to 1. This
preserves I4 and the other invariants. When Bart takes the message with ω from
his queue, AMC(ω) becomes zero, and Bart sets his foreign reference count for ω
to 1, that is, RCBart(ω)=1. When Bart shares ω with Catalin, we get AMC(ω)=1.
To preserve I4, Bart could set RCBart(ω) to 0, but this would break I3. Instead,
Bart sends an ORCA-level message to Andy, asking him to increment his (local)
reference count by some n, and sets his own RCBart(ω) to n.2 This preserves I4
and the other invariants. When Catalin receives the message later on, she will
behave similarly to Bart in step 2, and set RCCatalin(ω)=1.

The general rule is that when an actor sends one of its objects, it increments
the corresponding (local) RC by 1 (reflecting the increasing number of foreign
references) but when it sends a non-owned object, it decrements the correspond-
ing (foreign) RC (reflecting a transfer of some of its stake in the object). Special
care needs to be taken when the sender’s RC is 1.

Further note that if Andy, the owner of ω, received ω, he would decrease
his counter for ω rather than increase it, as his reference count denotes foreign
2 This step can be understood as if Bart “borrowed” n units from Andy, added n − 1
to his own RC, and gave 1 to the AMC, to reach Catalin eventually.
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references to ω. When an actor receives one of its owned objects, it decrements
the corresponding (local) RC by 1 but when it receives a non-owned object, it
increments the corresponding (foreign) RC by 1.

Dropping References to ω. Subsequent to sharing ω with Catalin, Bart performs
GC, and traces his heap without reaching ω (maybe because it did not store ω
in a field). This means that Bart has given up his stake in ω. This is reflected
by sending a message to Andy to decrease his RC for ω by n, and setting Bart’s
RC for ω to 0. Andy’s local count of the foreign references to ω are decreased
piecemeal like this, until LRC(ω) reaches zero. At this point, tracing Andy’s local
heap can determine if ω should be collected.

Further aspects We briefly outline further aspects which play a role in ORCA.

Concurrency Actors execute concurrently. For example, sharing of ω by Bart
and Catalin can happen in parallel. As long as Bart and Catalin have foreign
references to ω, they may separately, and in parallel cause manipulation of
the global number of references to ω. These manipulations will be captured
locally at each site through FRC, and through increment and decrement
messages to Andy (OMC).

Causality Increment and decrement messages may arrive in any order. Andy’s
queue will serialise them, i.e. concurrent asynchronous reference count ma-
nipulations will be ordered and executed sequentially. Causality is key here,
as it prevents ORCA-level messages to be overtaken by application mes-
sages which cause RCs to be decremented; thus causality keeps counters
non-negative.

Composite Objects Objects message must be traced to find the transitive
closure of accessible data. For example, when passing ω1 in a message in
Figure 1(c), objects accessible through it, e.g., ω4 will be traced. This is
mandated by I3 and I4.

Finally, we reflect on the nature of reference counts: they are distributed, in the
sense that an object’s owner and every actor referencing it keep separate counts;
weighted, in that they do not reflect the number of aliases; and deferred, in that
they are not manipulated immediately on alias creation or destruction, and that
non-local increments/decrements are handled asynchronously.

4 The ORCA Protocol

We assume enumerable, disjoint sets ActorAddr and ObjAddr, for addresses of
actors and objects. The union of the two is the set of addresses including null.
We require a mapping Class that gives the name of the class of each actor in a
given configuration, and a mapping O that returns the owner of an address

Addr = ActorAddr ]ObjAddr ] {null}
Class : Config×ActorAddr→ ClassId

O : Addr→ ActorAddr
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such that the owner of an actor is the actor itself, i.e., ∀α∈ActorAddr. O(α) = α.
Definition 1 describes run-time configurations, C. They consist of a heap, χ,

which maps addresses and field identifiers to addresses,3 and an actor map, as,
from actor addresses to actors. Actors consist of a frame, a queue, a reference
count table, a state, a working set, marks, and a program counter. Frames are
either empty, or consist of the identifier for the currently executing behaviour,
and a mapping from variables to addresses. Queues are sequences of messages.
A message is either an application message of the form app(φ) denoting a high-
level language message with the frame φ, or an ORCA message, of the form
orca(ι : z), denoting an in-flight request for a reference count change for ι by z.
The state distinguishes whether the actor is idle, or executing some behaviour,
or performing garbage collection. We discuss states, working sets, marks, and
program counters in Section 4.3 We use naming conventions: α ∈ ActorAddr;
ω∈ObjAddr; ι∈Addr; z∈Z; n∈N; b∈BId; x∈VarId; A∈ClassId; and ιs for a
sequence of addresses ι1...ιn. We write C.heap for C’s heap; and α.quC , or α.rcC ,
or α.frameC , or α.stC for the queue, reference count table, frame or state of actor
α in configuration C, respectively.

Definition 1 (Runtime entities and notation)

C∈Config = Heap×Actors
χ∈Heap = (Addr \ {null})× FId→ Addr

as∈Actors = ActorAddr→ Actor
a∈Actor = Frame×Queue× ReferenceCounts

× State×Workset×Marks× PC
φ∈Frame = ∅ ∪ (BId× LocalMap)

ψ∈LocalMap = VarId→ Addr
q∈Queue = Message?

m∈Message ::= orca(ι : z) | app(φ)
rc∈ReferenceCounts = Addr→ N

State, Workset, Marks, and PC described in Definition 7.

Example: Figure 4 shows C0, our running example for a runtime configuration.
It has three actors: α1–α3, represented by light grey boxes, and eight objects,
ω1–ω8, represented by circles. We show ownership by placing the objects in
square boxes, e.g. O(ω7) = α1. We show references through arrows, e.g. ω6

references ω8 through field f7, that is, C0.heap(ω6, f7) = ω8. The frame of α2

contains behaviour identifier b′, and maps x′ to ω8. All other frames are empty.
The message queue of α1 contains an application message for behaviour b and
argument ω5 for x, the queue of α2 is empty, and the queue of α3 an ORCA
message for ω7. The bottom part shows reference count tables: α1.rcC0(α1) = 21,
and α1.rcC0

(ω7) = 50. Entries of owned addresses are shaded. Since α2 owns α2

3 Note that we omitted the class of objects. As our model is parametric with the type
system, we can abstract from classes, and simplify our model.
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and ω2, the entries for α2.rcC0
(α2) and α2.rcC0

(ω2) are shaded. Note that α1 has
a non-zero entry for ω7, even though there is no path from α1 to ω7. There is
no entry for ω1; no such entry is needed, because no actor except for its owner
has a path to it. The 0 values indicate potentially non-existent entries in the
corresponding tables; for example, the reference count table for actor α3 needs
only to contain entries for α1, α3, ω3, and ω4. Ownership does not restrict access
to an address: e.g. actor α1 does not own object ω3, yet may access it through the
path this.f1.f2.f3, may read its field through this.f1.f2.f3.f4, and may mutate
it, e.g. by this.f1.f2.f3 = this.f1.

Lookup of fields in a configuration is defined in the obvious way, i.e.

Definition 2 C(ι.f) ≡ C.heap(ι, f), and C(ι.f .f ′) ≡ C.heap(C(ι.f , f ′))

4.1 Capabilities and Accessibility

ORCA considers three capabilities:

κ ∈ Capability = {read,write, tag},

where read allows reading, write allows reading and writing, and tag forbids
both read and write, but allows the use of an object’s address. To describe the
capability at which objects are visible from actors we use the concepts of static
and dynamic paths.

Static paths consist of the keyword this (indicating a path starting at the current
actor), or the name of a behaviour, b, and a variable, x, (indicating a path starting
at local variable x from a frame of b), followed by any number of fields, f .

sp ::= this | b.x | sp.f

Heap

α1 α2 α3
f1 f2 f3

f4

f5
f6

f7

f8

f9

Heap

!8!7 !6!5

!4 !3

!2!1

Queues

Frames

α1.qu = app(b,x ↦ !5)::orca(!7,-50) α2.qu =∅ α3.qu =∅

α1.frame = ∅ α3.frame = ∅α2.frame = (b,x’↦ !8)

RefCountTables

Frames

α1.frame=∅
α2.frame=(b′, x′ 7→ω8)

α3.frame=∅

Reference Count Tables

α1 α2 α3

α1.rc: 21 1 10
α2.rc: 0 2 20
α3.rc: 20 0 30

ω2 ω3 ω4 ω5 ω6 ω7 ω8

45 60 10 2 0 50 0
45 100 0 1 1 0 1
0 160 10 0 0 0 0

Queues

α1.qu=app(b, x 7→ω5)

α2.qu=∅
α3.qu=∅ ::orca(ω7,−50)

Figure 4. Configuration C0. ω1 is absent in the ref. counts, it has not been shared.
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The host language must assign these capabilities to static paths. Thus, we
assume it provides a static judgement of the form

A ` sp : κ where A ∈ ClassId

meaning that a static path sp has capability capability when “seen” from a class
A. We highlight static judgments, i.e., those provided by the type system in
blue.

We expect the type system to guarantee that read and write access rights are
“deep”, meaning that all paths to a read capability must go through other read
or write capabilities (A1), and all paths to a write capability must go through
write capabilities (A2).

Axiom 1 For class identifier A, static path sp, field f , capability κ, we
assume:
A1 A ` sp.f : κ −→ ∃κ′ 6= tag. A ` sp : κ′.
A2 A ` sp.f : write −→ A ` sp : write.

Such requirements are satisfied by many type systems with read-only refer-
ences or immutability (e.g. [7,11,18,23,29,33,37,41]). An implication of A1 and
A2 is that capabilities degrade with growing paths, i.e., the prefix of a path has
more rights than its extensions. More precisely: A ` sp : κ and A ` sp.f : κ′

imply that κ ≤ κ′, where we define write < read < tag, and κ ≤ κ′ iff κ = κ′ or
κ < κ′.
Example: Table 1 shows capabilities for some paths from Figure 4. Thus, A1 `
this.f1 : write, and A2 ` b′.x′ : write, and A2 ` this.f8 : tag. The latter, together
with A1 gives that A2 6` this.f8.f : κ for all κ and f .

As we shall see later, the existence of a path does not imply that the path
may be navigated. For example, C0(α2.f8.f4) = ω4, but actor α2 cannot access
ω4 because of A2 ` this.f8 : tag.

Moreover, it is possible for a path to have a capability, while not being defined.
For example, Table 1 shows A1 ` this.f1.f2 : write and it would be possible to
have Ci(α1.f1) = null, for some configuration Ci that derives from C0.

ClassId Path Capability

A1

this.f1 write
this.f1.f2 write
this.f1.f2.f3 write
this.f1.f2.f3.f4 tag
b.x write
b.x.f5 write
b.x.f5.f7 tag
b.x.f5.f6 write

ClassId Path Capability

A2
this.f8 tag
b′.x′ write

Table 1. Capabilities for paths, where A1 = Class(α1) and A2 = Class(α2).
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Dynamic paths (in short paths p) start at the actor’s fields, or frame, or at some
pending message in an actor’s queue (the latter cannot be navigated yet, but
will be able to be navigated later on when the message is taken off the queue).
Dynamic paths may be local paths (lp) or message paths. Local paths consist of
this or a variable x followed by any number of fields f . In such paths, this is the
current actor, and x is a local variable from the current frame. Message paths
consist of k.x followed by a sequence of fields. If k ≥ 0, then k.x indicates the
local variable x from the k-th message from the queue; k = −1 indicates variables
from either (a) a message that has been popped from the queue, but whose frame
has not yet been pushed onto the stack, or (b) a message whose frame has been
created but not yet been pushed onto the queue. Thus, k = −1 indicates that
either (a) a frame will be pushed onto the stack, during message receiving, or
(b) a message will be pushed onto the queue during message sending.

p ∈ Path ::= lp | mp lp ::= this | x | lp.f mp ::= k.x | mp.f

We define accessibility as the lookup of a path provided that the capability for
this path is defined. The partial function A returns a pair: the address accessible
from actor α following path p, and the capability of α on p. A path of the form
p.owner returns the owner of the object accessible though p and capability tag.

Definition 3 (accessibility) The partial function
A : Config×ActorAddr× Path→ (Addr× Capability)

is defined as

AC(α, this.f) = (ι, κ) iff C(α.f) = ι ∧ Class(α) ` this.f : κ

AC(α, x.f) = (ι, κ) iff ∃b.ψ. [ α.frameC = (b, ψ) ∧ C(ψ(x).f) = ι

∧ Class(α) ` b.x.f : κ ]

AC(α, k.x.f) = (ι, κ) iff k ≥ 0 ∧ ∃b.ψ. [ α.quC [k] = app(b, ψ) ∧
C(ψ(x).f) = ι ∧ Class(α) ` b.x.f : κ ]

AC(α,−1.x.f) = (ι, κ) iff α is executing Sending or Receiving, and ...
continued in Definition 9.

AC(α, p.owner) = (α′, tag) iff ∃ι.[AC(α, p)=(ι,_) ∧ O(ι)=α′ ]

We use AC(α, p) = ι as shorthand for ∃κ.AC(α, p)=(ι, κ). The second and third
case above ensure that the capability of a message path is the same as when the
message has been taken off the queue and placed on the frame.
Example: We obtain that AC0

(α1, this.f1.f2.f3) = (ω3,write), from the fact
that Figure 4 says that C0(α1.f1.f2.f3) = ω3 and from the fact that Table 1
says that A1 ` this.f1.f2.f3 : write. Similarly, AC0

(α2, this.f8) = (ω3, tag), and
AC0

(α2, x
′) = (ω8,write), and AC0

(α1, 0.x.f5.f7) = (ω8, tag).
Both AC0(α1, this.f1.f2.f3), and AC0(α2, this.f8) describe paths from actors’

fields, while AC0(α2, x
′) describes a path from the actor’s frame, and finally

AC0
(α1, 0.x.f5.f7) is a path from the message queue.
Accessibility describes what may be read or written to: AC0

(α1, this.f1.f2.f3)
= (ω3,write), therefore actor α1 may mutate object ω3. However, this muta-
tion is not visible by α2, even though C0(α2.f8)=ω3, because AC0(α2, this.f8) =

11



(ω3, tag), which means that actor α2 has only opaque access to ω3. Accessibility
plays a role in collection: If the reference f3 were to be dropped it would be
safe to collect ω4; even though there exists a path from α2 to ω4; object ω4 is
not accessible to α2: the path this.f8.f4 leads to ω4 but will never be navigated
(AC0

(α2, this.f8.f4) is undefined). Also, AC(α2, this.f8.owner) = (α3, tag); thus,
as long as ω4 is accessible from some actor, e.g. through C(α2.f8)=ω4, actor α3

will not be collected.
Because the class of an actor as well as the capability attached to a static path

are constant throughout program execution, the capabilities of paths starting
from an actor’s fields or from the same frame are also constant.

Lemma 1. For actor α, fields f , behaviour b, variable x , fields f , capabilities
κ, κ′, configurations C and C′, such that C reduces to C’ in one or more steps:

– AC(α, this.f) = (ι, κ) ∧ AC′(α, this.f) = (ι′, κ′) −→ κ = κ′

– AC(α, x.f) = (ι, κ) ∧ AC′(α, x.f) = (ι′, κ′) ∧
α.frameC = (b,_) ∧ α.frameC′ = (b,_) −→ κ = κ′

4.2 Well-Formed Configurations

We characterise data-race free configurations (� C ♦):

Definition 4 (Data-race freedom) � C ♦ iff
∀α, α′, p, p′, κ, κ′.

α 6= α′ ∧ AC(α, p) = (ι, κ) ∧ AC(α
′, p′) = (ι, κ′)

−→
κ ∼ κ′

where we define
κ ∼ κ′ iff [ (κ=write −→ κ′= tag) ∧ (κ′ = write −→ κ= tag) ]

This definition captures invariant I1. The remaining invariants depend on the
four derived counters introduced in Section 3. Here we define LRC and FRC,
and give a preliminary definition of AMC and OMC.

Definition 5 (Derived counters — preliminary for AMC and OMC)

LRCC(ι) ≡ O(ι).rcC(ι)
FRCC(ι) ≡

∑
α6=O(ι) α.rcC(ι)

OMCC(ι) ≡
∑
j

{
z if O(ι).quC [j] = orca(ι : z)

0 otherwise
+ ... c.f. Definition 12

AMCC(ι) ≡ #{ (α, k) | k>0 ∧ ∃x.f.AC(α, k.x.f) = ι }+ ... c.f. Definition 12

where # denotes cardinality.
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For the time being, we will be reading this preliminary definition as if ... stood
for 0. This works under the assumption the procedures are atomic. However
Section 5.3, when we consider fine-grained concurrency, will refine the definition
of AMC and OMC so as to also consider whether an actor is currently in the
process of sending or receiving a message from which the address is accessible.
For the time being, we continue with the preliminary reading.
Example: Assuming that in C0 none of the actors is sending or receiving, we have
LRCC0(ω3) = 160, and FRCC0(ω3) = 160, and OMCC0(ω3) = 0, and AMCC0(ω3)
= 0. Moreover, AMCC0

(ω6) = AMCC0
(α2) = 1: neither ω6 nor α2 are argu-

ments in application messages, but they are indirectly reachable through the
first message on α1’s queue.

A well-formed configuration requires: I1-I4: introduced in Section 3; I5: the
RC’s are non-negative; I6: accessible paths are not dangling; I7: processing mes-
sage queues will not turn RC’s negative; I8: actors’ contents is in accordance
with their state. The latter two will be described in Definition 14.

Definition 6 (Well-formed configurations — preliminary.) � C, iff for all
α, αo, ι, ι′, p, lp, and mp, such that αo = O(ι) 6= α :

I1 � C ♦
I2 [ AC(α, p)= ι ∨ AC(αo,mp)= ι ] −→ LRCC(ι)>0
I3 AC(α, lp) = ι −→ α.rcC(ι) > 0
I4 LRCC(ι) + OMCC(ι) = FRCC(ι) + AMCC(ι)
I5 α.rcC(ι′) ≥ 0
I6 AC(α, p)= ι −→ C.heap(ι) 6=⊥
I7, I8 description in Definition 14.

For ease of notation, we take I5 to mean that if α.rcC(ι′) is defined, then it
is positive. And we take any undefined entry of α.rcC(ι) to be 0.

4.3 Actor States

We now complete the definition of runtime entities (Definition 1), and describe
the states of an actor, the worksets, the marks, and program counters. (Defini-
tion 7). We distinguish the following states: idle (IDLE), collecting (COLLECT),
receiving (RECEIVE), sending a message (SEND), or executing the synchronous
part of a behaviour (EXECUTE). We discuss these states in more detail next.

Except for the idle state, IDLE, all states use auxiliary data structures: work-
sets, denoted by ws, which stores a set of addresses; marks maps, denoted by
ms, from addresses to R (reachable) or U (unreachable), and program coun-
ters. Frames are relevant when in states EXECUTE, or SEND, and otherwise
are assumed to be empty. Worksets are used to store all addresses traced from
a message or from the actor itself, and are relevant when in states SEND, or
RECEIVE, or COLLECT, and otherwise are empty. Marks are used to calculate
reachability and are used in state COLLECT, and are ignored otherwise. The
program counters record the instruction an actor will execute next; they range
between 4 and 27 and are ghost state, i.e. only used in the proofs.
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Figure 5. State transitions diagram for an actor.

Definition 7 (Actor States, Working sets, and Marks)

st∈State ::= IDLE | EXECUTE | SEND | RECEIVE | COLLECT
ws∈Workset = P(Addr)

ms∈Marks = Addr→ {R,U}
pc ∈ PC = [ 4..27 ]

We write α.stC , or α.wsC , or α.msC , or α.pcC for the state, working set, marks,
or the program counter of α in C, respectively.

Actors may transition between states. The state transitions are depicted in
Figure 5. For example, an actor in the idle state (IDLE) may receive an orca
message (remaining in the same state), receive an app message (moving to the
RECEIVE state), or start garbage collection (moving to the COLLECT state).

In the following sections we describe the actions an actor may perform. Fol-
lowing the style of [17, 26, 27] we describe actors’ actions through pseudo-code
procedures, which have the form:

procedure_name〈α〉:
condition→

{ instructions }

We let α denote the executing actor, and the left-hand side of the arrow
describes the condition that must be satisfied in order to execute the instructions
on the arrow’s right-hand side. Any actor may execute concurrently with other
actors. To simplify notation, we assume an implicit, globally accessible configur-
ation C. Thus, instruction α.state:=EXECUTE is short for updating the state of
α in C to be EXECUTE. We elide configurations when obvious, e.g. α.frame =φ
is short for requiring that in C the frame of α is φ, but we mention them when
necessary — e.g. � C[ι1, f 7→ ι2] ♦ expresses that the configuration that results
from updating field f in ι1 is data-race free.

Tracing function. Both garbage collection, and application message sending/re-
ceiving need to find all objects accessible from the current actor and/or from
the message arguments. We define two functions: trace_this finds all addresses
which are accessible from the current actor, and trace_frame finds all addresses
which are accessible through a stack frame (but not from the current actor, this).

14



1 GarbageCollection〈α〉:
2 α.st = IDLE ∨ α.st = EXECUTE
3 →
4 {
5 α.st := COLLECT
6 α.ms := ∅
7
8 // marking as unreachable
9 forall ι with α = O(ι) ∨ α.rc(ι)>0 do α.ms := α.ms[ι 7→ U]
10
11 // tracing and marking locally accessible as reachable
12 forall ι ∈ trace_this(α) ∪ trace_frame(α.frame) do α.ms := α.ms[ι 7→ R]
13
14 // marking owned and globally accessible as reachable
15 forall ι with α = O(ι) ∧ α.rc(ι)>0 do α.ms := α.ms[ι 7→ R]
16
17 // collecting
18 forall ι with α.ms(ι) = U do
19 if O(ι) = α then
20 C.heap := C.heap[ι 7→ ⊥]
21 α.rc := α.rc[ι 7→ ⊥]
22 else
23 O(ι).qu.push(orca(ι:−α.rc(ι)))
24 α.rc := α.rc[ι 7→ ⊥]
25
26 if α.frame=∅ then α.st := IDLE else α.st := EXECUTE
27 }

Figure 6. Pseudo-code for Garbage collection.

Definition 8 (Tracing) We define the functions
trace_this : Config×ActorAddr→ P(Addr)
trace_frame : Config×ActorAddr× Frame→ P(Addr)

as follows
trace_thisC(α) ≡{ι | ∃f. AC(α, this.f)= ι}
trace_frameC(α, φ)≡{ι | ∃x ∈ dom(φ), f .AC(α, x.f)= ι}

4.4 Garbage Collection

We describe garbage collection in Figure 6. An idle, or an executing actor (pre-
condition on line 2) may start collecting at any time. Then, it sets its state to
COLLECT (line 5), and initialises the marks, ms, to empty (line 6).

The main idea of ORCA collection is that the requirement for global un-
reachability of owned objects can be weakened to the local requirement to local
unreachability and a LRC=0. Therefore, the actor marks all owned objects, and
all addresses with a RC>0 as U (line 9). After that, it traces the actor’s fields,
and also the actor’s frame if it happens not to be empty (as we shall see later,
idle actors have empty frames) and marks all accessible addresses as R (line 12).
Then, the actor marks all owned objects with RC> 0 as R (line 15). Thus we
expect that: (*) Any ι with ms(ι)=U is locally unreachable, and if owned by the
current actor, then its LRC is 0. For each address with ms(ι)=U, if the actor
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owns ι, then it collects it (line 20) — this is sound because of I2, I3, I4 and
(*). If the actor does not own ι, then it asks ι’s owner to decrement its reference
count by the current actor’s reference count, and deletes its own reference count
to it (thus becoming 0) (line 24) — this preserves I2, I3 and I4.

There is no need for special provision for cycles across actor boundaries.
Rather, the corresponding objects will be collected by each actor separately,
when it is the particular actor’s turn to perform GC.

Example: Look at the cycle ω5-ω6, and assume that the message app(b, ω5) had
finished execution without any heap mutation, and that α1.rcC(ω5)=α1.rcC(ω6)
= 1 = α2.rcC(ω5)=α2.rcC(ω6) — this will be the outcome of the example in 4.5.
Now, the objects ω5 and ω6 are globally unreachable. Assume that α1 performs
GC: it will not be able to collect any of these objects, but it will send a orca(ω6 :
−1) to α2. Some time later, α2 will pop this message, and some time later it will
enter a GC cycle: it will collect ω6, and send a orca(ω5 :−1) to α1. When, later
on, α1 pops this message, and later enters a GC cycle, it will collect ω5.

At the end of the GC cycle, the actor sets is state back to what it was before
(line 26). If the frame is empty, then the actor had been IDLE, otherwise it had
been in state EXECUTE.

4.5 Receiving and Sending Messages

Through message send or receive, actors share addresses with other actors. This
changes accessibility. Therefore, action is needed to re-establish I3 and I4 for all
the objects accessible from the message’s arguments.

Receiving application messages is described by Receiving in Figure 7. It re-
quires that the actor α is in the IDLE state and has an application message on
top of its queue. The actor sets its state to RECEIVE (line 5), traces from the
message arguments and stores all accessible addresses into ws (line 7). Since ac-
cessibility is not affected by other actors’ actions, c.f., last paragraph in Section
4.6 it is legitimate to consider the calculation of trace_frame as one single step.
It then pops the message from its queue (line 8), and thus the AMC for all the
addresses in ws will decrease by 1. To preserve I4, for each ι in its ws, the actor:
– if it is ι’s owner, then it decrements its reference count for ι by 1, thus
decreasing LRCC(ι) (line 12).

– if it is not ι’s owner, then it increments its reference count for ι by 1, thus
increasing FRCC(ι) (line 14).

After that, the actor sets its frame to that from the message (line 17), and goes
to the EXECUTE state (line 18).

Example: Actor α1 has an application message in its queue. Assuming that
it is IDLE, it may execute Receiving: It will trace ω5 and as a result store
{ω5, ω6, ω8, α1, α2} in its ws. It will then decrement its reference count for ω5 and
α1 (the owned addresses) and increment it for the others. It will then pop the
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1 Receiving〈α〉:
2 α.st = IDLE ∧ α.qu.top() = app(φ)
3 →
4 {
5 α.st := RECEIVE
6
7 α.ws := trace_frame(α, φ)
8 pop(α.qu)
9

10 foreach ι ∈ α.ws do
11 if α = O(ι) then
12 α.rc(ι) −= 1
13 else
14 α.rc(ι) += 1;
15 α.ws := α.ws \ {ι}
16
17 α.frame := φ
18 α.st := EXECUTE
19 }

1 ReceiveORCA〈α〉:
2 α.state = IDLE ∧ α.qu.top() = ORCA(ι : z)
3 →
4 {
5 α.rc(ι) += z
6 α.qu.pop()
7 }

Figure 7. Receiving application and ORCA messages.

message from its queue, create the appropriate frame, and go to state EXECUTE.

Receiving ORCA messages is described in Figure 7. An actor in the IDLE
state with an ORCA message at the top, pops the message from its queue, and
adds the value z to the reference count for ι, and stays in the IDLE state.

Sending application messages is described in Figure 8. The actor must be in
the EXECUTE state for some behaviour b and must have local variables which
can be split into ψ and ψ′ — the latter will form part of the message to be sent.
As the AMC for all the addresses reachable through the message increases by 1,
in order to preserve I4 for each address ι in ws, the actor:
– increments its reference count for ι by 1, if it owns it (line 14);
– decrements its reference count for ι if it does not own it (line 16). But special
care is needed if the actor’s (foreign) reference count for ι is 1, because then
a simple decrement would break I5. Instead, the actor set its reference count
for ι by 256 (line 18) and sends an ORCA message to ι’s owner with 256 as
argument.
After this, it removes ψ′ from its frame (line 22), pushes the message app(b′, ψ′)

onto α′’s queue, and transitions to the EXECUTE state.
We now discuss the preconditions. These ensure that sending the message

app(b, ψ′) will not introduce data races: Line 4 ensures that there are no data
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1 Sending〈α〉:
2 α.st = EXECUTE ∧ α.frame = (b, ψ · ψ′) ∧
3 ∀x ∈ dom(ψ), x′ ∈ dom(ψ′).∀κ, κ′.∀f, f ′. [

4 [ [ AC(α, x.f) = (ι, κ) ∧ AC(α, x
′.f ′) = (ι, κ′) −→ κ′ ∼ κ ] ∧

5 [ Class(α) ` b.x′.f ′ : κ′ ←→ Class(α′) ` b′.x′.f ′ : κ′ ] ]
6 →
7 {
8 α.st := SEND
9

10 α.ws := trace_frame(α, (b, ψ′))
11
12 foreach ι ∈ α.ws do
13 if α = O(ι) then
14 α.rc(ι) += 1
15 elseif α.rc(ι) > 1 then
16 α.rc(ι) −= 1
17 else
18 α.rc(ι) := 256
19 O(ι).qu.push(orca(ι : 256))
20 α.ws := α.ws\{ι}
21
22 α.frame := (b, ψ)
23 α′.qu.push(app(b′, ψ′))
24
25 α.st := EXECUTE
26 }

Figure 8. Pseudo-code for message sending.

races between paths starting at ψ and paths starting at ψ′, while Line 5 ensures
that the sender, α, and the receiver, α′ see all the paths sent, i.e. those starting
from (b′, ψ′), at the same capability. We express our expectation that the source
language compiler produces code only if it satisfies this property by adding this
static requirement as a precondition. These static requirements imply that after
the message has been sent, there will be no races between paths starting at the
sender’s frame and those starting at the last message in the receiver’s queue. In
more detail, after the sender’s frame has been reduced to (b, ψ), and app(b′, ψ′)
has been added to the receiver’s queue (at location k), we will have a new con-
figuration C′=C[α, frame 7→ (b, ψ)][α′, queue 7→ α′.queueC :: (b′, ψ′)]. In this new
configuration lines 4 and 5 ensure that AC′(α, x.f) = (ι, κ) ∧ AC′(α′, k.x′.f ′) =
(ι, κ′) −→ κ′ ∼ κ, which means that if there were no data races in C, there will
be no data races in C′ either. Formally: � C ♦ −→ � C′ ♦.

We can now complete Definition 3 for the receiving and the sending cases,
to take into account paths that do not exist yet, but which will exist when the
message receipt or message sending has been completed.

Definition 9 (accessibility — receiving and sending) Completing Defini-
tion 3:
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AC(α,−1.x.f) = (ι, κ) iff
α.stC = Receiving ∧ 9 ≤ α.pcC < 18 ∧ C(ψ(x).f) = ι ∧ Class(α) ` b.x.f : κ

where (b, ψ)is the frame popped at line 8,
or
α.stC = Sending ∧ α.pcC = 23 ∧ C(ψ′(x).f) = ι ∧ Class(α′) ` b′.x.f : κ

where α′ is the actor to receive the app-message, and
(b′, ψ′) is the frame to be sent in line 23.

Example: When actor α1 executes Receiving, and its program counter is between
9 and 18, then AC0

(α1,−1.x.f5)=(ω6,write), even though x is not yet on the
stack frame. As soon as the frame is pushed on the stack, and we reach program
counter 20, then t AC0(α1,−1.x.f5) is undefined, but AC0(α1, x.f5)=(ω6,write).

4.6 Actor Behaviour

As our model is parametric with the host language, we do not aim to describe
any of the actions performed while executing behaviours, such as synchronous
method calls and pushing frames onto stacks, conditionnals, loops etc. Instead,
we concentrate on how behaviour execution may affect GC; this happens only
when the heap is mutated either by object creation or by mutation of objects’
fields (since this affects accessibility). In particular, our model does not accom-
modate for recursive calls; we claim that the result from the current model
would easily be extended to a model with recursion in synchronous behaviour,
but would require a considerable notation overhead.

Figure 9 shows the actions of an actor α while in the EXECUTE state, i.e.
while it executes behaviours synchronously. The description is nondeterministic:
the procedures GoIdle, or Create, or MutateHeap, may execute when the corres-
ponding preconditions hold. Thus, we do not describe the execution of a given
program, rather we describe all possible executions for any program. In GoIdle,
the actor α simply passes from the execution state to the idle state; the only
condition is that its state is EXECUTE (line 2). It deletes the frame, and sets the
actor’s state to IDLE (line 4). Create creates a new object, initialises its fields to
null, and stores its address into local variable x.

The most interesting procedure is field assignment, MutateHeap. Line 8 mod-
ifies the object at address ι1, reachable through local path lp1, and stores in its
field f the address ι2 which was reachable through local path lp2. We require
that the type system makes the following two guarantees: line 2, second con-
junct, requires that lp1 should be writable, while line 3 requires that lp2 should
be accessible. Line 4 and line 5 requite that capabilities of objects do not increase
through heap mutation: any address that is accessible with a capability κ after
the field update was accessible with the same or more permissive capability κ′
before the field update. This requirment guarantees preservation of data race
freedom, i.e. that � C ♦ implies � C[ι1, f 7→ ι2] ♦.
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1 GoIdle〈α〉:
2 α.st = EXECUTE
3 →
4 { α.frame := ∅; α.st := IDLE; }
5
6 Create〈α〉:
7 α.st = EXECUTE ∧ fresh ω ∧ O(ω) = α
8 →
9 {

10 heap :=
11 heap[ω 7→ (f1 7→ null, ..., fn 7→ null)]
12 α.frame := α.frame[x 7→ ω]
13 }

1 MutateHeap〈α〉:
2 α.st = EXECUTE ∧ AC(α, lp1) = (ι1,write)
3 ∧ AC(α, lp2) = ι2
4 ∧ ∀ι, κ, lp [ AC[ι1,f 7→ι2](α, lp) = (ι, κ) −→
5 (∃κ′, lp′ AC(α, lp

′) = (ι, κ′) ∧ κ′ ≤ κ ])
6 →
7 {
8 heap := heap[ι1, f 7→ ι2]
9 }

Figure 9. Pseudo-code for synchronous operations.

Heap Mutation does not affect accessibility in other actors. Heap mutation either
creates new objects, which will not be accessible to other actors, or modifies
objects to which the current actor has write access. By � C ♦ all other actors
have only tag access to the modified object. Therefore, because of capabilities’
degradation with growing paths (as in A1 and A2), no other actor will be able
to access objects reachable through paths that go through the modified object.

5 Soundness and Completeness

In this section we show soundness and completeness of ORCA.

5.1 I1 and I2 Support Safe Local GC

As we said earlier, I1 and I2 support safe local GC. Namely, I1 guarantees that as
long as GC only traces objects to which the actor has read or write access, there
will be no data races with other actors’ behaviour or GC. And I2 guarantees
that collection can take place based on local information only:

Definition 10 For a configuration C, and object address ω we say that

– ω is globally inaccessible in C, iff ∀α, p.AC(α, p) 6= ω
– ω is collectable, iff LRCC(ω) = 0, and ∀lp. AC(O(ω), lp) 6= ω.

Lemma 2. If I2 holds, then every collectable object is globally inaccessible.
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5.2 Completeness

In [16] we show that globally inaccessible objects remain so, and that for any
globally inaccessible object there exists a sequence of steps which will collect it.

Theorem 1 (Inaccessibility is monotonic). For any configurations C, and
C′, if C′ is the outcome of the execution of any single line of code from any of
the procedures from Figures 6–9, and and ω is globally inaccessible in C, then ω
is globally inaccessible in C′.
Theorem 2 (Completeness of ORCA). For any configuration C, and object
address ω which is globally inaccessible in C, there exists a finite sequence of
steps which lead to C′ in which ω /∈ dom(C′).

5.3 Dealing with fine-grained concurrency

So far, we have discussed actions under an assumption atomicity. However, ORCA
needs to work under fine-grained concurrency, whereby several actors may be ex-
ecuting concurrently, each of them executing a behaviour, or sending or receiving
a message, or collecting garbage. With fine-grained concurrency, and with the
preliminary definitions of AMC and OMC, the invariants are no longer pre-
served. In fact, they need never hold!
Example: Consider Figure 4, and assume that actor α1 was executing Receiving.
Then, at line 7 and before popping the message off the queue, we have LRC(ω5) =
2, FRC(ω5) = 1, AMCp(ω5) = 1, where AMCp(_) stands for the preliminary
definition of AMC; thus I4 holds. After popping and before updating the RC
for ω5, i.e. between lines 9 and 11, we have AMCp(ω5) = 0 — thus I4 is broken.
At first sight, this might not seem a big problem, because the update of RC at
line 12 will set LRC(ω5) = 1, and thus restore I4. However, if there was another
message containing ω5 in α2’s queue, and consider a snapshot where α2 had just
finished line 8 and α1 had just finished line 12, then the update of α1’s RC will
not restore I4.

The reason for this problem is, that with the preliminary definitionAMCp(_),
upon popping at line 8, the AMC is decremented in one atomic step for all ob-
jects accessible from the message, while the RC is updated later on (at line 12
or 14), and one object at a time. In other words, the updates to AMC and LRC
are not in sync. Instead, we give the full definition of AMC so, that AMC is in
sync LRC; namely it is not affected by popping the message, and is reduced one
object at a time once we reach program counter 15. Similarly, because updating
the RC’s takes place in a separate step from the removal of the ORCA-message
from its queue, we refine the definition of OMC:

Definition 11 (Auxiliary Counters for AMC, and OMC)

AMCrcv
C (ι) ≡ #{α | α.stC=RECEIVE ∧ 9 ≤ α.pcC ∧

ι ∈ α.ws\CurrAddrRcvC(α)}

CurrAddrRcvC(α) ≡

{
{ι10} if α.pcC = 15

∅ otherwise
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In the above α.ws refers to the contents of the variable ws while the actor α is
executing the pseudocode from Receiving, and ι10 refers to the contents of the
variable ι arbitrarily chosen in line 10 of the code.
We define AMCsnd

C (ι), OMCrcv
C (ι), and OMCsnd

C (ι) similarly in [16].

The counters AMCrcv and AMCsnd are zero except for actors which are
in the process of receiving or sending application messages. Also, the counters
OMCrcv and AMCsnd are zero except for actors which are in the process of
receiving or sending ORCA-messages. All these counters are always ≥ 0. We can
now complete the definition of AMC and OMC:

Definition 12 (AMC and OMC– full definition)

OMCC(ι) ≡
∑
j

{
z if O(ι).quC [j] = orca(ι : z)

0 otherwise
+OMCsnd

C (ι)−OMCrcv
C (ι)

AMCC(ι) ≡ #{ (α, k) | k>0 ∧ ∃x.f.AC(α, k.x.f) = ι }+AMCsnd
C (ι) + AMCrcv

C (ι)

where # denotes cardinality.

Example: Let us again consider that α1 was executing Receiving. Then, at
line 10 we have ws = {ι5, ι6} and AMC(ω5) = 1 = AMC(ω6). Assume at the
first iteration, at 10 we chose ι5, then right before reaching line 15 we have
AMC(ω5) = 0 and AMC(ω6) = 1. At the second iteration, at 10 we will chose
ι6, and then right before reaching 15 we have AMC(ω6) = 0.

5.4 Soundness

To complete the definition of well-formed configurations, we need to define what
it means for an actor or a queue to be well-formed.

Well-Formed Queues - I7 The owner’s reference count for any live address
(i.e. any address reachable from a message path, or foreign actor, or in an ORCA
message) should be greater than 0 at the current configuration, as well as, at all
configurations which arise from receiving pending, but no new, messages from
the owner’s queue. Thus, in order to ensure that ORCA decrement messages do
not make the local reference count negative, I7 requires that the effect of any
prefix of the message queue leaves the reference count for any object positive.
To formulate I7 we use the concept of QueueEffectC(α, ι, n), which describes
the contents of LRC after the actor α has consumed and reacted to the first n
messages in its queue — i.e. is about “looking into the future”. Thus, for actor
α, address ι, and number n we define the effect of the n-prefix of the queue on
the reference count as follows:

QueueEffectC(α, ι, n) ≡ LRCC(ι)− z +
∑n
j=0 WeightC(α, ι, j)

where z=k, if α is in the process of executing ReceiveORCA, and α.pcC=6, and
α.qu.top = orca (ι : k), and otherwise z=0.
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And where,

WeightC(α, ι, j) ≡


z′ if α.quC [j] = orca(ι : z′)

−1 if ∃x.∃f. AC(α, k.x.f) = ι ∧ O(ι) = α

0 otherwise
I7 makes the following four guarantees: [a] The effect of any prefix of the

message queue leaves the LRC non-negative. [b] If ι is accessible from the j-
th message in its owner’s queue, then the LRC for ι will remain > 0 during
execution of the current message queue up to, and including, the j-th message.
[c] If ι is accessible from an ORCA-message, then the LRC will remain > 0
during execution of the current message queue, up to and excluding execution
of the ORCA-message itself. [d] If ι is globally accessible (i.e. reachable from a
local path or from a message in a non-owning actor) then LRC(ι) is currently
> 0, and will remain so after during popping of all the entries in the current
queue.

Definition 13 (I7) |=Queues C, iff for all j ∈ N, for all addresses ι, actors α,
α′, where O(ι) = α 6= α′, the following conditions hold:

a ∀n. QueueEffectC(α, ι, n) ≥ 0
b ∃x. ∃f. AC(α, j.x.f) = ι −→ ∀k ≤ j. QueueEffectC(α, ι, k) > 0.
c α.quC [j] = orca(ι : z) −→ ∀k < j. QueueEffectC(α, ι, k) > 0.
d ∃p.AC(α

′, p) = ι −→ ∀k ∈ N. QueueEffectC(α, ι, k) > 0.

For example, in a configuration with LRC(ι) = 2, and a queue with orca(ι :
−2) :: orca(ι : −1) :: orca(ι : 256) is illegal by I7.[a]. Similarly, in a configuration
with LRC(ι) = 2, and a queue with orca(ι : −2) :: orca(ι : 256), the owning actor
could collect ι before popping the message orca(ι : 256) from its queue. Such a
configuration is also deemed illegal by I7.[c].

I8-Well-formed Actor In [16] we define well-formedness of an actor α through
the judgement C, α ` st. This judgement depends on α’s current state st, and
requires, among other things, that the contents of the local variables ws, ms are
consistent with the contents of the pc and RC. Remember also, that because
Receiving and Sending modify the ws or send ORCA-messages before updating
the frame or sending the application message, in the definition of AMC and OMC
we took into account the internal state of actors executing such procedures.

Well-formed Configuration The following completes Definition 6 from Sec-
tion 4.2.

Definition 14 (Well-formed configurations — full.) A configuration C is
well-formed, � C, iff I1–I6 (Definition 6) for C, if its queues are well-formed
(|=Queues C, I7), as well as, all its actors (C, α ` α.stC, I8).

In [16] we consider the execution of each line in the codes from section 4, and
prove:
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Theorem 3 (Soundness of ORCA). For any configurations C and C′:
If � C, and C′ is the outcome of the execution of any single line of code from any
of the procedures from Figures 6–9, then � C′.

This theorem together with I6 implies that ORCA never leaves accessible paths
dangling. Note that the theorem is stated so as to be applicable for a fine inter-
leaving of the execution. Even though we expressed ORCA through procedures,
in our proof we cater for an execution where one line of any of these procedures
is executed interleaved with any other procedures in the other actors.

6 Related Work

The challenges faced when developing and debugging concurrent garbage col-
lectors have motivated the development of formal models and proofs of correct-
ness [6,13,19,30,35]. However, most work considers a global heap where mutator
and collector threads race for objects and relies on synchronisation mechanisms
(or atomic reduction steps), such as read or write barriers, in contrast to ORCA
which considers many local heaps, no atomicity or synchronization, and relies on
the properties of the type system. McCreight et al. [25] introduced a framework
to reason about and build certified garbage collectors, verifying independently
both mutator and collector threads. Their work focuses mainly on garbage col-
lectors similar to those that run on Java programs, such as STW mark-and-
sweep, STW copying and incremental copying. Vechev et al. [39] specified con-
current mark-and-sweep collectors with write barriers for synchronisation. The
authors also present a parametric garbage collector from which other collectors
can be derived. Hawblitzel and Petrank [22] mechanized proofs of two real-world
collectors (copying and mark-and-sweep) and their respective allocators. The
assembly code was instrumented with pre- and post-conditions, invariants and
assertions, which were then verified using Z3 and Boogie. Ugawa et al. [38] ex-
tended a copying, on-the-fly, concurrent garbage collector to process reference
types. The authors model-checked their algorithm using a model that limited
the number of objects and threads. Gamie et al. [17] machine-checked a state-
of-the-art, on-the-fly, concurrent, mark-and-sweep garbage collector [32]. They
modelled one collector thread and many mutator threads. ORCA does not limit
the number of actors running concurrently.

Local heaps have been used in the context of garbage collection to reduce the
amount of synchronisation required before [1–3,13,15,24,31,34], where different
threads have their own heap and share a global heap. However, only two of these
have been proved correct. Doligez and Gonthier [13] proved a collector [14] which
splits the heap into many local heaps and one global heap, and uses mark-and-
sweep for individual collection of local heaps. The algorithm imposes restrictions
on the object graph, that is, a thread cannot access objects in other threads’
local heaps. ORCA allows for references across heaps. Raghunathan [34] proved
correct a hierarchical model of local heaps for functional programming languages.
The work restricted objects graphs and prevented mutation.
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As for collectors that rely on message passing, Moreau et al. [26] revisited the
Birrell’s reference listing algorithm, which also uses message passing to update
reference counts in a distributed system, and presented its formalisation and
proofs or soundness and completeness. Moreover, Clebsch and Drossopoulou [10]
proved correct MAC, a concurrent collector for actors.

7 Conclusions

We have shown the soundness and completeness of the ORCA actor memory
reclamation protocol. The ORCA model is not tied to a particular programming
language and is parametric in the host language. Instead it relies on a number
of invariants and properties which can be met by a combination of language and
static checks. The central property that is required is the absence of data races
on objects shared between actors.

We developed a formal model of ORCA and identified requirements for the
host language, its type system, or associated tooling. We described ORCA at a
language-agnostic level and identified eight invariants that capture how global
consistency is obtained in the absence of synchronisation. We proved that ORCA
will not prematurely collect objects (soundness) and that all garbage will be
identified as such (completeness).
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