
TACAS
Evaluation
Artifact

2020
Accepted

EMTST: Engineering the Meta-theory of
Session Types

David Castro[0000−0002−6939−4189], Francisco Ferreira�[0000−0001−8494−7696], and
Nobuko Yoshida[0000−0002−3925−8557]

Imperial College London,
{d.castro-perez, f.ferreira-ruiz, n.yoshida}

@imperial.ac.uk

Abstract Session types provide a principled programming discipline for
structured interactions. They represent a wide spectrum of type-systems
for concurrency. Their type safety is thus extremely important. EMTST
is a tool to aid in representing and validating theorems about session
types in the Coq proof assistant. On paper, these proofs are often tricky,
and error prone. In proof assistants, they are typically long and difficult
to prove. In this work, we propose a library that helps validate the theory
of session types calculi in proof assistants. As a case study, we study two
of the most used binary session types systems: we show the impossibility
of representing the first system in α-equivalent representations, and we
prove type preservation for the revisited system. We develop our tool
in the Coq proof assistant, using locally nameless for binders and small
scale reflection to simplify the handling of linear typing environments.

Keywords: Concurrency · proof assistants ·meta-theory · session-types.

1 Introduction

Given the prevalence of distributed computing and multi-core processors, con-
currency is a key aspect of modern computing. The transition from sequential
models of computation to concurrent systems has huge practical and theoret-
ical consequences. Message passing calculi (like the π-calculus) have been used
to model these systems since their introduction by Milner et al. [15]. Notably,
in many cases typing disciplines are used as a way to control concurrent and
distributed behaviour. Certifying basic typed π-calculi is important for both the
safety of implementations and the trustworthiness of new theories.

In this work, we concentrate on providing tools for reasoning about session
types [10], a typing discipline for structured interactions in distributed systems.
Session types are applied to a wide range of problems, and their properties, such
as deadlock-freedom, are well studied. These calculi are very expressive, and
rather complex, with features like: shared and linear communication channels,
name passing, and fresh name generation. Given this complexity, it is not sur-
prising that some innocent looking extensions violated the type safety properties
of the calculus in several literature (as pointed out by [23]). In consequence, the

2 D. Castro et al.

interest for mechanisation and formal proofs has risen significantly as a means
to increase the trust on systems.

Type systems offer certain security properties by construction. These guaran-
tees are backed by rigorous proofs (these proofs conform the meta-theory of the
system). Moreover, these proofs are cumbersome to write, maintain and extend.
Proof assistants aim to help with these problems. In this work, we develop the
EMTST library to aid in the implementation of session calculi type systems.
As a form of validation, we implement and replicate results in the meta-theory
of binary session types. Concretely, we use the Coq proof assistant [20] to study
the representation and meta-theory of the two systems described in [23].

EMTST uses locally nameless (LN)[1, 5] variable binders to represent syntax.
The tool implements a LN library with extended support for multiple binding
scopes, a robust environment implementation suitable for the challenges of ses-
sion typing disciplines. The library and lemmas are written taking advantage of
boolean reflection through the use of the Ssreflect [7] library.

We implement two case studies from [23]. The first study that we refer to
as the original system and the second that we refer to as the revised systems.
Notably, the way the original system handles names (in Sect. 3.1), makes its
representation impossible when using intrinsically α-convertible terms (e.g: loc-
ally nameless, de Bruijn indices, and many others). Furthermore in Sect. 3.2, we
discuss how the revised system allows us to implement and prove type preser-
vation. In hindsight, this problem appears as evident, but it is an unexpected
consequence, and it shows that mechanising proofs brings further understanding
even to well-established and thoroughly studied systems. EMTST and our case
studies are available at https://github.com/emtst/emtst-proof.

The rest of the paper is structured in the following way: in the next section
we introduce the ideas and design behind EMTST our library for mechanising
the meta-theory of session types. Subsequently in Sect. 3, we present the two case
studies: in Sect. 3.1 the original system from [23, 11] and the revisited system in
Sect. 3.2. We finalise, by giving a conclusion and related work.

2 EMTST: a Tool for Representing the Meta-theory of
Session Types

The study of meta-theory (i.e: proving a system has the expected properties)
gives us confidence in the design. Additionally, proof formalisations, not only
give us confidence in the results, but also often result in new insights about
a problem. This is due to the fact that successful mechanisations require very
precise specifications and careful thought to define and revisit all the concepts.
In this context, EMTST is a tool that implements locally nameless (initially
proposed by [8, 14, 13], and more recently further developed in [1, 5]) with
multiple binding scopes, and a robust typing environment implementation using
boolean reflection (by building on top of ssreflect [7]).

The key concept of LN is to use de Bruijn indices [2] for bound variables
and names (sometimes called “atoms” in the literature) for free variables. A

https://github.com/emtst/emtst-proof

EMTST: Engineering the Meta-theory of Session Types 3

representation of syntax is well formed, namely locally closed, when this invariant
is respected (i.e.: no de Bruijn index is free). Finally, in order to deal with open
terms, there are two convenient operations on syntax, one is to open binders in
terms, and one to close binders. The former substitutes a bound variable with a
fresh name, and the other does the converse. For more details, refer to our tech
report [4], the references, and the implementation.

2.1 Environments and Multiple Name Scopes

Module Type ATOM.
Parameter atom : Set.
Definition t := atom.

(∗ atoms can be compared to booleans ∗)
Parameter eq atom : atom → atom → bool.
Parameter eq reflect : ∀ (a b : atom),

ssrbool.reflect (a = b) (eq atom a b).
Parameter atom eqMixin : Equality.mixin of atom.
Canonical atom eqType := EqType atom atom eqMixin.

Parameter fresh : seq atom → atom.
Parameter fresh not in : ∀ l, (fresh l) /∈ l.
(∗ ... ∗)

End ATOM.

Figure 1. The type of atoms

Locally nameless imple-
mentation is in three files.
The first (theories/Atom.v)
provides the basic definition
and specification of atoms to
act as names, the second one
(theories/AtomScopes.v)
provides a way to create mul-
tiple disjoint sets of names for
representing variables in the
different scopes that session
types require (e.g. variables

and channel names), and the final one (theories/Env.v) implements contexts
and typings as finite maps, with emphasis on supporting the linearity require-
ments of various session typing disciplines.

We use module types and parametrised modules to abstract the type of
atoms together with their supported operations. Figure 1 shows the interface for
working with atoms: how to compare them and functions to obtain a fresh atom
given a finite sequence of atoms (definition: fresh), and to have proof that the
fresh atom is actually fresh (definition: fresh_not_in).

Environments. Environments are parametrised over two types, one for the
keys, and one for the type of values. Environments env are either undefined, or
a finite map of unique keys and values. All the operations keep the invariant
that any operation that would lead to a duplicated entry key makes the tree
undefined. We define the expected operations and lemmas over the type env.
We provide an extensive library of proved theorems about environments that is
tailored to support linear and affine systems.

EMTST is used in the two formalisations in Sect. 3.1 and 3.2 and we claim
they are also suitable for other mechanisations where resource sensitivity and
locally nameless are required. A release version of EMTST is available at [3]
and the public repository at: https://github.com/emtst/emtst-proof.

3 Two Case Studies on Binary Session Types

EMTST is intended to help with the complex binding structure of concurrent
calculi that have names as a first class notion together with linear or affine typing

https://github.com/emtst/emtst-proof

4 D. Castro et al.

disciplines. We study two seminal session type systems in the literature. First
the original system, from Honda, Vasconcelos and Kubo’s binary session type
system [11] that is a milestone in the development of type systems for concurrent
process calculi. This system types structured interaction between processes and
supports channel mobility, that is higher-order sessions. Second, we implement
the revisited session type presentation from [23], inspired by [6]. Our technical
report [4] contains an extensive presentation.

3.1 The Original System

Process P ,Q,R ::=
| request a (k).P session request
| accept a (k).P session accept
| k ![e]; P data send
| k ?(x).P data receive
| k / m;P selection
| k . {l : P []r : Q} branching
| throw k [k′];P channel send
| catch k (k′).P channel receive

e ::= true | false | . . . expression

| if e then P else Q conditional
| P | Q parallel
| inact inaction
| νn (a).P name hiding
| νc (k).P channel hiding
| !P replication

m ::= l | r labels

Figure 2. Syntax using names

Figure 2 presents the syntax following [23], where names are ranged by
a, b, c,. . . , channels are ranged by k and k′. Notice that all the places where
there are variable binders are denoted with parenthesis followed by a dot (e.g:
k ?(x).P). The syntax is straightforwardly defined as the proc inductive type in
theories/SyntaxO.v and following the LN technique the locally closed predic-
ate, that formalises the binding structure, is defined as the predicate lc.

Besides its syntax, the original system is specified by its reduction, congru-
ence and typing relations. We want to call attention to an important reduction
rule for passing names:

[Pass-Nm] throw k [k′];P | catch k (k′).Q −→ P | Q

This rule states that when passing a channel k’the receiving end has to bind a
channel using the same name (or be α-convertible to that name). Notoriously, the
name k’is a bound name in the receiving end, and the restriction imposed by the
rule is a subtle change to the equality up-to α-conversion convention. Moreover,
relaxations of that requirement may break subject reduction, a complete discus-
sion is presented in Sect. 3 of [23]. As it is, this rule cannot be formalised in
a representation that cannot distinguish between α-equivalent terms. Since in
these representations, one cannot talk about the actual name of a bound variable.
This is fundamentally what it means to be up-to α-equality. As a consequence,
in locally nameless we are forced to specify the following rule:

[Pass-LN]
lcP bodyQ

throw k [k′];P | catch k ().Q −→ P | Qk′

EMTST: Engineering the Meta-theory of Session Types 5

In this version of the rule, the bound name is just an anonymous de Bruijn
index, and when it is opened it is assigned the same name k’. This change might
look innocent, but it breaks subject reduction. In theories/TypesO.v, we show
that the same counter example from [23] is typable and that it breaks subject
reduction. This is presented in the CounterExample module and in the oft_reduced

lemma. In the next section, we discuss how this problem was addressed.

3.2 The Revised System

As discussed in Sect. 3.1 and [23], the presentation of the original session types
calculus [11] makes extending it (and representing it in LN) a delicate opera-
tion. Fortunately, the revised system (also from [23], inspired by [6]) proposes
a solution. Indeed, this solution is readily implementable using LN (and many
other representations with implicit α-equivalence).

The key insight in the design of the revisited system is considering channel
endpoints instead of just channels. As before, a new channel is created when a
requested session is accepted, and each continuation gets one of the endpoints of
the newly created channel.

Inductive proc : Set :=
| request : scvar → proc → proc

| accept : scvar → proc → proc

| send : channel → exp → proc → proc
| receive : channel → proc → proc

| select :
channel → label → proc → proc
| branch :

channel → proc → proc → proc

| throw :
channel → channel → proc → proc
| catch : channel → proc → proc

| ife : exp → proc → proc → proc
| par : proc → proc → proc
| inact : proc

| nu ch : proc → proc (∗ hides a channel name ∗)
| nu nm : proc → proc (∗ hides a name ∗)
| bang : proc → proc (∗ process replication ∗)
.

Legend:

proc process binds variable from ASC

proc process binds variable from AEV

proc process binds variable from ALC

proc process binds variable from ACN

Figure 3. Syntax representation annotated with binders

For the revisited system’s formalisation we distinguish binders in four cat-
egories (as shown in Figure 3): First, expression variables, with names from the
set AEV, then shared channel variables from ASC, also linear channel variables
from ALC, and finally channel names from ACN (these names can also be bound
in restrictions). Channel names are not variables, but objects that exist at run-
time.

6 D. Castro et al.

Multiple disjoint sets of names simplify reasoning about free names (con-
cretely, it avoids freshness problems among different kinds of binders). This is
an engineering compromise, as having more binders duplicates some easy theor-
ems but, in exchange, they simplify the harder theorems that rely on facts about
LN open/close operations. Other compromises are possible.

This concludes the technical development, and represents a full proof of sub-
ject reduction for binary types, following the revised system1 as defined in [23].

4 Related Work and Conclusions

We presented EMTST, a tool conceived to aid in the mechanisation of session
calculi. Our tool supports locally nameless representations with many disjoint
atom scopes, and a versatile representation of environments. All while taking
advantage of the small scale reflection style of proofs. We validated our design
by formalising the subject reduction proof for a full session calculus type sys-
tem. And, we explored issues with adequacy when, for example, systems contain
fragile specifications.

Tools like Metalib [22] (implemented based on [1]) and AutoSubst [18] exist,
but lack the ability to represent different binding scopes in the same syntax.
Also, Polonowski [17] implements a library for generic environments, while this
library is similar to ours, it does not make use of boolean reflection, that, in
our opinion simplifies dealing with the equality of environments. While these
libraries were influential, our requirements of multiple scopes of binding and
boolean reflection proofs, means that we needed to develop EMTST, our own
fit for purpose library.

Finally, formalisations of session types in proof assistants exist in the literat-
ure (e.g.: [21, 24, 19, 16, 9]). Most of them with ad-hoc binder representations.
They are not necessarily meant to be reused or general enough for other devel-
opments. This paper, and the EMTST library are a step towards helping this
become easier. For that purpose we developed the library and validated its claims
by formalising existing systems from the literature. In the process (see Sect. 3.1
vs Sect. 3.2), we motivate how early mechanisation would help avoid problems
in the presentation of a system. In the future, we plan to extend our use of the
library to reason about multiparty session types [12] and other systems.

Acknowledgements

This work was supported in part by EPSRC projects EP/K011715/1,
EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1,
and EP/T006544/1.

1 A minor difference is that we use a simpler version of recursion compared to the
original paper.

Bibliography

[1] Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: En-
gineering formal metatheory. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 3–15. POPL ’08, ACM, New York, NY, USA (2008)

[2] de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indag. Math 34(5), 381–392 (1972)

[3] Castro, D., Ferreira, F., Yoshida, N.: EMTST - Engineering Meta-theory of
Session Types (Oct 2019), https://doi.org/10.5281/zenodo.3516299

[4] Castro, D., Ferreira, F., Yoshida, N.: Engineering the meta-theory of session
types. Tech. Rep. 2019/4, Imperial College London (2019), https://www.
doc.ic.ac.uk/research/technicalreports/2019/#4

[5] Charguéraud, A.: The locally nameless representation. Journal of Auto-
mated Reasoning 49(3), 363–408 (Oct 2012)

[6] Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta
Informatica 42(2), 191–225 (Nov 2005)

[7] Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in
coq. Journal of Formalized Reasoning 3(2), 95–152 (2010)

[8] Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-
conversion. In: Joyce, J.J., Seger, C.J.H. (eds.) Higher Order Logic Theorem
Proving and Its Applications. pp. 413–425. Springer Berlin Heidelberg, Ber-
lin, Heidelberg (1994)

[9] Goto, M., Jagadeesan, R., Jeffrey, A., Pitchar, C., Riely, J.: An extensible
approach to session polymorphism. Mathematical Structures in Computer
Science 26(3), 465509 (2016)

[10] Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR’93.
pp. 509–523. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

[11] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type
discipline for structured communication-based programming. In: Hankin,
C. (ed.) Programming Languages and Systems. pp. 122–138. Springer Berlin
Heidelberg, Berlin, Heidelberg (1998)

[12] Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. In: Proc. of 35th Symp. on Princ. of Prog. Lang. pp. 273–284. POPL
’08, ACM, New York, NY, USA (2008)

[13] McBride, C., McKinna, J.: Functional pearl: I am not a number–i am a free
variable. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell.
pp. 1–9. Haskell ’04, ACM, New York, NY, USA (2004)

[14] McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized.
Journal of Automated Reasoning 23(3), 373–409 (Nov 1999)

[15] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I
and II. Info.& Comp. 100(1) (1992)

https://doi.org/10.5281/zenodo.3516299
https://www.doc.ic.ac.uk/research/technicalreports/2019/#4
https://www.doc.ic.ac.uk/research/technicalreports/2019/#4

8 D. Castro et al.

[16] Orchard, D.A., Yoshida, N.: Using session types as an effect system. In:
Proceedings Eighth International Workshop on Programming Language Ap-
proaches to Concurrency- and Communication-cEntric Software, PLACES
2015, London, UK, 18th April 2015. pp. 1–13 (2015)

[17] Polonowski, E.: Generic environments in coq. CoRR abs/1112.1316 (2011),
http://arxiv.org/abs/1112.1316

[18] Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: Reasoning with de bruijn
terms and parallel substitutions. In: Zhang, X., Urban, C. (eds.) Interactive
Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China,
August 24-27, 2015. LNAI, Springer-Verlag (Aug 2015)

[19] Tassarotti, J., Jung, R., Harper, R.: A higher-order logic for concur-
rent termination-preserving refinement. In: Yang, H. (ed.) Programming
Languages and Systems. pp. 909–936. Springer Berlin Heidelberg, Berlin,
Heidelberg (2017)

[20] The Coq Development Team: The Coq Proof Assistant Reference Manual
v. 8.6.1. Institut National de Recherche en Informatique et en Automatique
(2016)

[21] Thiemann, P.: Intrinsically-typed mechanized semantics for session types.
In: Proceedings of the 21st International Symposium on Principles and
Practice of Programming Languages 2019. pp. 19:1–19:15. PPDP ’19, ACM,
New York, NY, USA (2019)

[22] Weirich, S., collaborators: Metalib – the penn locally nameless metatheory
library. https://github.com/plclub/metalib (2008)

[23] Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for
structured communication-based programming revisited: Two systems for
higher-order session communication. Electronic Notes in Theoretical Com-
puter Science 171(4), 73 – 93 (2007), proceedings of the First International
Workshop on Security and Rewriting Techniques (SecReT 2006)

[24] Zalakian, U.: Type-checking session-typed π-calculus with Coq. Master’s
thesis, University of Glasgow (2019)

http://arxiv.org/abs/1112.1316
https://github.com/plclub/metalib

	EMTST: Engineering the Meta-theory of Session Types

