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Abstract—EURECA architectures have been proposed as an
enhancement to the existing FPGAs, to enable cycle-by-cycle
reconfiguration. Applications with irregular data accesses, which
previously cannot be efficiently supported in hardware, can
be efficiently mapped into EURECA architectures. One major
challenge to apply the EURECA architectures to practical
applications is the intensive design efforts required to analyse
and optimise cycle-reconfigurable operations, in order to obtain
accurate and high-performance results while underlying circuits
reconfigure cycle by cycle. In this work, we propose compiler
support for EURECA-based designs. The compiler support
adopts techniques based on session types to automatically derive a
runtime reconfiguration scheduler that guarantees design correct-
ness; and a streaming circuit model to ensure high-performance
circuits. Three benchmark applications —large-scale sorting,
Memcached, and SpMV— developed with the proposed compiler
support show up to 11.2 times (21.8 times when architecture
scales) reduction in area-delay product when compared with
conventional architectures, and achieve up to 39% improvements
compared with manually optimised EURECA designs.

I. INTRODUCTION

While recent progresses in FPGAs and development tools
show good promise for mainstream hardware accelerators, one
major limitation of FPGAs comes from the inefficient support
for dynamic operations, i.e., operations with execution status
only known at runtime. To handle such program operations
(such as dynamic pointers), EURECA architecture [1] was
proposed to support cycle-reconfigurable circuits: within a
clock cycle, the architecture can modify the underlying circuits
based on runtime variables. Fig. 1 shows an example EURECA-
based design, which streams the matrix data nonZero from
off-chip memory, and stores the vector data vector on chip.
We vectorise the example design in Fig. 1: (1) 32 data-paths
process 32 vector multiplication per clock cycle, and (2) the
vector memory contains 32 memory ports to fetch up to 32
vector data in parallel. However, the accesses to vector data rely
on runtime variable column, requiring all-to-all connections
between the memory ports and duplicated data-paths.

..
..
..

  for(j = row[i−1] : row[i])

for(i = 1 : N)
  res[i] = 0;

    res[i] += nonZero[j] * vector[column[j]];
}
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Fig. 1: A Sparse Matrix Vector Multiplication (SpMV) kernel, mapped
into EURECA architecture.

A EURECA-based design, as shown in Fig. 1, applies
runtime reconfiguration to resolve this challenge. Within a
single clock cycle, a EURECA design takes runtime variables
(e.g. column), calculates runtime configurations, and applies
the reconfiguration to update the connections between memory
ports and data-paths. This enables the example design to
be supported with linear instead of quadratic (all-to-all)
area complexity, and thus supports applications that are not
efficiently implementable in hardware. Preliminary results [1]
show enhancing conventional FPGA architecture with the cycle
reconfigurability brings 1% area overhead.

In practice, given circuits reconfigure cycle by cycle, there
are three major challenges in developing efficient and correct
EURECA designs:

• To guarantee correct functionality while reconfiguring
cycle by cycle.
• To ensure high efficiency and performance of the
EURECA designs.

The objective of this work is to develop automated compiler
support to address the above challenges for EURECA designs.
We develop compiler support for source-to-source transforma-
tion of high-level EURECA descriptions to improve design
performance and area efficiency, while preserving correctness.
Our approach includes three novel aspects addressing the above
three challenges:

• Conflict-free runtime reconfiguration by runtime schedul-
ing based on session-based communication protocols [2],
[3]. See Section IV.
• Streaming circuit models are used in optimising the
scheduling function, to approximate the theoretical peak
performance of circuits configured at each cycle. See
Section V.

Section VI illustrates how the proposed compilation flow can be
used in developing three applications: Memcached, large-scale
sorting, and SpMV, showing up to 21.8 times improvements
in area-delay product. The proposed compilation flow shows
potential for automating the implementation of computational
kernels with parallelisable computation and complex data
accesses; such kernels cannot be efficiently supported using
current high-level synthesis frameworks.

II. RELATED WORK

Previous design automation and optimisation approaches
mainly focus on conventional FPGA architectures. Chung et.
al. [4] proposed CoRAM as a memory abstraction to simplify
application development and to improve application portability.



Data reuse techniques exploit the locality of on-chip and off-
chip data access to improve data access efficiency. The data
transfer and storage exploration approach [5] analyses and
groups various data access requirements. Polyhedral models
have been used to analyse data dependencies between data
accesses that can be reused [6], to generate addresses for
off-chip data accesses [7], and to transform on-chip data
accesses to better exploit data locality [8]. These approaches,
while effective, rely on the conventional FPGA architectures.
The concept of runtime reconfiguration and its potential
benefits are missing from the proposed approaches. As an
example, the polyhedral-based compiler support in [8] targets
at Static Control Parts (SCoP) with static data accesses: the
computational kernels known to be efficient on existing FPGAs.
In this work, we introduce cycle-reconfigurable architectures
into the compiler support, and transform and optimise the target
applications to exploit cycle reconfigurability.

III. APPROACH OVERVIEW

Architecture Overview. A EURECA architecture enhances
conventional FPGA architectures with cycle-reconfigurable
EURECA modules. A EURECA architecture contains multiple
EURECA regions, with each region containing user logic and
a group of parallel memory blocks coupled with a EURECA
module. In a EURECA design, the EURECA modules in EU-
RECA regions are instantiated to provide cycle-reconfigurable
connections between memory blocks and duplicated data-paths,
while data-paths, Configuration Generators (CGs), and sched-
ulers are implemented with user logic on-chip. Within a clock
cycle, a EURECA design goes through four steps. (1) CGs
take runtime variables and generate runtime reconfigurations.
(2) A scheduler ensures the configurations to be applied will
not cause data access conflicts; (3) The configurations that
pass the scheduler are applied to the EURECA module; (4)
Memory data are read though the reconfigured connections,
and processed with connected data-paths in the same way as
non-cycle reconfigurable designs.

Compilation flow. The proposed approach starts from
C applications, and goes through kernel identification, re-
configuration scheduling, and circuit mapping to provide
optimised EURECA designs. The design flow targets at loop
kernels with irregular data accesses. (1) While irregular data
accesses without access conflicts can be efficiently optimised
and mapped to EURECA architectures, the data accesses
with access conflicts will lead to incorrect runtime circuit
configurations. We develop a novel approach based on multi-
party session types to derive reconfiguration scheduler from
rigorous communication protocols, which guarantees conflict-
free runtime reconfiguration. (2) The identified computation
kernels, the on-chip configuration generation modules, and the
configuration scheduling modules are connected in streaming
fashion to ensure each data-path, while being reconfigured
cycle by cycle, can generate one correct result per clock cycle.
Section VI presents how applications can be developed with
the proposed approach.

IV. CONFLICT-FREE SCHEDULING

When implemented in hardware, loop with irregular data
accesses is unrolled to access and process data in parallel.
Fig. 2 shows two example designs for irregular data accesses

with (a) fixed stride values and (b) unknown stride values.
In these two designs, a EURECA module is coupled with
a memory group with 4 memory blocks, and 4 data-paths
access data in the memory group in parallel. We define access
conflicts as the runtime states where two or more data-paths
access the same memory block at the same clock cycle. For a
EURECA design, this leads to more than one connections are
configured to connect to the same memory port, generating
incorrect results. For data accesses with fixed stride values,
conflict-free EURECA designs can be developed. For the
example in Fig. 2(a), the stride value is 1 (each inner loop
iteration increments the accessed location by 1). There will
not be conflicts as long as the number of accessed data is
less than the number of parallel memory blocks (4). For the
example in Fig. 2(b), the first and the last data-paths try to
access memory port at the same cycle, due to unknown stride
values. The approach presented in this section automatically
derives a scheduler to determine which runtime connections
can be established (i.e. which runtime configurations need to
be applied).
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Fig. 2: EURECA designs for irregular data accesses with (a) fixed
stride values and (b) unknown stride values.

Scheduling function. Our scheduler computes the con-
nections between input data-paths and output ports during
execution from the current input data. A schedule is the set of
edges in a bipartite graph between data-paths and ports. Given
the input data, our scheduler outputs an adjacency matrix
connecting the data-paths with the ports. A sample scheduling
function for a 2-data-path, 2-port configuration is given below.

void sched2(int idx0, int idx1, int* enabled)
{
enabled[0] = (!(((idx0&1)^0)))

|| (!(((idx1&1)^0)) && ((idx0&1)^0));
enabled[1] = (!(((idx0&1)^1)) && ((idx1&1)^1))

|| (!(((idx1&1)^1)));
}

The scheduling function takes as input idx0 and idx1,
the next addresses accessed by data-path 0 and 1 respectively,
and outputs a boolean array enabled. The enabled array is
indexed by the port number, and each element is a disjunction of
enable signal from each data-path. They represent the schedule
at each port, expressed as a static boolean expression computed
from the dynamic values of the input data-paths idx0 and
idx1, and the resulting boolean value indicates whether the
port should be enabled for the current set of inputs. The
expression !((idxn&1)^i) is true if port i is accessed by
for input data-path idxn. Suppose the inputs from idx0 and
idx1 access port 0 and port 1 respectively. As both inputs are
accessing different ports, there is no data access conflict, hence



both port 0 and port 1 are enabled. The resulting enabled
array should contain {1, 1} as shown below.

However, if both idx0 and idx1 are accessing port 0, and
since each port can only be used by a single data-path (and vice
versa) at any instant, this indicates a data access conflict. To
resolve the conflicts, we assign priorities to data-path and port
pairs. In our implementation, we assign the highest priority
to data-path/port pair (i, i), and lower priority for the next
data-path accessing the same port ((i + 1) mod N, i). Port
0 is accessed by both idx0 and idx1, and (idx0, 0) has
a higher priority than (idx1, 0), hence port 0 is enabled but
only for idx0. The resulting schedule is given below, and
since only port 0 is used, the enabled array contains {1,
0}.

port 0 (priority) port 1 (priority)
idx0 = 0 enabled 1 - 2
idx1 = 0 (conflict) 2 - 1
enabled 1 0

(A smaller number indicates higher priority)

Scheduler generation. The scheduling function above is
automatically generated, and also produces a corresponding pro-
tocol, specified in the protocol description language Scribble [3],
developed from the theory of multiparty session types [2]. We
use the protocol to verify the absence of data conflicts in our
scheduling function. In the protocol, we express a schedule as
a message-passing protocol for control messages sent between
data-paths and ports, modelled as a coherent global view of all
interactions (we call this global protocol). There are two types
of controlling messages, enable and disable. A data-path and a
port are connected if an enable message is sent between them.
If multiple enable messages are received by a port then there
is a scheduling error (conflict). The priorities of data-path-port
pairs are represented in the protocol, where pairs with lower
priorities are nested deeper in the nested branching decisions.

Through modelling the protocol in Scribble, we guarantee
that (1) no control message is mismatched (e.g. data-path to a
port which is not to be connected); (2) the lack of data conflicts
in the scheduling algorithm, by leveraging the well-formedness
property of Scribble protocols, where messages sent between
two participants in all well-formed Scribble protocols must be
unambiguous; and (3) the resulting valid protocol corresponds
to the scheduler code through transforming the global protocol
to endpoint protocols which are localised views of the protocol,
and each endpoint protocol describes the interactions at its
endpoint. The endpoint protocols can be used to examine the
control messages receivable by the endpoints which correspond
to the expressions in the enabled array in the sched2
function in the previous subsection.

V. CIRCUIT MODEL

Cycle-reconfigurable connections. EURECA designs make
use of streaming models to approximate the theoretical peak
performance at which each duplicated data-path generates one
result per clock cycle. For EURECA designs without access
conflicts, we focus on runtime reconfigurable connections
between data-paths and memory ports. We use large-scale
sorting as an example application, where two sorted arrays are
merged in parallel into a larger sorted array. The algorithm
detail can be found in [1]. As illustrated in Fig. 3(a), a
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Fig. 3: EURECA designs for (a) large-scale sorting (irregular accesses
with fixed stride values) and (b) SpMV (fully irregular). CG stands
for Configuration Generator.

EURECA design stores the two sorted arrays in memory blocks
configured as parallel FIFOs, which couple with EURECA
modules. Similar to the example in Fig. 2(a), the irregular
data accesses change the starting addresses every cycle, and
require runtime reconfiguration to enable correct processing in
connected data-paths.

In order to integrate runtime reconfiguration into the
streaming architectures, we use memory blocks coupled with
EURECA modules to implement the FIFOs in this example, and
implement CGs with user logic. As presented in Listing ??, the
runtime variables that determine the runtime connections (i.e.
starting address) in the next cycle are commit and the starting
address in the current cycle. The CG takes these runtime
variables and generates the configuration: it first computes
the starting address in the next cycle, and then generates
the configuration to implement that connection. As discussed
in [1], the EURECA module is designed to simplify the
configuration generation logic. For data accesses with fixed
stride, each data access shares the same access offset, and
thus can share the same runtime configuration. The update of
runtime configuration can happen at either the falling edge of
the current clock cycle or the rising edge of the next clock cycle,
to ensure reconfiguration, data access, and data processing can
be finished within the same cycle.

Configuration scheduling. The scheduler described in
Section IV takes access indices as input, and output enable
signals for runtime reconfiguration operations. In hardware,
the expressions to compute the enable signals are mapped to a
scheduler. For streaming architectures integrated with runtime
reconfigurable connections, the scheduler connects to enable
signals for each duplicated data-path and CG; for irregular
accesses with unknown stride values, each runtime connection
has a CG since the configuration cannot be shared. When access
conflicts occur, the data-paths and CGs with lower priority are
disabled in the current cycle, to prevent incorrect functionality.

In this work, we use SpMV as an example for the application
with access conflicts. The scheduler module takes indices of
the irregular data access operations (column) as input, and
outputs enable signals to replicated data-paths. As shown in
Fig. 3(b), column are buffered in the scheduler module. At
each cycle, the scheduler module reads in accessed location for
each data-path. Based on the assigned priority, access operations
without conflicts and with the highest priority for each memory
port are passed to the data-path and configuration generator.
These passed access operations (i.e. column values) enable
proper runtime reconfigurations to be generated and applied.
Moreover, these signals disable data-paths that do not have
access operations at the current cycle.



TABLE I: Benchmark application performance.

Large-scale Sorting Memcached SpMV
static initial [1] dynamic static initial [1] dynamic static initial [1] dynamic

slices (total) 8676 1174 1054 11763 3082 2684 3549 900 876
DSP 0 0 0 0 0 0 16 16 16
BRAM 16 16 16 8 8 8 8 8 8
EURECA module 0 1 1 0 1 1 0 1 1
critical-path delay (ns) 25.72 23.87 18.9 60.4 60.0 52.1 15.1 14.9 13.9
area1 8.23x 1.1x 1x 4.38x 1.15x 1x 4.05x 1.03x 1x
area-delay product 11.2x 1.39x 1x 5.08x 1.32x 1x 4.4x 1.1x 1x
throughput (per cycle) 16 sorted data 64 bytes 16 partial results

1 We compare the resource usage with the number of used slices (both logic slices and EURECA modules are included). A CLB
contains 4 slices, and a EURECA module consumes the same area as 154 slices.

VI. RESULTS

This section presents the performance of EURECA designs
developed with the proposed compiler support. To evaluate
the application performance, we develop reference designs
that implement the benchmark applications without EURECA
support. In the reference designs, the all-to-all connections
between duplicated data-paths and memory ports are statically
implemented with if-else expressions in Verilog HDL, and
mapped into user logic.

Experiment methodology. The experiment is based on a
prototype EURECA architecture layout developed with the
SMIC 130-nm technology, and a synthesis flow adapted from
VTR [9]. The prototype architecture is a 10.9 mm x 7.8 mm
chip with one EURECA region, which contains 704 CLBs, 32
BRAMs in 4 columns, 16 DSPs in 2 columns, and 1 EURECA
module. The EURECA module is coupled with 8 dual-port
BRAMs. Besides the large-scale sorting and SpMV discussed in
Section V, we develop Memcached with the proposed approach.
Details for Memcached can be found in [1].

The inputs to the proposed compilation flow include a C
program for the target application, as well as a EURECA
architecture file. The architecture file, captured in XML,
contains hardware details of EURECA modules in the target
architecture. EURECA design parallelism (the number of
duplicated data-paths in a EURECA design) is determined
by the number of parallel memory ports a EURECA module
can support. The design parallelism is fed into (1) scheduler
models to resolve access conflicts, (2) and a back-end compiler
(such as LLVM) to unroll the inner loop identified by polyhedral
analysis. The transformed C program contains identified inner
loops with irregular data accesses, and scheduler function to
handle access conflicts. EURECA-based Verilog modules are
developed based on the transformed C program.

Application performance. We present the application per-
formance in Table I. For each application, we compare the
performance of three designs. In the table, static indicates
static designs without cycle-reconfigurable modules, initial
indicates the manually developed cycle-reconfigurable designs
in [1], and proposed indicates cycle-reconfigurable designs
developed with the proposed compiler support, with correctness
guaranteed. Compared with static designs, the dynamic designs
reduce overall design area by up to 8.2 times and reduce area-
delay product by up to 11.2 times. Large-scale sorting achieves
the largest resource saving mainly due to it has relatively simple
data-paths, and thus the reduction in connection resource usage
leads to larger area saving.

The performance of the EURECA designs developed with
the proposed approach, as shown in Table I, is slightly better

than that of the manually developed EURECA designs. In
the initial designs, runtime configurations are generated
for each memory port, while with categorised data accesses,
the irregular data accesses with fixed stride can share the
same runtime reconfiguration. Besides assuring correctness,
this method reduces the area of CGs implemented in user
logic, and leads to up to 39% reduction in area-delay product.

VII. CONCLUSION AND DISCUSSION

This work proposes compiler support for EURECA-based
designs, to automate design process to identify, categorise,
and schedule runtime reconfiguration operations. Experimen-
tal results show large improvement in applications can be
achieved with correct functionality guaranteed. This work
demonstrates the potential for a high-level synthesis tool
that efficiently transforms complex high-level programs into
low-level parallel streaming circuits. A complete compiler
integrated with the proposed approach would (1) compile a wide
range of applications with and without irregular data accesses;
(2) generate optimised cycle-reconfigurable designs when
targeting EURECA architectures; (3) generate static designs
with constraints when targeting general FPGA architectures.
Future work includes polyhedral analysis to support automatic
detection of irregular data accesses, global scheduling for
design with multiple EURECA regions, and development of a
streaming-based compiler tool chain.
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