
Event structure semantics of (controlled)
reversible CCS

Eva Graversen, Iain Phillips, and Nobuko Yoshida

Imperial College London

Abstract. CCSK is a reversible form of CCS which is causal, meaning
that actions can be reversed if and only if each action caused by them has
already been reversed; there is no control on whether or when a compu-
tation reverses. We propose an event structure semantics for CCSK. For
this purpose we define a category of reversible bundle event structures,
and use the causal subcategory to model CCSK. We then modify CCSK
to control the reversibility with a rollback primitive, which reverses a
specific action and all actions caused by it. To define the event structure
semantics of rollback, we change our reversible bundle event structures
by making the conflict relation asymmetric rather than symmetric, and
we exploit their capacity for non-causal reversibility.

1 Introduction

Reversible process calculi have been studied in works such as [5, 7, 10, 19]. One
feature of such reversible processes is their ability to distinguish true concurrency
in a way forward-only processes cannot [15]. For instance, using CCS notation,
the processes a|b and a.b+ b.a are equivalent under interleaving semantics; how-
ever in a reversible setting we can distinguish them by noting that a|b allows us
to perform a followed by b and then to reverse a, which is impossible for a.b+b.a.
This motivates us to use event structures [14] to describe truly concurrent se-
mantics of a reversible process calculus.

Two reversible forms of CCS have been proposed: RCCS [7] and CCSK [19].
RCCS creates separate memories to store past (executed) actions, while CCSK
annotates past actions with keys within the processes themselves. We formulate
an event structure semantics for CCSK rather than RCCS, since the semantics
for past and future actions can be defined in a similar manner, rather than having
to encompass both processes and memories. We note that Medić and Mezzina [12]
showed that RCCS and CCSK can be encoded in each other, meaning one can
use their encoding in conjunction with our event structure semantics to obtain
an event structure semantics for RCCS.

Event structures have been used for modelling forward-only process calculi [2,
4, 21]. Cristescu et al. [6] used rigid families [3], related to event structures, to
describe the semantics of Rπ [5]. However, their semantics requires a process
to first reverse all actions to find the original process, map this process to a
rigid family, and then apply each of the reversed memories in order to reach the

1

current state of the process. Aubert and Cristescu [1] used a similar approach
to describe the semantics of RCCS processes without auto-concurrency, auto-
conflict, or recursion as configuration structures. By contrast, we map a CCSK
process (with auto-concurrency, auto-conflict, and recursion) with past actions
directly to a (reversible) event structure in a strictly denotational fashion.

Reversible forms of prime [16], asymmetric [16], and general [18] event struc-
tures have already been defined, but the usual way of doing parallel composition
of forward-only prime (PES) and asymmetric event structures (AES) [20] does
not translate into a reversible setting, and general event structures are more
expressive that is necessary for modelling reversible CCSK. We therefore base
our semantics on a reversible form of bundle event structures (BESs) [11].

BESs were created with the specific purpose of allowing the same event to
have multiple conflicting causes, thereby making it possible to model parallel
composition without creating multiple copies of events. They do this by associ-
ating events with bundles of conflicting events, X 7→ e, where in order for event
e to happen one of the events of X must have already happened.

This approach can be used for modelling cases such as Example 1.1 below,
where an action a has multiple options for synchronisation, either of which would
allow the process to continue with the action b. If we model each synchronisation
or lack thereof as a separate event then we clearly need to let b have multiple
possible causes, which we can accomplish using BESs, but not using PESs.

Example 1.1 (Process easily representable by a bundle event structure).
The CCS process a.b | a can be described by a BES

b
a

τ

a
with the events a, τ, a, b, the bundle {a, τ} 7→ b, and the
conflicts a] τ and a] τ . The process cannot be repre-
sented by a PES or AES without splitting some events
into multiple events, due to b having multiple possible
causes.

We therefore define a category of reversible BESs (RBESs). Since the re-
versibility allowed in CCSK (as in RCCS) is causal, meaning that actions can be
reversed if and only if every action caused by them has already been reversed,
we use the causal subcategory of RBESs for defining a denotational semantics
of CCSK.

Causal reversibility has the drawback of allowing a process to get into a loop
doing and undoing the same action indefinitely; there is no control on whether
or when a computation reverses. We modify CCSK to control reversibility by
adding the rollback introduced for Roll-π in [9]. In Roll-CCSK every action
receives a tag γ, and the process only reverses when reaching a roll γ primitive,
upon which the action tagged with γ, together with all actions caused by it,
are reversed. As in Roll-π, the rollback in Roll-CCSK is maximally permissive,
meaning that any subset of reached rollbacks may be executed, even if one
of them rolls back the actions leading to another. The operational semantics
of rollback work somewhat differently in Roll-CCSK from Roll-π, since Roll-
π has a set of memories describing past actions in addition to a π-calculus

2

process, while CCSK has the past actions incorporated into the structure of the
process, meaning that it is harder to know whether one has found all the actions
necessary to reverse. Roll-CCSK allows recursion using binding on tags. Mezzina
and Koutava [13] added rollback to a variant of CCS, though they use a set of
memories to store their past actions, making their semantics closer to Roll-π.

Once a roll γ event has happened, we need to ensure that not only are
the events caused by the γ-tagged action aγ able to reverse, but they cannot
re-occur until the rollback is complete, at which point the roll γ event is re-
versed. This requires us to model asymmetric conflict between roll γ and events
caused by aγ (apart from roll γ itself). Asymmetric conflict is allowed in ex-
tended BESs (EBESs) [11]. We define a category of reversible EBESs (REBESs)
and use them to give an event structure semantics of rollback. Note that we do
not restrict ourselves to the causal subcategory of REBESs, since reversibility
in Roll-CCSK is not necessarily causal. An action aγ tagged with γ is a cause of
roll γ, but we want aγ to reverse before roll γ does.

Contributions We formulate reversible forms of bundle, and extended bundle
event structures. We show that these form categories equipped with products
and coproducts. We extend CCSK with recursion and use the category of RBESs
to define its event structure semantics. We define the operational semantics of
Roll-CCSK, which uses rollback to control the reversibility in CCSK, showing
that our rollbacks are both sound (Theorem 6.6) and complete (Theorem 6.9)
with respect to CCSK. We use the category of REBESs to define the event struc-
ture semantics of Roll-CCSK. We prove operational correspondence between the
operational semantics and event structure semantics of both CCSK and Roll-
CCSK (Theorems 4.10, 7.5 and 7.7).

Outline Section 2 recalls the semantics of CCSK. Section 3 describes RBESs and
their category. Section 4 defines the event structure semantics of CCSK. Section 5
describes REBESs and their category. Section 6 introduces Roll-CCSK and its
operational semantics and Section 7 uses REBESs to describe the event structure
semantics of Roll-CCSK.

2 CCSK

CCSK was defined in [19], and distinguishes itself from most reversible process
calculi by retaining the structure of the process when actions are performed, and
annotating past actions with keys instead of generating memories. For instance

we have a.P | a.Q τ [n]−−→ a[n].P | a[n].Q, with the key n denoting that a and
a have previously communicated, and we therefore cannot reverse one without
reversing the other.

We call the set of actions of CCSK A and let a, b, c range over A, α, β range
over A ∪ A, and µ range over A ∪ A ∪ {τ}. We let K be an infinite set of
communication keys and let m,n range over K.

3

CCSK then has the following syntax, very similar to CCS:

P ::= α.P | α[n].P | P0 + P1 | P0|P1 | P \A | P [f] | 0

Here P \ A restricts communication on actions in A ∪ A and P [f] applies a

Table 1. Forwards semantics of CCSK [17]

std(P)

α.P
α[n]−−−→ α[n].P

P
µ[m]−−−→ P ′ m 6= n

α[n].P
µ[m]−−−→ α[n].P ′

P ≡ Q µ[n]−−→ Q′ ≡ P ′

P
µ[n]−−→ P ′

P0
µ[n]−−→ P ′0 fsh[n](P1)

P0 | P1
µ[n]−−→ P ′0 | P1

P0
α[n]−−−→ P ′0 P1

α[n]−−−→ P ′1

P0 | P1
τ [n]−−→ P ′0 | P ′1

P0
µ[n]−−→ P ′0 std(P1)

P0 + P1
µ[n]−−→ P ′0 + P1

P
µ[n]−−→ P ′ µ, µ /∈ A

P \A µ[n]−−→ P ′ \A

P
µ[n]−−→ P ′

P [f]
f(µ)[n]−−−−→ P ′[f]

function f : A → A to actions done by P .
Table 1 shows the forwards rules of the operational semantics of CCSK.

As CCSK is causal, the reverse rules can be derived from these. We use to
denote a reverse action, std(P) to denote that P is a standard process, meaning
it contains no past actions, and fsh[n](P) to denote that the key n is fresh for P .
The rules are slightly reformulated compared to [19] in that we use structural
congruence ≡. The rules for structural congruence are:

P | 0 ≡ P P0 | P1 ≡ P1 | P0 P0 | (P1 | P2) ≡ (P0 | P1) | P2

P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2

We extend CCSK with recursion as follows. We add process constants A
〈
b̃
〉

,

together with definitions A(ã) = PA, where PA is a standard process and ã is
a tuple containing the actions of PA. This leads us to expand our definition of

structural congruence with A
〈
b̃
〉
≡ PA{b̃/ã}.

Definition 2.1. A process P is reachable if there exists a standard process Q
such that Q(→ ∪)∗P , and forwards-reachable if there exists a standard pro-
cess Q such that Q→∗ P .

Since CCSK is causal all reachable processes are forwards-reachable ([19],
Proposition 5.15; the proof still applies with recursion added).

3 Reversible Bundle Event Structures

Bundle event structures (BES) [11] extend prime event structures by allowing
multiple possible causes for the same event. They do this by replacing the causal
relation with a bundle set, so that if X 7→ e then exactly one of the events in X

4

must have happened before e can happen, and all the events in X must be in
conflict.

We define reversible bundle event structures (RBES) by extending the bundle
relation to map to reverse events, denoted e, and adding a prevention relation,
such that if e B e′ then e′ cannot be reversed from configurations containing e.
We use e∗ to denote either e or e.

Definition 3.1 (Reversible Bundle Event Structure). A reversible bundle
event structure is a 5-tuple E = (E,F, 7→,],B) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the bundle set, 7→ ⊆ 2E × (E ∪ F), satisfies X 7→ e∗ ⇒ ∀e1, e2 ∈ X.e1 6=

e2 ⇒ e1] e2 and for all e ∈ F , {e} 7→ e;
4. the conflict relation,] ⊆ E × E, is symmetric and irreflexive;
5. B ⊆ E × F is the prevention relation.

In order to obtain a category of RBESs, we define a morphism in Defini-
tion 3.2.

Definition 3.2 (RBES-morphism). Given RBESs E0 = (E0, F0, 7→0,]0,B0)
and E1 = (E1, F1, 7→1,]1,B1), an RBES-morphism from E0 to E1 is a partial
function f : E0 → E1 such that f(F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f(e)]1 f(e′) then e]0 e
′;

2. if f(e) = f(e′) and e 6= e′ then e]0 e
′;

3. for X1 ⊆ E1 if X1 7→1 f(e)∗ then there exists X0 ⊆ E0 such that X0 7→0 e
∗,

f(X0) ⊆ X1, and if e′ ∈ X0 then f(e′) 6= ⊥;
4. if f(e)B1 f(e′) then eB0 e

′.

It can be checked that RBESs with this notion of morphism form a category
RBES. We define a product of RBESs in Definition 3.3. A coproduct can also
be defined similarly to other coproducts of event structures.

Definition 3.3 (Product of RBESs). Let E0 = (E0, F0, 7→0,]0,B0) and E1 =
(E1, F1, 7→1,]1,B1) be reversible bundle event structures. Their product E0 × E1
is the RBES E = (E,F, 7→,],B) with projections π0 and π1 where:

1. E = E0×∗E1 = {(e, ∗) | e ∈ E0}∪{(∗, e) | e ∈ E1}∪{(e, e′) | e ∈ E0 and e′ ∈
E1};

2. F = F0×∗F1 = {(e, ∗) | e ∈ F0}∪{(∗, e) | e ∈ F1}∪{(e, e′) | e ∈ F0 and e′ ∈
F1};

3. for i ∈ {0, 1} we have (e0, e1) ∈ E, πi((e0, e1)) = ei;
4. for any e∗ ∈ E ∪ F , X ⊆ E, X 7→ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei

such that Xi 7→ πi(e)
∗ and X = {e′ ∈ E | πi(e′) ∈ Xi};

5. for any e, e′ ∈ E, e] e′ iff there exists i ∈ {0, 1} such that πi(e)]i πi(e
′), or

πi(e) = πi(e
′) 6= ⊥ and π1−i(e) 6= π1−i(e

′);
6. for any e ∈ E, e′ ∈ F , eBe′ iff there exists i ∈ {0, 1} such that πi(e)Biπi(e′).

5

We wish to model RBESs as configuration systems (CSs), and therefore define
a functor from one category to the other in Definition 3.5. A CS consists of
a set of events, some of which are reversible, configurations of these events,
and labelled transitions between them, as described in Definition 3.4. We will
later use the CSs corresponding to our event structure semantics to describe
the operational correspondence between our event structure semantics and the
operational semantics of CCSK.

Definition 3.4 (Configuration system [16]). A configuration system (CS)
is a quadruple C = (E,F,C,→) where E is a set of events, F ⊆ E is a set of
reversible events, C ⊆ 2E is the set of configurations, and →⊆ C× 2E∪F × C is

a labelled transition relation such that if X
A∪B−−−→ Y then:

– X,Y ∈ C, A ∩X = ∅; B ⊆ X ∩ F ; and Y = (X \B) ∪A;

– for all A′ ⊆ A and B′ ⊆ B, we have X
A′∪B′

−−−−→ Z
(A\A′)∪(B\B′)
−−−−−−−−−−→ Y , meaning

Z = (X \B′) ∪A′ ∈ C.

Definition 3.5 (From RBES to CS). The functor Cbr : RBES → CS is
defined as:

1. Cbr((E,F, 7→,],B)) = (E,F,C,→) where:
(a) X ∈ C if X is conflict-free;
(b) For X,Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X

A∪B−−−→ Y
if:

i. Y = (X \B) ∪A; X ∩A = ∅; B ⊆ X; and X ∪A conflict-free;
ii. for all e ∈ B, if e′ B e then e′ /∈ X ∪A;

iii. for all e ∈ A and X ′ ⊆ E, if X ′ 7→ e then X ′ ∩ (X \B) 6= ∅;
iv. for all e ∈ B and X ′ ⊆ E, if X ′ 7→ e then X ′ ∩ (X \ (B \ {e})) 6= ∅.

2. Cbr(f) = f .

Example 3.6 shows an RBES mapped to a CS. The con-
figuration {b, c} is reachable despite b being required
for c to happen and c being a possible cause of b.

Example 3.6 (RBES). An RBES E = (E,F, 7→,],B)
where E = {a, b, c}, F = {a, b}, a] c, {a, c} 7→ b,
{b} 7→ c {a} 7→ a, {b} 7→ a, and {b} 7→ b, gives the CS
Cbr(E).

∅

{a} {b} {c}

{a, b} {b, c}

We define a causal variant of RBESs in Definition 3.7. The subcategory
CRBES consists of CRBESs and the RBES-morphisms between them.

Definition 3.7 (Causal RBES). E = (E,F, 7→,],B) is a causal RBES (CRBES)
if (1) if eB e′ then either e] e′ or there exists an X ⊆ E such that X 7→ e and
e′ ∈ X, (2) if X 7→ e and e′ ∈ X ∩F , then eB e′, and (3) if X 7→ e then e ∈ X.

Proposition 3.8.

1. Given a CRBES, E = (E,F, 7→,],B) and corresponding CS Crb(E) = (E,F,C,→
), any reachable X ∈ C is forwards-reachable.

6

2. If E = (E,F, 7→,],B) is a CRBES and Cbr(E) = (E,F,C,→) then whenever

X ∈ C, X
A∪B−−−→ Y and A ∪B ⊆ F , we get a transition Y

B∪A−−−→ X.

Since our motivation for defining RBESs was modelling reversible processes,
we need to be able to label our events with a corresponding action from a process.
For this we use a labelled RBES (LRBES).

Definition 3.9 (Labelled Reversible Bundle Event Structure). An LRBES
E = (E,F, 7→,],B, λ,Act) consists of an RBES (E,F, 7→,],B), a set of labels
Act, and a surjective labelling function λ : E → Act.

Definition 3.10 (LRBES-morphism). Given LRBESs E0 = (E0, F0, 7→0,]0
,B0, λ0,Act0) and E1 = (E1, F1, 7→1,]1,B1, λ1,Act1), an LRBES-morphism f :
E0 → E1 is a partial function f : E0 → E1 such that f : (E0, F0, 7→0,]0,B0) →
(E1, F1, 7→1,]1,B1) is an RBES-morphism and for all e ∈ E0, either f(e) = ⊥
or λ0(e) = λ1(f(e)).

4 Event Structure Semantics of CCSK

Having defined RBESs, we will now use them to describe the semantics of
CCSK [19]. Unlike the event structure semantics of CCS [2, 21], our seman-
tics will generate both an event structure and an initial configuration containing
all the events corresponding to past actions. This means that if P → P ′ then P
and P ′ will be described by the same event structure with different initial states.

First we define the operators we will use in the semantics, particularly restric-
tion, parallel composition, choice, and action prefixes. Restriction is achieved by
simply removing any events associated with the restricted action.

Definition 4.1 (Restriction). Given an LRBES, E = (E,F, 7→,],B, λ,Act),
restricting E to E′ ⊆ E creates E � E′ = (E′, F ′, 7→′,]′,B′, λ′,Act′) where:

1. F ′ = F ∩ E′;
2. 7→′ = 7→ ∩(P(E′)× (E′ ∪ F ′));
3.]′ =] ∩(E′ × E′);

4. B′ = B ∩ (E′ × F ′);
5. λ′ = λ �E′ ;
6. Act is the range of λ.

Parallel composition uses the product of RBESs, labels as τ any event cor-
responding to a synchronisation, and removes any invalid events describing an
impossible synchronisation.

Definition 4.2 (Parallel). Given LRBESs E0 and E1, E0||E1 = (E,F, 7→,]
,B, λ,Act) � {e | λ(e) 6= 0} where: (E,F, 7→,],B) = (E0, F0, 7→0,]0,B0) ×
(E1, F1, 7→1,]1,B1);

λ(e) =


λ0(e0) if e = (e0, ∗)
λ1(e1) if e = (∗, e1)

τ if e = (e0, e1) and λ0(e0) = λ1(e1)

0 if e = (e0, e1) and λ0(e0) 6= λ1(e1);
and Act = Act0 ∪ Act1 ∪ {0, τ}.

7

Choice, which acts as a coproduct of LRBESs, simply uses the coproduct of
RBESs, and defines the labels as expected.

Definition 4.3 (Choice). Given LRBESs E0 and E1, E0&E1 = (E,F, 7→,]
,B, λ,Act) where: (E,F, 7→,],B) = (E0, F0, 7→0,]0,B0) + (E1, F1, 7→1,]1,B1);
λ(ij(e)) = λj(e); and Act = Act0 ∪ Act1.

Causally prefixing an action onto an event structure means the new event
causes all other events and is prevented from reversing by all other events.

Definition 4.4 (Causal Prefix). Given an LRBES E = (E,F, 7→,],B, λ,Act),
an event e /∈ E, and a label α, α(e).E = (E′, F ′, 7→′,]′,B′, λ′,Act′) where:

1. E′ = E ∪ {e};
2. F ′ = F ∪ {e};
3. 7→′ = 7→ ∪({{e}} × (E ∪ {e}));
4.]′ =];

5. B′ = B ∪ (E × {e});

6. λ′ = λ[e 7→ α];

7. Act′ = Act ∪ {α}.

Now that we have defined the main operations of the process calculus, we
define the event structure semantics in Table 2. We do this using rules of the
form P l = 〈E , Init, k〉 wherein l is the level of unfolding, which we use to model
recursion, E is an LRBES, Init is the initial configuration, and k : Init → K is
a function assigning communication keys to the past actions, which we use in
parallel composition to determine which synchronisations of past actions to put
in Init.

Note that the only difference between a future and a past action is that
the event corresponding to a past action is put in the initial state and given a
communication key.

Example 4.5. The CCSK process a.b | a (cf. Example 1.1)
can be represented by the RBES with events labelled a, a,
τ , and b, the bundle {a, τ} 7→ b, the conflicts a] τ and a] τ ,
and the preventions bB a and bB τ .

b
a

τ

a

We say that P = supl∈N P l. This means we need to show that there exists
such a least upper bound of the levels of unfolding. As shown in [8], ordering
closed BESs by restriction produces a complete partial order. Since our LRBESs
do not have overlapping bundles (X 7→ e∗ and X ′ 7→ e∗ implies X 6= X ′ or
X ∩X ′ = ∅) they are closed, and we can use a similar ordering.

Definition 4.6 (Ordering of LRBESs). Given LRBESs E0 = (E0, F0, 7→0,]0
,B0, λ0,Act0) and E1 = (E1, F1, 7→1,]1,B1, λ1,Act1), E0 ≤ E1 if E0 = E1 � E0.

Proposition 4.7 (Unfolding). Given a reachable process P and a level of un-
folding l, if P l = 〈E , Init, k〉 and P l−1 =

〈
E ′, Init′, k′

〉
, then E ′ ≤ E, Init = Init′,

and k = k′.

In order to prove that our event structure semantics correspond with the
operational semantics for CCSK defined in [17] we first show that our event
structures are causal.

8

Table 2. RBES-semantics of CCSK

0l = 〈(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅〉
P0 + P1 l = 〈E0&E1, Init, k〉 where

For i ∈ {0, 1}, Pil = 〈Ei, Initi, ki〉
Init = {(j, e) | j ∈ {0, 1} and e ∈ Initj}
k((j, e)) = kj(e) if e ∈ Initj

α.P l = 〈α(e).(E,F, 7→,],B, λ,Act), Init, k〉 for e fresh for E where
Pl = 〈(E,F, 7→,],B, λ,Act), Init, k〉

α[m].P l = 〈α(e).(E,F, 7→,],B, λ,Act), Init ∪ {e}, k[e 7→ m]〉 for e fresh for E where
Pl = 〈(E,F, 7→,],B, λ,Act), Init, k〉

P0 | P1 l = 〈(E,F, 7→,],B, λ,Act), Init, k〉 where
For i ∈ {0, 1}, Pil = 〈Ei, Initi, ki〉
(E,F, 7→,],B, λ,Act) = E0||E1
Init = {(e0, e1) | e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)}∪
{(∗, e1) | e1 ∈ Init1 and @e0 ∈ Init0.λ0(e0) = λ1(e1) and k0(e0) = k1(e1)}∪
{(e0, ∗) | e0 ∈ Init0 and @e1 ∈ Init1.λ0(e0) = λ1(e1) and k0(e0) = k1(e1)}

k(e) =


k0(e0) if e = (e0, ∗)
k1(e1) if e = (∗, e1)

k0(e0) if e = (e0, e1) – note that k0(e0) = k1(e1)
P \A l = 〈E � {e | λ(e) /∈ A}, Init ∩ {e | λ(e) /∈ A}, k � {e | λ(e) /∈ A}〉 where

Pl = 〈E , Init, k〉
A = A ∪A

P [f]l = 〈(E,F, 7→,],B, λ,Act), Init, k〉 where
Pl = 〈(E,F, 7→,],B, λ′,Act′), Init, k〉
Act = f(Act′)
λ = f ◦ λ′

A
〈
b̃
〉

0
= 〈(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅〉

A
〈
b̃
〉
l

= PA{b̃/ã} l−1 where A(ã) = PA

Proposition 4.8. Given a process P such that P = 〈E , Init, k〉, E is causal.

Structurally congruent processes will generate isomorphic event structures:

Proposition 4.9 (Structural Congruence). Given processes P and P ′, if
P ≡ P ′, P = 〈E , Init, k〉, and P ′ =

〈
E ′, Init′, k′

〉
, then there exists an isomor-

phism f : E → E ′ such that f(Init) = Init′ and for all e ∈ Init, k(e) = k′(f(e)).

Finally we show in Theorem 4.10 that given a process P with a conflict-free

initial state, including any reachable process, there exists a transition P
µ−→ P ′

if and only if the event structure corresponding to P is isomorphic to the event
structure corresponding to P ′ and an event e labelled µ exists such that e is
available in P ’s initial state, and P ′’s initial state is P ’s initial state with e
added.

Theorem 4.10. Let P be a process with P = 〈E , Init, k〉, E = (E,F, 7→,]
,B, λ,Act), Cbr(E) = (E,F,C,→), and Init conflict-free. Then

9

1. if there exists a P ′ with P ′ =
〈
E ′, Init′, k′

〉
and a transition P

µ[m]−−−→ P ′ then

there exists a transition Init
{e}−−→ X and an isomorphism f : E → E ′ such

that λ(e) = µ, f ◦ k′ = k[e 7→ m], and f(X) = Init′;

2. and if there exists a transition Init
{e}−−→ X then there exists a P ′ with P ′ =〈

E ′, Init′, k′
〉

and a transition P
µ[m]−−−→ P ′ and an isomorphism f : E → E ′

such that λ(e) = µ, f ◦ k′ = k[e 7→ m], and f(X) = Init′.

Corollary 4.11. Let P be a process such that P = 〈E , Init, k〉. Then Init is
forwards-reachable in E if and only if there exists a standard process Q such that
Q→∗ P .

Since we showed in Proposition 4.8 that any event structures generated by
processes are causal, it follows that we get a similar correspondence between the
reverse transitions of processes and event structures.

5 Reversible Extended Bundle Event Structures

In CCSK a process can reverse actions at any time. Suppose that we wish to con-
trol this reversibility by having a ‘rollback’ action that causes all actions, or all
actions since the last safe state, to be reversed before the process can continue,
similar to the roll command of [9]. RBESs can easily ensure that this rollback
event roll is required for other events to reverse; we simply say that {roll} 7→ e
for all e. However, preventing events from happening during the roll in RBESs
requires symmetric conflict, which would mean the other events also prevent
roll from occurring. To solve a similar problem, Phillips and Ulidowski [16] use
reversible asymmetric event structures, which replace symmetric conflict with
asymmetric. But since these use the same notion of causality as reversible prime
event structures, they have trouble modelling concurrent processes with synchro-
nisation, as shown in Example 1.1.

Extended bundle event structures (EBES) [11] add asymmetric conflict; so
defining a reversible variant of these will allow us to model the above scenario.

Example 5.1 (The necessity of REBESs for modelling rollback). Consider a.b |
aγ .roll γ, where roll γ means undo the action labelled γ, that is a, and everything
caused by it before continuing. To model this we would need to expand the
RBES from Example 4.5 with a new event roll γ, and split b into two different
events depending on whether it needs to be reversed during the rollback or not.
This would give us an RBES ({a, τ, a, ba, bτ , roll γ}, {a, τ, a, ba, bτ , roll γ}, 7→,],B)
where {a} 7→ ba, {τ} 7→ bτ , {a, τ} 7→ roll γ, {roll γ} 7→ τ , {roll γ} 7→ a,
{roll γ} 7→ bτ , a] τ , a] τ , ba B a, bτ B τ , a B roll γ, and τ B roll γ. This
would indeed ensure that a and the events caused by it could only reverse if
one of the roll events had occurred, but it would not force them to do so before
doing anything else. For this we use asymmetric conflict: roll γ B a, roll γ B τ ,
roll γ B bτ , giving us a CS with the reachable configurations shown in Figure 1.

10

∅
{a}

{τ}
{a}

{a, ba}

{τ, bτ}

{a, a} {a, a, ba}

{roll γ}

{a, roll γ}{a, roll γ}

{a, ba, roll γ}

{a, a, roll γ}

{a, a, ba, roll γ}

{τ, roll γ} {τ, bτ , roll γ}

Fig. 1. The reachable configurations of the REBES described in Example 5.1

We define a reversible version of EBESs in Definition 5.2, treating the asym-
metric conflict similarly to RAESs in [16].

Definition 5.2 (Reversible Extended Bundle Event Structure). An REBES
is a 4-tuple E = (E,F, 7→,B) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. 7→ ⊆ 2E × (E ∪ F) is the bundle set, satisfying X 7→ e⇒ ∀e1, e2 ∈ X.(e1 6=

e2 ⇒ e1 B e2), and for all e ∈ F , {e} 7→ e;
4. B ⊆ E × (E ∪ F) is the asymmetric conflict relation, which is irreflexive.

In order to define REBES-morphisms, we extend the RBES morphism in the
obvious way, letting the condition on preventions also apply to prevention on
forwards events. This gives us a category REBES, in which we can define prod-
ucts and coproducts much like we did for RBESs, treating asymmetric conflict
the same as we did symmetric.

We again model REBESs as CSs, defining configurations as sets of events
on which B is well-founded, and extending the requirements of prevention in
transitions to forwards events.

Example 5.3 shows an REBES, which cannot be represented by an RBES,
since we get a transition ∅ → {a}, but no {b} → {a, b}, despite {a, b} being a con-

figuration.

Example 5.3 (REBES). An REBES E = (E,F, 7→,B)
where E = {a, b, c}, F = {a, b}, {a, c} 7→ b, {b} 7→ c
{a} 7→ a, {b} 7→ a, {b} 7→ b, aBc, cBa, and bBa gives
the CS Cer(E) in the diagram. ∅

{a} {b} {c}

{a, b} {b, c}

Since we are using our REBESs for modelling the semantics of rollback in CCSK,
we need a labelled variant, which we can define much as we did labelled RBESs.

6 Roll-CCSK

The operational semantics for roll-π [9] are not translatable directly to CCSK, as
they make use of the fact that one can know, when looking at a memory, whether
the communication it was associated with was with another process or not, and
therefore, for a given subprocess P and a memory m, one knows whether all the

11

memories and subprocesses caused by m are part of P . In CCSK, this is not as
easy, as the roll in a subprocess αγ [n] . . . roll γ, where γ is a tag denoting which
rollback rolls back which action, may or may not require rolling back the other
end of the α communication, and all actions caused by it. We therefore need to
check at every instance of parallel composition whether any communication has
taken place, and if so roll back those actions and all actions caused by them.
This may include rolling back additional actions from the subprocess containing
the roll as in a[n1].b[n2] | c[n3].(aγ [n1].roll γ | b[n2]), where it does not become
clear that b[n2] needs to be reversed during the roll until the outer parallel com-
position. Unlike [9], we therefore do not provide low-level operational semantics
for Roll-CCSK, only providing high-level operational semantics in this section,
and low-level denotational event structure semantics in Section 7.

The syntax of Roll-CCSK is as follows:

P ::= αγ .P | αγ [n].P | P0+P1 | P0|P1 | P\A | P [f] | 0 | roll γ | rolling γ | (ν γ)P

Most of the syntax is the same as CCSK and CCS, but adding tags and rolls
as described above, and rolling γ, which denotes a roll in progress, the necessity
of which is justified later. From now on we will use α.P to denote αγ .P where
no roll γ exists in P . Before presenting the operational semantics of rollback, we
define causal dependence and projection similarly to [9], on which we base our
own semantics.

Definition 6.1 (Causal dependence). Let P be a process and Γ be the set of
tags in P . Then the binary relation ≤P is the smallest relation satisfying

– if there exists a process P ′ and past actions αγ [n] and βγ′ [m] such that
αγ [n].P ′ is a subprocess of P and βγ′ [m] occurs in P ′ then γ ≤P γ′;

– if there exist past actions αγ [n] and βγ′ [n] in P with the same keys then
γ ≤P γ′;

– ≤P is reflexively and transitively closed.

Definition 6.2 (Projection). Given a process P and a set of tags C, P C is

defined as:

(αγ [n].P) C = αγ [n].(P C) if γ /∈ C 0 C = 0 (P \A) C = (P C) \A
(αγ [n].P) C = αγ .(P C) if γ ∈ C roll γ C = roll γ (P0 | P1) C = P0 C | P1 C

rolling γ C = rolling γ if γ /∈ C A
〈
b̃, γ̃
〉
 C

= A
〈
b̃, γ̃
〉

(ν γ)P C = (ν γ)(P C)

rolling γ C = roll γ if γ ∈ C (αγ .P) C = αγ .(P C) (P [f]) C = P C [f]
(P0 + P1) C = P0 C + P1 C

Much as in [9] we perform our rollback in two steps, the first triggering the
rollback, and the second actually performing the rollback, in order to ensure that
we can start multiple rollbacks at the same time. For instance, in the process
(aγ .(d.0 | c.roll γ) | bγ′ .(c | d.roll γ′) | a | b) \ {a, b, c, d} we will otherwise never
be able to roll all the way back to the beginning, as rolling back aγ will stop us
from reaching roll γ′ and vice versa.

Table 3 shows the most important rules for reversing actions in Roll-CCSK.
The remaining rules permit the roll start γ and roll γ to propagate in the same

12

Table 3. The main rules for rollback in the operational semantics of Roll-CCSK

(start ROLL) roll γ
start roll γ

rolling γ (par ROLL)
P0

roll γ

P ′0 C = {γ′ | γ ≤P0|P1
γ′}

P0 | P1

roll γ

(P0 | P1) C

(ROLL) rolling γ
roll γ

roll γ (act ROLL)
P

roll γ

P ′ C = {γ′ | γ ≤αγ [n].P γ
′}

αγ [n].P
roll γ

αγ .P C

(bind ROLL)
P

roll γ

P ′

(ν γ)P
roll bound

(ν γ)P ′
(bind ROLL struct)

P ≡ Q
roll bound

Q′ ≡ P ′

P
roll bound

P ′

way as actions in CCSK (and past tag bindings), with the exception that in the
rule for choice, if one path has already triggered a roll, the other cannot trigger
or perform a roll or a forwards action. The semantics of forwards actions are
otherwise identical to CCSK, except again propagating past the tag bindings.
By contrast, roll bound γ does not propagate. We extend our process definitions
A(ã) = PA to also include a tuple of tags in PA, giving us A(ã, γ̃) = PA, where
PA is a standard process containing no instances of rolling γ.

Since we want to be able to handle recursion without confusing instances of
multiple actions or rollbacks being associated with the same tags, we introduce
binding of tags (ν γ), which allows us to avoid clashes. We use ft(P) to denote
the free tags of P . To ensure that we cannot perform roll γ in Q | (ν γ)P without
rolling back all actions in Q caused by γ, we only have rule (bind ROLL struct)
for bound tags, meaning that to roll back a bound tag we must use structural
congruence to move it to the outermost layer of the process. This is also why we
have the two rules allowing us to move (ν γ) from one side of an action with a
different tag to the other.

We also change the rule for applying definitions to ensure all tags are fresh for
the unfolded process. This is again to prevent the process from unfolding more
rollbacks for a previous action, such as in aγ .A〈a, γ〉 with A(b, δ) = bδ.(A 〈b, δ〉 |
roll δ), where there would otherwise be confusion about how far back one should
roll each time.

Structural congruence for bound tags:

αγ(νγ′)P ≡ (νγ′)αγP if γ 6= γ′ αγ [n](νγ′)P ≡ (νγ′)αγ [n]P if γ 6= γ′

((νγ′)P) | Q ≡ (νγ′)(P | Q) if γ /∈ ft(Q) ((νγ′)P) +Q ≡ (νγ′)(P +Q) if γ /∈ ft(Q)
(νγ′)(P \A) ≡ ((νγ′)P) \A (νγ)(P [f]) ≡ ((νγ)P)[f]

A
〈
b̃, δ̃
〉
≡ (ν δ̃)PA{b̃,δ̃/ã,γ̃} if A(ã, γ̃) = PA (ν γ)(νγ′)P ≡ (ν γ′)(ν γ)P

Example 6.3 (Bound Tags). Consider the process P = aγ [n].(ν γ)bγ .roll γ. This

can clearly do the actions P
b[m]−−−→ aγ [n].(ν γ)bγ [m].roll γ

start roll γ−−−−−−→ aγ [n](ν γ).bγ [m].rolling γ.
However, when actually performing the rollback, we need to use the structural
congruence rule to α-convert the bound γ into δ and move the binding to be-

13

fore aγ [n] because roll bound does not propagate through aγ [n]. Then we can do

aγ [n].(ν γ)bγ [m].rolling γ ≡ (ν δ)aγ [n].bδ[m].rolling δ
roll bound

(ν δ)aγ [n].bδ.roll δ.

In addition, to ensure every rollback is associated with exactly one action,
we define a consistent process.

Definition 6.4 (Consistent process). A Roll-CCSK process P is consistent
if

1. there exists a standard process Q with no subprocess rolling γ such that Q→∗
P ;

2. there exists P ′ ≡α P , such that
(a) for any tag γ, P ′ has at most one subprocess roll γ or rolling γ;
(b) for any tag γ, there exists exactly one α and at most one n such that αγ

or αγ [n] occur in P ′;
(c) if roll γ is a subprocess of P ′ then there exists an action α and process

P ′′ such that roll γ is a subprocess of P ′′ and either αγ .P
′′ is a subprocess

of P ′ or there exists a key n such that αγ [n].P ′′ is a subprocess of P ′;

3. if A
〈
b̃, δ̃
〉

is a subprocess of P defined as A(ã, γ̃) = PA, then PA is consis-

tent.

Proposition 6.5. Let P be a consistent process, P ′ be a process, and either
P ≡ P ′, P → P ′, or P P ′. Then P ′ is consistent.

We are then ready to prove Theorem 6.6, stating that for consistent subprocesses,
any rollback can be undone by a sequence of forwards actions.

Theorem 6.6 (Loop (Soundness)). Let P0 and P1 be consistent processes

containing no subprocesses rolling γ, and such that P0

start roll γ
P ′0

roll bound
P1.

Then P1 →∗ P0.

We will from now on use→CCSK and CCSK to distinguish CCSK-transitions
from Roll-CCSK transitions, which will continue to be denoted by arrows with-
out subscripts. The last thing we need to prove about our rollback operational
semantics before moving on to event structure semantics is Theorem 6.9, stat-
ing that (1) our rollbacks only reverse the actions caused by the action we are
rolling back according to CCSK, and (2) our rollbacks are maximally permissive,
meaning that any subset of reached rollbacks may be successfully executed.

Definition 6.7 (Transforming Roll-CCSK to CCSK). We define a func-
tion, φ, which translates a Roll-CCSK process into CCSK:

φ(roll γ) = 0 φ(αγ [n].P) = α[n].φ(P) φ(αγ .P) = α.φ(P) φ((ν γ)P) = φ(P)
φ is otherwise homomorphic on the remainder.

Definition 6.8. Let P be a CCSK process and T = {m0,m1, . . .mn} be a set
of keys. We say that P T P

′ if there exist actions µ, ν and a tag m such that

P
µ[m]

CCSK P ′ and ν[mi] ≤P µ[m] for some mi ∈ T .

14

Theorem 6.9 (Completeness). Let P be a consistent Roll-CCSK process with
subprocesses α0γ0

[m0] . . . roll γ0, α1γ1
[m1] . . . roll γ1, . . . , αnγn [mn] . . . roll γn.

Then for all T ⊆ {m0,m1, . . .mn}, if φ(P) ∗T P ′ 6 T then there exists a
Roll-CCSK process P ′′ such that φ(P ′′) = P ′ and P ∗ P ′′.

7 Event Structure semantics of Roll-CCSK

Having proved that our rollback semantics behave as intended, we are ready
to translate them into event structure semantics in Table 4. We use labelled
REBESs.

To model roll γ as an event structure, we have two events, one which triggers
the roll, labelled start roll γ, and another, roll γ, which denotes that the roll is in
progress, allowing the events caused by the associated action to begin reversing.
When prefixing a process P with an action αγ , we now need to ensure that any
action in P , and any start roll associated with such an action, will be reversed
by any roll γ in P , and that the rollback does not stop, signified by the event
labelled roll γ being reversed, until those actions have all been reversed.

When composing the LREBESs of two processes, we also create a separate
event for each set of causes it might have (Definition 7.1). This allows us to say
that an event can be rolled back if it was caused by a communication with one
of the events being rolled back, but not if the communication went differently.
Consider the process aγ .roll γ | a.b | aγ′ .roll γ′. In this case we will want b to roll
back if (aγ , a) and roll γ have happened, or if (aγ′ , a) and roll γ′ have happened,
but not if any other combination of the four events has happened, something
which bundles cannot express unless b is split into multiple events. In addition,
we use the sets of causes to ensure that if e is in e′’s set of causes and eroll can
cause e to reverse, then eroll can cause e′ to reverse.

Definition 7.1. Given an LREBES, E = (E,F, 7→,B, λ,Act), the set of possi-
ble causes for an event e ∈ E, cause(e) = X, contains minimal sets of events
such that if x ∈ X then:

1. if x′ 7→ e then there exists e′ such that x′ ∩ x = {e′};
2. if e′ ∈ x then there exists x′ ∈ cause(e′) such that x′ ⊆ x;
3. if e1, e0 ∈ X then we cannot have both e0 B e1 and e1 B e0.

When giving the semantics of restriction, we remove not only the actions
associated with the restricted labels, but also the actions caused by them. This
is because we want the event structures generated by P and 0 | P always to be
isomorphic; if P = (a.b) \ {a}, we will otherwise get an event b, which, having
no possible causes, disappears once we put P in parallel with any other process,
since this involves generating a b event for each set of possible causes.

Definition 7.2 (Removing labels and their dependants). Given an event
structure E = (E,F, 7→,B, λ,Act) and a set of labels A ⊆ Act, we define ρ(A) =
X as the maximum subset of E such that if e ∈ X then λ(e) /∈ A, and if e ∈ X
then there exists x ∈ cause(e) such that x ⊆ X.

15

We give the REBES-semantics of Roll-CCSK in Table 4.
Much as we did in Proposition 4.7, we need to show that there exists a least

upper bound of the event structures resulting from unfolding recursion. For this
we first show that our action prefix, parallel composition, and tag binding are
monotonic.

Proposition 7.3 (Unfolding). Given a consistent process P and a level of
unfolding l, if P l = 〈E , Init, k〉 and P l−1 =

〈
E ′, Init′, k′

〉
, then E ′ ≤ E, Init =

Init′, and k = k′.

Structurally congruent processes result in isomorphic event structures:

Proposition 7.4 (Structural Congruence). Given consistent Roll-CCSK-
processes P and P ′, if P ≡ P ′, P = 〈E , Init, k〉, and P ′ =

〈
E ′, Init′, k′

〉
, then

there exists an isomorphism f : E → E ′ such that f(Init) = Init′ and for all
e ∈ Init, k(e) = k′(f(e)).

Table 4: LREBES-semantics of Roll-CCSK

roll γ l = 〈({er, et}, {er, et}, 7→,B, λ,Act), ∅, ∅〉 where:
{er} 7→ er, {et} 7→ et {et} 7→ er, and {er} 7→ et et B er and er B et

λ(e) =

{
roll γ if e = er

start roll γ if e = et
Act = {roll γ, start roll γ}

rolling γ l = 〈({er, et}, {er, et}, 7→,B, λ,Act), {et}, ∅〉 where:
{er} 7→ er, {et} 7→ et {et} 7→ er, and {er} 7→ et et B er and er B et

λ(e) =

{
roll γ if e = er

start roll γ if e = et
Act = {roll γ, start roll γ}

αγ .Pl = 〈(E,F, 7→,B, λ,Act), Init, k〉 where:
P = 〈(EP , FP , 7→P ,BP , λP ,ActP), Init, k〉
E = EP ∪ {eα} where eα fresh

ERoll =

{
e

∣∣∣∣λP (e) ∈ {roll γ′, roll bound} or
λP (e) ∈ {start roll γ′ | @β, n.βγ′ or βγ′ [n] occurs in αγ .P}

}
F = FP ∪ {eα}
X 7→ e if X 7→P e or X = {eα}, e ∈ EP , and λP (e) 6= roll γ′

X 7→ e if X = {e}, or e = eα and X = {e′ | λP (e′) = roll γ}, or
e ∈ ERoll and X 7→P e, or e /∈ ERoll, {e} 6= X ′ 7→P e, and X = X ′ ∪ {e′ | λP (e′) = roll γ}
B = BP ∪ (ERoll × {eα}) ∪ ({eα} × {er | λP (er) = roll γ})∪
({er | λP (er) = roll γ} × (ERoll ∪ {eα}))
Act = ActP ∪ {α}

For all e ∈ E, λ(e) =

{
λP (e) if e ∈ EP
α if e = eα

αγ [m].Pl = 〈(E,F, 7→,B, λ,Act), Init, k〉 where:
αγ .P = 〈(E,F, 7→,B, λ,Act), Init′, k′〉 {eα} = {e ∈ E | λ(a) = α and @X ⊆ E.X 7→ eα}

Init = Init′ ∪ {eα} k(e) =

{
k′(e) if e ∈ InitP

m if e = eα

A
〈
b̃, δ̃
〉

0
= 〈(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅〉

16

Table 4: LREBES-semantics of Roll-CCSK (continued)

A
〈
b̃, δ̃
〉
l

= (ν δ̃)PA{b̃,δ̃/ã,γ̃} l−1 where A 〈ã, γ̃〉 = PA and l ≥ 1

P0 | P1l = 〈(E,F, 7→,B, λ,Act), Init, k〉 where:
Pi = Ei = (Ei, Fi, 7→i,Bi, λi,Acti) for i ∈ {0, 1}; E0||E1 = (E×, F×, 7→×,B×, λ×,Act×)
Init× = {(e0, e1) | e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)}∪
{(∗, e1) | e1 ∈ Init1, @e0 ∈ Init0.λ0(e0) = λ1(e1), and k0(e0) = k1(e1)}∪
{(e0, ∗) | e0 ∈ Init0, @e1 ∈ Init1.λ0(e0) = λ1(e1), and k0(e0) = k1(e1)}

Eaction =

{
(X, e)

∣∣∣∣ e ∈ E×, λ×(e) /∈ {roll γ, roll bound},
X ∈ cause(e), and ∀e′ ∈ X.∃X ′ ∈ cause(e′).X ′ ⊆ X

}
Eroll = {e | e ∈ E× and λ×(e) ∈ {roll γ, roll bound}}
E = Eaction ∪ Eroll; Faction = {(X, e) ∈ E | e ∈ F×}; Froll = Eroll ∩ F×; F = Faction ∪ Froll
We define π0 and π1 such that for (X, (e0, e1)) ∈ Ea, πi((X, (e0, e1))) = ei, and
for (e0, e1) ∈ Er, πi(e0, e1) = ei
{(X, e′) | X ′ ⊆ X} 7→ (X ′, (e0, e1)) if e′ ∈ X ′
X 7→ (e0, e1) if there exists X ′ such that X ′ 7→× e and X = {e′ | (π0(e′), π1(e′)) ∈ X ′}

X 7→ e if X = {e} or e = (X ′, e×) and X =
⋃X ′′

∣∣∣∣∣∣
∃i ∈ {0, 1}, Xi ∈ Ei.Xi 7→ πi(e)

or ∃e× ∈ X ′.Xi 7→ πi(e×)

, and e′ ∈ X ′′ iff πi(e
′) ∈ Xi

 or

e = (e0, e1) and there exists X ′ such that X ′ 7→× e and X = {e′ | (π0(e′), π1(e′)) ∈ X ′}
eB e′∗ if there exists i ∈ {0, 1} such that πi(e)Bi πi(e′)∗, or
πi(e) = πi(e

′) 6= ⊥, and e 6= e′, e′∗ = e′, or e 6= e′, and e ∈ X 7→ e′, or e′∗ = e′ and e, e′ ∈ Er
Act = Act0 ∪ Act1 ∪ {τ}

λ(e) =


τ if e = (X, (e0, e1))

λ0(e0) if e = (X, (e0, ∗)) or e = (e0, ∗)
λ1(e1) if e = (X, (∗, e1)) or e = (∗, e1)

Init = {(X, e) | X ∪ {e} ⊆ Init×} ∪ (Eroll ∩ Init×)

k(e) =


k0(e0) if e = (X, (e0, ∗))
k1(e1) if e = (X, (∗, e1))

k0(e0) if e = (X, (e0, e1)) – note that k0(e0) = k1(e1)

(ν γ)Pl = 〈(E,F, 7→,B, λ,Act), Init, k〉 where:
P = 〈(E,F, 7→,B, λP ,ActP), Init, k〉 Act = ActP ∪ {roll bound} \ {roll γ}

For all e ∈ E, λ(e) =

{
λP (e) if λP (e) 6= roll γ

roll bound if λP (e) = roll γ

P \A l =
〈
E � ρ(A ∪A), Init ∩ ρ(A ∪A), k � ρ(A ∪A)

〉
where Pl = 〈E , Init, k〉

We next show that process P has a transition P
µ−→ P ′ if and only if P

and P ′ correspond to isomorphic event structures, and there exists a µ-labelled
transition from the initial state of P ’s event structure to the initial state of P ′’s
event structure.

Theorem 7.5. Let P be a consistent Roll-CCSK process such that P = 〈E , Init, k〉,
E = (E,F, 7→,B, λ,Act), Init is conflict-free, and Cer(E) = (E,F,C,→). Then

17

1. if there exists a process P ′ with P ′ =
〈
E ′, Init′, k′

〉
and a transition P

µγ [m]−−−−→

P ′ then there exists a transition Init
{e}−−→ X and an isomorphism f : E → E ′

such that λ(e) = µ, f ◦ k′ = k[e 7→ m], and f(X) = Init′;

2. and if there exists a transition Init
{e}−−→ X then there exists a process P ′ with

P ′ =
〈
E ′, Init′, k′

〉
, a transition P

µγ [m]−−−−→ P ′, and an isomorphism f : E → E ′
such that λ(e) = µ, f ◦ k′ = k[e 7→ m], and f(X) = Init′.

We then prove the same correspondence for start roll transitions.

Proposition 7.6. Let P be a consistent Roll-CCSK process such that P =
〈E , Init, k〉, E = (E,F, 7→,B, λ,Act), Init is conflict-free, and Cer(E) = (E,F,C,→
). Then

1. if there exists a process P ′ with P ′ =
〈
E ′, Init′, k′

〉
and a transition P

start roll γ

P ′ then there exists a transition Init
{e}−−→ X and an isomorphism f : E → E ′

such that λ(e) = start roll γ, f ◦ k′ = k, and f(X) = Init′;

2. and if there exists a transition Init
{e}−−→ X then there exists a process P ′

with P ′ =
〈
E ′, Init′, k′

〉
, a transition P

start roll γ
P ′, and an isomorphism

f : E → E ′ such that λ(e) = start roll γ, f ◦ k′ = k, and f(X) = Init′.

We finally show that a process P can make a roll γ transition if and only if the
REBES corresponding to P can perform a roll γ event, followed by reversing all
the events corresponding to actions and start roll’s with tags causally dependent
on γ, and then finally reversing the roll γ event.

Theorem 7.7. Let P be a consistent process with P = 〈E , Init, k〉, E = (E,F, 7→
,B, λ,Act), Cer(E) = (E,F,C,→), and Init conflict-free, and let ρ ∈ {roll γ, bound roll}
be a roll label. Then

1. if there exists a process P ′ with P ′ =
〈
E ′, Init′, k′

〉
and a transition P

ρ
P ′,

then there exist events er and e0, e1, . . . en such that Init
{er}−−−→ X0

{e0}−−−→
X1 . . .

{en}−−−→ Xn+1

{er}−−−→ Xdone and there exists an isomorphism f : E → E ′
such that λ(er) = ρ, {e0, e1, . . . en} = {e | ∃γ′.γ ≤P γ′ and either λ(e)γ′ [k(e)]
occurs in P or λ(e) = start roll γ′ and rolling γ′ occurs in P}, f ◦ k′ = k �
{e | f(e) ∈ Init′}, and f(Xdone) = Init′;

2. and if there exist events er and e0, e1, . . . en such that Init
{er}−−−→ X0

{e0}−−−→
X1 . . .

{en}−−−→ Xn+1

{er}−−−→ Xdone then there exists a process P ′ with P ′ =〈
E ′, Init′, k′

〉
and a transition P

ρ
P ′ and there exists an isomorphism f :

E → E ′ such that λ(er) = ρ, {e0, e1, . . . en} = {e | ∃γ′.γ ≤P γ′ and either λ(e)γ′ [k(e)]
occurs in P or λ(e) = start roll γ′ and rolling γ′ occurs in P}, f ◦ k′ = k �
{e | f(e) ∈ Init′}, and f(Xdone) = Init′.

18

8 Conclusion

We have defined a category of reversible bundle event structures, and used the
causal subcategory to model uncontrolled CCSK. Unlike previous work giving a
truly concurrent semantics of a reversible process calculus using rigid families [6]
or configuration structures [1], we have used the way CCSK handles past actions
to generate both the event structure and the initial state directly from the pro-
cess, rather than needing to first undo past actions to get the original process
and from there the rigid family or configuration structure, and then redo the
actions to get the initial state.

We have proposed a variant of CCSK called Roll-CCSK, which uses the
rollback described in [9] to control its reversibility. We have defined a category
of reversible extended bundle event structures, which use asymmetric rather
than symmetric conflict, and used this category to model Roll-CCSK. Unlike in
the case of CCSK, when modelling rollbacks in Roll-CCSK we use non-causal
reversible event structures.

We have proved operational correspondence between the operational and
event structure semantics of both CCSK (Theorem 4.10) and Roll-CCSK (The-
orems 7.5 and 7.7).

Future work: We would like to provide event structure semantics for other re-
versible calculi. These mostly handle past actions using separate memories, which
may prove challenging, particularly if we wish to avoid basing the semantics on
finding the fully reversed process.

We also intend to explore the relationship between equivalences of processes
and equivalences of event structures.

Acknowledgements: We thank the referees of RC 2018 for their helpful com-
ments. This work was partially supported by EPSRC DTP award; EPSRC
projects EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1 and
EP/N028201/1; and EU COST Action IC1405.

References

1. Aubert, C., Cristescu, I.: Contextual equivalences in configura-
tion structures and reversibility. JLAMP 86(1), 77 – 106 (2017).
https://doi.org/10.1016/j.jlamp.2016.08.004

2. Boudol, G., Castellani, I.: Permutation of transitions: An event structure seman-
tics for CCS and SCCS. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G.
(eds.) Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency. pp. 411–427. No. 354 in LNCS, Springer, Berlin, Heidelberg (1989).
https://doi.org/10.1007/BFb0013028

3. Castellan, S., Hayman, J., Lasson, M., Winskel, G.: Strategies as con-
current processes. Electr. Notes Theor. Comput. Sci. 308, 87–107 (2014).
https://doi.org/10.1016/j.entcs.2014.10.006

19

4. Crafa, S., Varacca, D., Yoshida, N.: Event Structure Semantics of Parallel Extru-
sion in the Pi-Calculus. In: Birkedal, L. (ed.) FOSSACS. pp. 225–239. No. 7213
in LNCS, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28729-9 15

5. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the re-
versible pi-calculus. In: IEEE Symposium on Logic in Computer Science. pp.
388–397. LICS ’13, IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/LICS.2013.45

6. Cristescu, I., Krivine, J., Varacca, D.: Rigid families for the reversible
π-calculus. In: RC 2016. LNCS, vol. 9720, pp. 3–19. Springer (2016).
https://doi.org/10.1007/978-3-319-40578-0 1

7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR. pp. 292–307. No. 3170 in LNCS, Springer, Berlin,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

8. Fecher, H., Majster-Cederbaum, M., Wu, J.: Bundle event structures: A re-
vised cpo approach. Information Processing Letters 83(1), 7 – 12 (2002).
https://doi.org/10.1016/S0020-0190(01)00310-6

9. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Controlling Re-
versibility in Higher-Order Pi. In: Katoen, J.P., König, B. (eds.) CON-
CUR. pp. 297–311. No. 6901 in LNCS, Springer, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23217-6 20

10. Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversing Higher-Order Pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR. pp. 478–493. No. 6269 in LNCS, Springer, Berlin,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 33

11. Langerak, R.: Transformations and Semantics for LOTOS. Ph.D. thesis, Univer-
siteit Twente (1992), https://books.google.com/books?id=qB4EAgAACAAJ

12. Medić, D., Mezzina, C.A.: Static VS Dynamic Reversibility in CCS. In: Devitt,
S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 36–51. Springer International
Publishing (2016). https://doi.org/10.1007/978-3-319-40578-0 3

13. Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibility.
In: TASE. pp. 1–8 (Sept 2017). https://doi.org/10.1109/TASE.2017.8285635

14. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
In: Kahn, G. (ed.) Semantics of Concurrent Computation. pp. 266–284. No. 70 in
LNCS, Springer, Berlin, Heidelberg (1979). https://doi.org/10.1007/BFb0022474

15. Phillips, I., Ulidowski, I.: Reversibility and models for concur-
rency. Electr. Notes Theor. Comput. Sci. 192(1), 93–108 (2007).
https://doi.org/10.1016/j.entcs.2007.08.018

16. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
JLAMP 84(6), 781 – 805 (2015). https://doi.org/10.1016/j.jlamp.2015.07.004, Spe-
cial Issue on Open Problems in Concurrency Theory

17. Phillips, I., Ulidowski, I., Yuen, S.: A Reversible Process Calculus and the
Modelling of the ERK Signalling Pathway. In: Glück, R., Yokoyama, T. (eds.)
RC. pp. 218–232. No. 7581 in LNCS, Springer, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36315-3 18

18. Phillips, I., Ulidowski, I., Yuen, S.: Modelling of Bonding with Processes and
Events. In: Dueck, G.W., Miller, D.M. (eds.) RC. pp. 141–154. No. 7948 in LNCS,
Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38986-3 12

19. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Jour-
nal of Algebraic and Logic Programming 73(1-2), 70–96 (2007).
https://doi.org/10.1016/j.jlap.2006.11.002

20

20. Vaandrager, F.W.: A simple definition for parallel composition of prime event
structures. CS R 8903, Centre for Mathematics and Computer Science, P. O. box
4079, 1009 AB Amsterdam, The Netherlands (1989)

21. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen,
M., Schmidt, E.M. (eds.) ICALP. pp. 561–576. No. 140 in LNCS, Springer, Berlin,
Heidelberg (1982). https://doi.org/10.1007/BFb0012800

21

