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CCSK is a reversible form of CCS which is causal, meaning that actions can be reversed 
if and only if each action caused by them has already been reversed; there is no control 
on whether or when a computation reverses. We propose an event structure semantics for 
CCSK. For this purpose we define a category of reversible bundle event structures, and use 
the causal subcategory to model CCSK. We then modify CCSK to control the reversibility 
with a rollback primitive, which reverses a specific action and all actions caused by it. To 
define the event structure semantics of rollback, we change our reversible bundle event 
structures by making the conflict relation asymmetric rather than symmetric, and we 
exploit their capacity for non-causal reversibility.

© 2021 Published by Elsevier Inc.

1. Introduction

Reversible process calculi have been studied in works such as [7,9,11,18,19,26]. One feature of such reversible processes 
compared to forward-only processes is their sensitivity to true concurrency distinctions [25]. For instance, using CCS nota-
tion, the processes a|b and a.b + b.a, which are respectively a parallel composition and a choice between two orderings of 
events, are equivalent under interleaving semantics; however in a reversible setting we can distinguish them by noting that 
a|b allows us to perform a followed by b and then to reverse a, which is impossible for a.b + b.a. This motivates us to use 
event structures [24] to formulate a truly concurrent semantics of a reversible process calculus.

Two reversible forms of CCS have been proposed, both using uncontrolled reversibility: RCCS [9] and CCSK [26]. RCCS 
creates separate memories to store past (executed) actions, what is known as dynamic reversibility, while CCSK annotates 
past actions with keys within the processes themselves, known as static reversibility. We formulate an event structure 
semantics for CCSK rather than RCCS, since the semantics for past and future actions can be defined in a similar manner, 
rather than having to encompass both processes and memories. We note that Lanese et al. [16,22] showed that RCCS and 
CCSK can be encoded in one another, meaning one can use their encoding in conjunction with our event structure semantics 
to obtain an event structure semantics for RCCS.

Event structures are a model of true concurrency and have been used for modelling forward-only process calculi [3,6,31]. 
Describing reversible processes as event structures gives us a simple representation of the causal relationships between ac-
tions and also yields equivalences between processes which generate isomorphic event structures. True concurrency in 
semantics is particularly important in reversible process calculi, as the order actions can reverse in depends on their causal 
relations rather than how the parallel actions interleave [25]. Knowing the causal relationships between actions in concur-
rent processes is also important when using causal-consistent debugging [20] to find bugs created by interactions between 
processes.
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Fig. 1. The event structure described in Example 1.1.

Cristescu et al. [8] used rigid families [4], related to event structures, to describe the semantics of Rπ [7]. However, 
their semantics requires a process to first reverse all actions to find the original process, map this process to a rigid family, 
and then apply each of the reversed memories in order to reach the current state of the process. Aubert and Cristescu [1]
used a similar approach to describe the semantics of RCCS processes without auto-concurrency, auto-conflict, or recursion 
as configuration structures. By contrast, we map a CCSK process (with auto-concurrency, auto-conflict, and recursion) with 
past actions directly to a (reversible) event structure in a strictly denotational fashion.

Reversible forms of prime [27], asymmetric [27], and general [29] event structures have already been defined, but the 
usual way of handling parallel composition of forward-only prime (PES) and asymmetric event structures (AES) [30] does 
not translate into a reversible setting, and general event structures are far more expressive than is necessary for modelling 
reversible CCSK. We also considered using a reversible variant of flow event structures [3], but found that the additional 
expressiveness of flow event structures was unnecessary, and in fact created problems when it came to defining a category 
of the forward-only flow event structures [5]. We therefore chose to use bundle event structures (BESs) [21].

BESs were created with the specific purpose of allowing the same event to have multiple conflicting causes, thereby 
making it possible to model parallel composition without creating multiple copies of events. They do this by associating 
events with bundles of conflicting events, X �→ e, where in order for event e to happen one of the events of X must have 
already happened.

This approach can be used for modelling cases such as Example 1.1 below, where an action a has multiple options for 
synchronisation, either of which would allow the process to continue with the action b. If we model each synchronisation 
or lack thereof as a separate event then we clearly need to let b have multiple possible causes, which we can accomplish 
using BESs, but not using PESs. Having multiple copies of events depending on which causes we use is not possible in a 
reversible PES, as we do not know when performing an event what will cause it to reverse. If in Example 1.1 instead (the 
event labelled) b can reverse only from configurations containing either a or τ , we can have a situation where we do not 
have a or τ in the configuration we want to add b to, and then we do not know whether to add the b that can reverse 
when a is present or the b that can reverse when τ is present. In a reversible setting, bundles therefore not only simplify 
our event structures, but become necessary when we have events causing each other to reverse.

Example 1.1 (Process represented as a BES). The CCS process a.b | a can be described by a BES with the events a, τ , a, b, the 
bundle {a, τ } �→ b, and the conflicts a � τ and a � τ as seen in Fig. 1 where a dashed line indicates conflict and connected 
arrows indicate a bundle. The process cannot be represented by a PES or AES without splitting some events into multiple 
events, due to b having multiple possible causes.

We therefore define a category of reversible BESs (RBESs) in Section 3. Since the reversibility allowed in CCSK (as in 
RCCS) is causal, meaning that actions can be reversed if and only if every action caused by them has already been reversed, 
we use the causal subcategory of RBESs for defining a denotational semantics of CCSK in Section 4.

Causal reversibility has the drawback of allowing a process to get into a loop doing and undoing the same action indefi-
nitely; there is no control on whether or when a computation reverses. We modify CCSK to control reversibility by adding 
the rollback introduced for roll-π in [17]. In Roll-CCSK every action receives a tag γ , and the process only reverses when 
reaching a roll γ primitive, upon which the action tagged with γ , together with all actions caused by it, are reversed. As 
in roll-π , the rollback in Roll-CCSK is maximally permissive, meaning that any subset of reached rollbacks may be executed, 
even if one of them rolls back the actions leading to another.

The operational semantics of rollback works somewhat differently in Roll-CCSK from roll-π , since roll-π has a set of 
memories describing past actions in addition to a π -calculus process, while CCSK has the past actions incorporated into the 
structure of the process, meaning that it is harder to know whether one has found all the actions necessary to reverse. Since 
roll-π is based on higher order-π , it can create recursion by sending processes. Roll-CCSK on the other hand has explicit 
recursion, and therefore needs to use bindings on tags to avoid ambiguity about which tag a roll is associated with.

As in roll-π , we also describe a more distributed semantics of rollback. This version of the semantics reverses each action 
marked for rollback individually, rather than performing the entire roll in one step. However, unlike roll-π , we mark all past 
actions in one step. We do this because propagating a marking of past actions would otherwise require the action being 
marked to be able to look at previous actions further back in the structure of the process to find markings it can propagate. 
In roll-π this is not an issue, since one has a set of parallel memories all at the same level, which can easily be compared 
to find out which order they are in. We describe both of these operational semantics of Roll-CCSK in Section 6.
2
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Fig. 2. Event structure and configuration system categories and the functors between them. The categories RBES and REBES are new to this work, along 
with the functors to and from them. While BESs and EBESs are not new to this work, the morphisms in the categories BES and EBES and the functors 
going to and from them are. The remaining categories and functors were defined in [15].

Rollback has also been defined for μKlaim, a tuple-based language with shared memory [13]. This was done similarly 
to roll-π , giving the locations of shared memories keys, which change when a process interacts with the location. Another 
variant of CCS with rollback, CCSroll was defined in [23]. CCSroll, like roll-π , has memories in parallel with the process and 
equips the process with an ordering of keys, which it uses to determine which actions have been caused by the action 
being rolled back. This makes the semantics less compositional than Roll-CCSK. The causal-consistent reversible debugger 
for Erlang, CauDEr [20], allows the user to roll back not only to a checkpoint, but to other past events such as receiving or 
sending a specific message.

Once a roll γ event has happened, we need to ensure that not only are the events caused by the γ -tagged action aγ able 
to reverse, but they cannot re-occur until the rollback is complete, at which point the roll γ event is reversed. This requires 
us to model asymmetric conflict between roll γ and events caused by aγ (apart from roll γ itself). Asymmetric conflict is 
allowed in extended BESs (EBESs) [21]. We define a category of reversible EBESs (REBESs) in Section 5 and use them to give 
an event structure semantics of rollback in Section 7. Note that we do not restrict ourselves to the causal subcategory of 
REBESs, since reversibility in Roll-CCSK is not necessarily causal: an action aγ tagged with γ is a cause of roll γ , but we 
want aγ to reverse before roll γ does.

Outline. Section 2 recalls CCSK. Section 3 describes (reversible) bundle event structures and their categories. Section 4 defines 
the event structure semantics of CCSK. Section 5 describes (reversible) extended bundle event structures. Section 6 defines 
Roll-CCSK, a version of CCSK where reversibility is controlled by rollback, and its operational semantics, and Section 7 uses 
reversible extended bundle event structures to describe the event structure semantics of Roll-CCSK.

Changes from conference version [14].

• We include proofs of all results.
• Sections 3 and 5 include categorical definitions of the forward-only bundle and extended bundle event structures.
• Sections 3 and 5 include functors between the newly introduced categories and their forward-only counterparts and 

between RBES and REBES and other categories of reversible event structures introduced in [15] creating the categories 
of reversible event structures and functors between them shown in Fig. 2.

• Section 2 includes Proposition 4.8 showing that our ordering on event structures is a complete partial order and Lem-
mas 4.9, 4.10, 4.11, and 4.12 showing that the operations we define on the event structures are monotonic.

• Section 5 includes full definitions of REBES-morphisms, a functor from REBES to CS, and causal and cause-respecting 
REBESs. It also includes characterisations of products and coproducts of REBESs.

• We correct Definitions 6.1 and 6.2 so that they deal with keys rather than tags, as tags are not necessarily unique. As a 
consequence we change rollbacks to be performed on tags after they find their associated action and therefore do not 
need the concept of bound tags.

• We add a more distributed small-step variant of the rollback semantics to Section 6. This semantics marks all the 
actions needing to be reversed and afterwards reverses them individually, rather than reversing them all at once when 
the rollback is performed. While the marked actions are being reversed, subprocesses not preceded by marked actions 
can continue to perform forward actions.

• Section 7 includes intermediate results Lemmas 7.17 and 7.18.
• We have added Examples 3.5, 3.22, 3.26, 6.3, 6.7, 6.14, 7.2, and 7.5.
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Table 1
Semantics of CCSK [28].

std(P )

α.P
α[n]−−→ α[n].P

P
μ[m]−−−→ P ′ m �= n

α[n].P μ[m]−−−→ α[n].P ′
P ≡ Q

μ[n]−−→ Q ′ ≡ P ′

P
μ[n]−−→ P ′

P0
μ[n]−−→ P ′

0 fsh[n](P1)

P0 | P1
μ[n]−−→ P ′

0 | P1

P0
α[n]−−→ P ′

0 P1
α[n]−−→ P ′

1

P0 | P1
τ [n]−−→ P ′

0 | P ′
1

P0
μ[n]−−→ P ′

0 std(P1)

P0 + P1
μ[n]−−→ P ′

0 + P1

P
μ[n]−−→ P ′ μ,μ /∈ A

P \ A
μ[n]−−→ P ′ \ A

P
μ[n]−−→ P ′

P [ f ] f (μ)[n]−−−−→ P ′[ f ]

std(P )

α[n].P
α[n]

α.P

P
μ[m]

P ′ m �= n

α[n].P
μ[m]

α[n].P ′

P ≡ Q
μ[n]

Q ′ ≡ P ′

P
μ[n]

P ′

P0

μ[n]
P ′

0 fsh[n](P1)

P0 | P1

μ[n]
P ′

0 | P1

P0

α[n]
P ′

0 P1

α[n]
P ′

1

P0 | P1

τ [n]
P ′

0 | P ′
1

P0

μ[n]
P ′

0 std(P1)

P0 + P1

μ[n]
P ′

0 + P1

P
μ[n]

P ′ μ,μ /∈ A

P \ A
μ[n]

P ′ \ A

P
μ[n]

P ′

P [ f ]
f (μ)[n]

P ′[ f ]

2. CCSK

CCSK was defined in [26], and distinguishes itself from most reversible process calculi by retaining the structure of the 
process when actions are performed, and annotating past actions with keys instead of generating memories. This means 
we get a.P | a.Q

τ [n]−−→ a[n].P | a[n].Q , with the shared key n denoting that a and a have previously communicated, and we 
therefore cannot reverse one without reversing the other.

We call the set of action of CCSK A and let a, b, c range over A, α, β range over A ∪A, and μ range over A ∪A∪ {τ }. 
We let K be an infinite set of communication keys and let m, n range over K.

CCSK then has the following syntax, very similar to CCS:

P ::= α.P | α[n].P | P0 + P1 | P0|P1 | P \ A | P [ f ]
Here P \ A restricts communication on actions in A ∪ A and P [ f ] applies a function f :A →A to the labels of transitions 

performed by P .
Table 1 shows the forwards rules of the operational semantics of CCSK. As CCSK is causal, the reverse rules can be derived 

from these. We use � to denote a reverse action, std(P ) to denote that P is a standard process, meaning it contains no 
past actions, keys(P ) to denote the set of keys used in P , and fsh[n](P ) to denote that the key n is fresh for P . We use �
to denote that an action may be forwards or reverse. The rules are slightly reformulated compared to [26] in that we use 
structural congruence ≡. The rules for structural congruence are:

P | 0 ≡ P P0 | P1 ≡ P1 | P0 P0 | (P1 | P2) ≡ (P0 | P1) | P2
P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2

We extend CCSK with recursion as follows. We add process constants A 
〈
b̃
〉
, together with definitions A(ã) = P A , where 

P A is a standard process and ã is a tuple containing the actions of P A . This leads us to expand our definition of structural 
congruence with A 

〈
b̃
〉
≡ P A{b̃/ã}.

Definition 2.1 (Reachability). A process P is reachable if there exists a standard process Q such that Q �∗ P , and forwards-
reachable if there exists a standard process Q such that Q →∗ P .

Since CCSK is causal, all reachable processes are forwards-reachable ([26], Proposition 5.15; the proof still applies with 
recursion added).

3. Reversible bundle event structures

In this section we define the reversible bundle event structures which we intend to use for defining denotational true 
concurrency semantics of CCSK in Section 4. For this we want a categorical definition, since we can use morphisms to 
determine relationships between the event structures generated by different processes and use products and coproducts 
4
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Fig. 3. The configurations of the BESs discussed in Example 3.5.

to define parallel composition and choice operators. Forward-only bundle event structures were introduced by [21], but 
have not yet been defined categorically. We therefore start by giving a categorical formulation of bundle event structures in 
Section 3.1 before moving on to reversible bundle event structures in Section 3.2.

3.1. Bundle event structures

Bundle event structures (BES) (Definition 3.1) extend prime event structures by allowing multiple possible causes for the 
same event. They do this by replacing the causal relation with a bundle set, so that if X �→ e then one of the events in X
must have happened before e can happen. This gives us the configurations described in Definition 3.3.

Definition 3.1 (Bundle Event Structure [21]). A bundle event structure (BES) is a triple E = (E , �→, �) where:

1. E is the set of events;
2. � ⊆ E × E is the irreflexive and symmetric conflict relation;
3. �→ ⊆ 2E × E is the bundle set, satisfying X �→ e ⇒ ∀e1, e2 ∈ X .(e1 �= e2 ⇒ e1 � e2).

BESs allow events to have infinitely many causes, as there is no limit on the number of bundles per event, which enables 
them to model certain behaviours that general event structures cannot. We therefore define a subcategory of finitely caused 
bundle event structures in Definition 3.2, which can be modelled by general event structures.

Definition 3.2 (Finitely Caused Bundle Event Structure). A finitely caused BES (FCBES) is a BES E = (E , �→, �) where for any 
e ∈ E , {X ⊆ E | X �→ e} is finite.

Definition 3.3 (BES configuration [21]). Given a BES E = (E , �→, �), a configuration of E is a set X ⊆ E such that:

1. X is conflict-free, that is, no events e, e′ ∈ X exist such that e � e′;
2. there exists a sequence e1, . . . , en (n ≥ 0), such that X = {e1, . . . , en} and for all i, 1 ≤ i ≤ n, if Y �→ ei+1 then 

{e1, . . . , ei} ∩ Y �= ∅.

A category of BESs has not, to our knowledge, been defined, and so we define a BES morphism in Definition 3.4. We 
want to say that the events of E0 can behave the same way as those they synchronise with in E1, but the bundle sets mean 
this is somewhat harder to describe than in other event structures. If we said that f (X) �→ f (e) implies X �→ e, we would 
be requiring X ′ �→ e for every X ′ = X ∪ X ′′ where e ∈ X ′′ ⇒ f (e) = ⊥, and by extension e � e′ if f (e) = f (e′) = ⊥. As this is 
not what we want, we instead adopt the constraint seen in Definition 3.4.

Definition 3.4 (BES morphism). Given BESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), a BES morphism from E0 to E1 is a 
partial function f : E0 → E1 such that for all e, e′ ∈ E0:

1. if f (e) �1 f (e′) then e �0 e′;
2. if f (e) = f (e′) �= ⊥ and e �= e′ then e �0 e′;
3. for X1 ⊆ E1 if X1 �→1 f (e) then there exists X0 ⊆ E0 such that X0 �→0 e, f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) �= ⊥.

Example 3.5 (BES morphism). Consider the two BESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1) where E0 = {a, b, c}, a � c and 
{a, c} �→ b, and E1 = {a′, b′} and {a′} �→ b′ , with the configurations seen in Fig. 3, where an arrow from X to X ′ indicates 
that X contains an event from every bundle associated with the events in X ′ \ X and X ∪ X ′ is conflict-free.

We can define morphisms f from E0 to E1 and f ′ from E1 to E0 as

f (e) =
{

a′ if e ∈ {a, c}
b′ if e = b

f ′(e) =
{

a if e = a′

b if e = b′
5
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We show that BES morphisms preserve configurations.

Proposition 3.6. Given BESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1) and a morphism f : E0 → E1 , if X ⊆ E0 is a configuration of 
E0 , then f (X) is a configuration of E1 .

Proof. We show that f (X) fulfils the conditions of Definition 3.3:

1. For any e, e′ ∈ X0, if f (e) �1 f (e′), then e �0 e′ , and therefore if X0 is conflict-free then f (X0) is conflict-free.
2. There exists a sequence e1, . . . , en (n ≥ 0), such that X0 = {e1, . . . , en} and for all i, 1 ≤ i ≤ n, if Y �→ ei+1 then 

{e1, . . . , ei} ∩ Y �= ∅. Obviously f (X0) = { f (e1), . . . , f (e0)}, and for all i, if Y1 �→ f (ei+1), then there exists Y0 such 
that Y0 �→ ei+1, f (Y0) ⊆ Y1, and if e′ ∈ Y0, then f (e′) �= ⊥. Since Y0 ∩ {e1, . . . , ei} �= ∅, we obviously get that 
Y1 ∩ { f (e1), . . . , f (ei)} �= ∅. �

Proposition 3.7. BES consisting of BESs and BES morphisms is a category.

Proof. Composition of partial functions is associative and f (e) = e functions as an identity arrow, and so we need only 
show that the morphisms are composable:

If E0 = (E0, �→0, �0), E1 = (E1, �→1, �1), and E2 = (E2, �→2, �2) are BESs and f : E0 → E1 and g : E1 → E2 are morphisms, 
we show that f ◦ g : E0 → E2 is also a morphism:

1. If g( f (e)) �2 g( f (e′)) then f (e) �1 f (e′), and therefore e �0 e′ .
2. If g( f (e)) = g( f (e′)) and e �= e′ , then either f (e) = f (e′), in which case e �0 e′ , or f (e) �= f (e′), in which case f (e) �1

f (e′), and therefore e �0 e′ .
3. If X2 �→2 g( f (e)) then there exist X1 ⊆ E1 and X0 ⊆ E0 such that X1 �→1 f (e), X0 �→0 e, g(X1) ⊆ X2, f (X0) ⊆ X1

and if e1 ∈ X1 then g(e1) �= ⊥ and if e0 ∈ X0 then f (e0) �= ⊥. This means that g( f (X0)) ⊆ X2, and if e0 ∈ X0 then 
g( f (e0)) �= ⊥. �

We also construct a product in this category in Definition 3.8. Having products in our categories is useful for defining 
parallel composition in our semantics.

Definition 3.8 (BES product). Given BESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we construct E0 × E1 = (E , �→, �) with 
projections π0, π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. for (e0, e1) ∈ E , πi(e0, e1) = ei ;
3. for any e ∈ E , X ⊆ E , X �→ e iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→ πi(e) and X = {e′ ∈ E | πi(e′) ∈ Xi};
4. for any e, e′ ∈ E , e � e′ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e′), or πi(e) = πi(e′) �= ⊥ and π1−i(e) �= π1−i(e′).

Example 3.9 (Product). Consider the BESs E0 with events a, b and E1 with event c such that {a} �→ b. Then E0 × E1 has 
the bundles {(a, ∗), (a, c), } �→ (b, ∗) and {(a, ∗), (a, c), } �→ (b, c) and conflict (a, ∗) � (a, c), (b, ∗) � (b, c), (∗, c) � (a, c), (∗, c) �
(b, c), and (a, c) � (b, c).

Proposition 3.10. Given BESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we have that E0 × E1 = (E , �→, �) is their product in the 
category BES.

Proof. We define f as f (e) = ( f0(e), f1(e)) and prove that f , π0, and π1 are morphisms in Appendix B.1. �
Proposition 3.11. Given FCBESs E0 and E1 , we have that E0 × E1 is a FCBES.

Proof. We say that E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1).
For any (e0, e1) ∈ E , clearly {X ⊆ E | X �→ (e0, e1)} = {{e′ ∈ E | π0(e′) ∈ X0} | X0 �→0 e0} ∪{{e′ ∈ E | π1(e′) ∈ X1} | X1 �→1 e1}, 

which is finite because {X0 | X0 �→0 e0} and {X1 | X1 �→1 e1} are finite. �
We construct a coproduct of BESs in Definition 3.12. We will later be able to use the coproducts in our categories when 

modelling choices in CCSK.

Definition 3.12 (BES coproduct). Given BESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we construct E0 + E1 = (E , �→, �) with 
injections ι0, ι1 where:
6
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b

a

c

∅

{a} {b} {c}

{a,b} {b, c}

Fig. 4. The configurations of the RBES described in Example 3.17.

• E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1};
• for e ∈ E j , ι j(e) = ( j, e) for j ∈ {0, 1};
• X �→ ( j, e) iff for all ( j′, e′) ∈ X , j = j′ and ι j(X) �→ j e;
• ( j, e) � ( j′, e′) iff j �= j′ or e � j e′ .

Proposition 3.13. Given BESs E0 and E1 , we have that E0 + E1 is their coproduct in the category BES.

Proof. We define f as f ( j, e) = f j(e) and prove that f , ι0, and ι1 are morphisms in Appendix B.2. �
Proposition 3.14. Given FCBESs E0 and E1 , we have that E0 + E1 is a FCBES.

Proof. Follows straightforwardly from Definitions 3.2 and 3.12. �
3.2. Reversible bundle event structures

We define reversible bundle structures (RBES) by extending the bundle relation to map to reverse events, denoted e , and 
adding a prevention relation, such that if e � e′ then e′ cannot be reversed from configurations containing e. We use e∗ to 
denote either e or e.

Definition 3.15 (Reversible Bundle Event Structure). An RBES is a 5-tuple E = (E, F , �→, �, �) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the conflict relation, � ⊆ E × E , is symmetric and irreflexive;
4. the bundle set, �→ ⊆ 2E × (E ∪ F ), satisfies X �→ e∗ ⇒ ∀e1, e2 ∈ X .e1 �= e2 ⇒ e1 � e2 and for all e ∈ F , {e} �→ e;
5. � ⊆ E × F is the prevention relation.

Definition 3.16 (Finitely Caused Reversible Bundle Event Structure). A finitely caused RBES (FCRBES) is an RBES E = (E , F , �→, �
, �) where for any e∗ ∈ E ∪ F , {X ⊆ E | X �→ e∗} is finite.

Example 3.17 shows the configurations of an RBES. The configuration {b, c} is reachable despite b being required for c to 
happen, and c being a possible cause of b. In future examples we will leave out bundles on the form {e} �→ e, since they 
can be assumed to exist for any e ∈ F .

Example 3.17 (RBES). An RBES E = (E , F , �→, �, �) where E = {a, b, c}, F = {a, b}, a � c, {a, c} �→ b, {b} �→ c {a} �→ a, {b} �→ a, 
and {b} �→ b, has the configurations seen in Fig. 4 where we use the dotted arrow to indicate a reverse bundle.

Once again, in order to get a categorical definition of RBESs, we define a morphism in Definition 3.18. It is very similar 
to Definition 3.4, and treats prevention in the same way as conflict.

Definition 3.18 (RBES morphism). Given RBESs E0 = (E0, F0, �→0, �0, �0) and E1 = (E1, F1, �→1, �1, �1), an RBES morphism 
from E0 to E1 is a partial function f : E0 → E1 such that f (F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f (e) �1 f (e′) then e �0 e′;
2. if f (e) = f (e′) �= ⊥ and e �= e′ then e �0 e′;
3. for X1 ⊆ E1 if X1 �→1 f (e)∗ then there exists X0 ⊆ E0 such that X0 �→0 e∗ , f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) �= ⊥;
4. if f (e) �1 f (e′) then e �0 e′ .

Proposition 3.19. RBES consisting of RBESs and RBES morphisms is a category.

Proof. Composition of partial functions is associative, and f (e) = e functions as an identity arrow, and the morphisms are 
obviously composable. �
7
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∅

{a1} {b1} {c1}

{a1,b1} {b1, c1}

E1

∅

{a0}

E0

Fig. 5. The configurations of the event structures discussed in Example 3.22.

As we did for BES, we construct a product of RBESs in Definition 3.20.

Definition 3.20 (RBES product). Given RBESs E0 = (E0, F0, �→0, �0, �0) and E1 = (E1, F1, �→1, �1, �1), we construct E0 × E1 =
(E , F , �→, �, �) with projections π0, π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. F = F0 ×∗ F1 = {(e, ∗) | e ∈ F0} ∪ {(∗, e) | e ∈ F1} ∪ {(e, e′) | e ∈ F0 and e′ ∈ F1};
3. for (e0, e1) ∈ E , πi(e0, e1) = ei ;
4. for any e∗ ∈ E ∪ F , X ⊆ E , X �→ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→ πi(e)∗ and X = {e′ ∈ E | πi(e′) ∈

Xi};
5. for any e, e′ ∈ E , e � e′ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e′), or πi(e) = πi(e′) �= ⊥ and π1−i(e) �= π1−i(e′);
6. for any e ∈ E , e′ ∈ F , e � e′ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e′).

Proposition 3.21. Given RBESs E0 = (E0, F0, �→0, �0, �0) and E1 = (E1, F1, �→1, �1, �1), we have that E0 × E1 is their product in 
the category RBES.

Proof. Similar to the proof of Proposition 3.10. �
Example 3.22. Consider the RBESs E0 = (E0, F0, �→0, �0, �0) and E1 = (E1, F1, �→1, �1, �1) where E0 = F0 = {a0} and E1 =
{a1, b1, c1}, F1 = {a1, b1}, a1 �1 c1, {a1, c1} �→1 b1, and {c1} �→1 b1, with the configurations seen in Fig. 5.

Then E0 × E1 = (E , F , �→, �, �) where

E = {(a0,∗), (a0,a1), (a0,b1), (a0, c1), (∗,a1), (∗,b1), (∗, c1)}
F = {(a0,∗), (a0,a1), (a0,b1), (∗,a1), (∗,b1)}
(a0,a1) � (a0,b1) (a0,b1) � (a0, c1)

(a0,a1) � (a0, c1) (a0,a1) � (a0,∗)

(a0,b1) � (a0,∗) (a0, c1) � (a0,∗)

(a0,a1) � (∗,a1) (a0,b1) � (∗,b1)

(a0, c1) � (∗, c1) (a0,a1) � (a0, c1)

(∗,a1) � (∗, c1) (a0,a1) � (∗, c1)

(∗,a1) � (a0, c1)

{(a0,a1), (a0, c1), (∗,a1), (∗, c1)} �→ (a0,b1) {(a0, c1), (∗, c1)} �→ (∗,b1)

{(a0,a1), (a0, c1), (∗,a1), (∗, c1)} �→ (∗,b1) {(a0, c1), (∗, c1)} �→ (a0,b1)

Proposition 3.23. Given FCRBESs E0 and E1 , we have that E0 × E1 is a FCRBES.

Proof. Similar to the proof of Proposition 3.11. �
Definition 3.24 (RBES coproduct). Given RBESs E0 = (E0, F0, �→0, �0, �0) and E1 = (E1, F1, �→1, �1, �1), we construct E0 +
E1 = (E , F , �→, �, �) with injections ι0, ι1 where:

• E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1}
• F = {(0, e) | e ∈ F0} ∪ {(1, e) | e ∈ F1}
• for e ∈ E j , ι j(e) = ( j, e) for j ∈ {0, 1}
• X �→ ( j, e)∗ iff for all ( j′, e′) ∈ X , j = j′ and ι j(X) �→ j e∗
• ( j, e) � ( j′, e′) iff j �= j′ or e � j e′
• ( j, e) � ( j′, e′) iff j �= j′ or e � j e′
8
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∅

{(1,a1)} {(1,b1)} {(1, c1)}

{(1,a1), (1,b1)} {(1,b1), (1, c1)}

{(0,a0)}

Fig. 6. The configurations of the RBES discussed in Example 3.26.

Proposition 3.25. Given RBESs E0 and E1 , we have that E0 + E1 is their coproduct in the category RBES.

Proof. Similar to the BES coproduct (Proposition 3.13). �
Example 3.26. Consider again the RBESs E0 and E1 from Example 3.22. We can also find E0 + E1 = (E , F , �→, �, �) where

E = {(0,a0), (0,b0), (1,a1), (1,b1), (1, c1)}
F = {(0,a0), (0,b0), (1,a1), (1,b1)}
(1,a1) � (1, c1)

{(0,a0)} �→ (0,b0)

{(1,a1), (1, c1)} �→ (1,b1)

{(1, c1)} �→ (1,b1)

(0,b0) � (0,a0)

with the configurations seen in Fig. 6.

Proposition 3.27. Given FCRBESs E0 and E1 , we have that E0 + E1 is a FCRBES.

Proof. Follows straightforwardly from Definitions 3.16 and 3.24. �
We want to model RBESs as configuration systems (CSs), and therefore define a functor from one category to the other 

in Definition 3.29. A CS consists of a set of events, some of which are reversible, configurations of these events, and labelled 
transitions between them, as described in Definition 3.28. We will later use the CSs corresponding to our event structure 
semantics to describe the operational correspondence between our event structure semantics and the operational semantics 
of CCSK.

Definition 3.28 (Configuration system [27]). A configuration system (CS) is a quadruple C = (E , F , C, →) where E is a set of 
events, F ⊆ E is a set of reversible events, C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is a labelled transition 
relation such that if X

A∪B−−→ Y then:

• A ∩ X = ∅; B ⊆ X ∩ F ; Y = (X \ B) ∪ A;

• and for all A′ ⊆ A and B ′ ⊆ B , we have X
A′∪B ′
−−−→ Z

(A\A′)∪(B\B ′)−−−−−−−−→ Y , meaning Z = (X \ B ′) ∪ A′ ∈ C.

Definition 3.29 (From RBES to CS). The functor Cbr : RBES → CS is defined as:

1. Cbr((E , F , �→, �, �)) = (E , F , C, →) where
(a) X ∈ C if X is conflict-free;

(b) for X, Y ∈ C, A ⊆ E , and B ⊆ F , there exists a transition X
A∪B−−→ Y if

i. Y = (X \ B) ∪ A;
ii. X ∩ A = ∅;

iii. B ⊆ X ;
iv. X ∪ A is conflict-free;
v. for all e ∈ B , if e′ � e then e′ /∈ X ∪ A;

vi. for all e ∈ A and X ′ ⊆ E , if X ′ �→ e then X ′ ∩ (X \ B) �= ∅;
vii. for all e ∈ B and X ′ ⊆ E , if X ′ �→ e then X ′ ∩ (X \ (B \ {e})) �= ∅;

2. Cbr( f ) = f .

Proposition 3.30. Cbr is a functor from RBES to CS.

Proof. The definition of a CS morphism and proof can be seen in Appendix B.3. �

9
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We define cause-respecting and causal variants of RBES in Definition 3.31. In a cause-respecting RPES events cannot 
reverse if they have caused a subsequent event and in a causal RPES events can reverse if and only if they have not caused 
a subsequent event. We also define the categories crRBES and CRBES, consisting of respectively cause-respecting RBESs and 
causal RBESs and the morphisms between them.

Definition 3.31 (cause-respecting and causal RBES). We say that E = (E , F , �→, �, �) is a cause-respecting RBES (crRBES) if 
whenever X �→ e and e′ ∈ X ∩ F , then e � e′ .

We say that E = (E , F , �→, �, �) is a causal RBES (CRBES) if (1) if e � e′ then either e � e′ or there exists an X ⊆ E such 
that X �→ e and e′ ∈ X , (2) if X �→ e and e′ ∈ X ∩ F , then e � e′ , and (3) if X �→ e then e ∈ X .

Proposition 3.32. Given a crRBES, E = (E , F , �→, �, �) with a corresponding CS Crb(E) = (E , F , C, →), any reachable C ∈ C is 
forwards-reachable.

Proof. There exists a trace ∅ 
{e∗

0}−−→ C0
{e∗

1}−−→ C1 . . .
{e∗

n}−−→ Cn where Cn = C . Clearly e∗
0 is a forward event e0, and C0 is forwards-

reachable, and we will show that if C j is forwards-reachable for 0 ≤ j ≤ i, then Ci+1 is forwards-reachable.
If e∗

i+1 is a forwards event, then obviously Ci+1 is forwards-reachable.
If e∗

i+1 = ei , then Ci+1 = Ci−1, which is obviously forwards-reachable.
If e∗

i+1 = e j for some 0 ≤ j < i, then for all 0 ≤ j′ ≤ i, since e j′ � �e j , there does not exist X ⊆ E such that e j ∈ X and 

X �→ e j′ . This means ∅ 
{e∗

0}−−→ C0
{e∗

1}−−→ C1 . . .
{e∗

j−1}−−−→ C j−1

{e∗
j+1}−−−→ C j+1 \ {e j} . . .

{e∗
i }−−→ Ci+1. �

Proposition 3.33.

1. If E = (E , F , �→, �, �) is a crRBES and Cbr(E) = (E , F , C, →) then whenever X ∈ C is a reachable configuration and X
B−→ Y , 

there exists a transition Y B−→ X.

2. If E = (E , F , �→, �, �) is a CRBES and Cbr(E) = (E , F , C, →) then whenever X ∈ C, X
A∪B−−→ Y and A ∪ B ⊆ F , there exists a 

transition Y
B∪A−−→ X.

Proof. 1. By Proposition 3.32, X is forwards reachable, meaning for every e ∈ X , if X ′ �→ e then there exists e′ such that 
X ′ ∩ X = {e′}. For each eb ∈ B , if Xb �→ eb and Xb ∩ X = {e′

b} then either e′
b /∈ F or eb � e′

b , meaning e′
b /∈ B , and therefore 

clearly Y
B−→ X .

2. For any forwards-reachable configuration X ∈ C and A, B ⊆ F , if X
A∪B−−→ (X ∪ A) \ B then (X ∪ A) \ B 

B∪A−−→ X according 
to Definition 3.29:

i to iv follow from X
A∪B−−→ (X ∪ A) \ B being a transition.

v. For all e ∈ A and e′ ∈ E , if e′ � e, then either e′ � e, or there exists X ′ ⊆ E such that X ′ �→ e′ and e ∈ X ′ .
If e′ � e, then, as X ∪ A is conflict-free, e′ /∈ X ∪ A.
If there exists X ′ ⊆ E such that X ′ �→ e′ and e ∈ X ′ then for all e′′inX ′ \ {e} we know e′′ � e, meaning e′′ /∈ X ∪ A. This 

means X ∩ X ′ = ∅, and therefore for all X ′′ ⊆ X , X ′′ e′
�−→, and consequently e′ /∈ X ∪ A.

vi. For all e ∈ B and X ′ ⊆ E , if X ′ �→ e, then, since X is forwards-reachable, X ′ ∩ X �= ∅. If X ′ ∩ X \ B = ∅, then there 

exists e′ ∈ X ′ ∩ B . But this means e � e′ , conflicting with X
A∪B−−→ (X ∪ A) \ B .

vii. For all e ∈ A and X ′ ⊆ E , if X ′ �→ e, then e ∈ X ′ . �
We define functors between BES and RBES, and show that they form an adjunction, meaning that applying first �b

going from RBES to BES and then Pb going from BES to RBES to an RBES always yields an under-estimation of the original, 
in that it is the original with all actions made irreversible. We shall rely on the following characterisation of adjunctions, 
based on [2, Definition 9.1].

Definition 3.34 (Adjunction). Let C and D be categories, and let F : D → C and G : C → D be functors. Then F is a left adjoint
of G , F � G , if there exists a natural transformation η : ID → F ◦ G (the unit) such that for any c ∈ C, d ∈ D and morphism 
g : d → G(c) there is a unique morphism f : F (d) → c such that g = ηd ◦ G( f ), where ηd is the component of η at d.

Definition 3.35 (BES to RBES). The functor Pb : BES → RBES is defined as:

1. Pb((E , �→, �)) = (E, ∅, �→, �, ∅ × ∅);
2. Pb( f ) = f .
10
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Definition 3.36 (RBES to BES). The functor �b : RBES → BES is defined as:

1. �b((E , F , �→, �, �)) = (E, �→ ∩(E2 × E), �);
2. �b( f ) = f .

Proposition 3.37. Pb � �b.

Proof. For any RBES E = (E , F , �→, �, �), clearly Pb(�b(E)) = (E, ∅, �, �→E , ∅ × ∅) with �→E=�→ ∩(E2 × E), and we define 
η : Pb(�b(E)) → E such that for all e ∈ E η(e) = e, and prove that it is an RBES morphism according to Definition 3.18

1. Pb and �b do not change conflict.
2. If f (e) = f (e′) then e = e′ .
3. This means f (e)∗ = f (e), and clearly if X �→E f (e), then X = f (X) �→ e.
4. There are no e′ ∈ ∅.

We then show that given a BES EA = (E A, �→A, �A), an RBES EB = (E B , F B , �→B , �B , �B), and an RBES morphism g :
P p(A) → B , f : A → �p(B) is a BES morphism according to Definition 3.4:

1. Pb and �b do not change conflict.
2. If f (e) = f (e′) then e = e′ .
3. P p and �p do not affect �→AE or �→B E . �

We also wish to relate RBESs to previously defined reversible event structures as shown in Fig. 2 in Section 1, reversible 
prime event structures (RPESs) [27] and reversible stable general event structures (SRESs) [29], so we define functors from
RPES to RBES and from FCRBES to SRES in Appendix A.

Since our motivation for defining RBESs was modelling reversible processes, we need to be able to label our events with 
a corresponding action from a process. For this we use a labelled RBES (LRBES).

Definition 3.38 (Labelled Reversible Bundle Event Structure). A labelled reversible bundle event structure E = (E , F , �→, �
, �, λ, Act) consists of an RBES (E , F , �→, �, �), a set of labels Act, and a surjective labelling function λ : E → Act.

Definition 3.39 (LRBES morphism). Let E0 = (E0, F0, �→0, �0, �0, λ0, Act0) and E1 = (E1, F1, �→1, �1, �1, λ1, Act1) be LRBESs. 
An LRBES morphism f : E0 → E1 is a partial function f : E0 → E1 such that f : (E0, F0, �→0, �0, �0) → (E1, F1, �→1, �1, �1)

is an RBES morphism and for all e ∈ E0, either f (e) = ⊥ or λ0(e) = λ1( f (e)).

4. Event structure semantics of CCSK

Having defined RBESs, we will now use them to describe the semantics of CCSK. Unlike the event structure semantics 
of CCS [3,31], our semantics will generate both an event structure and an initial configuration containing all the events 
corresponding to past actions. This means that for any CCSK processes P and P ′ , if P → P ′ then P and P ′ will be described 
by the same, or at least isomorphic, event structures with different initial states.

First we define the operators we will use in the semantics, particularly restriction, parallel composition, choice, and 
action prefixes. Restriction is done by simply removing any events associated with the restricted action.

Definition 4.1 (Restriction). Given an LRBES E = (E , F , �→, �, �, λ, Act), restricting E to E ′ ⊆ E creates E � E ′ = (E ′, F ′, �→′, �′
, �′, λ′, Act′) where:

1. F ′ = F ∩ E ′;
2. �→′ = �→ ∩(P(E ′) × (E ′ ∪ F ′));
3. �′ = � ∩(E ′ × E ′);

4. �′ = � ∩ (E ′ × F ′);
5. λ′ = λ �E ′ ;
6. Act = ran(λ′).

Parallel composition uses the product of RBESs, labels any event corresponding to a synchronisation τ , and removes any 
invalid events describing an impossible synchronisation.

Definition 4.2 (Parallel). Given two LRBESs E0 = (E0, F0, �→0, �0, �0, λ0, Act0) and E1 = (E1, F1, �→1, �1, �1, λ1, Act1), their 
parallel composition is E0||E1 = (E , F , �→, �, �, λ, Act) � {e | λ(e) �= 0} where:

1. (E , F , �→, �, �) = (E0, F0, �→0, �0, �0) × (E1, F1, �→1, �1, �1)
11
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2.

λ(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ0(e0) if e = (e0,∗)

λ1(e1) if e = (∗, e1)

τ if e = (e0, e1) and λ0(e0) = λ1(e1)

0 if e = (e0, e1) and λ0(e0) �= λ1(e1)

3. Act = Act0 ∪ Act1 ∪ {0, τ }

Choice, which act as a coproduct of LRBESs, simply uses the coproduct of RBESs, and defines the labels as expected.

Definition 4.3 (Choice). Given LRBESs E0 = (E0, F0, �→0, �0, �0, λ0, Act0) and E1 = (E1, F1, �→1, �1, �1, λ1, Act1), the choice 
between them is E0 + E1 = (E , F , �→, �, �, λ, Act) where:

1. (E , F , �→, �, �) = (E0, F0, �→0, �0, �0) + (E1, F1, �→1, �1, �1);
2. λ( j, e) = λ j(e);
3. Act = Act0 ∪ Act1.

Proposition 4.4. If E0 and E1 are LRBESs, then E = E0 + E1 with injections ι0 and ι1 such that ι j( j, e) = e is their coproduct.

Proof. Obviously E is an LRBES, and ι0 and ι1 are morphisms, and so we simply need to prove that if there exists an 
LRBES E2 = (E2, F2, �→2, �2, �2, λ2, Act2) and morphisms f0 : E0 → E2 and f1 : E1 → E2, then there exists a unique LRBES-
morphism f : E → E2 such that f0 = f ◦ ι0 and f1 = f ◦ ι1.

Since E0 + E1, ι0, and ι1 make up a coproduct in the category of sets and partial functions, f must be unique.
We define f as f ( j, e) = f j(e) and prove it to be a morphism. Since (E , F , �→, �, �) = (E0, F0, �→0, �0, �0) +

(E1, F1, �→1, �1, �1), we know f : (E , F , �→, �, �) → (E2, F2, �→2, �2, �2) is an RBES-morphism, and clearly λ(e, j) = λ j(e) =
λ2( f j(e)). �

Causally prefixing an action onto an event structure means we add a new event such that the new event causes all other 
events and is prevented from reversing by all other events and has the designated label.

Definition 4.5 (Causal Prefix). Given an LRBES E = (E , F , �→, �, �, λ, Act), an event e /∈ E , and a label α, we add e labelled α
to the beginning of E to get α(e).E = (E ′, F ′, �→′, �′, �′, λ′, Act′) where:

1. E ′ = E ∪ e;
2. F ′ = F ∪ e;
3. �→′ = �→ ∪({{e}} × (E ∪ {e}));
4. �′ = �;

5. �′ = � ∪ (E × {e});
6. λ′ = λ ∪ {(e, α)};
7. Act′ = Act ∪ {α}.

Now that we have defined the main operations of the process calculus, we define the event structure semantics in 
Table 2. We do this using rules of the form ⦃P ⦄l = 〈E, Init,k〉 wherein l is the level of unfolding, which we use to model 
recursion, E is an LRBES, Init is the initial configuration, and k : Init → K is a function assigning communication keys to the 
past actions, which we use in parallel composition to determine which synchronisations of past actions to put in Init.

Note that the only difference between a future and a past action is that the event corresponding to a past action is put 
in the initial state and given a communication key.

Example 4.6. The CCSK process a.b | a can be represented by the RBES with events labelled a, a, τ , and b, the bundle 
{a, τ } �→ b, the conflicts a � τ and a � τ , and the preventions b � a and b � τ , creating the LRBES seen in Fig. 7 where we 
label events with their labels.

We say that ⦃P ⦄ = supl∈N ⦃P ⦄l . This means we need to show that there exists such a least upper bound of the levels of 
unfolding. As shown in [12], ordering closed BESs by restriction produces a complete partial order. Since our LRBESs do not 
have overlapping bundles (X �→ e∗ and X ′ �→ e∗ implies X �= X ′ or X ∩ X ′ = ∅) they are closed, and we can use a similar 
ordering.

Definition 4.7 (Ordering of LRBESs). Given LRBESs E0 = (E0, F0, �→0, �0, �0, λ0, Act0) and E1, we say that E0 ≤ E1 if E0 = E1 �
E0.

We can see that ≤ is a partial order with the empty LRBES as its minimum.
12
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Table 2
RBES-semantics of CCSK.

⦃0⦄l = 〈(∅,∅,∅,∅,∅,∅,∅),∅,∅〉
⦃P0 + P1⦄l = 〈E0 + E1, Init,k〉 where

For i ∈ {0,1}, ⦃Pi ⦄l = 〈Ei , Initi ,ki〉
Init = {( j, e) | j ∈ {0,1} and e ∈ Init j}
k( j, e) = k j(e) if e ∈ Init j

⦃α.P ⦄l = 〈α(e).(E , F , �→, �,�, λ,Act), Init,k〉 for e fresh for E where
⦃P ⦄l = 〈(E , F , �→, �,�, λ,Act), Init,k〉

⦃α[m].P ⦄l = 〈
α(e).(E , F , �→, �,�, λ,Act), Init′,k′〉 for e fresh for E where

⦃P ⦄l = 〈(E , F , �→, �,�, λ,Act), Init,k〉
Init′ = Init ∪ {e}
k′ = k ∪ {(e,m)}

⦃P0 | P1⦄l = 〈(E , F , �→, �,�, λ,Act), Init,k〉 where
For i ∈ {0,1}, ⦃Pi ⦄l = 〈Ei , Initi ,ki〉
(E , F , �→, �,�, λ,Act) = E0||E1

Init = {(e0, e1) | e0 ∈ Init0, e1 ∈ Init1,k0(e0) = k1(e1)}∪{
(∗, e1)

∣∣∣∣ e1 ∈ Init1 and
�e0 ∈ Init0.λ0(e0) = λ1(e1) and k0(e0) = k1(e1)

}
∪{

(e0,∗)

∣∣∣∣ e0 ∈ Init0 and
�e1 ∈ Init1.λ0(e0) = λ1(e1) and k0(e0) = k1(e1)

}

k(e) =

⎧⎪⎨
⎪⎩

k0(e0) if e = (e0,∗)

k1(e1) if e = (∗, e1)

k0(e0) if e = (e0, e1) – note that k0(e0) = k1(e1)

⦃P \ A⦄l = 〈
E � {e | λ(e) /∈ A}, Init′,k � {e | λ(e) /∈ A}〉 where

⦃P ⦄l = 〈E, Init,k〉
Init′ = Init ∩ {e | λ(e) /∈ A}
A = A ∪ A

⦃P [ f ]⦄l = 〈(E , F , �→, �,�, λ,Act), Init,k〉 where
⦃P ⦄l = 〈

(E, F , �→, �,�, λ′,Act′), Init,k
〉

Act = f (Act′)
λ = f ◦ λ′

⦃
A

〈
b̃
〉⦄

0
= 〈(∅,∅,∅,∅,∅,∅,∅),∅,∅〉

⦃
A

〈
b̃
〉⦄

l
=

⦃
P A{b̃/ã}

⦄
l−1

where A(ã) = P A

b

a

τ

a

∅

{a} {a}{τ }

{a,b} {τ ,b} {a,a}

{a,a,b}

Fig. 7. LRBES and configurations of the process in Example 4.6.

Proposition 4.8. Any ω-chain E0 ≤ E1 ≤ E2 . . . has a least upper bound E = (E , F , �→, �, �, λ, Act) where:

1. E = ⋃
n∈ω

En;

2. F = ⋃
n∈ω

Fn;

3. X �→ e∗ if for all n ∈ ω such that e ∈ En, (X ∩ En) �→ e∗;
4. � = ⋃

n∈ω
�n;

5. � = ⋃
n∈ω

�n;

6. λ(e) = l if there exists n ∈ ω such that λn(e) = l;
7. Act = ⋃

n∈ω
Actn.

Proof. Clearly E is an LRBES, and for all i ∈ ω, Ei ≤ E . We therefore know that E is an upper bound of the chain. We now 
show that E is the least upper bound of the chain: Given an upper bound E ′ , it is obvious that E ⊆ E ′ , F = E ∩ F ′ , and if 
X �→ e∗ then, for all n ∈ ω, if e ∈ En then X ∩ En �→n e∗ , meaning since En ≤ E ′ there exists X ′

n ⊆ E ′ such that X ′
n �→ e∗ and 

X ′
n ∩ En = Xn , and since for all n′ ≥ n, En′ ≤ E ′ and e ∈ En′ , X ′

n ∩ En′ �→n′ e∗ . This means clearly X ′
n ∩ E = ⋃

n∈ω
Xn = X . And for 

e ∈ E , if X ′ �→′ e′ ∗ , then for all n ∈ ω such that e ∈ En X ′ ∩ En �→n e∗ , meaning X ′ ∩ E �→ e∗ . Similar arguments apply to �, �, λ, and Act.
Therefore, clearly E ≤ E ′ , and E is the least upper bound of the chain. �
13
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This means that, given a set of events A, with EA being the set of LRBESs (E , F , �→, �, �, λ, Act) such that E ⊆ A, we 
have that (EA, ≤) is a complete partial order. We then need to show that our operations are monotonic.

Lemma 4.9.

1. If E0 ≤ E1 and E ⊆ E1 , then E0 � (E ∩ E0) ≤ E1 � E.
2. For any ω-chain E0 ≤ E1 ≤ E2 . . . and E ⊆ ⋃

n∈ω En, we have (�
n∈ω

En) � E = �
n∈ω

(En � (E ∩ En)).

Proof. Straightforward from Definition 4.1. �
Lemma 4.10.

1. Given LRBESs E0 ≤ E1 and E , E0||E ≤ E1||E .
2. For any ω-chain E0 ≤ E1 ≤ E2 . . . and any LRBES E , we have (�

n∈ω
En)||E = �

n∈ω
(En||E).

Proof. Straightforward from Definition 4.2. �
Lemma 4.11.

1. Given LRBESs E0 ≤ E1 and E , E0 + E ≤ E1 + E .
2. For any ω-chain E0 ≤ E1 ≤ E2 . . . and LRBES E , we have (�

n∈ω
En) + E = �

n∈ω
(En + E).

Proof. Straightforward from Definition 4.3. �
Lemma 4.12.

1. Given LRBESs E0 ≤ E1 , an event e /∈ E1 , and a label α, α(e).E0 ≤ α(e).E1 .
2. For any ω-chain E0 ≤ E1 ≤ E2 . . . an event e /∈ E1 , and a label α, we have α(e).(�

n∈ω
En) = �

n∈ω
(α(e).En).

Proof. Straightforward from Definition 4.5. �
Proposition 4.13 (Unfolding). Given a forwards reachable process P and a level of unfolding k, if ⦃P ⦄k = 〈E, Init,k〉 and ⦃P ⦄k−1 =〈
E ′, Init′,k′〉, then E ′ ≤ E , Init = Init′ , and k = k′ .

Proof. We have proved in Lemmas 4.9 to 4.12 that all the operations used for defining E and E ′ are monotonic, so clearly 
E ′ ≤ E , and since P has been generated from a standard process, we cannot have any α[m] inside a recursion, as it would 
have to have been unfolded first. �

In order to prove that our event structure semantics corresponds with the operational semantics for CCSK defined in 
[28] we first show that event structures generated by our semantics are causal according to Definition 3.31.

Proposition 4.14. Given a process P such that ⦃P ⦄ = 〈E, Init,k〉, E is causal.

Proof. We say that E = (E , F , �→, �, �, λ, Act) and prove this by induction on P :

• Suppose P = 0. Then E is empty, and therefore obviously causal.
• Suppose P = P0 + P1, ⦃Pi⦄ = 〈(Ei, Fi, �→i, �i,�i, λi,Acti), Initi,ki〉, e ∈ E and e′ ∈ F . Then if e � e′ , then there exists 

i ∈ {0, 1} such that either e �i e′ or e ∈ Ei and e′ ∈ F1−i . By induction, e �i e′ this means there exists an Xi ⊆ Ei such 
that Xi �→i e and e′ ∈ Xi . As Xi �→i e, we get Xi �→ e. And Ei × E1−i ⊆ �.
If there exists an X ⊆ E such that X �→ e and e′ ∈ X , then there exists an i ∈ {0, 1} such that X �→i e. Then by induction 
we get e �i e′ , implying e � e′ .
We have X �→ e′ if and only if there exists an i ∈ {0, 1} such that X �→i e′ . By induction, this means e′ ∈ X .

• Suppose P = α.P ′ , 
⦃

P ′⦄ = 〈
(E ′, F ′, �→′, �′,�′, λ′,Act′), Init′,k′〉, e ∈ E and e′ ∈ F . Then if e � e′ then either e �′ e′ , or 

e′ = eα and e ∈ E ′ . If e �′ e′ , then by induction there exists an X ⊆ E ′ such that X �→′ e and e′ ∈ X , and X �→ e. If e′ = eα

and e ∈ E ′ then we know {eα} �→ e.
If there exists an X ⊆ E such that X �→ e and e′ ∈ X , then either X �→′ e, or X = {eα} and e ∈ E ′ . If X �→′ e, then by 
induction we get e �′ e′ , and therefore e � e′ . If X = {eα} and e ∈ E ′ , then we know e � eα .
We have X �→ e′ if and only if X �→′ e′ or e′ = eα and X = {eα}. By induction, if X �→′ e′ then e′ ∈ X .
14
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• Suppose P = α[m].P ′. Then the proof is similar to the previous case.
• Suppose P = P0 | P1, ⦃Pi⦄ = 〈(Ei, Fi, �→i, �i,�i, λi,Acti), Initi,ki〉, e ∈ E and e′ ∈ F . Then if e � e′ , then there exists 

an i ∈ {0, 1}, such that πi(e) �i πi(e′). By induction, this means there exists an Xi ⊆ Ei such that Xi �→i πi(e) and 
πi(e′) ∈ Xi . This means {e′′ ∈ E | πi(e′′) ∈ Xi} �→ e, and obviously e′ ∈ {e′′ ∈ E | πi(e′′) ∈ Xi}.
If there exists an X ⊆ E such that X �→ e and e′ ∈ X , then there exists an i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→i πi(e)
and X = {e′′ ∈ E | πi(e′′) ∈ Xi}, meaning πi(e′) ∈ Xi . By induction we get πi(e) �i πi(e′), and therefore e � e′ .
We have X �→ e′ if and only if there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→i πi(e′) and X = {e′′ ∈ E | πi(e′′) ∈ Xi}. 
By induction, since Xi �→i πi(e′) we know πi(e′) ∈ Xi , meaning clearly e′ ∈ X .

• Suppose P = P ′ \ A, 
⦃

P ′⦄ = 〈
(E ′, F ′, �→′, �′,�′, λ′,Act′), Init′,k′〉, e ∈ E and e′ ∈ F . Then X �→ e′ ∗ if and only if X �→′ e′ ∗

and e � e′ if and only if e �′ e′ . The rest of the case follows from induction.
• Suppose P = P ′[ f ]. Then the result follows from induction. �

We then show that structurally congruent processes will generate isomorphic event structures.

Proposition 4.15 (Structural Congruence). Given processes P and P ′ such that P ≡ P ′ , ⦃P ⦄ = 〈E, Init,k〉, and 
⦃

P ′⦄ = 〈
E ′, Init′,k′〉, 

there exists an isomorphism f : E → E ′ such that f (Init) = Init′ and for all e ∈ Init, k(e) = k′( f (e)).

Proof. We say that E = (E , F , �→, �, �, λ, Act) and E ′ = (E ′, F ′, �→′, �′, �′, λ′, Act′) and do a case analysis on the structural 
congruence rules:

P = P ′ | 0: The function f (e, ∗) = e fulfils the conditions.
P = P0 | P1 and P ′ = P1 | P0: Products are unique up to isomorphism and

f (e) =

⎧⎪⎨
⎪⎩

(e1, e0) if e = (e0, e1)

(e1,∗) if e = (∗, e1)

(∗, e0) if e = (e0,∗)

clearly fulfils the conditions other conditions.
P = P0 | (P1 | P2) and P ′ = (P0 | P1) | P2: Products are associative up to isomorphism, and f (e0, (e1, e2)) = ((e0, e1), e2)

clearly fulfills the other conditions.
P = P ′ + 0: Clearly EP = ({0} × E ′, {0} × F ′, �→′ ∪∅, �′ ∪∅, �′ ∪ ∅, λ′, Act′ ∪ ∅), Init = {0} × Init′ , and k = {0} × k′ , meaning 

f (0, e) = 0.
P = P0 + P1 and P ′ = P1 + P0: Coproducts are unique up to isomorphism, and f (i, e) = (1 − i, e) clearly fulfil the other 

conditions.
P = (P0 + P1) + P2 and P ′ = P0 + (P1 + P2): Coproducts are associative up to isomorphism, and

f (e) =

⎧⎪⎨
⎪⎩

(0, e′) if e = (0, (0, e′))
(1, (0, e′)) if e = (0, (1, e′))
(1, (1, e′)) if e = (1, e′)

clearly fulfils the other conditions.

P = A
〈
b̃
〉

and P ′ = P A{b̃/ã} where A
〈
ã
〉 = P A : Follows from Proposition 4.13. �

Before we show our correspondence between actions in the process and in the event structure, we show that a reachable 
process has an empty initial state if and only if it does not contain any past action.

Lemma 4.16 (Standard). Given a process P such that ⦃P ⦄ = 〈E, Init,k〉 and there exists a standard process Q such that Q →∗ P , we 
have std(P ) if and only if Init = ∅.

Proof. As the only rule which can add events to an empty Init is ⦃α[m].P⦄, clearly Init = ∅ if std(P ).
If Init = ∅, then clearly we cannot have any α[m] in P , which are not guarded by a restriction on α. But if such a 

restricted communication has occurred in P , then there must exist a parallel a[m] inside the same restriction, meaning the 
corresponding event (eα, eα) has the label τ , not α, and would therefore be in Init. Therefore we must have std(P ). �

We now show that reachable processes have conflict-free initial states.

Lemma 4.17 (Reachable). If P is forwards-reachable and ⦃P ⦄ = 〈E, Init,k〉, then Init is conflict-free in E .

Proof. We show this by induction on P .
15
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• Suppose P = 0. Then Init = ∅.
• Suppose P = α.P ′ and 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉. Then Init = Init′ , and therefore Init is conflict-free.
• Suppose P = α[m].P ′ and 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉. Then Init = Init′ ∪ {eα}, Init′ is conflict-free, and therefore Init is clearly 
conflict-free.

• Suppose P = P1 + P2 and ⦃Pi⦄ = 〈Ei, Initi,ki〉. Then Init = ({0} × Init1) ∪ ({1} × Init2) and, since P is reachable, either 
Init1 = ∅ or Init2 = ∅, and both Init1 and Init2 are conflict-free. Therefore, Init is conflict-free.

• Suppose P = P1 | P2 and ⦃Pi⦄ = 〈(Ei, Fi, �→i, �i,�i, λi,Acti), Initi,ki〉. Then, since P is reachable from a standard process, 
each key appears at most once in P1 and once in P2. Additionally, Init1 is conflict-free and Init2 is conflict-free, meaning 
Init = {(e0, ∗) | e0 ∈ Init0 and �e1 ∈ Init1.λ0(e0) = λ1(e1) and k0(e0) = k1(e1)} ∪ {(∗, e1) | e1 ∈ Init1 and �e0 ∈ Init0.λ0(e0) =
λ1(e1) and k0(e0) = k1(e1)} ∪ {(e0, e1) | e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)} is conflict-free.

• Suppose P = P ′ \ A and 
⦃

P ′⦄ = 〈
E ′, Init′,k′〉. Then Init′ is conflict-free, and Init ⊆ Init′ , meaning Init is conflict-free.

• Suppose P = P ′[ f ]. Then Init = Init′ , which is conflict-free. �
Finally we show in Theorems 4.18 and 4.19 that given a process P with a conflict-free initial state, including any reach-

able process, there exists a transition P
μ−→ P ′ if and only if the event structure corresponding to P is isomorphic to the 

event structure corresponding to P ′ and an event e labelled μ exists such that e is available in P ’s initial state, and P ′ ’s 
initial state is P ’s initial state with e added.

Theorem 4.18. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, �, λ, Act), Cbr(E) = (E , F , C, →), Init is conflict-free, and there exists a tran-

sition P
μ[m]−−−→ P ′ such that 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉, then there exists an isomorphism f : E → E ′ and a transition Init
{e}−→ X such that 

λ(e) = μ, f ◦ k′ = k ∪ {(e, m)}, and f (X) = Init′ .

Proof. We prove this by induction on P
μ[m]−−−→ P ′ . The full proof can be seen in Appendix C.1 �

Having shown that each forwards transition in the operational semantics corresponds to one in the generated event 
structure, we now show the converse.

Theorem 4.19. Let P be a reachable process. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, �, λ, Act), Cbr(E) = (E , F , C, →), Init is conflict-

free, and there exists a transition Init
e−→ X in Cbr(E), then there exists a key m and a transition P

λ(e)[m]−−−−→ P ′ , such that 
⦃

P ′⦄ =〈
E ′, Init′,k′〉 and there exists isomorphism f : E → E ′ such that f ◦ k′ = k ∪ {(e, m)} and f (X) = Init′ .

Proof. We prove the theorem by induction on P in Appendix C.2. �
Corollary 4.20. Given a process P such that ⦃P ⦄ = 〈E, Init,k〉, Init is forwards-reachable in E if and only if P is forwards-reachable.

Since we showed in Proposition 4.14 that any event structures generated by processes are causal, it follows that we get 
a similar correspondence between the reverse transitions of processes and event structures.

Theorem 4.21. Let P be a CCSK process. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, �, λ, Act), Cbr(E) = (E , F , C, →), Init is conflict-

free, and there exists a transition P
μ[m]� P ′ such that 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉, then there exists isomorphism f : E → E ′ and a transition 

Init
{e}−→ X such that λ(e) = μ, f ◦ k′ = k ∪ {(e, m)}, and f (X) = Init′ .

Proof. Implied by Proposition 4.14, Theorem 4.18, and Corollary 4.20. �
Theorem 4.22. Let P be a CCSK process. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, �, λ, Act), Cbr(E) = (E , F , C, →), Init is conflict-free, 
and there exists a transition Init

e−→ X in Cbr(E), then there exists a key m and a transition P λ(e)[m]� P ′ , such that 
⦃

P ′⦄ = 〈
E ′, Init′,k′〉

and there exists isomorphism f : E → E ′ such that f ◦ k′ = k ∪ {(e, m)} and f (X) = Init′ .

Proof. Implied by Proposition 4.14, Theorem 4.19, and Corollary 4.20. �
We have now proved operational correspondence between the operational semantics of CCSK and the event structure 

semantics presented in this section. Proving this correspondence on reverse actions was made easy by both the calculus 
and the generated event structures having uncontrolled causal reversibility. However, uncontrolled reversibility comes with 
problems, in that it allows a process or event structure to do and undo the same action indefinitely. We would therefore 
like CCSK to have a way to control its reversibility.
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{τ , roll γ } {τ ,bτ , roll γ }

Fig. 8. The reachable configurations of the REBES described in Example 5.1.

5. Reversible extended bundle event structures

Suppose one wishes to model a program consisting of multiple parallel processes, but rather than allowing the process 
to do and undo actions whenever as in CCSK, it might be preferable to have one action that causes all actions, or all 
actions since the last safe state, to be reversed before the process can continue, similar to the roll command of [17]. RBESs 
can easily ensure that this roll event is required for other events to reverse. We simply say that {roll} �→ e for all e, but 
preventing events from happening in RBESs requires symmetric conflict, which would mean the other events also prevent 
roll from occurring. To solve this problem in sequential processes, Phillips and Ulidowski [27] use reversible asymmetric 
event structures, which replace symmetric conflict with asymmetric. But since these use the same notion of causality as 
reversible prime event structures, they have trouble modelling concurrent processes with synchronisation, as shown in 
Example 1.1.

Extended bundle event structures (EBES) (Definition 5.2) add asymmetric conflict, similar to that of AESs to bundle event 
structures, and so defining a reversible variant of these will allow us to model the above scenario easily. In this section we 
therefore define a category of reversible bundle event structures, similar to the category of RBESs we defined in Section 3.

Example 5.1 (The necessity of REBESs for modelling rollback). Consider a process a.b | aγ .roll γ , where roll γ means undo the 
action labelled γ , that is a, and everything caused by it before continuing. To model this we would need to expand the 
RBES from Example 4.6 with a new event roll γ , and split b into two different events depending on whether it needs to 
be reversed during the rollback or not. This would give us an RBES ({a, τ , a, ba, bτ , roll γ }, {a, τ , a, ba, bτ , roll γ }, �→, �, �)

where {a} �→ ba , {τ } �→ bτ , {a, τ } �→ roll γ , {roll γ } �→ τ , {roll γ } �→ a, {roll γ } �→ bτ , a � τ , a � τ , ba � a, bτ � τ , a � roll γ , 
and τ � roll γ . This would indeed ensure that a and the events caused by it could only reverse if one of the roll events had 
occurred, but it would not force them to do so before doing anything else. For this we use asymmetric conflict: roll γ � a, 
roll γ � τ , roll γ � bτ , giving us a CS with the reachable configurations shown in Fig. 8.

Definition 5.2 (Extended Bundle Event Structure [21]). An extended BES (EBES) is a triple (E , �→, �) where:

1. E is the set of events;
2. �→ ⊆ 2E × E is the bundle set, satisfying X �→ e ⇒ ∀e1, e2 ∈ X .(e1 �= e2 ⇒ e1 � e2);
3. � ⊆ E × E is the asymmetric conflict relation, which is irreflexive.

As we did for BESs, we define configurations, product, coproduct, and a finitely caused subcategory of EBESs. The full 
details can be found in Appendix D.

We again define a reversible version of EBESs in Definition 5.3, simply extending the asymmetric conflict and bundles to 
act on reversible events similarly to RBESs.

Definition 5.3 (Reversible Extended Bundle Event Structure). A reversible EBES (REBES) is a triple E = (E , F , �→, �) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. �→⊆ 2E × (E ∪ F ) is the bundle set, satisfying X �→ e ⇒ ∀e1, e2 ∈ X .(e1 �= e2 ⇒ e1 � e2), and for all e ∈ F , {e} �→ e;
4. � ⊆ (E ∪ F ) × E is the asymmetric conflict relation, which is irreflexive.
17
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∅

{a} {b} {c}

{a,b} {b, c}

Fig. 9. The configurations of the REBES described in Example 5.5.

Unlike the forward-only general event structures, reversible general event structures (RESs) can model asymmetric con-
flict, by using their preventing set. This means that when we create a subcategory of finitely caused REBESs, they can be 
modelled by RESs.

Definition 5.4 (Finitely Caused Reversible Extended Bundle Event Structure). A finitely caused REBES (FCREBES) is an REBES E =
(E , F , �→, �) where for any e∗ ∈ E ∪ F , the set {X ⊆ E | X �→ e∗} is finite.

Example 5.5 shows an REBES, which cannot be represented by an RBES, since one gets a transition ∅ → {a}, but no 
{b} → {a, b}, despite {a, b} being a configuration.

Example 5.5 (REBES). An REBES E = (E , F , �→, �) where E = {a, b, c}, F = {a, b}, {a, c} �→ b, {b} �→ c {a} �→ a, {b} �→ a, {b} �→
b, a � c, c � a, and b � a gives the CS Cer(E) in Fig. 9.

In order to define REBES morphisms, we extend the RBES definition in the obvious way, as seen in Definition 5.6.

Definition 5.6 (REBES morphism). Given REBESs E0 = (E0, F0, �→0, �0) and E1 = (E1, F1, �→1, �1), an REBES morphism from 
E0 to E1 is a partial function f : E0 → E1 such that f (F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f (e) = f (e′) and e �= e′ then e �0 e′;
2. for X1 ⊆ E1 if X1 �→1 f (e)∗ then there exists X0 ⊆ E0 such that f (X0) ⊆ X1, if e′ ∈ X0 then f (e′) �= ⊥, and X �→0 e∗;
3. if f (e) �1 f (e′)∗ then e �0 e′∗ .

We again construct a product of REBESs in Definition 5.7.

Definition 5.7 (REBES product). Given REBESs E0 = (E0, F0, �→0, �0) and E1 = (E1, F1, �→1, �1), we construct E0 × E1 =
(E , F , �→, �) with projections π0, π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. F = F0 ×∗ F1 = {(e, ∗) | e ∈ F0} ∪ {(∗, e) | e ∈ F1} ∪ {(e, e′) | e ∈ F0 and e′ ∈ F1};
3. for (e0, e1) ∈ E , πi(e0, e1) = ei ;
4. for any e∗ ∈ E ∪ F , X ⊆ E , X �→ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→ πi(e)∗ and X = {e′ ∈ E | πi(e′) ∈

Xi};
5. for any e ∈ E , e′ ∗ ∈ E ∪ F , e � e′ ∗ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e′)∗ .

Proposition 5.8. Given REBESs E0 = (E0, F0, �→0, �0) and E1 = (E1, F1, �→1, �1), we have that E0 × E1 = (E , F , �→, �) is their 
product in the category REBES.

Proof. Similar to the proof of Proposition D.7 seen in Appendix D. �
Proposition 5.9. Given FCREBESs E0 = (E0, F0, �→0, �0) and E1 = (E1, F1, �→1, �1), we have that E0 × E1 = (E , F , �→, �) is an 
FCREBES.

Proof. Similar to the proof of Proposition 3.11 seen in Appendix D. �
Definition 5.10 (REBES coproduct). Given REBESs E0 = (E0, F0, �→0, �0) and E1 = (E1, F1, �→1, �1), we construct E0 + E1 =
(E , F , �→, �) with injections ι0, ι1 where:

• E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1};
• F = {(0, e) | e ∈ F0} ∪ {(1, e) | e ∈ F1};
• for e ∈ E j , ι j(e) = ( j, e) for j ∈ {0, 1};
• X �→ ( j, e)∗ iff for all ( j′, e′) ∈ X , j = j′ and ι j(X) �→ j e∗;
18
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• ( j, e)∗ � ( j′, e′) iff j �= j′ or e∗ � j e′ .

Proposition 5.11. If E0 and E1 are REBESs, then E0 + E1 is their coproduct in the category REBES.

Proof. Similar to that of BES coproduct (Proposition 3.13 on Appendix D). �
Proposition 5.12. Given FCREBESs E0 = (E0, F0, �→0, �0) and E1 = (E1, F1, �→1, �1), we have that E0 + E1 = (E , F , �→, �) is an 
FCREBES.

Proof. Similar to Proposition 3.27. �
We again model REBESs as CSs, defining a functor in Definition 5.13.

Definition 5.13 (From REBES to CS). The functor Cer : REBES → CS is defined as:

1. Cer((E , F , �→, �)) = (E , F , C, →) where:
(a) X ∈ C if � is well-founded on X ;

(b) For X, Y ∈ C, A ⊆ E , and B ⊆ F , there exists a transition X
A∪B−−→ Y if:

i. Y = (X \ B) ∪ A;
ii. X ∩ A = ∅;

iii. B ⊆ X ;
iv. for all e∗ ∈ A ∪ B , if e′ � e∗ then e′ /∈ X ∪ A;
v. for all e ∈ A and X ′ ⊆ E , if X ′ �→ e then X ′ ∩ (X \ B) �= ∅;

vi. for all e ∈ B and X ′ ⊆ E , if X ′ �→ e then X ′ ∩ (X \ (B \ {e})) �= ∅.
2. Cer( f ) = f .

The definition of a cause-respecting and causal REBES (Definition 5.14) is of course practically identical to that of a 
crRBES and CRBES (Definition 3.31).

Definition 5.14 (Cause-respecting and Causal REBES). We say that E = (E , F , �→, �) is a cause-respecting REBES (crREBES) if 
whenever X �→ e and e′ ∈ X or e � e′ , then e � e′ .

We say that E = (E , F , �→, �, �, λ, Act) is a causal REBES (CREBES) if (1) if e � e′ then either e � e′ or there exists an 
X ⊆ E such that X �→ e and e′ ∈ X , (2) if e � e′ or X �→ e and e′ ∈ X ∩ F , then e � e′ , and (3) if X �→ e then e ∈ X .

Proposition 5.15. Given a CREBES, E = (E , F , �→, �) and corresponding CS Cre(E) = (E , F , C, →), any reachable C ∈ C is forwards-
reachable.

Proof. Similar to the corresponding proof for RBESs (Proposition 3.32). �
Proposition 5.16.

1. If E = (E , F , �→, �, �) is a crREBES and Cbr(E) = (E , F , C, →) then whenever X ∈ C is a reachable configuration, X
B−→ Y , 

Y
B−→ X

2. If E = (E , F , �→, �, �) is a CREBES and Cbr(E) = (E , F , C, →) then whenever X ∈ C, X
A∪B−−→ Y and A ∪ B ⊆ F , there exists a 

transition Y
B∪A−−→ X.

Proof. Similar to the corresponding proofs for RAESs [27] and RBESs (Proposition 3.33). �
We define a simple functor from RBES to REBES.

Definition 5.17 (RBES to REBES). The functor Be : RBES → REBES is defined as:

1. Be((E , F , �→, �)) = (E, F , �→, �′), where e �′ e′ if e � e′ and e �′ e′ if e′ � e;
2. Be( f ) = f .

We define functors between EBES and REBES, which form an adjunction.
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Definition 5.18 (EBES to REBES). The functor Pe : EBES → REBES is defined as:

1. Pe((E , �→, �)) = (E, ∅, �→, �);
2. Pe( f ) = f .

Definition 5.19 (REBES to EBES). The functor �e : REBES → EBES is defined as:

1. �e((E , F , �→, �)) = (E, �→E , �E );
2. �e( f ) = f .

Proposition 5.20. Pe � �e .

Proof. Similar to the proof of Proposition 3.37. �
As REBESs use asymmetric conflict, we create a functor from RAES to REBES in Definition E.3. As before, we also define 

a functor from FCREBES to SRES in Appendix E. Of course this causes the same problem as a functor from RAES to SRES, 
namely that a set of events X containing an infinite chain e1 � e2 � . . . does not have any finite subsets containing such an 
infinite chain, unless X also contains a finite �-loop. This means that we may have some configurations of the generated 
SRES, which were not configurations of the original FCREBES.

Since we intend to use our REBESs for modelling the semantics of Rollback in CCSK, we need a labelled variant, much as 
we have of RBESs.

Definition 5.21 (Labelled Reversible Extended Bundle Event Structure). A labelled REBES (LREBES) E = (E , F , �→, �, λ, Act) con-
sists of an REBES (E , F , �→, �), a set of labels Act, and a surjective labelling function λ : E → Act.

Definition 5.22 (LREBES morphism). Given two labelled REBESs E0 = (E0, F0, �→0, �0, �0, λ0, Act0) and E1 = (E1, F1, �→1, �1
, �1, λ1, Act1), an LREBES morphism f : E0 → E1 is a partial function f : E0 → E1 such that f : (E0, F0, �→0, �0) →
(E1, F1, �→1, �1) is an REBES morphism and for all e ∈ E0, either f (e) = ⊥ or λ0(e) = λ1( f (e)).

6. Roll-CCSK

In this section we add a rollback operator, similar to that of roll-π [17], to CCSK. The semantics of roll-π is not directly 
translatable to CCSK, as it makes use of the fact that one can know, when looking at a memory, whether the communication 
it was associated with was with another process or not, and therefore, for a given subprocess P and a memory m, one knows 
whether all the memories and subprocesses caused by m are part of P . In CCSK, this is not the case, as the rollback in the 
subprocess αγ [n].roll γ , where γ is a tag denoting which rollback rolls back which action, may or may not require rolling 
back the other end of the α communication, and all actions caused by it. For example, in the process P = aγ [n].roll γ | b[m], 
rolling back γ does not involve reversing b[m], but if we have a larger process, a[n].b[m] | (aγ [n].roll γ | b[m]), of which P
is a subprocess, then b[m] does need to get reversed. In roll-π , since all the memories are together and their tags make 
their causal relationships clear, this is not an issue. This makes it significantly harder to know when to stop rolling back, 
as (unless all the actions needing to be rolled back were τ -actions) we do not know that the rollback is complete. We 
therefore need to check at every instance of parallel composition whether any communication with actions being rolled 
back has taken place, and if so roll back those actions and all actions caused by them. This may include rolling back 
additional actions from the subprocess containing the rollback, as in a[n1].b[n2] | c[n3].(aγ [n1].roll γ | b[n2]), where it does 
not become clear that b[n2] needs to be reversed during the rollback until the outer parallel composition. Additionally, 
roll-π uses asymmetric communication, meaning the memories that need to be reversed form a sequence, as opposed to 
one communication potentially causing more actions at both ends. This causes further problems when trying to define 
distributed semantics, which we do later in this section. To get around these problems, our distributed semantics marks all 
involved actions for rollback at once, but reverses them individually by using similar reversal rules to CCSK without rollback 
but only applying them to marked actions.

The syntax of Roll-CCSK is as follows:

P ::= αγ .P | αγ [n].P | P0 + P1 | P0|P1 | P \ A

| P [ f ] | A
〈
b̃, γ̃

〉
| 0 | roll γ | rolling γ

Most of the syntax is the same as CCSK and CCS, but adding tags and rolls as described above, and rolling γ , which 
denotes a rollback in progress, the necessity of which is justified later. From now on we will use α.P to denote αγ .P where 
no roll γ exists in P . We also add a tuple of tags to our process constants, which get substituted just like the actions in a 
new structural congruence rule:
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A
〈
b̃, δ̃

〉
≡ P A{b̃/ã

δ̃/γ̃ } if A(ã, γ̃ ) = P A

Before defining our semantics of rollback, we first define causal dependence and projection similarly to [17], which we 
will use to define our semantics.

Definition 6.1 (Causal dependence). Let P be a process. Then the binary relation ≤P is the smallest relation on keys(P )

satisfying:

• If there exists a process P ′ and past actions αγ [n] and βγ ′ [m] such that αγ [n].P ′ is a subprocess of P and βγ ′ [m]
occurs in P ′ then n ≤P m.

• ≤P is reflexively and transitively closed.

Definition 6.2 (Projection). Given a process P and a set of keys C , P�C is defined as:

(αγ [n].P )�C = αγ [n].(P�C ) if n /∈ C 0�C = 0
(αγ [n].P )�C = αγ .(P�C {roll γ /rolling γ })i f n ∈ C (P \ A)�C = (P�C ) \ A
roll γ�C = roll γ rolling γ�C = rolling γ

(P0 | P1)�C = P0�C | P1�C A
〈
b̃, γ̃

〉
�C

= A
〈
b̃, γ̃

〉
(P [ f ])�C = P�C [ f ] (P0 + P1)�C = P0�C + P1�C

(αγ .P )�C = αγ .(P�C )

Much as in [17] we carry out our rollback in two steps, the first triggering the rollback, and the second actually per-
forming the roll, in order to ensure that we can start multiple rollbacks at the same time. For example, in the process 
(aγ .(d.0 | c.roll γ ) | bγ ′ .(c | d.roll γ ′) | a | b) \ {a, b, c, d}, similar to an example from [17], we will otherwise never be able to 
roll all the way back to the beginning, as rolling back aγ will stop us from reaching roll γ ′ and vice versa. Tables 3 and 4
show that new rules for reversing actions in Roll-CCSK. The rules for forward actions are still the same as in Table 1.

Example 6.3. Consider the process (aγ [na].(d[nd].0 | c[nc].roll γ ) | bγ ′ [nb].(c[nc] | d[nd].roll γ ′) | a[na] | b[nb]) \ {a, b, c, d}. We 
would like to roll this process back to its initial state, but performing one of the rolls would disable the other, since it would 
reverse the communications on c and d. We therefore say that we first need to trigger the rolls,

aγ [na].(d[nd].0 | c[nc].roll γ ) | bγ ′ [nb].(c[nc] | d[nd].roll γ ′) | a[na] | b[nb]) \ {a,b, c,d}
start roll γ start roll γ ′

(aγ [na].(d[nd].0 | c[nc].rolling γ ) | bγ ′ [nb].(c[nc] | d[nd].rolling γ ′) | a[na] | b[nb])
\{a,b, c,d}

meaning that the rolls can now be executed even if the preceding actions have been reversed, so we can do

aγ [na].(d[nd].0 | c[nc].rolling γ ) | bγ ′ [nb].(c[nc] | d[nd].rolling γ ′) | a[na] | b[nb])
\{a,b, c,d}
roll nb

(aγ [na].(d.0 | c.rolling γ ) | bγ ′ .(c | d.roll γ ′) | a[na] | b) \ {a,b, c,d}
Since rolling γ has been triggered it can now be executed despite c having been reversed,

aγ [na].(d.0 | c.rolling γ ) | bγ ′ .(c | d.roll γ ′) | a[na] | b) \ {a,b, c,d}
roll na

(aγ .(d.0 | c.roll γ ) | bγ ′ .(c | d.roll γ ′) | a | b) \ {a,b, c,d}

In addition, to ensure every rollback is associated with exactly one action, we define a consistent process.

Definition 6.4 (Consistent process). A roll-CCSK process P is consistent if

1. there exists a standard process Q with no subprocess rolling γ such that Q →∗ P ;
2. any roll γ or rolling γ in P is part of a subprocess, αγ .P ′ or αγ [n].P ′;
3. any subprocess of P , αγ .P ′ or αγ [n].P ′ contains at most one instance of roll γ or rolling γ not part of a subprocess of 

P ′ , α′
γ .P ′′ or α′

γ [n].P ′′;
4. if A 

〈
ã, γ̃

〉
is a subprocess of P defined as A(b̃, ̃δ) = P A , then P A is consistent.

Proposition 6.5. Let P be a consistent process and P ≡ P ′ . Then P ′ is consistent.
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Table 3
The main rules for rollback in the operational semantics of Roll-CCSK.

(start ROLL) roll γ
start roll γ

rolling γ (par ROLL)

P0
roll n

P ′
0 C = {m | n ≤P ′

0 |P1
m}

P0 | P1
roll n

(P0 | P1)�C

(ROLL) rolling γ
roll γ

roll γ (act ROLL)

P
roll γ

P ′ C = {m | n ≤αγ [n].P m}

αγ [n].P roll n
αγ .P ′

�C

Table 4
The operational semantics for propagation of rolls in Roll-CCSK.

(prop ROLL 1)

P
roll γ

P ′ γ �= γ ′

βγ ′ [m].P
roll γ

βγ ′ [m].P ′ (prop ROLL start 1)

P
start roll γ

P ′

αγ ′ [n].P
start roll γ

αγ ′ [n].P ′

(prop ROLL 2)

P
roll γ

P ′

βγ ′ .P
roll γ

β.γ ′.P ′ (prop ROLL start 2)

P0

start roll γ

P ′
0 std(P1)

P0 + P1

start roll γ

P ′
0 + P1

(prop ROLL 3)

P0

roll γ

P ′
0

P0 + P1

roll γ

P ′
0 + P1 (prop ROLL start 3)

P0

start roll γ

P ′
0

P0 | P1

start roll γ

P ′
0 | P1

(prop ROLL 4)

P
roll γ

P ′

P \ A
roll γ

P ′ \ A (prop ROLL start 4)

P → P ′

P \ A
start roll γ

P ′ \ A

(prop ROLL 5)

P
roll γ

P ′

P [ f ]
roll γ

P ′[ f ] (prop ROLL start 5)

P
start roll γ

P ′

P [ f ]
start roll γ

P ′[ f ]

(prop ROLL 6)

P ≡ Q
roll γ

Q ′ ≡ P ′

P
roll γ

P ′ (prop ROLL start 6)

P ≡ Q
start roll γ

Q ′ ≡ P ′

P
start roll γ

P ′

(prop ROLL Key 1)

P
roll n

P ′ n �= m

βγ [m].P roll n
βγ [m].P ′ (prop ROLL Key 2 )

P
roll n

P ′

βγ .P
roll n

β.γ .P ′

(prop ROLL Key 3)

P0
roll n

P ′
0

P0 + P1
roll n

P ′
0 + P1 (prop ROLL Key 4)

P
roll n

P ′

P \ A
roll n

P ′ \ A

(prop ROLL Key 5)

P
roll n

P ′

P [ f ] roll n
P ′[ f ] (prop ROLL Key 6)

P ≡ Q
roll n

Q ′ ≡ P ′

P
roll n

P ′

Proof. The tags and definitions of process constants will not change between P and P ′ . �

Proposition 6.6. Let P be a consistent process and P
μ[n]−−→ P ′ . Then P ′ is consistent.

Proof. The tags and definitions of process constants will not change between P and P ′ . �
Example 6.7 (Recursion). Consider the process aγ .A 

〈
a;γ 〉

where we have a recursive definition A(b; δ) = bδ.(A 〈b; δ〉 | roll δ). 
This process is consistent and we show that we do not have problems of confusing which actions are supposed to be 
reversed by which instance of roll γ . After doing some actions and unfoldings we get

aγ [n0].aγ [n1].(aγ [n2].(A
〈
a;γ 〉 | roll γ ) | rolling γ )

At this point, if we execute the outer rolling γ we will get
22



E. Graversen, I. Phillips and N. Yoshida Journal of Logical and Algebraic Methods in Programming 121 (2021) 100686
rolling γ
roll γ

roll γ

(aγ [n2].(A
〈
a;γ 〉 | roll γ ) | rolling γ )

roll γ
(aγ [n2].(A

〈
a;γ 〉 | roll γ ) | roll γ )

aγ [n1].(aγ [n2].(A
〈
a;γ 〉 | roll γ ) | rolling γ )

roll n1
aγ .(aγ .(A

〈
a;γ 〉 | roll γ ) | roll γ )

aγ [n0].aγ [n1].(aγ [n2].(A
〈
a;γ 〉 | roll γ ) | rolling γ )

roll n1

aγ [n0].aγ .(aγ .(A
〈
a;γ 〉 | roll γ ) | roll γ )

And we see that switching the rollback from the tag to the key once we reach the first γ -tagged action means that is the 
action we roll back to.

We are then ready to prove Theorem 6.9, stating that for consistent subprocesses, any rollback can be undone by a 
sequence of forwards actions. For this we use Lemma 6.8, which states that projecting on an upwards-closed set of keys 
always results in a possible previous state of the process.

Lemma 6.8. Given a consistent process P with no subprocess rolling γ and a set of keys C such that if n ∈ C and n ≤P m then m ∈ C , 
we have a sequence of transitions P�C →∗ P .

Proof. We prove this by induction on the size of C .
Suppose C = ∅. Then P�C = P .
Suppose P�C ′ →∗ P and C = C ′ ∪ {n} for some n such that if m ≤P n then m /∈ C ′ . Then if there does not exist an action α

and a tag γ such that αγ [n] occurs in P , we get P�C = P�C ′ →∗ P . If there exists a process P ′ , an action α and tag γ such 
that αγ [n].P ′ is a subprocess of P then all past actions of P ′ are in C ′ , meaning P ′

�C = rt(P ′), and since m ≤P n ⇒ m /∈ C ′ , 

we get P�C
αγ [n]−−−→ P�C ′ →∗ P . �

Theorem 6.9 (Loop (Soundness)). Given consistent processes P0 and P1 containing no subprocesses rolling γ , such that P0

start roll γ

P ′
0

roll n
P1 , we have P1 →∗ P0 .

Proof. Follows from Lemma 6.8. �
We will from now on use →CC S K and �CC S K to distinguish CCSK-transitions from roll-CCSK transitions. The last thing 

we need to prove about our rollback operational semantics before moving on to event structure semantics is Theorem 6.12, 
stating that (1) our rollbacks only reverse the actions caused by the action we are rolling back according to CCSK, and (2) 
our rollbacks are maximally permissive, meaning that any subset of reached rollbacks may be successfully executed.

In order to define our notion of completeness, we first need a way to translate roll-CCSK to CCSK.

Definition 6.10 (Transforming roll-CCSK to CCSK). We define a function, φ, which translates a roll-CCSK process into CCSK:

φ(0) = 0 φ(P0 + P1) = φ(P0) + φ(P1) φ(P0 | P1) = φ(P0) | φ(P1)

φ(αγ .P ) = α.φ(P ) φ(αγ [n].P ) = α[n].φ(P ) φ(P \ A) = φ(P ) \ A
φ(P [ f ]) = φ(P )[ f ] φ(roll γ ) = 0

Definition 6.11 (Reversing Upto Keys). Let P be a CCSK process and T = {m0, m1, . . .mn} be a set of keys. We say that P �T P ′

if there exists actions μ, ν and a key m such that P
μ[m]

CC S K P ′ and ν[mi] ≤P μ[m] for some mi ∈ T .

Theorem 6.12 (Completeness). Let P be a consistent roll-CCSK process with subprocesses with rolls, α0γ0
[m0] . . . roll γ0 ,

α1γ1
[m1] . . . roll γ1 , . . . , αnγn

[mn] . . . roll γn. Then for all T ⊆ {m0, m1, . . .mn}, if φ(P ) �∗
T P ′ ��T then there exists a roll-CCSK 

process P ′′ such that φ(P ′′) = P ′ and P �∗ P ′′ .

Proof. To get P ′′ we apply first 
start roll γi

for every mi ∈ T and then 
roll mi

for every mi ∈ T to P . We show that this is the 
correct P ′′ .

Let Pr be P with every rolling γ replaced with roll γ . Then Pr �∗ P ′′
r , where P ′′

r is P ′′ with every rolling γ replaced with 
roll γ using the same rules as P �∗ P ′′ .
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Table 5
The main rules for semi-distributed rollback of Roll-CCSK.

(start ROLL) roll γ
start roll γ

SM rolling γ (par ROLL)

P0
roll n

SM P ′
0 C = {m | n ≤P0 |P1 m}

P0 | P1
roll n

SM markC (P0 | P1)

(ROLL) rolling γ
roll γ

SM roll γ (act ROLL)

P
roll γ

SM P ′ C = {m | n ≤αγ [n].P m}

αγ [n].P roll n

SM αγ [n]•.markC (P ′)

Table 6
Reversing marked actions.

std(P )

α[n]•.P
α[n]

SM α.P

P
μ[m]

SM P ′ m �= n

α[n].P
μ[m]

SM α[n].P ′

P
μ[m]

SM P ′ m �= n

α[n]•.P
μ[m]

SM α[n]•.P ′

P ≡ Q
μ[n]

SM Q ′ ≡ P ′

P
μ[n]

SM P ′

P0

μ[n]
SM P ′

0 fsh[n](P1)

P0 | P1

μ[n]
SM P ′

0 | P1

P0

α[n]
SM P ′

0 P1

α[n]
SM P ′

1

P0 | P1

τ [n]
SM P ′

0 | P ′
1

P0

μ[n]
SM P ′

0 std(P1)

P0 + P1

μ[n]
SM P ′

0 + P1

P
μ[n]

SM P ′ μ,μ /∈ A

P \ A
μ[n]

SM P ′ \ A

P
μ[n]

SM P ′

P [ f ]
f (μ)[n]

SM P ′[ f ]

By the loop theorem we get P ′′
r →∗ Pr . And since φ(Pr) = φ(P ) and φ(P ′′

r ) = φ(P ′′), we can translate this computation 
into CCSK: φ(P ′′) →∗

CC S K φ(P ). From the loop lemma of CCSK, this gives us φ(P ) �∗
CC S K φ(P ′′). And obviously φ(P ′′) ��T .

We then only need to show that if φ(P ) �∗
T P ′ ��T , then P ′ = φ(P ′′). Since they both reverse all the keys causally 

dependent on keys in T , this follows from Proposition 5.16 of [26]. �
With Theorems 6.9 and 6.12, we have shown that our semantics captures the behaviour of a rollback, but we would 

like to be able to roll back the actions one at a time in a distributed manner. For this purpose we define a new semantics, 
in which the rollback marks the actions needing to be rolled back with the key associated with the rollback, so they can 
be rolled back individually. We refer to this as single-mark semantics and annotate its transitions with SM; we call the 
semantics described above high-level semantics, which we annotate with HL.

To mark the actions we define a new function, mark, similar to �, which marks all the actions with a specific set of keys, 
C , with •.

Definition 6.13 (Marking Function). Given a process P and a set of keys C , mark•
C (P ) is defined as:

markC (αγ [m].P ) = αγ [m].markC (P ) if m /∈ C markC (0) = 0
markC (P \ A) = markC (P ) \ A markC (roll γ ) = roll γ
markC (αγ [m].P ) = αγ [m]•.markC (P ) if m ∈ C markC (rolling γ ) = rolling γ

markC (P0 | P1) = markC (P0) | markC (P1) markC (A
〈
b̃, γ̃

〉
) = A

〈
b̃, γ̃

〉
markC (P0 + P1) = markC (P0) + markC (P1) markC (αγ .P ) = αγ .markC (P )

markC (P [ f ]) = markC (P )[ f ]
We call a process containing actions marked with • a marked process.

Note that this marking is not defined on already marked actions, meaning all markings must be removed before a new 
rollback can start.

The forwards rules are still the same, though note that a forwards action cannot propagate past marked actions. The roll
rules (Tables 4 and 5) are the same as in the previous semantics, with the exception of replacing instances of P�C with 
markC (P ) and letting start roll propagate past marked actions. For actually reversing the marked actions, we introduce the 
rules seen in Table 6, which invert the forwards rules, but must start with a marked action.

Example 6.14. Consider the process aγ [n].b[m].rolling γ | (b[m] | a[n]) in which the a’s and b’s have communicated and the 
rollback has been activated. In order to actually execute the roll, we mark the actions needing to be rolled back with n:

aγ [n].b[m].rolling γ | (b[m] | a[n]) roll n
SM aγ [n]•.b[m]•.roll γ | (b[m]• | a[n]•)
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We can then reverse the marked actions in a causal way:

aγ [n]•.b[m]•.roll γ | (b[m]• | a[n]•)
τ [m]−−→SM aγ [n]•.b.roll γ | (b | a[n]•)
τ [n]−−→SM aγ .b.roll γ | (b | a)

We intend to show that this new semantics is equivalent to the previous. For this purpose we define a notion of reverse-
ignoring bisimulation which, as the name suggests ignores all reverse transitions except rolls.

Definition 6.15 (Reverse-ignoring Bisimulation). A relation R on processes from single-mark and high-level semantics, is a 
reverse-ignoring bisimulation if whenever P RQ :

1. If P
μ[n]−−→SM P ′ then Q

μ[n]
↪−−→HL Q ′ and P ′RQ ′ .

2. If Q
μ[n]−−→HL Q ′ then P

μ[n]
↪−−→SM P ′ and P ′RQ ′ .

3. For l ∈ {roll n | n is a key}, if P
l

SM P ′ then Q
l

↪−→HL Q ′ and P ′RQ ′ .

4. For l ∈ {roll n | n is a key}, if Q
l

HL Q ′ then P
l

↪−→SM P ′ and P ′RQ ′ .

Where P
l

↪−→ P ′ if P
l1 · · ·

li l−→
l′1 · · ·

l′j
P ′ or P

l1 · · ·
li l l′1 · · ·

l′j
P ′ for {l1, . . . , li, l′1, . . . , l′j} ∩({roll n | n is a key}) = ∅.

For processes P and Q , if there exists a reverse-ignoring bisimulation R such that PRQ then P SM ≈HL Q .

We also define a mapping, M , which removes the • and key from all marked actions, effectively reversing them, which 
we will use to describe our bisimulation relation between single-mark and high-level processes.

Definition 6.16 (Mapping from single-mark to high-level semantics). Given a reachable process of the single-mark semantics, P , 
we define a mapping to a high-level process without markings:

M(αγ [n].P ) = αγ [n].M(P ) M(0) = 0
M(P \ A) = M(P ) \ A M(roll γ ) = roll γ
M(rolling γ ) = rolling γ M(P0 | P1) = M(P0) | M(P1)

M(A
〈
b̃, γ̃

〉
) = A

〈
b̃, γ̃

〉
M(αγ [n]•.P ) = αγ .M(P ) M(P0 + P1) = M(P0) + M(P1)

M(αγ .P ) = αγ .M(P ) M(P [ f ]) = M(P )[ f ]

Using those, we get a correspondence between the two semantics, as expressed in Theorem 6.17.

Theorem 6.17. Given a process P reachable with the single-mark semantics, P SM ≈HL M(P ).

Proof. We define

R = {(P , M(P )) | P is reachable }
and show that this is a reverse-ignoring bisimulation.

We do this by induction on the structure of P , and it is obvious in all cases except P = αγ [n]•.P ′ . In this case P can 

only perform reverse non-rollback actions P
μ[m]

SM Q , but M(P ) can perform M(P ) 
αγ [n′]−−−→HL R . Fortunately P can perform 

a series of transitions P
μ1[m1]

SM · · ·
μi [mi ]

SM

α[n]
SM M(P ) 

αγ [n′]−−−→SM R . �
7. Event structure semantics of roll-CCSK

Now that we have defined operational semantics of rollback, we are ready to describe a more formal method for using 
LREBESs to model rollback than the ad-hoc approach we used in Example 5.1.

To model a rollback in an event structure, we have two events, one which triggers the rollback, labelled start roll γ , and 
another which starts the actual rollback by allowing the events caused by the associated action to begin reversing. When 
prefixing a process P with an action αγ , we now need to ensure that any action in P , and any start roll associated with 
such an action, will be reversed by any roll γ in P , and that the rollback does not stop, signified by the event labelled roll γ
being reversed, until those actions have all been reversed.
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When composing the LREBESs of two processes, we also create a separate event for each set of causes it might have 
(Definition 7.1), similarly to how products of PESs are handled or how we define enablings when converting to an RES. This 
allows us to say that an event can be rolled back if it was caused by a communication with one of the events being rolled 
back, but not if the communication went differently. Consider the process aγ .roll γ | a.b | aγ ′ .roll γ ′ . In this case we will 
want b to roll back if both (aγ , a) and roll γ have happened, or if both (aγ ′ , a) and roll γ ′ have happened, but not if any 
other combination of the four events has happened, something which bundles cannot express unless b is split into multiple 
events. In addition, we use the sets of causes to ensure that if e is in e′ ’s set of causes and eroll can cause e to reverse, then 
eroll can cause e′ to reverse.

Definition 7.1 (Possible Causes). Given an LREBES, E = (E , F , �→, �, λ, Act), the set of possible causes for an event e ∈ E , 
cause(e) = X , contains minimal sets of events such that if x ∈ X then:

1. if x′ �→ e then there exists e′ such that x′ ∩ x = {e′};
2. if e′ ∈ x then there exists x′ ∈ cause(e′) such that x′ ⊆ x;
3. if e1, e0 ∈ X then not e0 � e1.

Example 7.2 (Causes and parallel composition). Consider the process P = aγ .roll γ | aγ ′ .roll γ ′ . This process would generate the 
event structure ⦃P ⦄ = 〈E,∅,∅〉 with events:

{(∅, (a,∗)), (∅, (∗,a)), (∅, (a,a)), ({(a,∗)}, (start roll γ ,∗)),

({(a,a)}, (start roll γ ,∗)), ({(∗,a)}, (∗, start roll γ ′)), ({(a,a)},
(∗, start roll γ ′)), (roll γ ,∗), (∗, roll γ ′)}

Here all events but the rolls have a set of causes associated with them but are still labelled based only on the action.
The actions are not preceded by other actions, so their sets of causes are empty and they can happen at the start of the 

process.
The start roll-labelled events are all caused by their preceding actions either happening on their own or synchronising, 

and whether they synchronise or not determines which of the start roll events happens.
The roll events do not have sets of causes, since we do not treat them as forwards actions needing to be reversed before 

the actions causing them are reversed.

As a side effect of adding causes, we also need to change the definition of restriction to remove not only the actions 
associated with the restricted labels, but also the actions caused by them. We do this because we want the event structures 
generated by P and 0 | P to always be isomorphic, but if P = (a.b) \ {a}, we will otherwise get an event b, which, having no 
possible causes, disappears once we put P in parallel with anything, since this involves generating a b event for each set of 
possible causes.

Definition 7.3 (Removing labels and their dependants). Given an event structure E = (E , F , �→, �, λ, Act) and a set of labels 
A ⊆ Act, we define ρ(A) = X as the maximum subset of E such that

1. if e ∈ X then λ(e) /∈ A;
2. if e ∈ X then there exists x ∈ cause(e) such that x ⊆ X .

We are now ready to define event structure semantics of Roll-CCSK in Table 7. Both roll γ and rolling γ generate the 
same event structure consisting of a start rollback event es and a rollback event er , but with the es in the initial state of 
rolling γ . A process with an action prefix, αγ .P has to find any roll γ events rolling back to αγ , R , and any events not part 
of a potential roll back to αγ , E roll . To define E roll , we look for whether tags occur in P . This is not strictly necessary, as 
we can tell for a given rollback event whether P contains its corresponding action by seeing whether it is caused by any 
action events (as we do when defining R). We then say that all non-rollback events in P are caused by eα and reversed by 
the rolls in R . And that the rolls in R are prevented from reversing by eα . After adding causes to action events, a parallel 
composition, P0 | P1, has to figure out which rolls are associated with which of the new events with causes. To do this, 
we need to find the rolls associated with either half of either the original event or one of its causes. The rest of the event 
structure semantics is similar to that of Section 4.

Much like we did in Proposition 4.13, we need to show that there exists a least upper bound of the event structures 
resulting from unfolding recursion. For this we first show that our action prefix, parallel composition, and tag binding are 
monotonic.

Proposition 7.4 (Unfolding). Given a consistent process P and a level of unfolding k, if ⦃P ⦄k = 〈E, Init,k〉 and ⦃P ⦄k−1 = 〈
E ′, Init′,k′〉, 

then E ′ ≤ E , Init = Init′ , and k = k′ .

Proof. Follows from Lemmas F.1, F.2, and F.3 in Appendix F.1 and Proposition 4.13. �
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Table 7
LREBES-semantics of Roll-CCSK.

⦃roll γ ⦄l = 〈({er , es}, {er , es}, �→,�, λ,Act),∅,∅〉 where:
{er} �→ er {es} �→ es {es} �→ er , and {er} �→ es

es � er and er � es

λ(e) =
{

roll γ if e = er

start roll γ if e = es
Act = {roll γ , start roll γ }

⦃rolling γ ⦄l = 〈({er , es}, {er , es}, �→,�, λ,Act), {es},∅〉 where:
{er} �→ er {es} �→ es {es} �→ er , and {er} �→ es

es � er and er � es

λ(e) =
{

roll γ if e = er

start roll γ if e = es
Act = {roll γ , start roll γ }

⦃0⦄l = 〈(∅,∅,∅,∅,∅,∅,∅),∅,∅〉
⦃αγ .P ⦄l = 〈(E, F , �→,�, λ,Act), Init,k〉 where:

⦃P ⦄l = 〈(E P , F P , �→P ,�P , λP ,ActP ), Init,k〉
E = E P ∪ {eα} where eα fresh

Eroll =
{

e

∣∣∣∣ λP (e) ∈ {roll γ ′ | γ ′ is a tag} or
λP (e) ∈ {start roll γ ′ | �β,n.βγ ′ orβγ ′ [n] occurs in αγ .P }

}
F = F P ∪ {eα}
X �→ e if X �→P e or X = {eα}, e ∈ E P , and λP (e) �= roll γ ′
We define the set of roll events rolling back to αγ as:
R = {e | λP (e) = roll γ and e′ �P e ⇒ λP (e′) = start roll γ }
X �→ e if X = {e}, or e = eα and X = R , or e ∈ Eroll and X �→P e,
or e /∈ Eroll , {e} �= X ′ �→P e, and X = X ′ ∪ R� = �P ∪ ((E \ {er | ∃γ ′.λ(er) ∈ {roll γ ′, start roll γ ′}}) × {eα})∪
({eα} × R) ∪ (R × (E \ R))

Act = ActP ∪ {α}
For all e ∈ E , λ(e) =

{
λP (e) if e ∈ E P

α if e = eα

⦃αγ [m].P ⦄l = 〈(E, F , �→,�, λ,Act), Init,k〉 where:
⦃αγ .P ⦄l = 〈

(E , F , �→,�, λ,Act), Init′,k′〉
{eα} = {e ∈ E | λ(a) = α and �X ⊆ E.X �→ eα}
Init = Init′ ∪ {eα} k(e) =

{
m if e = eα

k′(e) otherwise⦃
A

〈
b̃, δ̃

〉⦄
0

= 〈(∅,∅,∅,∅,∅,∅,∅),∅,∅〉
⦃

A
〈
b̃, δ̃

〉⦄
l
=

⦃
P A{b̃,δ̃/ã,γ̃ }

⦄
l−1

where A
〈
ã, γ̃

〉 = P A and l ≥ 1

⦃P0 + P1⦄l = 〈E0 + E1, Init,k〉 where
For i ∈ {0,1}, ⦃Pi ⦄l = 〈Ei , Initi ,ki〉
Init = {( j, e) | j ∈ {0,1} and e ∈ Init j}
k( j, e) = k j(e) if e ∈ Init j

⦃P0 | P1⦄l = 〈(E , F , �→,�, λ,Act), Init,k〉 where:
⦃Pi ⦄l = 〈Ei , Initi ,ki〉 and Ei = (Ei , Fi , �→i ,�i , λi ,Acti) for i ∈ {0,1}
(E×, F×, �→×,�×, λ×,Act×) = E0||E1

Init× = {(e0, e1) | e0 ∈ Init0, e1 ∈ Init1,k0(e0) = k1(e1)}∪
{(∗, e1) | e1 ∈ Init1, �e0 ∈ Init0.λ0(e0) = λ1(e1), and k0(e0) = k1(e1)}∪
{(e0,∗) | e0 ∈ Init0, �e1 ∈ Init1.λ0(e0) = λ1(e1), and k0(e0) = k1(e1)}
Eaction =

{
(X, e)

∣∣∣∣ e ∈ E×, λ×(e) /∈ {roll γ | γ is a tag}, X ∈ cause(e)
and ∀e′ ∈ X .∃X ′ ∈ cause(e′).X ′ ⊆ X

}
Eroll = {e | e ∈ E× and λ×(e) ∈ {roll γ | γ is a tag}}
E = Eaction ∪ Eroll

Faction = {(X, e) ∈ E | e ∈ F×} F roll = Eroll ∩ F× F = Faction ∪ F roll

We define π0 and π1 such that for (X, (e0, e1)) ∈ Ea , πi(X, (e0, e1)) = ei ,
and for (e0, e1) ∈ Er , πi(e0, e1) = ei

{(X, e′) | X ′ ⊆ X} �→ (X ′, (e0, e1)) if e′ ∈ X ′
X �→ (e0, e1) if there exists X ′ such that X ′ �→× e and
X = {e′ | (π0(e′),π1(e′)) ∈ X ′}
X �→ e if X = {e}, or
e = (e0, e1) and X = {e′ | (π0(e′),π1(e′)) ∈ X ′} for some X ′ �→× e, or

e = (X ′, e×) and X = ⋃⎧⎨
⎩X ′′

∣∣∣∣∣∣
∃i ∈ {0,1}, Xi ∈ Ei .Xi �→ πi(e×)

or ∃e′× ∈ X ′.Xi �→ πi(e′×)

and e′ ∈ X ′′ iff πi(e′) ∈ Xi

⎫⎬
⎭

e � e′ ∗ if there exists i ∈ {0,1} such that πi(e) �i πi(e′)∗ , or
e �= e′ , and e ∈ X �→ e′ , or
πi(e) = πi(e′) �= ⊥, and e �= e′ , e′ ∗ = e′ , or e′ ∗ �= e′ and e, e′ ∈ Eroll

(continued on next page)
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Table 7 (continued)

Act = Act0 ∪ Act1 ∪ {τ }

λ(e) =

⎧⎪⎨
⎪⎩

τ if e = (X, (e0, e1))

λ0(e0) if e = (X, (e0,∗)) or e = (e0,∗)

λ1(e1) if e = (X, (∗, e1)) or e = (∗, e1)

Init = {(X, e) | X ∪ {e} ⊆ Init×} ∪ (Eroll ∩ Init×)

k(e) =

⎧⎪⎨
⎪⎩

k0(e0) if e = (X, (e0,∗))

k1(e1) if e = (X, (∗, e1))

k0(e0) if e = (X, (e0, e1)) – note that k0(e0) = k1(e1)

⦃P \ A⦄l = 〈
E � ρ(A ∪ A), Init ∩ ρ(A ∪ A),k � ρ(A ∪ A)

〉
where ⦃P ⦄l = 〈E, Init,k〉

Example 7.5 (Recursion). Consider the process P = aγ .A 
〈
a;γ 〉

with the recursive definition A(b; δ) = bδ.(A 〈b; δ〉 | roll δ) from 
Example 6.7. Since we have recursion ⦃P ⦄ would have an infinite number of events, but we can still get a reasonable idea of 
what it would look like by only unfolding twice, giving us ⦃P ⦄2 = 〈(E , F , �→,�),∅,∅〉. We name events after their labels and 
their level of unfolding so that e.g. roll γ :1 is the roll γ -labelled event originating from the first unfolding of the recursion.

E = F = {a:0,a:1,a:2, start roll γ :1, start roll γ :2, roll γ :1, roll γ :2}
{a:i} �→ a: j for i < j roll γ : i � a: j for i ≤ j
{a:i} �→ start roll γ : j for i ≤ j roll γ :i � start roll γ : j for i ≤ j
{start roll γ :i} �→ roll γ : i for i ∈ {1,2} roll γ :i � roll γ : j for i �= j
{roll γ :i} �→ start roll γ :i for i ∈ {1,2} a:i � a: j for i > j
{roll γ :i} �→ a: j for i ≤ j a:i � roll γ :i for i ∈ {0,1}
λ(μ:i) = μ start roll γ :i � roll γ :i for i ∈ {1,2}
Act = {a, start roll γ }

Obviously this can be extended to a greater level of unfolding by allowing i > 2.
In this case we deal with the issue of ensuring each rollback only rolls back to its most recent aγ by using the set 

{er | λP (er) = roll γ and er ∈ X �→ e ⇒ λ(e) = start roll γ } as the set of rollback events rolling back to αγ in the definition 
of 

⦃
αγ .P

⦄
. This ensures that if the rollback event has found another γ -tagged action in P then it will be causing that to 

reverse and therefore not be in the set.

We then show that structurally congruent processes result in isomorphic event structures, for which we use Lemmas 7.6
to 7.11.

We first show that aside from rolls, we have causal consistency between events.

Lemma 7.6 (Causal consistency of actions). Given Roll-CCSK process P such that ⦃P ⦄ = 〈E, Init,k〉, for any events e, e′ , if e ∈ X �→ e′
and e′ � �e, then there exists γ such that λ(e′) ∈ {roll γ , start roll γ }.

Proof. We prove this by structural induction on P in Appendix F.2. �
We then show that, aside from rolls, causation is transitive.

Lemma 7.7 (Transitive causation). Given a Roll-CCSK process P such that ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉, whenever X �→ e ∈
X ′ �→ e′ , we have X �→ e′ , or there exists a γ such that λ(e′) = roll γ .

Proof. We prove this by structural induction on P in Appendix F.3. �
We then show that because we split actions into multiple events, each bundle associated with an action event only 

contains one event.

Lemma 7.8 (Forwards bundles). Given a Roll-CCSK process P such that ⦃ P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉, whenever X �→ e, either 
there exists e′ such that X = {e′}, or there exists a γ such that λ(e) = roll γ .

Proof. We prove this by structural induction on P in Appendix F.4. �
We then show a sort of reverse causality. If an event e′ causes e to reverse, then e′ prevents e. This means actions being 

reversed as part of a rollback must wait for the rollback to be completed.

Lemma 7.9 (Reverse inverse causality). Given a Roll-CCSK process P with ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉, whenever e′ ∈ X �→ e
and e �= e′ , we get e′ � e.
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Proof. We prove this by structural induction on P in Appendix F.5. �
We then show that the reversal of an event is associated with at most one bundle. This means no action needs multiple 

rolls to be in progress before it can reverse.

Lemma 7.10 (Single backwards bundle). Given a Roll-CCSK process P such that ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉, for any event 
e ∈ F , there exists at most one bundle X �→ e such that X �= {e}.

Proof. We prove this by structural induction on P in Appendix F.6. �
The final lemma we need for structural congruence says that if e′ causes an action event e then every rollback that 

reverses e′ must also reverse e.

Lemma 7.11 (Reverse transitivity). Given a Roll-CCSK process P such that ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉, whenever e′ ∈ X �→ e, 
X ′ �→ e′ , X ′ �= {e′}, and λ(e) = μ, there must exist X ′′ ⊇ X ′ such that X ′′ �→ e.

Proof. We prove this by structural induction on P in Appendix F.7. �
Having introduced these lemmas, we are ready to prove that structurally congruent processes generate isomorphic event 

structures.

Proposition 7.12 (Structural Congruence). Given consistent roll-CCSK-processes P and P ′ , if P ≡ P ′ , ⦃P ⦄ = 〈E, Init,k〉, and 
⦃

P ′⦄ =〈
E ′, Init′,k′〉, then there exists an isomorphism f : E → E ′ such that f (Init) = Init′ and for all e ∈ Init, k(e) = k′( f (e)).

Proof. We prove this by case analysis on the structural congruence rules. We use Lemmas 7.7, 7.8, 7.9, 7.10 and 7.11. The 
full proof can be seen in Appendix F.8. �

We then prove, much like we did for our CCSK event structure semantics, that, as stated in Theorems 7.13 and 7.14, a 
process P has a transition P

μ−→ P ′ if and only if P and P ′ correspond to isomorphic event structures, and there exists a 
μ-labelled transition from the initial state of ⦃P ⦄ to the initial state of 

⦃
P ′⦄.

Theorem 7.13. Let P be a consistent roll-CCSK process. If ⦃P ⦄ = 〈E, Init,k〉l , E = (E , F , �→, �, λ, Act), Cre(E) = (E , F , C, →), Init is 

conflict-free, and there exists a transition P
μ[m]−−−→ P ′ such that 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉
l , then there exists isomorphism f : E → E ′ and a 

transition Init
{e}−→ X such that λ(e) = μ, f ◦ k′ = k ∪ {(e, m)}, and f (X) = Init′ .

Proof. We prove this by induction on P
μ[m]−−−→ P ′ using Proposition 7.12 and Lemmas 7.7, 7.9, and 7.11. The full proof can be 

seen in Appendix F.9. �
Having shown that each forwards transition in the operational semantics corresponds to one in the generated event 

structure, we now show the converse.

Theorem 7.14. Let P be a consistent roll-CCSK process. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, λ, Act), Cbr(E) = (E , F , C, →), Init is 
conflict-free, and there exists a transition Init

e−→ X in Cbr(E) such that λ(e) = μ, then there exists a key m and a transition P
μ[m]−−−→ P ′ , 

such that 
⦃

P ′⦄ = 〈
E ′, Init′,k′〉 and there exists isomorphism f : E → E ′ such that f ◦ k′ = k ∪ {(e, m)} and f (X) = Init′ .

Proof. We prove this by induction on P in Appendix F.10 using Lemma 7.6. �
We then prove the same correspondence for start roll transitions.

Proposition 7.15. Let P be a consistent roll-CCSK process. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, λ, Act), Cre(E) = (E , F , C, →), Init

is conflict-free, and there exists a transition P
start roll γ−−−−−→ P ′ such that 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉, then there exist isomorphisms f : E → E ′

and g : E ′ → E and a transition Init
{e}−→ X such that λ(e) = start roll γ , f ◦ k′ = k ∪ {(e, m)}, and f (X) = Init′ .

Proof. Similar to the proof of Theorem 7.13. �
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Proposition 7.16. Let P be a consistent roll-CCSK process. If ⦃P ⦄ = 〈E, Init,k〉, E = (E , F , �→, �, λ, Act), Cbr(E) = (E , F , C, →), Init

is conflict-free, and there exists a transition Init
e−→ X in Cbr(E) such that λ(e) = start roll γ , then there exists a key m and a transition 

P
start roll γ−−−−−→ P ′ , such that 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉 and there exist isomorphisms f : E → E ′ and g : E ′ → E such that f ◦ k′ = k ∪ {(e, m)}
and f (X) = Init′ .

Proof. Similar to the proof of Theorem 7.14. �
We finally need to prove that P can do a roll γ transition if and only if the event structure generated by P can do a roll γ -

labelled event followed by reversing all the events corresponding to actions and start roll’s with tags causally dependent on 
γ and then undoing roll γ . For this we need Lemmas 7.17 to 7.21.

Lemma 7.17 states that all rolls are in conflict.

Lemma 7.17. Let P be a roll-CCSK process with ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉. Given events e, e′ ∈ E such that e �= e′ and there 
exist tags γ , γ ′ such that λ(e) = roll γ and λ(e′) = roll γ ′ we get e � e′ .

Proof. It is obvious from the syntax of Roll-CCSK that e and e′ come from parallel subprocesses or different branches of a 
choice, and the result follows from the parallel composition and choice rules of Table 7. �

Lemma 7.18 states that reversal of actions and rollback initiations are only caused by rollbacks.

Lemma 7.18. Let P be a roll-CCSK process. If ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉 and e ∈ E where there does not exist γ such that 
λ(e) = roll γ . Then whenever X �→ e, either X = {e} or for all e′ ∈ X, there does not exist γ ′ such that λ(e′) = roll γ ′ .

Proof. Obvious in most cases. In parallel composition we use the fact that we never have e′′ ∈ X ′′ �→ e′′′ where there does 
not exist γ ′′ such that λ(e′′) = roll γ ′′ . �

Lemma 7.19 states that if an event e′ in the initial state of a process prevents another event e in the initial state from 
reversing, then the key of e must have caused the key of e′ .

Lemma 7.19. Let P be a roll-CCSK process. If ⦃P ⦄ = 〈(E , F , �→,�, λ,Act), Init,k〉 and e, e′ ∈ Init then e′ �e if and only if k(e) ≤P k(e′).

Proof. We prove this by induction on P . It is trivial in all cases except P = αγ ′′ [n].P ′ and P = P0 | P1.

• Suppose P = αγ ′′ [n].P ′ . Then if e′ � e either e = eα or the result follows from induction and the fact that e ∈ Init means 
there does not exist γ ′′ such that λ(e) = roll γ ′′ . If e = eα then e′ � e unless λ(e′) ∈ {start roll γ ′, roll γ } for some γ .

• Suppose P = P0 | P1. Then there exists i ∈ {0, 1} such that either πi(e′) �i πi(e) or πi(e′) = πi(e). If πi(e′) �i πi(e) then 
the result follows from induction, and if πi(e′) = πi(e) then that contradicts e, e′ ∈ Init. �

We now need a function, N(e), to give us the key an event e labelled with an initiated rollback roll γ is rolling back to 
in Definition 7.20. We prove that N finds such a key in Lemma 7.21.

Definition 7.20 (N). Let P be a Roll-CCSK process with ⦃P ⦄ = 〈E, Init,k〉 and E = (E , F , �→, �, λ, Act). We define a partial 
function N on events such that for an event e ∈ E , N(e) = roll n if (1) λ(e) = roll γ , (2) Init

e−→, (3) for any key m, we have 
m ≥P n if and only if there exists an event e′ ∈ Init such that k(e′) = m and X ⊆ E such that X �→ e′ and e ∈ X . Otherwise 
N(e) is undefined.

Lemma 7.21. Let P be a consistent forwards-reachable roll-CCSK process such that ⦃P ⦄ = 〈E, Init,k〉 and E = (E , F , �→, �, λ, Act), 
then:

1. Let e ∈ E be an event such that λ(e) = roll γ and Init
e−→. Then N(e) is defined and unique.

2. Let P roll n−−→. Then there exists a unique e ∈ E such that N(e) = roll n.

Proof. 1. By Theorems 7.13 and 7.14 any key m occurs in P if and only if it occurs in k(Init) and given e, e′ ∈ Init, e ∈ X �→ e′
if and only if k(e) <P k(e′). The rest follows from Lemma 7.11.

2. Since P is consistent and forwards-reachable, exactly one αγ [n] must occur somewhere in P and by Theorems 7.13
and 7.14, we have e′ ∈ E such that λ(e′) = α and k(e′) = n. Then we say that e is the event such that λ(e) = roll γ and 
by similar logic to the first part, N(e) = λ(e) = roll n. To prove uniqueness, we only need to show that in the subprocess 
αγ [n].P ′ of P , no other such e′ exists. This follows from the definition of R in 

⦃
αγ [n].P ′⦄ in Table 7 and the consistency 

of P . �
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With these lemmas and definitions introduced, we will now prove Theorems 7.22 and 7.23. These state that a process P
can do roll γ if and only if the REBES generated by P can do a roll γ event, followed by undoing all the events corresponding 
to actions P rolled back, and then reverse the roll γ event.

Theorem 7.22. Let P be a roll-CCSK process such that ⦃P ⦄ = 〈E, Init,k〉. Whenever P
roll n

P ′ , there exist e and e0, e1, . . . en such that 

Init
{e}−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{e}−→ Xdone , N(e) = roll n, {e0, e1, . . . en} = {e′ | n ≤P k(e′)}, 

⦃
P ′⦄ = 〈

E ′, Init′,k′〉, and there exists an 
isomorphism f : E → E ′ such that f (Xdone) = Init′ .

Proof. We prove this through induction on the derivation of P
roll n

P ′ using Lemmas 7.6, 7.10, 7.11, 7.17, and 7.18, Propo-
sition 7.12 and 7.19, Theorem 7.13. The full proof can be seen in Appendix F.11. �

Having shown that each rollback transition in the operational semantics corresponds to a sequence of transitions in the 
generated event structure, we now show the converse.

Theorem 7.23. Let P be a consistent roll-CCSK process such that ⦃P ⦄ = 〈E, Init,k〉. Whenever Init
{er }−−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{er }−−→

Xdone , we have a transition P
roll n

P ′ , such that N(er) = roll n, {e0, e1, . . . en} = {e′ | n ≤P k(e′)}, 
⦃

P ′⦄ = 〈
E ′, Init′,k′〉, and there exists 

an isomorphism f : E → E ′ such that f (Xdone) = Init′ .

Proof. Follows from Theorem 7.13 and Proposition 7.12 �
We have now proved an operational correspondence between the operational semantics presented in Section 6 and the 

denotational event structure semantics presented in this section. In particular, we have shown that using non-causal event 
structures lets us model a control operator.

8. Conclusion

We have defined a reversible variant of bundle event structures and a category using these as objects, and used a causal 
subcategory of this to describe event structure semantics of uncontrolled CCSK, the first event structure semantics of a 
reversible calculus that we are aware of. We chose to use CCSK for this purpose because the way CCSK records previous 
actions preserves the structure of the process, meaning we can use very similar semantics for previous and future actions.

Unlike previous efforts to describe truly concurrent semantics of a reversible process calculus such as the one using rigid 
families [8], we have generated both the event structure and the initial state directly from the process, rather than needing 
to first undo previous actions to get the original process and from there the event structure, and then redo the actions 
to get the initial state. This was made easier by CCSK using static reversibility, since we did not have to combine events 
generated separately from a memory and a process. Our event structure semantics has shown that the same process at 
different points in its execution will generate isomorphic event structures with different initial states.

We have also proposed a variant of CCSK called Roll-CCSK, which uses the rollback described in [17] to control its 
reversibility. We have given two semantics for this calculus, one in which the entire roll is completed in one step, and 
one in which each action being rolled back takes a step. We have proved an operational correspondence between these 
semantics. We have defined a reversible variant of extended bundle event structures, which add asymmetric conflict to 
bundle event structures, and a category using these as objects, and used non-causal variants of these to define the event 
structure semantics of Roll-CCSK. Using event structures with non-causal reversibility allows us to treat rolls as normal 
events where the process aγ .roll γ has the event aγ cause the event roll γ , and at the same time aγ prevents roll γ from 
reversing.

We have proved operational correspondence between the operational and event structure semantics of both CCSK (The-
orems 4.18 and 4.19) and Roll-CCSK (Theorems 7.13, 7.14, 7.22, and 7.23).

Another common way to control reversibility is by commit or irreversible actions, introduced for reversible CCS in [10]. 
These are used to denote a safe state which the process cannot reverse past. As such they function as a dual of the rollback, 
which ensures the process will reverse when hitting a fail state. Irreversible actions are simple to add to event structure 
semantics of CCSK by making the corresponding events irreversible, but would be more challenging to add to Roll-CCSK due 
to potentially having events which are irreversible but also required to reverse in order to finish a roll. We chose to focus 
on rollback since, as pointed out in [17], rollback gives the programmer more control than commit and more closely models 
system recovery techniques.

Future work. There exist many other reversible calculi which one might want to define event structure semantics for, most 
of which deal with previous actions by putting them into separate memories, rather than annotating them and keeping 
them in the process as CCSK does. This will likely make defining event structure semantics more challenging, particularly 
if trying to avoid defining the event structure corresponding to the fully reversed process first and then finding the action 
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which have already been performed. Having event structure semantics of multiple calculi would allow us to reason about 
them and compare them.
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Appendix A. Relating RBES to other categories of reversible event structures

In this appendix we recall the categories of reversible prime and stable event structures and describe how they relate to 
the category RBES defined in Section 3.2.

Definition A.1 (RPES [27]). A reversible prime event structure (RPES) is a sextuple E = (E , F , <, �, ≺, �) where E is the set 
of events, F ⊆ E is the set of reversible events, and

• < ⊆ E × (E ∪ F ) is an irreflexive partial order such that for every e ∈ E , {e′ ∈ E | e′ < e} is finite and conflict-free;
• � ⊆ E × E is irreflexive and symmetric such that if e < e′ then not e � e′;
• � ⊆ E × F is the prevention relation;
• ≺ ⊆ E × F is the reverse causality relation where for each e ∈ F , e ≺ e and {e′ | e′ ≺ e} is finite and conflict-free and if 

e ≺ e′ then not e � e′;
• � is hereditary with respect to sustained causation � and � is transitive, where e � e′ means that e < e′ and if e ∈ F

then e′ � e.

Definition A.2 (RPES morphism [15]). Let E0 = (E0, F0, <0, �0, ≺0, �0) and E1 = (E1, F1, <1, �1, ≺1, �1) be RPESs. A morphism 
f : E0 → E1 is a partial function f : E0 → E1 such that

• for all e ∈ E0, if f (e) �= ⊥ then {e1 | e1 <1 f (e)} ⊆ { f (e′) | e′ <0 e};
• for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′) and f (e) �1 f (e′) then e �0 e′;
• for all e ∈ F0, if f (e) �= ⊥ then {e1 | e1 ≺1 f (e)} ⊆ { f (e′) | e′ ≺0 e};
• for all e ∈ E0 and e′ ∈ F0, if f (e) �= ⊥ �= f (e′) and f (e) �1 f (e′) then e �0 e′;
• for all e, e′ ∈ E0, if f (e) = f (e′) �= ⊥ and e �= e′ then e �0 e′;
• f (F0) ⊆ F1.

Definition A.3 (RPES to RBES). The functor Br : RPES → RBES is defined as:

1. Br((E , F , <, �, ≺, �)) = (E , F , �→, �, �), where {e′} �→ e if e′ < e and {e′} �→ e if e′ ≺ e;
2. Br( f ) = f .

Definition A.4 (SRES [15]). A stable reversible event structure (SRES) is a triple E = (E , F , Con, �) where E is the set of 
events, Con ⊆fin 2E is the consistency relation, which is left-closed, � ⊆ Con × 2E × (E ∪ E) is the enabling relation, and

1. if X � Y � e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X � Y � e then e ∈ X ;
3. if X � Y � e∗ , X ⊆ X ′ ∈ Con, and X ′ ∩ Y = ∅ then X ′ � Y � e∗;
4. if X � Y � e∗ , X ′ � Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con then X ∩ X ′ � Y ∩ Y ′ � e∗ .

Definition A.5 (SRES morphism [15]). Let (E0, Con0, �0) and (E1, Con1, �1) be two SRESs. A morphism f : (E0, Con0, �0) →
(E1, Con1, �1) is a partial function f : E0 → E1 such that:

• for all e ∈ E0, if f (e) �= ⊥ and X � Y �0 e∗ then there exists a Y1 ⊆ E1 such that for all e0 ∈ E0, if f (e0) ∈ Y1 then 
e0 ∈ Y and f (X) � Y1 �1 f (e)∗;

• for any X0 ∈ Con0, f (X0) ∈ Con1;
• for all e, e′ ∈ E0, if f (e) = f (e′) �= ⊥ and e �= e′ then no X ∈ Con0 exists such that e, e′ ∈ X .
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Definition A.6 (FCRBES to SRES). The functor Eb : FCRBES → SRES is defined as:

1. Eb((E , F , �→, �, �)) = (E , F , Con, �) where
(a) Con is the set of finite conflict-free subsets of E;
(b) For e ∈ E , X � ∅ � e if X ∪ {e} ∈ Con and for all X ′ ⊆ E such that X ′ �→ e, X ′ ∩ X �= ∅;
(c) For e ∈ F , X � Y � e if X ∈ Con, for all X ′ ⊆ E such that X ′ �→ e, X ′ ∩ X �= ∅, Y = {e′ | e′ � e}, and Y ∩ X = ∅;

2. Eb( f ) = f .

Proposition A.7. Given a FCRBES E = (E , F , �→, �, �), we have that Eb(E) is an SRES.

Proof. We prove the conditions of Definition A.4.

1. If X � Y � e then Y = ∅ and therefore (X ∪ {e}) ∩ Y = ∅. If X � Y � e then Y ∩ X = ∅ and e ∈ X , and therefore 
(X ∪ {e}) ∩ Y = ∅.

2. If X � Y � e then {e} �→ e and therefore {e} ∩ X �= ∅ and e ∈ X .
3. If X � Y � e∗ , X ⊆ X ′ ∈ Con, and X ′ ∩ Y = ∅ then for all X ′′ �→ e∗ , X ∩ X ′ �= ∅, and therefore X ′ � Y � e∗ .
4. If X � Y � e∗ , X ′ � Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con then, Y = Y ′ , X ∪ X ′ is conflict-free, meaning there must exist an 

X ′′ ⊆ (X ∩ X ′) such that for all X ′′′ �→ e∗ , we have X ′′′ ∩ X ′′ �= ∅. This means X ∩ X ′ � Y ∩ Y ′ � e∗ . �
Appendix B. Proofs from Section 3

B.1. Proof of Proposition 3.10

Proof. We first show that π0 and π1 are morphisms:

1. If πi(e) �i πi(e′), then obviously e � e′ .
2. If πi(e) = πi(e′) and e �= e′ , then π1−i(e) �= π1−i(e′), and therefore e � e′ .
3. If Xi �→ πi(e), then {e′ ∈ E | πi(e′) ∈ Xi} �→ e. Clearly πi({e′ ∈ E | πi(e′) ∈ Xi}) = Xi , and for all e′ ∈ {e′ ∈ E | πi(e′) ∈ Xi}), 

πi(e′) �= ⊥.
4. If X is a configuration of E0 × E1, then we show that πi(X) satisfies the requirements of a configuration of Ei :

(a) As shown above πi(e) �i πi(e′) ⇒ e � e′ , which means that X conflict-free implies πi(X) conflict-free.
(b) If there exists a sequence e1, . . . , en such that X = {e1, . . . , en} and for all j, 1 ≤ j ≤ n, if Y �→ e j+1 then {e1, . . . , e j} ∩

Y �= ∅, then πi(X) = {πi(e1), . . . , πi(en)} and if πi(e j+1) �= ⊥, then whenever Yi �→ πi(e j+1), {e′ ∈ E | πi(e′) ∈ Yi} �→
e j+1, meaning {e′ ∈ E | πi(e′) ∈ Yi} ∩ {e1, . . . , e j} �= ∅. Therefore, we must get Yi ∩ {πi(e1), . . . , πi(e j)} �= πi(∅) = ∅.

We then show that for any BES, E2 = (E2, �→2, �2), if there exist morphisms f0 : E2 → E0 and f1 : E2 → E1, then there 
exists a unique morphism f : E2 → E , such that π0 ◦ f = f0 and π1 ◦ f = f1.

Clearly f (e) = ( f0(e), f1(e)) is the only partial function for which this commutes, so we prove it to be a morphism:

1. If f (e) � f (e′) then there exists i ∈ {0, 1} such that either πi( f (e)) �i πi( f (e′)), in which case clearly f i(e) �i f i(e′)i , and 
therefore e �2 e′ , or πi( f (e)) = πi( f (e′)) �= ⊥ and π1−i( f (e)) �= π1−i( f (e′)), in which case f i(e) = f i(e′) �= ⊥, and e �= e′ , 
meaning e �2 e′ .

2. If f (e) = f (e′) �= ⊥ then f0(e) = f0(e′) �= ⊥ or f1(e) = f1(e′) �= ⊥, meaning if e �= e′ then e �2 e′ .
3. For X ⊆ E , if X �→ f (e), then there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→ πi(e) and X = {e′ ∈ E | πi(e′) ∈ Xi}. And 

since Xi �→ f i(e), there exists X2 ⊆ E2 such that X2 �→2 e, f i(X2) ⊆ Xi , and if e′ ∈ X2 then f i(e′) �= ⊥. Clearly f (X2) ⊆ X .
4. If X is a configuration of E2, then we show that f (X) satisfies the requirements of a configuration of E0 × E1:

(a) As shown above, if f (e) � f (e′), then e �2 e′ , meaning if X is conflict-free, then f (X) is conflict-free.
(b) If there exists a sequence e1, . . . , en such that X = {e1, . . . , en} and for all j, 1 ≤ j ≤ n, if Y �→ e j+1 then {e1, . . . , e j} ∩

Y �= ∅, then f (X) = { f (e1), . . . , f (en)} and if f (e j+1) �= ⊥, then whenever Y ′ �→ f (e j+1), {e′ ∈ E | f (e′) ∈ Y ′} �→ e j+1, 
meaning {e′ ∈ E | f (e′) ∈ Y ′} ∩ {e1, . . . , e j} �= ∅. Therefore, we must get Y ′ ∩ { f (e1), . . . , f (e j)} �= f (∅) = ∅. �

B.2. Proof of Proposition 3.13

Proof. Obviously E is a BES, and ι0 and ι1 are morphisms, so we simply need to prove that if there exists a BES E2 =
(E2, �→2, �2) and morphisms f0 : E0 → E2 and f1 : E1 → E2, then there exists a unique BES morphism f : E → E2 such that 
the following commutes:
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E

E0 E1

E2

ι0 ι1

f

f0 f1

Clearly the only partial function for which this could hold is f ( j, e) = f j(e), so we prove it to be a morphism:

• If f (e) �2 f (e′) then e = ( j, e j), e′ = ( j′, e j′ ) f j(e j) = f (e), f j′ (e j′ ) = f (e′), and either j �= j′ or j = j′ . If j �= j′ , then 
obviously e � e′ . If j = j′ , then f j(e j) �2 f j(e j′ ), meaning e j � j e j′ , and therefore e � e′ .

• If f (e) = f (e′) �= ⊥ then e = ( j, e j) and e′ = ( j′, e j′ ) and f j(e j) = f (e) = f (e′) = f j′ (e j′ ).
If j = j′ then e �= e′ means that e j �= e j′ , which means that e j � j e j′ and therefore e � e′ .
If j �= j′ , then by definition e � e′ .

• If X2 �→ f (e), then e = ( j, e j), and there exists X j such that X j �→ j e j , f j(X j) ⊆ X2, and if e′
j ∈ X j then f j(e′

j) �= ⊥. This 
means {( j, e′

j) | e′
j ∈ X j} �→ e, f ({( j, e′

j) | e′
j ∈ X j}) ⊆ X2, and if e′ ∈ {( j, e′

j) | e′
j ∈ X j} then e′ �= ⊥.

The diagram obviously commutes. �
B.3. Proof of Proposition 3.30

Definition B.1 (CS morphism). Let C0 = (E0, F0, C0, →0) and C1 = (E1, F1, C1, →1) be configuration systems. A CS morphism 
is a partial function f : E0 → E1 such that

1. for any X ∈ C0, f (X) ∈ C1;

2. for any X, Y ∈ C0, A ⊆ E0, and B ⊆ F0, if X
A∪B−−→0 Y and f (A ∪ B) �= ∅ then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y );
3. for all e0, e′

0 ∈ E0, if f (e0) = f (e′
0) �= ⊥ and e0 �= e′

0 then there exists no X ∈ C0 such that e0, e′
0 ∈ X .

Proof. We first show that if E = (E , F , �→, �, �) is an RBES, then Cbr(E) = (E , F , C, →) is a CS, as defined in Definition 3.28, 
meaning that for X, Y ∈ C, A ⊆ E , and B ⊆ F , if X

A∪B−−→ Y , then:

1. A ∩ X = ∅, B ⊆ X ∩ F , and Y = (X \ B) ∪ A by definition.

2. For all A′ ⊆ A and B ′ ⊆ B , (X \ B ′) ∪ A = Z ∈ C because Z ⊆ X ∪ A ∈ C. Moreover X
A′∪B ′
−−−→ Z and Z

(A\A′)∪(B\B ′)−−−−−−−−→ Y
obviously fulfil the conditions for transitions.

We then show that if f : E0 → E1 is an RBES morphism then f : Cbr(E0) → Cbr(E1) is a CS morphism satisfying the condi-
tions of Definition B.1:

1. Suppose X ∈ C0. Then X is conflict-free. Since, by definition of an RBES morphism, f (e0) �1 f (e′
0) ⇒ e0 �0 e′

0, this 
implies that f (X) is conflict-free, and therefore f (X) ∈ C1.

2. Suppose X
A∪B−−→0 Y . Then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y ) because:
(a) f (X), f (Y ) ∈ C1 since X, Y ∈ C0, as implied by item 1.
(b) f (Y ) = ( f (X) \ f (B)) ∪ f (A) since Y = (X \ B) ∪ A.
(c) f (A) ∩ f (X) = ∅ since A ∩ X = ∅, and by definition of an RBES morphism, for all e0, e′

0 ∈ E0, if f (e0) = f (e′
0) �= ⊥

and e0 �= e′
0 then e0 �0 e′

0, implying e0, e′
0 /∈ (X ∪ A) = Y ∈ C0, since Y is conflict-free.

(d) f (B) ⊆ f (X) since B ⊆.
(e) f (X) ∪ f (A) is conflict-free because X ∪ A is conflict-free and f (e0) �1 f (e′

0) ⇒ e0 �0 e′
0.

(f) For all e ∈ B , if e′ � e then e′ /∈ X ∪ A.
(g) For all e1 ∈ f (B), if e′

1 �1 e1 then e′
1 /∈ f (X) ∪ f (A) because for any e0 ∈ B , e′

0 ∈ E0 such that f (e0) = e1 and 
f (e′

0) = e′
1 we have e′

0 � e0 and therefore e′
0 /∈ X ∪ A.

(h) For all e1 ∈ f (A) and X1 ⊆ E1, if X1 �→1 e1 then X1 ∩ ( f (X) \ f (B)) �= ∅ because then there exists e0 and X0
such that f (e0) = e1, X0 �→0 e0, f (X0) ⊆ X1, and if e′

0 ∈ X0 then f (e′
0) �= ⊥. Therefore, X0 ∩ (X \ B) �= ∅, and 

f (X0) ∩ ( f (X) \ f (B)) �= ∅.
(i) For all e1 ∈ f (B) and X1 ⊆ E1, if X1 �→1 e1 then X1 ∩ ( f (X)1 \ ( f (B) \ {e1})) �= ∅ for similar reasons to the previous 

condition.
(j) For every a ∈ f (A), {e ∈ E1 | e <1 f (a)} ⊆ f (X) because for every a0 ∈ A, {e ∈ E0 | e <0 a0} ⊆ X , and by definition of 

a PES morphism, {e1 | e1 <1 f (a0)} ⊆ { f (e) | e <0 a0}.
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3. Suppose f (e0) = f (e′
0) �= ⊥ and e0 �= e′

0. By definition of an RBES morphism, e0 �0 e′
0, and since all X ∈ C0 are conflict-

free, there exists no X ∈ C0 such that e0, e′
0 ∈ X .

Then to prove it is a functor we simply need to show that:

Cbr( f : E1 → E2) = Cbr( f ) : Cbr(E1) → Cbr(E2), which is obvious since Cbr( f ) = f , Cbr(E0) = E0, and Cbr(E1) = E1.
Cbr(1E ) = 1Cbr (E) since the identity function for all RBES and CS objects is f (e) = e.
Cbr( f ◦ f ′) = Cbr( f ) ◦ Cbr( f ′) since Cbr( f ) = f and Cbr( f ′) = f ′ . �

Appendix C. Proofs from Section 4

C.1. Proof of Theorem 4.18

Proof. We say that E ′ = (E ′, F ′, �→′, �′, �′, λ′, Act′) and the inverse of f is g : E ′ → E . We prove the theorem by inductions 
on P

μ[m]−−−→ P ′ using the forwards semantics seen in Table 1 and describing how E and E ′ are constructed:

• Suppose P = α.Q , P ′ = α[m].Q , μ = α, and std(Q ). Then there exist EQ and eα such that:
– ⦃Q ⦄ = 〈

EQ , Init,k
〉
,

– EQ = (E Q , F Q , �→Q , �Q , �Q , λQ , ActQ ),
– eα /∈ E Q ,
– E = E Q ∪ {eα},
– F = F Q ∪ {eα},
– X �→ e∗ if X �→Q e∗ or X = {eα} and e∗ = e ∈ E Q ,
– � = �Q ,
– � = �Q ∪ (E Q × {eα}),
– Act = ActQ ∪ {α},

– for all e ∈ E , λ(e) =
{

λQ (e) if e ∈ E Q

α if e = eα
,

– and if Init �= ∅ then for all e ∈ E , {e} �→ e and for all e ∈ F , e � e.
There also exist E ′

Q and e′
α such that:

– ⦃Q ′⦄ =
〈
E ′

Q , Init′Q ,k′
Q

〉
,

– E ′ is constructed similarly to E ,
– Init′ = Init′Q ∪ {e′

α},

– and k′(e) =
{

k′
Q (e) If e ∈ Init′Q

m If e = e′
α

.

As EQ and E ′
Q have been generated by the same process, we have isomorphisms f Q : EQ → E ′

Q and gQ : E ′
Q → EQ . 

We say that f = f Q ∪ {(eα, e′
α)} and g = gQ ∪ {(e′

α, eα)}. These are obviously isomorphisms.
Since Init is conflict-free and � = �Q , X = Init ∪ {eα} is conflict-free, and therefore a configuration of Cbr(E). And since 

no X ′ ⊆ E exists such that X ′ �→ eα , we get Init
{eα}−−→ {eα}, and clearly λ(eα) = α and k( f (e)) = m.

• Suppose that P = α[n].Q , P ′ = α[n].Q ′ , Q
μ[m]−−−→ Q ′ , and m �= n. Then there exist EQ , InitQ , kQ , eα , E ′

Q , Init′Q , k′
Q , and 

e′
α similar to the previous case.

By induction, we get isomorphisms f Q : EQ → E ′
Q and gQ : E ′

Q → EQ and a transition InitQ
{e}−→ X Q in Cbr(EQ ) such 

that λQ (e) = μ, k′
Q ( f Q (e)) = m, and f Q (X Q ) = Init′Q .

We define f = f Q ∪{(eα, e′
α)} and g = gQ ∪{(e′

α, eα)}. Since InitQ and X Q are conflict-free in EQ , InitQ ∪{eα} = Init and 

X Q ∪ {eα} = X are configurations of Crb(E), and clearly Init
{e}−→ X .

• Suppose P = Q | R , P ′ = Q ′ | R , Q
μ[m]−−−→ Q ′ , and fsh[m](R). Then there exist EQ and ER such that:

– ⦃Q ⦄ = 〈
EQ , InitQ ,kQ

〉
,

– EQ = (E Q , F Q , �→Q , �Q , �Q , λQ , ActQ ),
– ⦃R⦄ = 〈ER , InitR ,kR〉,
– ER = (E R , F R , �→R , �R , �R , λR , ActR),
– E = {(e, ∗) | e ∈ E Q } ∪ {(∗, e) | e ∈ E R} ∪ {(e, e′) | e ∈ E Q , e′ ∈ E R , λQ (e) = λR(e′)},
– F = {(e, ∗) | e ∈ F Q } ∪ {(∗, e) | e ∈ F R} ∪ {(e, e′) | e ∈ F Q , e′ ∈ F R , λ0(e) = λ1(e′)},
– there exist πQ and πR such that πi(eQ , eR) = ei for i ∈ {Q , R},
– X �→ e∗ if there exists i ∈ {Q , R} and Xi ⊆ Ei such that Xi �→i πi(e) and X = {e′ ∈ E | πi(e′) ∈ Xi},
– e � e′ if there exists i ∈ {Q , R} such that πi(e) �i πi(e′) or πi(e) = πi(e′) �= ⊥,
– e � e′ if there exists i ∈ {Q , R} such that πi(e) �i πi(e′),
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– Act = ActQ ∪ ActR ∪ {τ },

– λ(e) =

⎧⎪⎨
⎪⎩

τ if e = (eQ , eR)

λQ (eQ ) if e = (eQ ,∗)

λ1(eR) if e = (∗, eR)

,

– Init = {(eQ , eR) | eQ ∈ InitQ , eR ∈ InitR , kQ (eQ ) = kR(eR)} ∪ {(eQ , ∗) | eQ ∈ InitQ and �eR ∈ InitR .λQ (eQ ) = λR(eR) and 
kQ (eQ ) = kR(eR)} ∪ {(∗, eR) | eR ∈ InitR and �eQ ∈ InitQ .λQ (eQ ) = λR(eR) and kQ (eQ ) = kR(eR)},

– and k(e) =

⎧⎪⎨
⎪⎩

kQ (eQ ) If e = (eQ ,∗)

kR(eR) If e = (∗, eR)

kQ (eQ ) If e = (eQ , eR)

.

We also have 
〈
E ′, Init′,k′〉 constructed similarly from some 

〈
E ′

Q , Init′Q ,k′
Q

〉
and 

〈
E ′

R , Init′R ,k′
R

〉
such that 

⦃
Q ′⦄ =〈

E ′
Q , Init′Q ,k′

Q

〉
and ⦃R⦄ = 〈

E ′
R , Init′R ,k′

R

〉
.

We clearly have isomorphisms f Q : EQ → EQ ′ , gQ : E ′
Q → EQ , f R : ER → E ′

R , and gR : E ′
R → ER and a transition 

InitQ
{eQ }−−→ X Q of Crb(EQ ) such that λQ (e) = μ, k′

Q ( f Q (eQ )) = m, and f Q (X Q ) = Init′Q .

Since Init is conflict-free and X Q is conflict-free in EQ , clearly Init ∪ {(eQ , ∗)} = X is conflict-free, and Init
(eQ ,∗)−−−→ X .

We define our isomorphisms as

f (e) =

⎧⎪⎨
⎪⎩

( f Q (e′),∗) if e = (e′,∗)

(∗, f R(e′)) if e = (∗, e′)
( f Q (e′), f R(e′′)) if e = (e′, e′′)

and

g(e) =

⎧⎪⎨
⎪⎩

(gQ (e′),∗) if e = (e′,∗)

(∗, gR(e′)) if e = (∗, e′)
(gQ (e′), gR(e′′)) if e = (e′, e′′)

And, since fsh[m](R), f (X) = Init′ . The rest of the proof is straightforward.

• Suppose P = Q | R , P ′ = Q ′ | R ′ , Q
α[m]−−→ Q ′ , R α[m]−−→ R ′ , and μ = τ . Then we have 〈E, Init,k〉 constructed from ⦃Q ⦄ =〈

EQ , InitQ ,kQ
〉

and ⦃R⦄ = 〈ER , InitR ,kR〉 and 
〈
E ′, Init′,k′〉 constructed from 

⦃
Q ′⦄ =

〈
E ′

Q , Init′Q ,k′
Q

〉
and 

⦃
R ′⦄ = 〈

E ′
R , Init′R ,k′

R

〉
as in the previous case.
By induction, we have isomorphisms f Q : EQ → E ′

Q , gQ : E ′
Q → EQ , f R : ER → ER ′ , and gR : ER ′ → ER and transitions 

InitQ
{eQ }−−→ X Q of Crb(EQ ) such that λQ (e) = α, k′

Q ( f Q (eQ )) = m, and f Q (X Q ) = Init′Q , and InitR
{eR }−−→ XR of Crb(ER) such 

that λR(e) = α, kR ′( f R(eR)) = m, and f R(XR) = InitR ′ .
We define our isomorphisms as

f (e) =

⎧⎪⎨
⎪⎩

( f Q (e′),∗) if e = (e′,∗)

(∗, f R(e′)) if e = (∗, e′)
( f Q (e′), f R(e′′)) if e = (e′, e′′)

and

g(e) =

⎧⎪⎨
⎪⎩

(gQ (e′),∗) if e = (e′,∗)

(∗, gR(e′)) if e = (∗, e′)
(gQ (e′), gR(e′′)) if e = (e′, e′′)

We know that Init, X Q , and XR are conflict-free, so the only way Init ∪ {(eQ , eR)} has conflict is if InitQ or InitR an event 
with the key m, which we know from Lemma 5.2 of [26] is not possible. The rest of the proof is straightforward.

• Suppose P = Q + R , P ′ = Q ′ + R , Q
μ[m]−−−→ Q ′ , and std(R). Then there exist EQ and ER such that:

– ⦃Q ⦄ = 〈
EQ , InitQ ,kQ

〉
,

– EQ = (E Q , F Q , �→Q , �Q , �Q , λQ , ActQ ),
– ⦃R⦄ = 〈ER , InitR ,kR〉,
– ER = (E R , F R , �→R , �R , �R , λR , ActR),
– E = E Q ∪ E R ,
– F = F Q ∪ F R ,
– X �→ e∗ if there exists i ∈ {Q , R} such that X �→i e∗ ,
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– � = �Q ∪ �R ∪ (E Q × E R) ∪ (E R × E Q ),
– � = �Q ∪ �R ∪ (E Q × F R) ∪ (E R × F Q ),
– Act = ActQ ∪ ActR ,
– for all e ∈ E , i ∈ {Q , R}, λ(e) = λi(e) if e ∈ Ei ,
– Init = InitQ ∪ InitR ,
– for i ∈ {Q , R}, k(e) = ki(e) if e ∈ Initi ,
– if InitQ �= ∅ and InitQ �= ∅ then for all e ∈ E , {e} �→ e and for all e ∈ F , e � e.

We also have 
〈
E ′, Init′,k′〉 constructed similarly from some 

〈
E ′

Q , Init′Q ,k′
Q

〉
and 

〈
E ′

R , Init′R ,k′
R

〉
such that 

⦃
Q ′⦄ =〈

E ′
Q , Init′Q ,k′

Q

〉
and ⦃R⦄ = 〈

E ′
R , Init′R ,k′

R

〉
.

We clearly have isomorphisms f Q : EQ → E ′
Q , gQ : E ′

Q → EQ , f R : ER → E ′
R , and gR : E ′

R → ER and a transition InitQ
{e}−→

X of Crb(EQ ) such that λQ (e) = μ, k′
Q ( f Q (e)) = m, and f (X) = Init′Q . We define our isomorphisms

f (e) =
{

f Q (e) if e ∈ E Q

f R(e) if e ∈ E R

and

g(e) =
{

gQ (e) if e ∈ E ′
Q

gR(e) if e ∈ E ′
R

Since std(R), InitR = ∅, and therefore Init = InitQ , which is conflict-free end therefore a configuration. Obviously Init
{e}−→ X

in Crb(E), and the rest follows.

• Suppose P = Q \ A, P ′ = Q ′ \ A, Q
μ[m]−−−→ Q ′ , and μ /∈ A ∪ A. Then there exists EQ such that:

– ⦃Q ⦄ = 〈
EQ , InitQ ,kQ

〉
– E = EQ � {e | λQ (e) /∈ A ∪ A}
– Init = InitQ ∩ {e | λQ (e) /∈ A ∪ A}
– k = kQ � {e | λQ (e) /∈ A ∪ A}
And there exists E ′

Q such that:

–
⦃

Q ′⦄ =
〈
E ′

Q , Init′Q ,k′
Q

〉
– E ′ = E ′

Q � {e | λ′
Q (e) /∈ A ∪ A}

– Init′ = Init′Q ∩ {e | λ′
Q (e) /∈ A ∪ A}

– k′ = k′
Q � {e | λ′

Q (e) /∈ A ∪ A}
By inductions we have isomorphisms f Q : EQ → E ′

Q and g : E ′
Q → EQ and a transition InitQ

{eQ }−−→ X Q or Crb(EQ ) such 
that λQ (e) = μ, k′

Q ( f Q (eQ )) = m, and f Q (X Q ) = Init′Q . We define our isomorphisms as f Q � {e | λ′
Q (e) /∈ A ∪ A} and 

gQ � {e | λ′
Q (e) /∈ A ∪ A}. And since λ(e) /∈ A ∪ A, the rest of the proof is straightforward.

• Suppose P = Q [ f ′], P ′ = Q ′[ f ′], Q
ν[m]−−→ Q ′ , and f ′(ν) = μ. Then there exist λQ and ActQ such that:

– ⦃Q ⦄ = 〈
(E, F , �→, �,�, λQ ,ActQ ), Init,k

〉
,

– Act = f ′(ActQ )

– and λ = f ′ ◦ λQ .
And there exist λ′

Q and Act′Q such that

– ⦃Q ′⦄ =
〈
(E ′, F ′, �→′, �′,�′, λ′

Q ,Act′Q ), Init′,k′
〉
,

– Act′ = f ′(Act′Q )

– and λ = f ′ ◦ λ′
Q .

By induction, we get isomorphisms f Q : EQ → E ′
Q and gQ : E ′

Q → EQ and a transition Init
{e}−→ X in Crb(EQ ) such that 

λQ (e) = ν , k′( f ′(e)) = m, and f (X) = Init′ . We define our isomorphisms f = f Q and g = gQ , and the rest of the proof 
is straightforward.

• Suppose P ≡ Q , P ′ ≡ Q ′ , and Q
μ[m]−−−→ Q ′ . Then the result follows from induction and Proposition 4.15. �

C.2. Proof of Theorem 4.19

Proof. We say that E ′ = (E ′, F ′, �→′, �′, �′, λ′, Act′) and the inverse of f is g : E ′ → E , and prove the theorem by induction 
on P .

• Suppose P = 0. Then E = ∅, and obviously no transitions exist in Cbr(E).
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• Suppose P = α.Q . Then {eα} �→ e′ for all e′ ∈ E \ {eα}, meaning by definition e = eα . In addition, since P is reachable, 
clearly std(P ) meaning Init = ∅. This means we get P

α[m]−−→ α[m].Q for some fresh m, and the isomorphisms are similar 
to this case in the proof of Theorem 4.18.

• Suppose P = α[n].Q and ⦃Q ⦄ = 〈
EQ , InitQ ,kQ

〉
. Then eα ∈ Init, and clearly InitQ

e−→ X Q , meaning there exists a key 

m and a transition Q
λ(e)[m]−−−−→ Q ′ , such that 

⦃
Q ′⦄ =

〈
E ′

Q , Init′Q ,k′
Q

〉
and there exist isomorphisms f Q : EQ → E ′

Q and 

gQ : E ′
Q → EQ such that k′

Q ( f Q (e)) = m and f Q (X Q ) = Init′Q . If m �= n, then P
λ(e)[m]−−−−→ α[m].P ′

Q . Otherwise, we can 
chose a fresh m and still get a transition. We define our isomorphisms as f = f Q ∪ {(eα, e′

α)} and g = gQ ∪ {(e′
α, eα)}

and the rest of the proof is straightforward.
• Suppose P = P0 + P1, ⦃P0⦄ = 〈E0, Init0,k0〉, Cbr(E0) = (E0, F0, C0, →0), ⦃P1⦄ = 〈E1, Init1,k1〉, and

Cbr(E1) = (E1, F1, C1, →1). Then either Init0
e−→0 X0 and Init1 = ∅, or Init1

e−→1 X1 and Init0 = ∅.

If Init0
e−→0 X0, then there exists a key m and a transition P0

λ0(e)[m]−−−−−→ P ′
0, such that 

⦃
P ′

0

⦄ = 〈
E ′

0, Init′0,k′
0

〉
and there exist 

isomorphisms f0 : E0 → E ′
0 and g0 : E ′

0 → E0 such that k′
0( f0(e)) = m and f0(X0) = Init′0. Then, since Init1 = ∅ means 

std(P1), P
λ(e)[m]−−−−→ P ′

0 + P1, and the isomorphisms are similar to this case in the proof of Theorem 4.18.

If Init1
e−→1 X1, then the proof is similar.

• Suppose P = P0 | P1 and we have ⦃P0⦄ = 〈E0, Init0,k0〉, E0 = (E0, F0, �→0, �0, �0, λ0, Act0), Cbr(E0) =
(E0, F0, C0, →0), ⦃P1⦄ = 〈E1, Init1,k1〉, E1 = (E1, F1, �→1, �1, �1, λ1, Act1), and Cbr(E1) = (E1, F1, C1, →1). Then either 
e = (e0, ∗), e = (∗, e1), or e = (e0, e1).
If e = (e0, ∗), then whenever X ′

0 �→0 e0, we get {e′ ∈ E | π0(e′) ∈ X ′
0} �→ e. And whenever π0(e′) �0 π0(e), we get e′ �

e. This means Init0 is conflict-free, π0(X) is conflict-free, and Init0
e0−→0 π0(X). There therefore exists a key m and a 

transition P0
λ0(e0)[m]−−−−−→ P ′

0, such that 
⦃

P ′
0

⦄ = 〈
E ′

0, Init′0,k′
0

〉
and there exist isomorphisms f0 : E0 → E ′

0 and g0 : E ′
0 → E0

such that k′
0( f0(e0)) = m and f0(π0(X)) = Init′0.

We chose an m, which is fresh for P1, and we get P
λ0(e0)[m]−−−−−→ P ′

0 | P1. We define our isomorphisms

f (e′) =

⎧⎪⎨
⎪⎩

( f0(e′
0),∗) if e′ = (e′

0,∗)

(∗, e′
1) if e′ = (∗, e′

1)

( f0(e′
0), e′

1) if e′ = (e′
0, e′

1)

and

g(e′) =

⎧⎪⎨
⎪⎩

(g0(e′
0),∗) if e′ = (e′

0,∗)

(∗, e′
1) if e′ = (∗, e′

1)

(g0(e′
0), e′

1) if e′ = (e′
0, e′

1)

Since E ′ = E ′
0 × E1, these are isomorphisms, and the rest of the case is straightforward.

If e = (e0, ∗), the argument is similar.
If e = (e0, e1), then for i ∈ {0, 1}, whenever X ′

i �→i ei , we get {e′ ∈ E | πi(e′) ∈ X ′
i} �→ e. And whenever πi(e′) �0 πi(e), we 

get e′ � e. This means Initi is conflict-free, πi(X) is conflict-free, and Initi
e0−→i πi(X). There therefore exists a key mi and 

a transition Pi
λi(ei)[mi ]−−−−−→ P ′

i , such that 
⦃

P ′
i

⦄ = 〈
E ′

i , Init′i,k′
i

〉
and there exist isomorphisms f i : E0 → E ′

i and gi : E ′
i → Ei such 

that k′
i( f i(ei)) = mi and f i(πi(X)) = Init′0.

We say that m0 = m1 is a fresh m, and then since λ0(e0) = λ1(e1) and λ(e) = τ , we get P
λ(e)[m]−−−−→ P ′

0 | P ′
1. We define our 

isomorphisms

f (e′) =

⎧⎪⎨
⎪⎩

( f0(e′
0),∗) if e′ = (e′

0,∗)

(∗, f1(e′
1)) if e′ = (∗, e′

1)

( f0(e′
0), f1(e′

1)) if e′ = (e′
0, e′

1)

and

g(e′) =

⎧⎪⎨
⎪⎩

(g0(e′
0),∗) if e′ = (e′

0,∗)

(∗, g1(e′
1)) if e′ = (∗, e′

1)

(g0(e′
0), g1(e′

1)) if e′ = (e′
0, e′

1)

Since E ′ = E ′ × E ′ , these are isomorphisms, and the rest of the case is straightforward.
0 1
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• Suppose P = Q \ A, ⦃Q ⦄ = 〈
EQ , Init,k

〉
, and Cbr(EQ ) = (E Q , F Q , CQ , →Q ). Then λ(e) /∈ A ∪ A and Init

e−→Q X , meaning 

there exists a key n and a transition Q
λQ (e)−−−→ Q ′ such that 

⦃
Q ′⦄ =

〈
E ′

Q , Init′Q ,k′
Q

〉
, and there exist isomorphisms f Q :

EQ → E ′
Q and gQ : E ′

Q → EQ such that f Q ◦ k′
Q = kQ ∪ {(e, n)} and f Q (X) = Init′Q .

This means P
λQ (e)−−−→ Q ′ \ A and the morphisms f � E and g � {e′ ∈ E ′

Q | λ′
Q (e′) /∈ A ∪ A} clearly fulfil the remaining 

conditions.
• Suppose P = Q [ f ], ⦃Q ⦄ = 〈

EQ , Init,k
〉
, and Cbr(EQ ) = (E Q , F Q , CQ , →Q ). Clearly Init

e−→Q X , and f (λQ (e)) = λ(e), and 
the proof is straightforward. �

Appendix D. Extended bundle event structures

In this appendix we define the categorical concepts for EBESs, which we defined for BESs in Section 3.1.
We first define a finitely caused subcategory (Definition D.1), though in this case the asymmetric conflict still cannot be 

modelled by general event structures.

Definition D.1 (Finitely Caused EBES). A finitely caused EBES (FCEBES) is an EBES E = (E , �→, �) where for any e ∈ E , {X ⊆
E | X �→ e} is finite.

EBES configurations are sets which have an order in which the events could have happened.

Definition D.2 (EBES configuration [21]). Given an EBES E = (E , �→, �), a configuration of E is a set X ⊆ E such that there 
exists a sequence e0, . . . , en such that:

1. {e0, . . . , en} = X ;
2. if ei � e j then i < j;
3. if X �→ ei then X ∩ {e0, . . . , ei−1} �= ∅.

A category of EBESs has not, to our knowledge, been defined, so we define an EBES morphism in Definition D.3. This 
morphism is similar to the BES morphism defined previously, and asymmetric conflict is treated much the same way as 
symmetric.

Definition D.3 (EBES morphism). Given EBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), an EBES-morphism from E0 to E1 is 
a partial function f : E0 → E1 such that and for all e, e′ ∈ E0:

1. if f (e) �1 f (e′) then e �0 e′;
2. if f (e) = f (e′) �= ⊥ and e �= e′ then e �0 e′;
3. for X1 ⊆ E1 if X1 �→1 f (e) then there exists X0 ⊆ E0 such that X0 �→0 e, f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) �= ⊥;
4. for any X0 ⊆ E0, if X0 is a configuration of E0, then f (X0) is a configuration of E1.

Proposition D.4. Given EBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1) and EBES morphism f : E0 → E1 , if X ⊆ E0 is a configu-
ration of E0 , then f (X) is a configuration of E1 .

Proposition D.5. EBES consisting of EBESs and EBES morphisms is a category.

Proof. Composition of partial functions is associative and f (e) = e works as an identity arrow, and so we need only show 
that the morphisms are composable.

If E0 = (E0, �→0, �0), E1 = (E1, �→1, �1), and E2 = (E2, �→2, �2) are EBESs and f : E0 → E1 and g : E1 → E2 are mor-
phisms, we show that f ◦ g : E0 → E2 is also a morphism:

1. If g( f (e)) �2 g( f (e′)) then f (e) �1 f (e′), and therefore e �0 e′ .
2. If g( f (e)) = g( f (e′)) and e �= e′ , then either f (e) = f (e′), in which case e �0 e′ , or f (e) �= f (e′), in which case f (e) �1

f (e′), and therefore e �0 e′ .
3. If X2 �→2 g( f (e)) then there exist X1 ⊆ E1 and X0 ⊆ E0 such that X1 �→1 f (e), X0 �→0 e, g(X1) ⊆ X2, f (X0) ⊆ X1

and if e1 ∈ X1 then g(e1) �= ⊥ and if e0 ∈ X0 then f (e0) �= ⊥. This means that g( f (X0)) ⊆ X2, and if e0 ∈ X0 then 
g( f (e0)) �= ⊥.

4. If X0 is a configuration of E0 then f (X0) is a configuration of E1, and therefore g( f (X0)) is a configurations of E2. �
We also construct a product of EBESs in Definition D.6. This definition is very similar to the products in Section 3.
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Definition D.6 (EBES product). Given EBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we construct E0 × E1 = (E , �→, �)

with projections π0, π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. for (e0, e1) ∈ E , πi(e0, e1) = ei ;
3. for any e ∈ E , X ⊆ E , X �→ e iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→ πi(e) and X = {e′ ∈ E | πi(e′) ∈ Xi};
4. for any e, e′ ∈ E , e � e′ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e′), or πi(e) = πi(e′) �= ⊥ and π1−i(e) �= π1−i(e′).

Proposition D.7. Given EBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we have that E0 × E1 = (E , �→, �) is their product.

Proof. We first show that π0 and π1 are morphisms:

1. If πi(e) �i πi(e′), then obviously e � e′ .
2. If πi(e) = πi(e′) and e �= e′ , then π1−i(e) �= π1−i(e′), and therefore e � e′ .
3. If Xi �→ πi(e), then {e′ ∈ E | πi(e′) ∈ Xi} �→ e. Clearly πi({e′ ∈ E | πi(e′) ∈ Xi}) = Xi , and for all e′ ∈ {e′ ∈ E | πi(e′) ∈ Xi}), 

πi(e′) �= ⊥.
4. If X is a configuration of E0 ×E1, then we show that πi(X) satisfies the requirements of a configuration of Ei . We show 

that if the requirements of Definition D.2 hold for e0, . . . , en , then they hold for πi(e0), . . . , πi(en):
(a) Obviously {πi(e0), . . . , πi(en)} = πi(X).
(b) If πi(e j) �i πi(e j′ ), then as shown above, e j � e j′ , meaning j < j′ .
(c) Whenever Yi �→ πi(e j+1), we know {e′ ∈ E | πi(e′) ∈ Yi} �→ e j+1, meaning {e′ ∈ E | πi(e′) ∈ Yi} ∩ {e1, . . . , e j} �= ∅. 

Therefore, we must get Yi ∩ {πi(e1), . . . , πi(e j)} �= πi(∅) = ∅.

We then show that for any EBES, E2 = (E2, �→2, �2), if there exist morphisms f0 : E2 → E0 and f1 : E2 → E1, then there 
exists a unique morphism f : E2 → E , such that π0 ◦ f = f0 and π1 ◦ f = f1.

Clearly f (e) = ( f0(e), f1(e)) is the only partial function for which this commutes, meaning that the morphisms clearly 
commute as described above; we prove it to be a morphism:

1. If f (e) � f (e′) then there exists i ∈ {0, 1} such that either πi( f (e)) �i πi( f (e′)), in which case clearly f i(e) �i f i(e′)i , 
and therefore e �2 e′ , or πi( f (e)) = πi( f (e′)) �= ⊥ and π1−i( f (e)) �= π1−i( f (e′)), in which case f i(e) = f i(e′) �= ⊥, and 
e �= e′ , meaning e �2 e′ .

2. If f (e) = f (e′) �= ⊥ then f0(e) = f0(e′) �= ⊥ or f1(e) = f1(e′) �= ⊥, meaning if e �= e′ then e �2 e′ .
3. For X ⊆ E , if X �→ f (e), then there exists i ∈ {0, 1} and Xi ⊆ Ei such that Xi �→ πi(e) and X = {e′ ∈ E | πi(e′) ∈ Xi}. And 

since Xi �→ f i(e), there exists X2 ⊆ E2 such that X2 �→2 e, f i(X2) ⊆ Xi , and if e′ ∈ X2 then f i(e′) �= ⊥. Clearly f (X2) ⊆ X .
4. If X is a configuration of E2, then we show that f (X) satisfies the requirements of a configuration of E0 × E1. We show 

that if the requirements of Definition D.2 hold for e0, . . . , en , then they hold for f (e0), . . . , f (en):
(a) Obviously { f (e0), . . . , f (en)} = f (X).
(b) If f (e j) � f (e j′ ), then as shown above, e j �2 e j′ , meaning j < j′ .
(c) Whenever Y �→ f (e j+1), we know {e′ ∈ E | f (e′) ∈ Y } �→ e j+1, meaning {e′ ∈ E | f (e′) ∈ Y } ∩ {e1, . . . , e j} �= ∅. There-

fore, we must get Y ∩ { f (e1), . . . , f (e j)} �= f (∅) = ∅. �
Proposition D.8. Given FCEBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we have that E0 × E1 = (E , �→, �) is an FCEBES.

Proof. Similar to the proof of Proposition 3.11. �
We also construct a coproduct of EBESs in Definition D.9.

Definition D.9 (EBES coproduct). Given EBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we construct E0 + E1 = (E , �→, �)

with injections ι0, ι1 where:

• E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1};
• for e ∈ E j , ι j(e) = ( j, e) for j ∈ {0, 1};
• X �→ ( j, e) iff for all ( j′, e′) ∈ X , j = j′ and ι j(X) �→ j e;
• ( j, e) � ( j′, e′) iff j �= j′ or e � j e′ .

Proposition D.10. If E0 and E1 are EBESs, then E0 + E1 is their coproduct.

Proof. Similar to that for BES coproduct (Proposition 3.13). �
Proposition D.11. Given FCEBESs E0 = (E0, �→0, �0) and E1 = (E1, �→1, �1), we have that E0 + E1 = (E , �→, �) is an FCEBES.
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Proof. Similar to Proposition 3.27. �
Appendix E. Relating REBES to other categories of reversible event structures

In this appendix we recall the category of reversible asymmetric event structures and describe how it and stable bundle 
event structures (Definition A.4) relate to the category REBES defined in Section 5.

Definition E.1 (RAES [27]). A reversible asymmetric event structure (RAES) is a 4-tuple E = (E , F , ≺, �) where E is the set 
of events and

1. F ⊆ E is the set of reversible events;
2. � ⊆ (E ∪ F ) × E is the irreflexive precedence relation;
3. ≺⊆ E × (E ∪ F ) is the causation relation, which is irreflexive and well-founded, such that for all α ∈ E ∪ F , {e ∈ E | e ≺ α}

is finite and has no �-cycles;
4. for all e ∈ F , e ≺ e;
5. for all e ∈ E and α ∈ E ∪ F if e ≺ α then not e � α;
6. e ≺≺ e′ implies e � e′ , where e ≺≺ e′ means that e ≺ e′ and if e ∈ F then e′ � e;
7. ≺≺ is transitive;
8. if e � e′ and e ≺≺ e′′ then e′′ � e′ , where � = � ∩ �.

Definition E.2 (RAES morphism [15]). Given RAESs E0 = (E0, F0, ≺0, �0) and E1 = (E1, F1, ≺1, �1), an RAES morphism f :
E0 → E1 is a partial function f : E0 → E1 such that

1. for all e∗ ∈ E0 ∪ F0, if f (e) �= ⊥ then {e1 | e1 ≺1 f (e∗)} ⊆ { f (e′) | e′ ≺0 e∗};
2. for all e ∈ E0 and e′ ∗ ∈ E0 ∪ F0, if f (e) �= ⊥ �= f (e′ ∗) and f (e′ ∗) �1 f (e) then e′ ∗ �0 e;
3. for all e, e′ ∈ E0, if f (e) = f (e′) �= ⊥ and e �= e′ then e �0 e′;
4. f (F0) ⊆ F1.

Definition E.3 (RAES to REBES). The functor Bar : RAES → REBES is defined as:

1. Bar((E , F , ≺, �)) = (E , F , �→, �), where {e′} �→ e∗ if e′ ≺ e;
2. Bar( f ) = f .

Definition E.4 (FCREBES to SRES). The functor Eer : FCREBES → RES is defined as:

1. Eer((E , F , �→, �)) = (E , F , Con, �) where
(a) Con is the set of finite subsets of E with no �-cycles;
(b) For e∗ ∈ E ∪ F , X � Y �∗ if X ∈ Con, for all X ′ ⊆ E such that X ′ �→ e∗ , X ′ ∩ X �= ∅, Y = {e′ | e′ � e∗}, and Y ∩ X = ∅;

2. Eer( f ) = f .

Proposition E.5. Given an FCREBES E = (E , F , �→, �), we have that Eer((E , F , ≺, �, �)) is an SRES.

Proof. If X � Y � e∗ , X ′ � Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con then Y = Y ′ and X ∪ X ′ has no �-cycles, meaning there must 
exist an X ′′ ⊆ (X ∩ X ′) such that for all X ′′′ �→ e∗ , there exists e′ ∈ X ′′ ∩ X ′′′ . This implies X ∩ X ′ � Y ∩ Y ′ � e∗ . �
Appendix F. Proofs from Section 7

F.1. Proof of Proposition 7.4

Lemma F.1. Given consistent processes P0 and P1 such that ⦃P0⦄ = 〈E0, Init0,k0〉, ⦃P1⦄ = 〈E1, Init1,k1〉, and E0 ≤ E1 , and there exists 
A 

〈
α̃, γ̃

〉
in P0 such that A(β̃, ̃δ) = P A and P1 = P0{A

〈
α̃,γ̃

〉
/P A {α̃,γ̃ /

β̃,δ̃
}}, and an action αγ such that 

⦃
αγ .P0

⦄ = 〈
E ′

0, Init′0,k′
0

〉
and 

⦃
αγ .P1

⦄ = 〈
E ′

1, Init′1,k′
1

〉
, we get E ′

0 ≤ E ′
1 .

Proof. Obviously E ′
0 ⊆ E ′

1 and F ′
0 = F ′

1 ∩ E ′
0.

We then prove that X �→′
0 e∗ if and only if X ′ �→′

1 e∗ , X = X ′ ∩ E ′
0, and e∗ ∈ E ′

0 ∪ F ′
0:

• If X �→′
0 e then either X �→0 e, or X = {eα}, e ∈ E0, and λ0(e) �= roll γ ′ .

– If X �→0 e then there exists some X1 ⊆ E1 such that X1 ∩ E0 = X0 and X1 �→1 e, meaning X1 �→′
1 e and X1 ∩ E ′

0 = X0.
– If X = {eα}, e ∈ E0, and λ0(e) �= roll γ ′ then e ∈ E1 and λ1(e) = λ0(e) �= roll γ ′ , meaning {eα} �→′ e.
1
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• If X �→′
1 e and e ∈ E ′

0 then either X �→1 e, or X = {eα}, e ∈ E1, and λ1(e) �= roll γ ′ .
– If X �→1 e and e ∈ E ′

0 then X ∩ E0 = X ∩ E ′
0 �→0 e, meaning X ∩ E ′

0 �→0 e.
– If e ∈ E ′

0, X = {eα}, e ∈ E1, and λ1(e) �= roll γ ′ , then λ0(e) = λ1(e) �= roll γ , meaning {eα} �→′
0 e.

• If X �→′
0 e then either X = {e}, or e = eα and X = {e′ ∈ E0 | {e′ | λ0(e′) = roll γ and e′ ∈ X ′ �→ e′′ ⇒ λ(e′′) = start roll γ }}, 

or λ0(e) ∈ {roll γ ′ | γ ′ is a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0} and X �→0 e, or λ0(e) /∈ {roll γ ′ | γ ′
is a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0}, {e} �= X ′ �→0 e, and X = X ′ ∪ {e′ | λ0(e′) = roll γ }.
– If X = {e} then obviously X �→′

1 e.
– If e = eα and X = {e′ ∈ E0 | λ0(e′) = roll γ } then X = {e′ ∈ E1 | λ1(e′) = roll γ } ∩ E0 and {e′ ∈ E1 | λ1(e′) = roll γ } �→′

1 e.
– If λ0(e) ∈ {roll γ ′ | γ ′ is a tag } ∪{start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0} and X �→0 e then λ1(e) ∈ {roll γ ′ | γ ′

is a tag} ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P1} and there exists X1 such that X1 ∩ E0 = X and X1 �→1 e, 
meaning X1 �→′

1 e.
– If λ0(e) /∈ {roll γ ′ | γ ′ is a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0}, {e} �= X ′ �→0 e, and X = X ′ ∪ {e′ |

λ0(e′) = roll γ } then there exists X ′
1 ⊆ E1 such that X ′

1 ∩ E0 = X ′ and X ′
1 �→1 e. This means X ′

1 ∪ {e′ ∈ E1 | λ1(e′) =
roll γ } �→′

1 e, and clearly {e′ ∈ E1 | λ1(e′) = roll γ } ∩ E0 = {e′ ∈ E0 | λ0(e′) = roll γ }, meaning (X ′
1 ∪ {e′ ∈ E1 | λ1(e′) =

roll γ }) ∩ E ′
0 = X .

• If X �→′
1 e and e ∈ E ′

0 then either X = {e}, or e = eα and X = {e′ ∈ E1 | λ1(e′) = roll γ }, or λ1(e) ∈ {roll γ ′ | γ ′ is a tag}
∪{start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P1} and X �→1 e, or λ1(e) /∈ {roll γ ′ | γ ′ is a tag } ∪{start roll γ ′ | �β, n.βγ ′
or βγ ′ [n] occurs in αγ .P1}, {e} �= X ′ �→1 e, and X = X ′ ∪ {e′ | λ1(e′) = roll γ }.
– If X = {e} then obviously X �→′

0 e.
– If e = eα and X = {e′ ∈ E1 | λ1(e′) = roll γ } then {e′ ∈ E0 | λ0(e′) = roll γ } �→′

0 e and obviously X ∩ E ′
0 = {e′ ∈ E0 |

λ0(e′) = roll γ }.
– If λ1(e) ∈ {roll γ ′ | γ ′ is a tag} ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P1} and X �→1 e then λ0(e) ∈ {roll γ ′ |

γ ′ is a tag} ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0}, and X ∩ E0 �→0 e, meaning X ∩ E0 �→′
0 e.

– If λ1(e) /∈ {roll γ ′ | γ ′ is a tag} ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P1}, {e} �= X ′ �→1 e, and X = X ′ ∪ {e′ |
λ1(e′) = roll γ } then X ′ ∩ E0 �→0 e, meaning (X ′ ∩ E0) ∪{e′ | λ0(e′) = roll γ } �→′

0 e, and obviously X ∩ E0 = (X ′ ∩ E0) ∪{e′ |
λ0(e′) = roll γ }.

We then prove that e �′
0 e′ ∗ if and only if e �′

1 e′ ∗ , e ∈ E ′
0, and e′ ∈ E ′

0 ∩ F ′
0.

• If e �′
0 e′ ∗ then either λ0(e) ∈ {roll γ ′ | γ ′ is a tag} ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0} and e′ ∗ = eα , or 

e = eα , e′ ∗ = e′ and λ0(e′) = roll γ , or λ0(e) = roll γ and e′ ∗ = eα , or λ0(e) = roll γ , e′ ∗ = e′ , and λ0(e′) /∈ {roll γ ′ | γ ′ is 
a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0}.
– If λ0(e) ∈ {roll γ ′ | γ ′ is a tag } ∪{start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0} and e′ ∗ = eα , then λ1(e) ∈ {roll γ ′ |

γ ′ is a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P1}, and therefore e �′
1 eα .

– If e = eα , e′ ∗ = e′ and λ0(e′) = roll γ then λ1(e′) = roll γ , and therefore eα �′
1 e′ .

– If λ0(e) = roll γ and e′ ∗ = eα , then λ1(e) = roll γ , and therefore e �′
1 eα .

– If λ0(e) = roll γ , λ0(e′) /∈ {roll γ ′ | γ ′ is a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0}, and e′ ∗ = e′ , then 
λ1(e) = roll γ and λ1(e′) /∈ {roll γ ′ | γ ′ is a tag } ∪ {start roll γ ′ | �β, n.βγ ′ or βγ ′ [n] occurs in αγ .P0}, meaning e �′

1 e′ .
• If e �′

1 e′ ∗ for e, e′ ∈ E0 then the argument is similar.

Obviously λ′
0 = λ′

1 �E ′
0

and Act = ran(λ′
0). �

Lemma F.2. Given consistent processes P0 and P1 such that ⦃P0⦄ = 〈E0, Init0,k0〉, ⦃P1⦄ = 〈E1, Init1,k1〉, and E0 ≤ E1 , and an action 
αγ such that 

⦃
αγ [m].P0

⦄ = 〈
E ′

0, Init′0,k′
0

〉
and 

⦃
αγ [m].P1

⦄ = 〈
E ′

1, Init′1,k′
1

〉
, we get E ′

0 ≤ E ′
1 .

Proof. Follows from Lemma F.1 and the definitions of 
⦃
αγ [m].P0

⦄
and 

⦃
αγ [m].P1

⦄
. �

Lemma F.3. Given consistent processes P0 | P2 , P1 | P2 with ⦃P0⦄ = 〈E0, Init0,k0〉, ⦃P1⦄ = 〈E1, Init1,k1〉, ⦃P0 | P2⦄ = 〈
E ′

0, Init′0,k′
0

〉
, 

⦃P1 | P2⦄ = 〈
E ′

1, Init′1,k′
1

〉
, and E0 ≤ E1 , we get E ′

0 ≤ E ′
1 .

Proof. We first prove that E ′
0 ⊆ E ′

1. For all e ∈ E ′
0 we know either e ∈ E0 ×∗ E2 and λ′

0(e) ∈ {roll γ , start roll γ }, or e = (X, e′)
for some e′ ∈ E0 ×∗ E2 and X ∈ causes(e′). If e ∈ E0 ×∗ E2 and λ′

0(e) ∈ {roll γ , start roll γ } then obviously e ∈ E ′
1. If e = (X, e′)

then if e′ = (e0, ∗) then for each (e′
0, e

′
2) ∈ X there exists X0 such that e′

0 ∈ X0 and X0 �→0 e0. This means there exists 
X1 ⊆ E1 such that X1 �→1 e0 and X0 = X1 ∩ E0. In addition, for any X ′

1 ⊆ E1 such that X ′
1 �→1 e0, we have X ′

1 ∩ E0 �→0 e0, 
and therefore (X ′

1 × E2) ∩ X �= ∅. We therefore get e ∈ E ′
1. If e′ = (∗, e2) then obviously e2’s causes are the same in E ′

1 and 
therefore e′ ∈ E ′

1. If e′ = (e0, e2) then the argument is a combination of the first two cases.
Obviously F ′

0 = E ′
0 ∩ F ′

1.
We then prove that X �→′ e∗ if and only if X ′ �→′ e∗ , X = X ′ ∩ E ′ , and e∗ ∈ E ′ ∪ F ′ :
0 1 0 0 0
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• If X �→′
0 e then either e = (X ′, e′), X = {(X ′′, e′′) | X ′′ ⊆ X ′}, and e′′ ∈ X ′ , or e = (e0, e2) and there exists X ′ such that 

X ′ �→0×2 e and X = {e′ | (π0(e′), π2(e′)) ∈ X ′}.
– If e = (X ′, e′), X = {(X ′′, e′′) | X ′′ ⊆ X ′}, and e′′ ∈ X ′ then clearly X �→′

1 e.
– If e = (e0, e2) and there exists X ′ such that X ′ �→0×2 e and X = {e′ | (π0(e′), π2(e′)) ∈ X ′} then X ′ �→1×2 e, and 

obviously {e′ | (π0(e′), π2(e′)) ∈ X ′} = {e′ | (π1(e′), π2(e′)) ∈ X ′} ∩ E ′
0.

• If X �→′
1 e and e ∈ E ′

0 then either e = (X ′, e′), X = {(X ′′, e′′) | X ′′ ⊆ X ′}, and e′′ ∈ X ′ , or e = (e1, e2) and there exists X ′
such that X ′ �→1×2 e and X = {e′ | (π1(e′), π2(e′)) ∈ X ′}.
– If e = (X ′, e′), X = {(X ′′, e′′) | X ′′ ⊆ X ′}, and e′′ ∈ X ′ then since e ∈ E0, for all e′′′ ∈ X ′ , π1(e′′′) ∈ E0, meaning X ⊆ E ′

0, 
and �→′

0 e.
– If e = (e1, e2) and there exists X ′ such that X ′ �→1×2 e and X = {e′ | (π1(e′), π2(e′)) ∈ X ′} then e1 ∈ E0 ∪ {∗}, and 

X ′ ∩ (E0 ×∗ E2) �→0×2 e, meaning X ∩ E ′
0 = {e′ | (π0(e′), π2(e′)) ∈ X ′ ∩ (E0 ×∗ E2)} �→ e.

• If X �→′
0 e then X = ⋃⎧⎨

⎩X ′′
∣∣∣∣∣∣

∃i ∈ {0,2}, Xi ∈ Ei .Xi �→ πi(e)
or ∃e× ∈ X ′.Xi �→ πi(e×)

and e′ ∈ X ′′ iff πi(e′) ∈ Xi

⎫⎬
⎭ and e = (X ′, (e0, e2)), or e = (e0, e1) and there exists X ′

such that X ′ �→×0 e and X = {e′ | (π0(e′), π1(e′)) ∈ X ′}, or X = {e}.
– If X = {e} then obviously X �→′

1 e.

– If e = (X ′, (e0, e2)) and X =
⎧⎨
⎩X ′′

∣∣∣∣∣∣
∃i ∈ {0,2}, Xi ∈ Ei .Xi �→i πi(e)
or ∃e× ∈ X ′.Xi �→i πi(e×)

and e′ ∈ X ′′ iff πi(e′) ∈ Xi

⎫⎬
⎭ then (1) for each X0 such that X0 �→0 e0, there 

exists X1 such that X1 �→1 e0 and X1 ∩ E0 = X0, and (2) for each X0 such that there exists (e′
0, e

′
2) ∈ X ′ , such that 

X0 �→′
0 e0, there exists X1 such that X1 �→1 e′

0 and X1 ∩ E0 = X0, meaning

⋃⎧⎨
⎩X ′′

∣∣∣∣∣∣
∃i ∈ {1,2}, Xi ∈ Ei .Xi �→i πi(e)
or ∃e× ∈ X ′.Xi �→i πi(e×)

and e′ ∈ X ′′ iff πi(e′) ∈ Xi

⎫⎬
⎭ ∩ E0 = X

– If e = (e0, e1) and there exists X ′ such that X ′ �→0×2 e and X = {e′ | (π0(e′), π1(e′)) ∈ X ′}, then by Lemma 4.10, there 
exists X ′′ such that X ′ = X ′′ ∩ (E0 ×∗ E2) and X ′′ �→1×2 e, meaning {e′ | (π1(e′), π1(e′)) ∈ X ′′} �→′

1 e.
• If X �→′

1 e and e ∈ E ′
0 then X = {e}, or e = (X ′, (e1, e2)) and X = ⋃{X ′′ | ∃i ∈ {0, 1}.πi(X ′′) �→ ei or ∃e′ ∈ X ′.πi(X ′′) �→i

πi(e′)}. If X = {e} then obviously X �→′
0 e.

If e = (X ′, (e1, e2)) and X = ⋃⎧⎨
⎩X ′′

∣∣∣∣∣∣
∃i ∈ {1,2}, Xi ∈ Ei .Xi �→i πi(e)
or ∃e× ∈ X ′.Xi �→i πi(e×)

and e′ ∈ X ′′ iff πi(e′) ∈ Xi

⎫⎬
⎭ then for each X1 such that X1 �→ e1, we know 

X1 ∩ E0 �→ e1, and for each X1 such that there exists (e′
1, e

′
2) ∈ X ′ such that X1 �→′

1 e1, since e ∈ E ′
0, e′

1 ∈ E0, meaning 
X1 ∩ E0 �→ e1. Therefore X ∩ E ′

0 �→′
0 e1.

We then prove that e �′
0 e′ ∗ if and only if e �′

1 e′ ∗ , e ∈ E ′
0, and e′ ∈ E ′

0 ∩ F ′
0.

If e �′
0 e′ ∗ then there exists i ∈ {0, 2} such that either (1) πi(e) �i πi(e′)∗ , or (2) πi(e) = πi(e′) �= ⊥, or (3) e′ ∗ = e′ , e �= e′ , 

and e ∈ X �→ e′ , or (4) and there exist γ , γ ′ such that λ(e) = roll γ and λ(e′) = roll γ ′ . In all these cases it is clear that the 
same conditions will apply in E ′

1.
Similar logic applies if e �′

1 e′ ∗ and e, e′ ∈ E ′
0.

Obviously λ′
0 = λ′

1 �E ′
0

and Act = ran(λ′
0). �

F.2. Proof of Lemma 7.6

Proof. We prove this by structural induction on P :

• Suppose P = 0. Then there are no events and the lemma is trivially true.
• Suppose P = roll γ . Then e ∈ X �→ e′ means e = es and e′ = er , and obviously λ(e′) = roll γ .
• Suppose P = rolling γ . Then the argument is the same as the previous case.
• Suppose P = αγ ′ .P ′ . Then 

⦃
P ′⦄ = 〈

E ′, Init,k
〉

and either X �→′ e′ or X = {eα}. If X �→′ e′ then e′ �= eα and by induction if 
e′ � �′e then λ(e′) ∈ {roll γ , start roll γ }. If X = {eα} then, e′ � eα unless λ(e′) ∈ {roll γ , start roll γ }.

• Suppose P = αγ ′ .[m]P ′. Then the argument is the same as the previous case.
• Suppose P = P0 + P1. Then e = (i, ei), e′ = (i, e′

i), ei �→i e′
i , and e′

i � �iei , meaning λi(e′
i) ∈ {roll γ , start roll γ }, and there-

fore λ(e′) ∈ {roll γ , start roll γ }.
• Suppose P = P0 | P1. Then if e′ = (Y ′, e′′), e = (Y , e′′′) and e′′′ ∈ Y ′ , meaning there exists i ∈ {0, 1} such that πi(e) ∈

Xi �→i πi(e′). By induction we get that, if e′
i � �iei , then there exists γ such that λi(e′

i) ∈ {roll γ , start roll γ }, meaning 
e′

1−i = ∗ and λ(e′) ∈ {roll γ , start roll γ }, and if e′
i �i ei then e′ � e. If e′ ∈ E× then λ(e′) ∈ {roll γ , start roll γ }

• Suppose P = P ′ \ A. Then the result follows from induction.
• Suppose P = A 

〈
ã, γ̃

〉
and A(b̃, ̃δ) = P A . Then the result holds if it holds for P A . �
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F.3. Proof of Lemma 7.7

Proof. We prove this by structural induction on P :

• Suppose P = 0. Then there are no events and the lemma is trivially true.
• Suppose P = roll γ . Then no X, X ′, e, e′ exist such that X �→ e ∈ X ′ �→ e′ .
• Suppose P = rolling γ . Then the argument is the same as the previous case.
• Suppose P = αγ ′ .P ′ . Then 

⦃
P ′⦄ = 〈

E ′, Init,k
〉
, X ′ �→′ e′ , and either X = {eα}, or X �→′ e. If X = {eα}, then X �→ e′ whenever 

λ(e′) �= roll γ ′ . If X �→′ e and X ′ �→′ e′ then by induction, X �→ e′ .
• Suppose P = αγ ′ .[m]P ′. Then the argument is the same as the previous case.
• Suppose P = P0 + P1. Then there exists an i ∈ {0, 1} such that e = (i, ei), e′ = (i, e′

i), {e′′
i | (i, e′′

i ) ∈ X ′} �→i e′
i , and {e′′

i |
(i, e′′

i ) ∈ X} �→i ei , meaning by induction {e′′
i | (i, e′′

i ) ∈ X} �→i e′
i , and therefore X �→ e′ .

• Suppose P = P0 | P1. Then e′ = (Y ′, (e′
0, e

′
1)) or there exists a γ such that λ(e′) = roll γ . If e′ = (Y ′, (e′

0, e
′
1)) then e =

(Y , (e0, e1)) and (e0, e1) ∈ Y ′ , meaning there exists i ∈ {0, 1} such that ei ∈ Xi �→i e′
i . Similarly, X = {(Y ′′, e′′) | (Y ′′, e′′) ∈

E} for some e′′ ∈ Y . Since Y ∈ cause(e) and e ∈ Y ′ ∈ cause(e′), there exists Y ′′ ∈ cause(e′) such that Y ⊆ Y ′′ . This means 
X �→ e.

• Suppose P = P ′ \ A. Then the result follows from induction.
• Suppose P = A 

〈
ã, γ̃

〉
and A(b̃, ̃δ) = P A . Then the result holds if it holds for P A . �

F.4. Proof of Lemma 7.8

Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll γ . Then e′ = es and e = er .
• Suppose P = rolling γ . Then e′ = es and e = er .
• Suppose P = αγ .P ′ . Then by induction, if X �→P ′ e, then there exists an e′ such that X = {e′}. If X ��→P ′ e, then X = {eα}.
• Suppose P = αγ [m].P ′ . Then by induction, if X �→P ′ e, there exists an e′ such that X = {e′}. If X ��→P ′ e, then X = {eα}.
• Suppose P = P0 + P1. Then, by induction if e = (i, ei) and Xi �→i ei , then Xi = e′

i , and e′ = (i, e′
i).

• Suppose P = P0 | P1. Then either e = (Y , e×) or there exists a γ such that λ(e) = roll γ . If e = (Y , e×) then X =
{(Y ′′, e′′) | (Y ′′, e′′) ∈ E} for some e′′ ∈ Y . We therefore need to show that given an event e′′ ∈ Y , there exists exactly one 
Y ′′ ∈ cause(e′′) such that Y ′′ ⊆ Y . This follows naturally from items 2 and 3 of Definition 7.1.

• Suppose P = P ′ \ A. Then the lemma obviously follows from the definition of ρ (Definition 7.3).
• Suppose P = A 

〈
ã, γ̃

〉
and A(b̃, ̃δ) = P A . Then the lemma holds if it holds for P A . �

F.5. Proof of Lemma 7.9

Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll γ . Then e′ = er and e = es .
• Suppose P = rolling γ . Then e′ = er and e = es .
• Suppose P = αγ .P ′ . Then either e = eα and X = {e′′ | λ′

P ′ (e′′) = roll γ }, or λP ′ (e) = roll γ ′ and X �→P ′ e, or λ′
P ′ (e′′) �=

roll γ ′ , {e} �= X ′ �→P ′ e, and X = X ′ ∪ {e′′ | λ′
P ′ (e′′) = roll γ }.

In either case, it is clear that e′ � e.
• Suppose P = αγ [m].P ′ . Then the argument is similar to the previous case.
• Suppose P = P0 + P1. Then, by induction if e = (i, ei) and e′

i ∈ Xi �→i ei , then e′
i � ei , and e′ = (i, e′

i), meaning e′ � e.
• Suppose P = P0 | P1. Then the lemma holds by definition.
• Suppose P = P ′ \ A. Then the result follows from induction.
• Suppose P = A 

〈
ã, γ̃

〉
and A(b̃, ̃δ) = P A . Then the result holds if it holds for P A . �

F.6. Proof of Lemma 7.10

Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll γ . Then X = {er} and e = es .
• Suppose P = rolling γ . Then X = {er} and e = es .
• Suppose P = αγ .P ′ . Then either e = eα and X = {e′′ | λ′

P ′ (e′′) = roll γ }, or λP ′ (e) = roll γ ′ and X �→P ′ e, or λ′
P ′ (e′′) �=

roll γ ′ , {e} �= X ′ �→P ′ e, and X = X ′ ∪ {e′′ | λ′ ′ (e′′) = roll γ }.
P
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In either case, it is clear that there exists only one X .
• Suppose P = αγ [m].P ′ . Then the argument is similar to the previous case.
• Suppose P = P0 + P1. Then, by induction if e = (i, ei) then there exists at most one Xi such that e′

i ∈ Xi �→i ei , meaning 
{i} × Xi �→ e.

• Suppose P = P0 | P1. Then either e = (X ′, e′), in which case the lemma obviously holds, or there exists X ′ such that 
X ′ �→× e and X = {e′ | (π0(e′), π1(e′)) ∈ X ′}. By induction, since there exists an i ∈ {0, 1} such that πi(e) = ⊥, there can 
only exist one such X ′ .

• Suppose P = P ′ \ A. Then the result follows from induction.
• Suppose P = A 

〈
ã, γ̃

〉
and A(b̃, ̃δ) = P A . Then the result holds if it holds for P A . �

F.7. Proof of Lemma 7.11

Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll γ . Then there does not exist any e such that λ(e) = μ.
• Suppose P = rolling γ . Then there does not exist any e such that λ(e) = μ.
• Suppose P = αγ .P ′ . Then either X �→P ′ e or X = {eα} and e ∈ E P ′ .

If X �→P ′ e then there exists an X P ′ such that X P ′ �→P ′ e and X ′ = X P ′ ∪ {e′′ | λP ′ (e′′) = roll γ }. This means there exists 
X ′

P ′ such that X ′
P ′ �→P ′ e′ , X P ′ ⊆ X ′

P ′ , and X ′
P ′ ∪ {e′′ | λP ′ (e′′) = roll γ } = X ′′ �→ underlinee.

If X = {eα} and e ∈ E P ′ then X ′ = {e′′ | λP ′ (e′′) = roll γ } and there exists an X P ′ such that X P ′ �→P ′ e and X ′′ = X P ′ ∪ {e′′ |
λP ′ (e′′) = roll γ }, meaning clearly X ′ ⊆ X ′′ .

• Suppose P = αγ [m].P ′ . Then the argument is similar to the previous case.
• Suppose P = P0 + P1. Then, if e = (i, ei) and e′ = (i, e′

i) then there exists X ′
i such that X ′ = {i} × X ′

i and X ′
i �→ e′

i , 
meaning there exists X ′′

i ⊇ X ′
i such that X ′′

i �→ ei and therefore {i} × X ′′
i = X ′′ �→ e.

• Suppose P = P0 | P1. Then either e = (Y , e×), or there exists X ′ such that X ′ �→× e and X = {e′ | (π0(e′), π1(e′)) ∈ X ′}.
If e = (Y , e×) then e′ = (Y ′, e′×) and Y ′ ∪ {e′×} ⊆ Y , and

X ′ = ⋃⎧⎨
⎩X ′′′

∣∣∣∣∣∣
∃i ∈ {0,1}, Xi ∈ Ei .Xi �→i πi(e′)
or ∃e′′× ∈ Y ′.Xi �→i πi(e′′×)

and e′′ ∈ X ′′′ iff πi(e′′) ∈ Xi

⎫⎬
⎭.

We define X ′′ = ⋃⎧⎨
⎩X ′′′

∣∣∣∣∣∣
∃i ∈ {0,1}, Xi ∈ Ei .Xi �→i πi(e)
or ∃e′′× ∈ Y .Xi �→i πi(e′′×)

and e′′ ∈ X ′′′ iff πi(e′′) ∈ Xi

⎫⎬
⎭ and show that X ′ ⊆ X ′′ . By definition, since e× ∈ Y ′ , when-

ever Xi �→ πi(e′) we get π(e′′) ∈ Xi iff e′′ ∈ X ′′ . And if there exists e′′× ∈ Y ′ such that Xi �→ πi(e′′×) then, since Y ′ ⊆ Y , 
e′′× ∈ Y and therefore π(e′′) ∈ Xi iff e′′ ∈ X ′′ .

• Suppose P = P ′ \ A. Then the lemma obviously follows from induction.
• Suppose P = A 

〈
ã, γ̃

〉
. Then the lemma holds if it holds for P A . �

F.8. Proof of Proposition 7.12

Proof. We say that E = (E , F , �→, �, λ, Act) and E ′ = (E ′, F ′, �→′, �′, λ′, Act′) and do a case analysis on the structural con-
gruence rules, describing how E and E ′ are constructed and defining isomorphisms for each rule:

P = Q | R and P ′ = R | Q : Then there exist EQ and ER such that for i ∈ {Q , R}, ⦃Pi⦄ = 〈Ei, Initi,ki〉 and 〈E, Init,k〉 is com-
posed of them as defined in the event structure semantics.

And there exist E ′
Q and E ′

R such that for i ∈ {Q , R}, ⦃Pi⦄ =
〈
E ′

i , Init′i,k′
i

〉
and 

〈
E ′, Init′,k′〉 is composed of them as 

defined in the event structure semantics.
And by induction we have isomorphisms f Q : EQ → E ′

Q and f R : ER → E ′
R fulfilling the conditions.

We first define a helper function

f ′(e) =

⎧⎪⎨
⎪⎩

( f R(eR), f Q (eQ )) if e = (eQ , eR)

( f R(eR),∗) if e = (∗, eR)

(∗, f Q (eQ )) if e = (eQ ,∗)

and then our isomorphism

f (e) =
{

({ f ′(e′′) | e′′ ∈ X}, f ′(e′)) if e = (X, e′)
f ′(e) otherwise

Since the definition of parallel composition treats both parts the same way, this clearly fulfils the conditions.
45



E. Graversen, I. Phillips and N. Yoshida Journal of Logical and Algebraic Methods in Programming 121 (2021) 100686
P = P0 | (P1 | P2) and P ′ = (P0 | P1) | P2: Then there exist E0, E1, E2, and E12 such that ⦃P0⦄ = 〈E0, Init0,k0〉, ⦃P1⦄ =
〈E1, Init1,k1〉, ⦃P2⦄ = 〈E2, Init2,k2〉, 〈E12, Init12,k12〉 is composed of 〈E1, Init1,k1〉 and 〈E2, Init2,k2〉 as described in 
the parallel rule, and 〈E, Init,k〉 is composed of 〈E0, Init0,k0〉 and 〈E12, Init12,k12〉 as described in the parallel rule.

Additionally, there exist event structures E ′
0, E ′

1, E ′
2, and E01 generated as follows: ⦃P0⦄ = 〈

E ′
0, Init′0,k′

0

〉
, ⦃P1⦄ =〈

E ′
1, Init′1,k′

1

〉
, ⦃P2⦄ = 〈

E ′
2, Init′2,k′

2

〉
, 〈E01, Init01,k01〉 is composed of 〈E0, Init0,k0〉 and 〈E1, Init1,k1〉 as described in 

the parallel rule. Then 
〈
E ′, Init′,k′〉 is composed of 〈E01, Init01,k01〉 and 〈E2, Init2,k2〉 as described in the parallel 

rule. And there exist isomorphisms f0 : E0 → E ′
0, f1 : E1 → E ′

1, and f2 : E2 → E ′
2 satisfying the conditions of the 

proposition.
We define a helper function f01(e0, e1) = ( f0(e0), f1(e1)) if e0 ∈ E0 and e1 ∈ E1 and define the morphism

f (e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f01(e0, e1), f2(e2)) if e = (e0, (e1, e2))

(Y , ((Y ′, e01), f2(e2)) if e = (X, (e0, (X ′, (e1, e2)))),

e01 = f01(e0, e1)

Y ′ = { f01(e′
0, e′

1) | ∃e′
2, X ′′.

(e′
0, (X ′′, (e′

1, e′
2))) ∈ X and

e′
0 ∈ X0 ∈ cause(e0) or e′

1 ∈ X1 ∈ cause(e1)},
and

Y = {(( f01(Y ′′), f01(e′
0, e′

1)), e′
2) ∈ E01×2 |

∃X ′′.(e′
0, (X ′′, (e′

1, e′
2))) ∈ X and

( f01(Y ′′), f01(e′
0, e′

1)) ∈ Y ′}
We first show that for any e = (X, (e0, (X ′, (e1, e2)))), there exists at most one possible f (e) ∈ E ′: Since causes 

must be conflict-free, there can at most exist one e′
2 and X ′′ for each e′

0 and e′
1 such that (e′

0, (X ′′, (e′
1, e

′
2)) ∈ X , 

meaning there can only exist one Y ′ and Y fulfilling the conditions.
We then show that for any e = (X, (e0, (X ′, (e1, e2)))), there exists f (e′) = (Y , ((Y ′, (e′

0, e
′
1)), e

′
2)) ∈ E ′: By induc-

tion, e′
0 ∈ E ′

0, e′
1 ∈ E ′

1, and e′
2 ∈ E ′

2, so we show that (Y ′, (e′
0, e

′
1)) ∈ E01. We know there exists X1 ∈ cause(e1) such 

that X1 ⊆ π1(X ′) = π1(π12(X)), and there exists X0 ∈ cause(e0) such that X0 ⊆ π0(X). And since for all e ∈ Y ′ , 
either e′

0 ∈ X0 ∈ cause(e0) or e′
Y ∈ XY ∈ cause(e1), we get that Y ′ ∈ cause( f0(e0), f1(e1)), and therefore we have 

an event (Y ′, ( f0(e0), f1(e1))) ∈ E01. And for similar reasons we also get Y ∈ cause((Y ′, ( f0(e0), f1(e1))), f2(e2)), 
meaning we have an event (Y , ((Y ′, ( f0(e0), f1(e1))), f2(e2))) ∈ E ′ .

We then show that for any e′ = (X, ((X ′, (e′
0, e

′
1)), e

′
2)) ∈ E ′ , there exists e = (Y , (e0, (Y ′, (e1, e2)))) ∈ E such that 

f (e) = e′ . By induction, there obviously exist e0, e1, e2 such that f0(e0) = e′
0, f1(e1) = e′

1, and f2(e2) = e′
2. We also 

know there exist X0 ∈ cause(e′
0), X1 ∈ cause(e′

1), and X2 ∈ cause(e′
2) such that (1) whenever ((X ′′, (e′′

0, e′′
1)), e′′

2) ∈
X , either e′′

0 ∈ X0 or e′′
1 ∈ X1 or e′′

2 ∈ X2, and for each (e′′′
0 , e′′′

1 ) ∈ X ′′ , there exists X ′′′ ⊆ X ′′ and e′′′
2 such that 

((X ′′′, (e′′′
0 , e′′′

1 )), e′′′
2 ) ∈ X ; and (2) whenever ei ∈ Xi , there exists ((X ′′, (e′′

0, e′′
1)), e′′

2) ∈ X such that ei ∈ {e′′
0, e′′

1, e′′
2}.

For i ∈ {0, 1, 2}, since f i is an isomorphism, f −1
i (Xi) ∈ cause(ei), meaning if we set

Y ′ = {( f −1
1 (e′′

1), f −1
2 (e′′

2)) | ((X ′′, (e′′
0, e′′

1)), e′′
2) ∈ X and e′′

1 ∈ X1 or e′′
2 ∈ X2}

and

Y =
{
( f −1

0 (e′′
0), (Y ′′, ( f −1

1 (e′′
1), f −1

2 (e′′
2))))

∣∣∣∣ ∃X ′′.((X ′′, (e′′
0, e′′

1)), e′′
2) ∈ X and

(Y ′′, ( f −1
1 (e′′

1), f −1
2 (e′′

2))) ∈ Y ′
}

we have e = (Y , (e0, (Y ′, (e1, e2)))) ∈ E and f (e) = e′ .
We then show that f is a morphism, meaning for e, e′ ∈ E:

• Obviously λ(e) = λ′( f (e)).
• If f (e) = f (e′) then one of the following holds: (1) e = (e0, (e1, e2)) = e′ , or (2) e = (X, (e0, (Y , (e1, e2)))) and 

e′ = (X ′, (e0, (Y ′, (e1, e2)))), and (e′′
0, (Y ′′, (e′′

1, e′′
2))) ∈ X if and only if there exists (e′′

0, (Y ′′′, (e′′
1, e′′

2))) ∈ X ′ . How-
ever, since Y ′′, Y ′′′ ∈ cause(e′′

1, e′′
2), either Y ′′ = Y ′′′ , or there exist y′′ ∈ Y ′′ and y′′′ ∈ Y ′′′ such that y′′ �12 y′′′ . 

And in addition, there exist e′′′
0 , e′′′′

0 , Y y′′ , and Y y′′′ such that (e′′′
0 , (Y y′′ , y′′)) ∈ X and (e′′′′

0 , (Y y′′′ , y′′′)) ∈ X ′ . Since 
X and x′ must be conflict-free, X = X ′ .

• If X �→ f (e)∗ , then either e∗ = (e0, (e1, e2)), e∗ = (Y , (e0, (Y ′, (e1, e2)))), e∗ = (e0, (e1, e2)), or e∗ =
(Y , (e0, (Y ′, (e1, e2)))).
If e = (e0, (e1, e2)) then there exists i ∈ 0, 12 and Xi such that Xi �→i πi(e), and X = {e′′ | πi(e′′) ∈ Xi}, meaning 
if i = 0, then {e′′ | π0(e′′) ∈ Xi} �→ (e0, e1) and therefore {e′′ | π0(π01(e′′)) ∈ Xi} �→ ((e0, e1), e2), and obviously 
f ({e′′ | π0(π01(e′′)) ∈ Xi}) = X . If i = 12 then there exists j ∈ 1, 2 and X j such that X j �→ j π j(e), and X =
{e′′ | π j(π12(e′′)) ∈ X j}, and by similar logic if j = 1 then {e′′ | π1(π01(e′′)) ∈ X j} �→ ((e0, e1), e2), and f ({e′′ |
π1(π01(e′′)) ∈ X j}) = X and if j = 2 then {e′′ | π2(e′′) ∈ X j} �→ ((e0, e1), e2), and f ({e′′ | π2(e′′) ∈ X j}) = X .
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If e = (Y , (e0, (Y ′, (e1, e2)))) and f (e) = (Z , ((Z ′, ( f0(e0), f1(e1))), f2(e2))) then there exists e′ = ((Z ′′, (e′
0, e

′
1)),

e′
2) ∈ Z such that X = {(X ′, e′) | X ′ ⊆ X}, and obviously

P = P ′ | 0: Then there exists E and E ′ such that 
⦃

P ′⦄ = 〈
E ′, Init′,k′〉, ⦃P ⦄ = 〈E, Init,k〉, and E is composed of E ′ and the 

empty LREBES, E0 as described in the parallel composition rule.
We define

f (e) =
{

e′ if e = (X, (e′,∗))

e′ if e = (e′,∗)

And show that f : E → E ′ is a morphism, meaning for all e0, e1 ∈ E:
• Clearly λ(e0) = λ′( f (e0)).
• If f (e0) = f (e1) then there exists e such that either e0 = (e, ∗) = e1 or there exist X0 and X1 such that e0 =

(X0(e, ∗)) and e1 = (X1(e, ∗)). However, by Lemma 7.8, we know that whenever X ′
0 �→ e, X ′

0 contains exactly 
one event, e′

0. Since that event cannot synchronise with anything from E0, e′
0 must be in every possible cause 

of e, and similarly for the causes of e′′
0 , meaning e can only have one cause in E ′||E0, and therefore e0 = e1.

• For X ′ ⊆ E ′ , if X ′ �→′ f (e0)
∗ then f (e0) = e′

0 and either e0 = (e′
0, ∗) or e0 = (X0, (e′

0, ∗)).
If e∗

0 = (e′
0, ∗), then {e | ∃e′ ∈ X ′.e = (X, (e′, ∗)) or e = (e′, ∗)} �→ e0. Clearly {e | ∃e′ ∈ X ′.e = (X, (e′, ∗)) or e =

(e′, ∗)} = {e | f (e) ∈ X ′}
If e∗

0 = (X0, (e′
0, ∗)) then by Lemma 7.8 there exists e such that X ′ = {e}. Clearly this requires that (e, ∗) ∈ X0, 

which means {(X ′
0, (e, ∗)) | X ′

0 ⊆ X0} �→ e0, and clearly f ({(X ′
0, (e, ∗)) | X ′

0 ⊆ X0}) = {e}.
If e∗

0 = (e′
0,∗) then {e | e = (X, (e′, ∗)) or e = (′, ∗) for e′ ∈ X ′} �→ e∗

0.

If e∗
0 = (X0, (e′

0,∗)) then 
⋃{X ′′ | ∃X ′′′ ∈ E ′.X ′′′ �→′ e′

0 or ∃(e′, ∗) ∈ X0.X ′′ �→′ e′, and e′′ ∈ X ′′ iff f (e′′) ∈ X ′′′} �→ e∗
0, 

by Lemmas 7.10 and 7.11, we know that for all e ∈ X0, if X ′′ �→ e, then X ′′ ⊆ X ′ , meaning X ′ = ⋃{X ′′ | ∃X ′′′ ∈
E ′.X ′′′ �→′ e′

0 or ∃(e′, ∗) ∈ X0.X ′′ �→′ e′, and e′′ ∈ X ′′ iff f (e′′) ∈ X ′′′}.

• If f (e0) � f (e1)
∗ then by definition, e0 � e1∗.

We then prove f is bijective: We already showed above, that f is injective, and it is clear that it is also 
surjective.

In order to show f is an isomorphism, we therefore only need to show that f −1 is a morphism, meaning for 
e′

0, e
′
1 ∈ E ′:

• Again, clearly λ( f −1(e′
0)) = λ′(e′

0).
• If f −1(e′

0) = f −1(e′
1) then we already know f is a bijection, so e′

0 = e′
1.

• For X ⊆ E , if X �→ f −1(e′
0)

∗ then f −1(e′
0) = e0 and either e0 = (e′

0, ∗) or e0 = (X0, (e′
0, ∗)).

If e∗
0 = (e′

0, ∗), then {e | (e, ∗) ∈ X or ∃X ′.(X ′, (e, ∗)) ∈ X} �→ e′
0.

If e∗
0 = (X0, (e′

0, ∗)) then by Lemma 7.8 we know there exists an e such that X = {e}. This means there exists X ′
such that e = (X ′, (e′, ∗)) and (e′, ∗) ∈ X0, meaning {e′} �→′ e′

0.
If e∗

0 = (e′
0,∗) then either X = {e0}, and obviously {e′

0} �→ e′
0, or there exists an X ′ such that X ′ �→ e0 and 

X = {e | ∃e′ ∈ X ′.e = (e′, ∗) or e = (X ′′, (e′, ∗))}.
If e∗

0 = (X0, (e′
0,∗)) then either X = {e0}, and obviously {e′

0} �→ e′
0, or X = ⋃{X ′′ | f (X ′′) �→′ e′

0 or ∃(e′, ∗) ∈
X0. f (X ′′) �→′ e′}. Clearly any of these X ′′s can be used to fulfil the condition.

• If f −1(e′
0) � f −1(e′

1)
∗ then either (1) e′

0 � e′ ∗
1 , (2) e′

0 = e′
1 and f −1(e′

0) �= f −1(e′
1)

∗ , (3) e′ ∗
1 = e′

1, f −1(e′
0) �=

f −1(e′
1)

∗ , and f −1(e′
0) ∈ X �→ f −1(e′

1), or (4) e′ ∗
1 = e′

1 and there exist γ0 and γ1 such that λ( f −1(e′
0)) = roll γ0

and λ( f −1(e1)) = roll γ1.
In case 1, the condition is trivially fulfilled. Case 2 will never occur. In case 3, as shown above, e′

0 ∈ f (X) �→ e′
1, 

and by Lemma 7.9, this means e′
0 � e′

1. In case 4, since the e′
0 and e′

1 must both have been caused by a rollback 
at the end of a subprocess, they were either in parallel or different option in a choice, and in either case clearly 
e′

0 �′ e′
1.

And obviously from Lemma 7.7 and the definition of Init, we see that f (Init) = Init′ and f ◦ k′ = k.
P = X + Y and P ′ = Y + X : Selection works the same in Roll-CCSK as in CCSK, so this case is the same as in Proposi-

tion 4.15.
P = (X + Y ) + Z and P ′ = (X + Y ) + Z : Selection works the same in Roll-CCSK as in CCSK, so this case is the same as in 

Proposition 4.15.
P = P ′ + 0: Selection works the same in roll-CCSK as in CCSK, so this case is the same as in Proposition 4.15.
P = Q \ A, P ′ = Q ′ \ A, and Q ≡ Q ′: Then we have ⦃Q ⦄ = 〈

EQ , InitQ ,kQ
〉
, and 

⦃
Q ′⦄ = 〈

EQ ′ , InitQ ′ ,kQ ′
〉
, there exist an iso-

morphism f Q : EQ → EQ ′ such that f Q (InitQ ) = InitQ ′ and for all e ∈ InitQ , kQ (e) = kQ ′ ( f Q (e)), and by applying 
the restriction we get

〈E, Init,k〉 = 〈
EQ � ρ(A ∪ A), InitQ ∩ ρ(A ∪ A),kQ � ρ(A ∪ A)

〉
and
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〈
E ′, Init′,k′〉 = 〈

EQ ′ � ρ(A ∪ A), InitQ ′ ∩ ρ(A ∪ A),kQ ′ � ρ(A ∪ A)
〉

We now show that e ∈ ρ(A ∪ A) if and only if f (e) ∈ ρ(A ∪ A).
For any e ∈ E Q , obviously λQ (e) ∈ A ∪ A iff λQ ′ ( f (e)) ∈ A ∪ A. We show that for any X ⊆ E Q , X ∈ causes(e) if 

and only if f (X) ∈ cause( f (e)) by induction in the size of X .
If X = ∅ then there does not exist x ⊆ E Q such that x �→Q e, and by definition of an morphism, there cannot 

exist x′ ⊆ E Q ′ such that x′ �→ f (e), meaning ∅ ∈ cause(e). And since f is an isomorphism the same argument can 
be used for f −1.

If X contains n events, and for all events e′ and X ′ ∈ cause(e′) such that X ′ contains less that n events, X ′ ⊆
ρ(A ∪ A) if and only if f (X ′) ∈ cause( f (e′)) then whenever x′ �→Q ′ f (e), there exists x ⊆ E Q such that x �→Q e and 
f (x) ⊆ x′ , meaning there exists e′′ such that x ∩ X = {e′′}, and x′ ∩ f (X) ⊇ { f (e′′)}. And by induction if X ′′ �→ e′′ ∈ X
then X ′′ ⊂ X and therefore f (X ′′) ∈ causes(e′′). And since X is conflict-free, obviously f (X) is conflict-free. And 
since f is an isomorphism the same argument can be used for f −1.

P = A
〈
ã, γ̃

〉
and P ′ = (ν γ̃ )P A{ã,γ̃ /b̃,δ̃

} where A
〈
b̃, δ̃

〉
= P A : Follows from Proposition 7.4. �

F.9. Proof of Theorem 7.13

Proof. We say that the inverse of f is g : E ′ → E and prove the result by induction on the transition P
μ[m]−−−→ P ′ by con-

structing E , E ′ , f and g for each case:

• Suppose P = αγ .Q , P ′ = αγ [m].Q , μ = α, and std(Q ). Then there exist EQ and eα such that ⦃Q ⦄ = 〈
EQ , Init,k

〉
and 

〈E, Init,k〉 is constructed based on this as described in the prefix rule.
And there exist EQ ′ and e′

α such that ⦃Q ⦄ = 〈
EQ ′ , InitQ ′ ,kQ ′

〉
and 

〈
E ′, Init′,k′〉 is constructed from this a described in the 

past prefix rule.
By induction, there must exist isomorphisms f Q : EQ → EQ ′ and gQ : EQ ′ → EQ , and we define f = f Q ∪{(eα, e′

α)} and 
g = gQ ∪ {(e′

α, eα)}, which are clearly isomorphisms.

Since std(Q ), meaning Init = ∅, and since no X exists such that X �→ eα , Init
eα−→ {eα}, and the rest of the conditions are 

obviously satisfied.

• Suppose that P = αγ [n].Q , P ′ = αγ [n].Q ′ , Q
μ[m]−−−→ Q ′ , and n �= m.

Then there exist EQ and eα such that ⦃Q ⦄ = 〈
EQ , InitQ ,kQ

〉
and 〈E, Init,k〉 is constructed based on this as described in 

the past prefix rule.
And there exist EQ ′ and e′

α such that ⦃′ Q ⦄ = 〈
EQ ′ , InitQ ′ ,kQ ′

〉
and 

〈
E ′, Init′,k′〉 is constructed from this a described in 

the past prefix rule.

By induction, we get isomorphisms f Q : EQ → EQ ′ and gQ : EQ ′ → EQ and a transition InitQ
{e}−→ X Q in Cre(EQ ) such 

that λQ (e) = μ, kQ ′ ( f Q (e)) = m, and f Q (X Q ) = InitQ ′ .
We define f = f Q ∪{(eα, e′

α)} and g = gQ ∪{(e′
α, eα)}. Since InitQ and X Q are conflict-free in EQ , InitQ ∪{eα} = Init and 

X Q ∪ {eα} = X are configurations of Cre(E), and clearly Init
{e}−→ X .

• Suppose P = P0 | P1, P ′ = P ′
0 | P1, P0

μ[m]−−−→ P ′
0, and fsh[m](P1). Then there exist E0 and E1 such that for i ∈ {0, 1}, 

⦃Pi⦄ = 〈Ei, Initi,ki〉, and 〈E, Init,k〉 is constructed as described in the parallel composition rule.
And there exist E ′

0 and E ′
1 such that ⦃P ′

0⦄ = 〈
E ′

0, Init′0,k′
0

〉
, ⦃P1⦄ = 〈

E ′
1, Init′1,k′

1

〉
, and 

〈
E ′, Init′,k′〉 is constructed as described 

in the parallel composition rule.

We have isomorphisms f0 : E0 → E ′
0, g0 : E ′

0 → E0, f1 : E1 → E ′
1, and g1 : E ′

1 → E1, and there exists a transition Init0
eμ−→

X in Cre(E0) such that λ0(eμ) = μ, k′
0( f0(e)) = m and f0(X) = Init′0.

We define functions

f ′(e) =

⎧⎪⎨
⎪⎩

( f0(e0),∗) if e = (e0,∗)

(∗, f1(e1)) if e = (∗, e1)

( f0(e0), f1(e1)) if e = (e0, e1)

and

g′(e) =

⎧⎪⎨
⎪⎩

(g0(e0),∗) if e = (e0,∗)

(∗, g1(e1)) if e = (∗, e1)

(g0(e0), g1(e1)) if e = (e0, e1)

and our isomorphisms as:

f (e) =
{

( f ′(X), f ′(e′)) if e = (X, e′)
f ′(e) otherwise
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and

g(e) =
{

(g′(X), g′(e′)) if e = (X, e′)
g′(e) otherwise

It is clear that f ◦ g = IE and g ◦ f = IE ′ .
We show that f : E → E ′ is a morphism, meaning for all e, e′ ∈ E:
– Obviously λ(e) = λ′( f (e))
– If f (e) = f (e′) then since f0 and f1 are injective, e = e′ .
– For X ′ ⊆ E ′ , if X ′ �→′ f (e)∗ then either e∗ = (Y , e× and there exists e×′ ∈ f (Y ) such that X ′ = {(Y ′, e×′ ) | Y ′ ⊆ f ′(Y )}, 

or e∗ ∈ E× and there exists X ′′ such that X ′′ �→′× f (e) and X ′ = {e′ | (π ′
0(e′), π ′

1(e′)) ∈ X ′′}, or e∗ = (Y , e×) and 
X ′ = { f (e)}, or e∗ = (Y , e×) and

X ′ =
⋃⎧⎨

⎩X ′′
∣∣∣∣∣∣

∃i ∈ {0,1}, Xi ∈ E ′
i . X ′

i �→′
i π

′
i ( f (e))

or ∃e×′ ∈ f (Y ) . X ′
i �→′

i π
′
i (e×′)

and e′′ ∈ X ′′ iff π ′
i (e′′) ∈ X ′

i

⎫⎬
⎭

or e∗ ∈ E× and there exists X ′′ such that X ′′ �→′× f (e) and X ′ = {e′ | (π ′
0(e′), π ′

1(e′)) ∈ X ′′}.
If e∗ = (Y , e× and there exists e×′ ∈ f (Y ) such that X ′ = {(Y ′, e×′) | Y ′ ⊆ f (Y )} then there exists an e′× ∈ Y such that 
f (e′×) = e×′ and clearly {(Y ′, e′×) | Y ′ ⊆ Y } �→ (Y , e×).
If e∗ ∈ E× and there exists X ′′ such that X ′′ �→′× f (e) and X ′ = {e′ | (π ′

0(e′), π ′
1(e′)) ∈ X ′′} then by induction and since 

|| is an REBES product, there exists X ′′′ ⊆ E× such that X ′′′ �→× e, f (X ′′′) ⊆ X ′′ , and if e′ ∈ X ′′′ then f (e′) �= ⊥. This 
means {e′ | (π0(e′), π1(e′)) ∈ X ′′′} �→ e.
If e∗ = (Y , e×) and X ′ = { f (e)}, or e∗ = (Y , e×) and

X ′ =
⋃⎧⎨

⎩X ′′
∣∣∣∣∣∣

∃i ∈ {0,1}, X ′
i ∈ E ′

i .X
′
i �→′

i π
′
i ( f (e))

or ∃e×′ ∈ f (Y ).X ′
i �→′

i π
′
i (e×′)

and e′′ ∈ X ′′ iff π ′
i (e′′) ∈ X ′

i

⎫⎬
⎭

then by induction, since g = f −1 is a morphism for each Xi �→i πi(e), f (Xi) ⊂ X ′
i �→′

i π ′
i ( f (e)), and for each Xi �→i

πi(e′×) ∈ Y , f (Xi) ⊂ X ′
i �→′

i π
′
i ( f (e′×)) meaning⎧⎨

⎩X ′′
∣∣∣∣∣∣

∃i ∈ {0,1}, Xi ∈ Ei . Xi �→i πi(e)
or ∃e′× ∈ Y . Xi �→i πi(e′×)

and e′′ ∈ X ′′ iff π ′
i (e′′) ∈ Xi

⎫⎬
⎭

⊆
⎧⎨
⎩X ′′

∣∣∣∣∣∣
∃i ∈ {0,1}, Xi ∈ E ′

i .X
′
i �→′

i π
′
i ( f (e))

or ∃e×′ ∈ f (Y ) . X ′
i �→′

i π
′
i (e×′)

and e′′ ∈ X ′′ iff π ′
i (e′′) ∈ X ′

i

⎫⎬
⎭

If e∗ ∈ E× and there exists X ′′ such that X ′′ �→′× f (e) and X ′ = {e′ | (π ′
0(e′), π ′

1(e′)) ∈ X ′′} then by induction 
and because || is an REBES product, there exists X ′′′ ⊆ E× such that f (X ′′′) ⊆ X ′′ and X ′′′ �→× e. This means 
{e′ | (π0(e′), π1(e′)) ∈ X ′′′} �→ e.

– If f (e) �′ f (e′)∗ then there exists i ∈ {0, 1} such that either π ′
i ( f (e)) �′

i π
′
i ( f (e′))∗ , or π ′

i ( f (e)) = π ′
i ( f (e′)) �= ⊥, and 

f (e) �= f (e′), or f (e′)∗ = f (e′), f (e) �= f (e′), and f (e) ∈ X �→′ f (e′), or f (e′)∗ = f (e′) and there exist γ , γ ′ such that 
λ′( f (e)) = roll γ and λ′( f (e′)) = roll γ ′ .
If π ′

i ( f (e)) �′
i π

′
i ( f (e′))∗ then by induction πi(e) �i πi(e′)∗ , meaning e∗ � e.

If π ′
i ( f (e)) = π ′

i ( f (e′)) �= ⊥, and f (e) �= f (e′) then πi(e) = πi(e′) �= ⊥ and e �= e′ , meaning e � e′ ∗ .
If f (e′)∗ = f (e′), f (e) �= f (e′), and f (e) ∈ X �→′ f (e′) then, since, by similar arguments to the previous case, g(X) �→
f (e′), and e ∈ g(X), e � e∗ .
If f (e′)∗ = f (e′) and there exist γ , γ ′ such that λ′( f (e)) = roll γ and λ′( f (e′)) = roll γ ′ , then λ(e) = roll γ and 
λ(e′) = roll γ ′ , meaning e � e′ ∗ .

By similar arguments, g is a morphism too.

We now show that there exists an (Y , (eμ, ∗)) ∈ E such that {e′ | (π0(e′), π1(e′)) ∈ Y } ⊆ Init. Since Init0
{eμ}−−→, for every 

X0 �→0 eμ , X0 ∩ Init0 = X0 = {e0}, and if X ′
0 �→0 e0 then by Lemma 7.7, X ′

0 �→0 eμ , and therefore X ′
0 ∩ Init0 �= ∅. Therefore 

there must exist one (Y , (eμ, ∗)) ∈ E such that {e′ | (π0(e′), π1(e′)) ∈ Y } ⊆ Init. We use this (Y , (eμ, ∗)) as our e and 

show that Init
{e}−→: Since Y ⊆ Init, for every X �→ e, X ∩ Init �= ∅. And if e′ � e then it must that either π0(e′) �0 eμ , in 

which case π0(e′) /∈ Init0, and therefore e′ /∈ Init, or π0(e′) = eμ and e �= e′ , in which case, since Init0
{eμ}−−→, e′ /∈ Init0, and 

therefore e′ /∈ Init, or e′ ∈ X �→ e and e′ �= e, in which case π0(e′) ∈ X0 �→ eμ or π0(e′) ∈ X0 �→ π0(e′′) for e′′ ∈ Y , and by 
Lemmas 7.9 and 7.11, π0(e′) � eμ , meaning π0(e′) /∈ Init0, and e′ /∈ I .
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We therefore have Init
{e}−→ I ∪ {e}, and obviously λ(e) = λ0(eμ) = μ and f ◦ k′ = k ∪ {(e, m)}, and since f0(Init0 ∪ {eμ}) =

Init′0 and f1(Init1) = Init′1, and there only exists one (Y , (eμ, ∗)) ∈ E such that {e′ | (π0(e′), π1(e′)) ∈ Y } ⊆ Init, f (Init ∪
{e}) = Init′ .

• Suppose P = P0 | P1, P ′ = P ′
0 | P ′

1, P0
α[m]−−→ P ′

0, P1
α[m]−−→ P ′

1, and μ = τ .
Then the construction of 〈E, Init,k〉 and 

〈
E ′, Init′,k′〉 and the isomorphisms are similar to the previous case. And by 

induction we have transitions Init0
{e0}−−→ and Init1

{e1}−−→ fulfilling the conditions.
For similar reasons to the previous case there exists exactly one (Y , (e0, e1) such that {e′ | (π0(e′), π1(e′)) ∈ Y } ⊆ Init, 
and we use this (Y , (e0, e1)) as e, and the rest of the proof follows similarly.

• Suppose P = P0 + P1, P ′ = P ′
0 + P1, P0

μ[m]−−−→ P ′
0, and std(P1). Then the rule for selection is the same in roll-CCSK as in 

CCSK, and the case is therefore identical to Theorem 4.18.

• Suppose P = Q \ A, P ′ = Q ′ \ A, Q
μ[m]−−−→ Q ′ , and μ /∈ A ∪ A. Then there exist EQ and E ′

Q such that ⦃Q ⦄ = 〈
EQ , InitQ ,k

〉
, 

⦃
Q ′⦄ =

〈
E ′

Q , Init′Q ,k′
Q

〉
, and E and E ′ are constructed from EQ and E ′

Q as described in the restriction rule, and there 

exist isomorphisms f Q : EQ → E ′
Q and g : E ′

Q → EQ and a transition InitQ
{eQ }−−→ where λQ (eQ ) = μ, f Q ◦ k′

Q = kQ ∪
{(eQ , m)}, and f Q (InitQ ∪ {eQ }) = Init′Q .

Since there exists a standard process P ′′ such that P ′′ →∗ P , there cannot exist e′ ∈ Init such that λ(e′) ∈ A ∪ A or for 
all x ∈ cause(e′), there exists e′′ ∈ x such that λ(e′′) ∈ A ∪ A, meaning Init ∩ ρ(A ∪ A) = Init, and, since eQ ∈ ρ(A ∪ A), 
Init

eQ−→.
• Suppose P = Q [ f ], P ′ = Q ′[ f ], Q

ν[m]−−→ Q ′ , and f ′(ν) = μ. Then the rule for functions is the same in roll-CCSK as in 
CCSK, and the case is therefore identical to Theorem 4.18.

• Suppose P ≡ Q , P ′ ≡ Q ′ , and Q
μ[m]−−−→ Q ′ . Then the result follows from induction and Proposition 7.12. �

F.10. Proof of Theorem 7.14

Proof. We say that the inverse of f is g : E ′ → E and prove this result by induction on P by constructing E , E ′ , f and g
for each case:

• Suppose P = 0. Then E = ∅, and obviously no transitions exist in Cbr(E).
• Suppose P = roll γ . Then there does not exist e ∈ E such that λ(e) = μ.
• Suppose P = rolling γ . Then there does not exist e ∈ E such that λ(e) = μ.
• Suppose P = αγ .P ′′ . Then {eα} �→ e′ for all e′ ∈ E \ {eα} such that λ(e) = μ, meaning by definition e = eα . In addition, 

by Lemma 7.6, whenever e′ ∈ Init, λ(e′) ∈ {roll γ ′, start roll γ ′} meaning std(P ). This means we get P
α[m]−−→ α[m].P ′′ for 

some fresh m, and the isomorphisms are similar to this case in the proof of Theorem 4.18.

• Suppose P = α[n].P ′′ and 
⦃

P ′′⦄ = 〈
E ′′, Init′′,k′′〉. Then eα ∈ Init, and clearly Init′′ e−→ X ′′ , meaning there exists a key m and a 

transition P ′′ λ(e)[m]−−−−→ P ′′′ , such that 
⦃

P ′′′⦄ = 〈
E ′′′, Init′′′,k′′′〉 and there exist isomorphisms f ′′ : E ′′ → E ′′′ and g′′ : E ′′′ → E ′′

such that k′′′( f ′′(e)) = m and f ′′(X ′′) = Init′′′ . If m �= n, then P
λ(e)[m]−−−−→ α[m].P ′′′. Otherwise, we can chose a fresh m and 

still get a transition. We define our isomorphisms as f = f ′′ ∪ {(eα, e′
α)} and g = g′′ ∪ {(e′

α, eα)} and the rest of the 
proof is straightforward.

• Suppose P = P0 + P1. Then the proof is similar to the same case in CCSK, as the choice semantics is the same.
• Suppose P = P0 | P1, ⦃P0⦄ = 〈E0, Init0,k0〉, Cbr(E0) = (E0, F0, C0, →0), ⦃P1⦄ = 〈E1, Init1,k1〉, and Cbr(E1) =

(E1, F1, C1, →1). Then either e = (Y , (e0, ∗)), e = (Y , (∗, e1)), or e = (Y , (e0, e1)).
If e = (Y , (e0, ∗)), then whenever X ′

0 �→0 e0, there exists e′ ∈ Y such that π0(e′) ∈ X0 and {e′} �→ e. And whenever 
π0(e′) �0 π0(e), we get e′ �e. This means Init0 is conflict-free, π0(X) is conflict-free, and Init0

e0−→0 π0(X). There therefore 
exists a key m and a transition P0

λ0(e0)[m]−−−−−→ P ′
0, such that 

⦃
P ′

0

⦄ = 〈
E ′

0, Init′0,k′
0

〉
and there exist isomorphisms f0 : E0 → E ′

0
and g0 : E ′

0 → E0 such that k′
0( f0(e0)) = m and f0(π0(X)) = Init′0.

We chose an m, which is fresh for P1, and we get P
λ0(e0)[m]−−−−−→ P ′

0 | P1. We define our isomorphisms similarly to the 
corresponding case in Theorem 7.13, and the proof of them being isomorphisms is similar.
If e = (Y , (∗, e1)), the argument is similar.
If e = (Y , (e0, e1)), then for i ∈ {0, 1}, whenever X ′

i �→i ei , there exists e′ ∈ Y such that πi(e′) ∈ X ′
i and {e′} �→ e. And 

whenever πi(e′) �i πi(e), we get e′ � e. This means Initi is conflict-free, πi(X) is conflict-free, and Initi
e0−→i πi(X). There 

therefore exists a key mi and a transition Pi
λi(ei)[mi ]−−−−−→ P ′

i , such that 
⦃

P ′
i

⦄ = 〈
E ′

i , Init′i,k′
i

〉
and there exist isomorphisms 

f i : E0 → E ′ and gi : E ′ → Ei such that k′( f i(ei)) = mi and f i(πi(X)) = Init′ .
i i i 0
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We say that m0 = m1 is a fresh m, and then since λ0(e0) = λ1(e1) and λ(e) = τ , we get P
λ(e)[m]−−−−→ P ′

0 | P ′
1. We define our 

isomorphisms similarly to the corresponding case in Theorem 7.13, and the proof of them being isomorphism is similar 
to that case. The rest of the case is straightforward.

• Suppose P = P ′′ \ A, 
⦃

P ′′⦄ = 〈
E ′′, Init,k

〉
, and Cbr(E ′′) = (E ′′, F ′′, C′′, →′′). Then λ(e) /∈ A ∪ A and there exists at least 

one Y ∈ cause(e) such that if e′ ∈ Y then λ(e′) /∈ (A ∪ A). And since P is reachable, for all e′ ∈ Init, λ(e′) /∈ (A ∪ A). 

We therefore know Init′′ = Init
e−→′′

X , meaning there exists a key n and a transition P ′′ λ′′(e)−−−→ P ′′′ such that 
⦃

P ′′′⦄ =〈
E ′′′, Init′′′,k′′′〉, and there exist isomorphisms f ′ : E ′′ → E ′′′ and f ′ : E ′′′ → E ′′ such that f ′ ◦ k′′′ = ∪{(e, n)} and f ′(X) =

Init′′′ .
This means P

λ′′(e)−−−→ P ′′′ \ A and the morphisms f � E and g � E ′′′ ∩ ρ(A ∪ A) clearly fulfil the remaining conditions.
• Suppose P = P ′′[ f ], ⦃P ′′⦄ = 〈

E ′′, Init,k
〉
. Then the case is similar to the corresponding case of Theorem 4.19. �

F.11. Proof of Theorem 7.22

Proof. We prove this through induction on the derivation of P
roll n

P ′ by constructing E , E ′ , f and g for each case:

(act ROLL): Suppose P = αγ [n].R , R 
roll n

R ′ , and P ′ = αγ .R�{n′ |n≤P n′} , with ⦃R⦄ = 〈ER , InitR ,kR〉 and 
⦃

R�{n′ |n≤P n′}
⦄ =

〈ER ′ , InitR ′ ,kR ′ 〉. Then {n′ | n ≤P n′} is n and all n′s for which βγ ′ [n′] occurs in P . It is clear from the semantic 
rules that this means Init′ = {e | λ(e) ∈ {start roll γ ′ | rolling γ ′ occurs in P and �β, n.βγ ′ or βγ ′ [m] occurs in P } and 
there exists an isomorphism f : E → E ′ .

In addition we have e, er ∈ E such that λ(e) = α, k(e) = n, λ(er) = roll γ , N(er) = roll n, and {er} �→ e. By 

Lemmas 7.6, 7.10, and 7.11. we then get Init
{er }−−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{er }−−→ Xdone fulfilling the conditions.

(par ROLL): Suppose P = Q | R , P ′ = (Q | R)�{n′ |n≤P n′} , Q
roll γ

Q ′ , and we generate event structures as follows: ⦃Q ⦄ =〈
EQ , InitQ ,kQ

〉
, ⦃R⦄ = 〈ER , InitR ,kR〉, 

⦃
Q�{n′|n≤P n′}

⦄ =
〈
E ′

Q , Init′Q ,k′
Q

〉
, 

⦃
R�{n′ |n≤P n′}

⦄ = 〈
E ′

R , Init′R ,k′
R

〉
, and we construct 

〈E, Init,k〉 from 
〈
EQ , InitQ ,kQ

〉
and 〈ER , InitR ,kR〉 and 

〈
E ′, Init′,k′〉 from 

〈
E ′

Q , Init′Q ,k′
Q

〉
and 

〈
E ′

R , Init′R ,k′
R

〉
as described 

in the semantics.
It is clear from the semantics that there exists an isomorphism f : E → E ′ .
By induction we have InitQ

{er }−−→ X(0,Q )

{e0}−−→ X(1,Q ) · · ·
{em}−−→ X(m+1,Q )

{er }−−→ X(done,Q ) , {e0, e1, . . . en} = {e′ | n ≤Q

kQ (e′)}, and there exists an isomorphism f Q : EQ → E ′
Q such that f (X(done,Q )) = Init′Q .

From this we get that (er, ∗) ∈ E , and for each X �→ (er, ∗), we have an X Q �→ er such that X = {e ∈ E | πQ (e) ∈
X Q }, and therefore X ∩ Init �= ∅. Additionally, if e � (er, ∗), then either πQ (e) � er , or λ(e) = roll γ ′ , meaning 

e /∈ Init. We therefore get Init
{(er ,∗)}−−−−→. Since by Lemma 7.17 �e′ ∈ I.λ(e′) = roll γ ′ , we get that by Lemma 7.18 for ei , 

0 ≤ i ≤ n, whenever Xi �→ ei , either Xi = {ei}, or er ∈ Xi , meaning for any e ∈ E such that πQ (e) ∈ {e0, e1, . . . en}, 
whenever X �→ e, either X = {e} or (er, ∗) ∈ X . The rest follows from Lemma 7.11 and Proposition 7.19.

(prop ROLL Key 1): Suppose P = β ′
γ [m].R , P ′ = β ′

γ [m].R ′ , m′ �= n, R 
roll n

R ′ , ⦃R⦄ = 〈ER , InitR ,kR〉, and 
⦃

R ′⦄ = 〈ER ′ , InitR ′ ,kR ′ 〉. 

Then by induction InitR
{er }−−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{er }−−→ Xdone , and there exists an isomorphism f R : ER → ER ′

fulfilling the conditions. Then it is clear from the semantics that the result holds using the isomorphism 
f = f R ∪ {(eα, e′

α)}.

(prop ROLL Key 2): Suppose P = β ′
γ .R , P ′ = β ′

γ .R ′ , ⦃R⦄ = 〈ER , InitR ,kR〉, 
⦃

R ′⦄ = 〈ER ′ , InitR ′ ,kR ′ 〉, and R 
roll n

R ′ . Then 

InitR
{er }−−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{er }−−→ Xdone , and there exists an isomorphism f R : ER → ER ′ such that f R(Xd) =

InitR ′ . Then it is clear from the semantics that the result holds using the isomorphism f = f R ∪ {(eα, e′
α)}.

(prop ROLL Key 3): Suppose P = P0 + P1, P ′ = P ′
0 + P1, ⦃P0⦄ = 〈E0, Init0,k0〉, ⦃P1⦄ = 〈E1, Init1,k1〉

⦃
P ′

0

⦄ = 〈
E ′

0, Init′0,k′
0

〉
, and 

P0
roll n

P ′
0. Then by induction Init0

{e(r,0)}−−−→ X(0,0)

{e(0,0)}−−−−→ X(1,0) · · ·
{e(n,0)}−−−−→ X(n+1,0)

{e(r,0)}−−−→ X(done,0) , and there exists 
an isomorphism f0 : E0 → E ′

0 fulfilling the conditions. Then, since P is consistent, std(P1), and therefore {0} ×
Init0

{(0,e(r,0))}−−−−−−→ {0} × X(0,0)

{(0,e(0,0))}−−−−−−→ {0} × X(1,0) · · ·
{(0,e(n,0))}−−−−−−→ {0} × X(n+1,0)

{(0,e(r,0))}−−−−−−→ {0} × X(done,0), and the rest 
obviously holds.

(prop ROLL Key 4): Suppose P = R \ A, P ′ = R ′ \ A, ⦃R⦄ = 〈ER , InitR ,kR〉, 
⦃

R ′⦄ = 〈ER ′ , InitR ′ ,kR ′ 〉, and R 
roll n

R ′ . Then by 

induction InitR
{er }−−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{er }−−→ Xdone , and there exists an isomorphism f R : ER → ER ′ such that 

f R(Xd) = InitR ′ . Then, since P is consistent, if αγ [n] occurs in R , α /∈ A ∪ A, and by Theorem 7.13, whenever 
e ∈ InitR , there exists X ∈ cause(e) such that X ⊆ ρ(A ∪ A), and the result follows.
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(prop ROLL Key 5): Suppose P = R[ f ], P ′ = R ′[ f ], ⦃R⦄ = 〈ER , InitR ,kR〉, 
⦃

R ′⦄ = 〈ER ′ , InitR ′ ,kR ′ 〉, γ ′ �= γ , and R 
roll n

R ′ . Then 

by induction InitR
{er }−−→ X0

{e0}−−→ X1 · · · {en}−−→ Xn+1
{er }−−→ Xdone , and there exists an isomorphism f R : ER → ER ′ fulfilling 

the conditions, and the result follows.

(prop ROLL Key 6): Suppose P ≡ Q , Q
roll n

Q ′ , and Q ′ ≡ P . Then the result follows from Proposition 7.12. �
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