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Abstract

The �-calculus is a widely used process calculus, which models communications be-
tween processes and allows the passing of communication links. Various operational
semantics of the �-calculus have been proposed, which can be classified according to
whether transitions are unlabelled (so-called reductions) or labelled. With labelled tran-
sitions, we can distinguish early and late semantics. The early version allows a process
to receive names it already knows from the environment, while the late semantics and
reduction semantics do not. All existing reversible versions of the �-calculus use re-
duction or late semantics, despite the early semantics of the (forward-only) �-calculus
being more widely used than the late. We introduce two reversible forms of the inter-
nal �-calculus; these are the first to use early semantics. The internal �-calculus is a
subset of the �-calculus where every link sent by an output is private, yielding greater
symmetry between inputs and outputs. One of the new reversible calculi uses static
reversibility, where performing an action does not change the structure of the process,
and the other uses dynamic reversibility, where performing an action moves it to a sep-
arate history. We show an operational correspondence between the two calculi. For
the static calculus we define denotational event structure semantics, which generate an
event structure inductively on the structure on the process. For the dynamic calculus we
define operational event structure semantics, which generate an event structure based
on a labelled asynchronous transition system. We describe a correspondence between
the resulting event structures.
Keywords: Reversible Computations, �-calculus, Early Semantics, Event Structures,
Static vs Dynamic Reversibility, Denotational vs Operational Semantics

1. Introduction

The �-calculus [22] is a widely used process calculus, which models communi-
cations between processes using input and output actions, and allows the passing of
communication links. Various operational semantics of the �-calculus have been pro-
posed, which can be classified according to whether transitions are unlabelled or la-
belled. Unlabelled transitions (so-called reductions) represent completed interactions.
As observed in [29] they give us the internal behaviour of complete systems, whereas to
reason compositionally about the behaviour of a system in terms of its components we
need labelled transitions. With labelled transitions, we can distinguish early and late
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semantics [23], with the difference being that early semantics allows a process to re-
ceive (free) names it already knows from the environment, while the late does not. This
creates additional causation in the early case between those inputs and previous output
actions making bound names free. All existing reversible versions of the �-calculus use
reduction semantics [17, 30] or late semantics [8, 21]. However the early semantics of
the (forward-only) �-calculus is more widely used than the late, partly because it has a
sound correspondence with contextual congruences [24, 15].

We define �IH and �IK, the first reversible early �-calculi. The new calculi are
reversible forms of the internal �-calculus, or �I-calculus [28], which is a subset of
the �-calculus where every link sent by an output is bound (private), yielding greater
symmetry between inputs and outputs. It has been shown that the asynchronous �-
calculus can be encoded in the asynchronous form of the �I-calculus [2].

The �-calculus has two forms of causation. Structural causation, as one would find
in CCS, comes directly from the structure of the process, e.g. in a(b).c(d) the action
a(b)must happen before c(d). Link causation, on the other hand, comes from one action
making a name available for others to use, e.g. in the process a(x)|b(c), the event a(c)
will be caused by b(c)making c a free name. Note that link causation as in this example
is present in the early form of the �I-calculus though not the late, since it is created by the
process receiving one of its free names. Restricting ourselves to the �I-calculus, rather
than the full �-calculus lets us focus on the link causation created by early semantics,
since it removes the other forms of link causation present in the �-calculus.

We base �IH on the work of Hildebrandt et al. [14], which used extrusion histories
and locations to define a stable non-interleaving early operational semantics for the
�-calculus. Locations record which branch was taken in each parallel composition to
get to a given subprocess, and what the contents of this subprocess were before and
after an action was performed. Extrusion histories record which actions extruded and
which actions received free names and at which locations. We extend the extrusion
histories so that they contain enough information to reverse the �I-calculus, storing not
only extrusions but also communications. As in [14], we use locations and extrusion
histories to determine independence of actions. Locations tell us if actions took place
in different parallel subprocesses, which means they are structurally independent, and
extrusion histories record which actions at which locations made any names used in a
subsequent action free. This definition of independence gives us a number of important
properties as detailed in [19]; however it is different frommost notions of independence
of transitions in that we allow actions with conflicting causes to be independent. Despite
this difference from the more common notion of independence considered in [19], we
get all but one of the axioms and all the properties they describe for independence in
reversible calculi.

Allowing processes to evolve, while moving past actions to a history separate from
the process, is called dynamic reversibility, and was introduced in RCCS [10], before
being applied to the �-calculus to create �� [17]. By contrast, static reversibility, as
introduced in CCSK [25], lets processes keep their structure during the computation,
and annotations are used to keep track of the current state and how actions may be
reversed. Our other calculus, �IK, is inspired by CCSK and the statically reversible �-
calculus of [21], which use communication keys to denote past actions. To keep track
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of link causation, keys are used in a number of different ways in [21]. In our case we can
handle link causation by using keys purely to annotate the action which was performed
using the key, and any names which were substituted during that action. To use keys in
a reversible full �-calculus, it is necessary in [21] to annotate opened restrictions with
the key of the action that opened the restriction, since this is a source of link causation.
By restricting ourselves to the �I-calculus, we avoid this.

Although our two reversible variants of the �I-calculus have very different syntax
and originate from different ideas, we show an operational correspondence between
them in Theorem 4.8. We do this despite the extrusion histories containing more infor-
mation than the keys, since they remember what bound names were before being substi-
tuted. Themapping from �IH to �IK bears some resemblance to the one presented from
RCCS to CCSK in [16], though with some important differences. Crucially, �IH uses
centralised extrusion histories more similar to rho� [18] while RCCS uses distributed
memories. Additionally, unlike CCS, �I has substitution as part of its transitions and
memories are handled differently by �IK and �IH, and our mapping has to take this
into account.

Event structures are a model of concurrency which describe causation, conflict and
concurrency between events. They are ‘truly concurrent’ in that they do not reduce
concurrency of events to the different possible interleavings. They have been used to
model forward-only process calculi [7, 4, 31], including the �I-calculus [6]. Describing
reversible processes as event structures is useful because it gives us a simple represen-
tation of the causal relationships between actions and gives us equivalences between
processes which generate isomorphic event structures. True concurrency in semantics
is particularly important in reversible process calculi, as the order actions can reverse
in depends on their causal relations [26].

Event structure semantics of dynamically reversible process calculi have the added
complexity of the histories and the actions in the process being separated, obscuring
the structural causation. This was an issue for Cristescu et al. [9], who used rigid fami-
lies [5], related to event structures, to describe the semantics of R� [8]. Their semantics
require a process to first reverse all actions to find the original process, map this pro-
cess to a rigid family, and then apply each of the reversed memories in order to reach
the current state of the process. Aubert and Cristescu [1] used a similar approach to
describe the semantics of a subset of RCCS processes as configuration structures.

We describe denotational structural event structure semantics of �IK, partly inspired
by [7, 6], using a reversible form of bundle event structures [20], first introduced in [13].
Reversible event structures [27] allow their events to reverse and include relations de-
scribing when events can reverse. Bundle event structures are more expressive than
prime event structures, since they allow an event to have multiple possible conflicting
causes. This lets us model parallel composition without having a single action corre-
spond to multiple events. While it would be possible to model �IK using reversible
prime event structures, using bundle event structures not only gives us fewer events, it
also lays the foundation for adding rollback to �IK and �IH, similarly to [13], which
cannot be done using reversible prime event structures. We can use the same semantics
for choice and output in the �I-calculus as in CCS [13], but due to using early seman-
tics, a �I-calculus input needs to create an event for every possible name the action
can receive. Additionally, in the denotational semantics of parallel composition, these
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�IK (Section 3) �IH (Section 2)

CLRBES

LATS

LPES

CLRPES

denotational ES
semantics (Section 6)

TS

LP [32]

LR [11]

E (Section 4)

PB (Definition 8.3)

operational ES
semantics (Section 7)

Figure 1: The reversible �I-calculi and event structures and mappings between them. The mapping TS
generates a labelled transition system, LP maps from there to a prime event structure, which LR maps to
a causal reversible prime event structure. The mapping PB is a functor from reversible bundle to reversible
prime event structures.

input events will get link causation added if the other part of the process has an output
of the name being received. For these reasons, if we were to map a CCSK process to
a �IK process, they would have different event structure semantics, and interestingly
both differences are caused by the semantics being early.

Our event structure semantics of �IH are operationally defined and derived from the
labelled asynchronous transition system (LATS) semantics of [14], which we can turn
into labelled reversible prime event structures [27], using mappings from [32] and [11].
This means each event is a set of possible traces in the process, all of which end with the
same action and vary only in the order in which independent actions are performed and
whether they include any actions which are independent of the final action. We are able
to generate these event structures despite our independence relation allowing actions
with conflicting causes to be independent because the requirements for independent
action in an LATS only discuss coinitial or sequential actions. Since the semantics of
our process calculi are causally reversible, so are the event structures they generate. The
mappings between our calculi and event structures are shown in Figure 1.

In addition to an operational correspondence between the two versions of reversible
�I-calculus, we show two results about the correspondence between the event struc-
ture semantics. For any process with no past actions, we have two inverse morphisms
between the event structure generated by the denotational semantics and a subset of
the events in the event structure generated by the operational semantics (Theorem 8.7).
The morphism from the subset of the events in the event structure generated by the
operational semantics to the event structure generated by the denotational semantics
can also be expanded, if one ignores labels, to map all the events of the event structure
generated by the operational semantics to events from event structure generated by the
denotational semantics (Theorem 8.11). This is illustrated by Figure 2.

The reason the operational semantics generate events with labels which do not ex-
ist in the denotational semantics is that the operational semantics include actions re-
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P (∅, ∅, ∅) ⊢P

(EB , FB ,↦B , ♯B ,⊳B , �B ,ActB)

(E, F, <, ♯, ≺,⊳, �,Act)

(E, F, <, ♯, ≺,⊳)

(E′, F ′, <′, ♯′, ≺′, �′,Act′)

(E′′, F ′′, <′′, ♯′′, ≺′′, �′′,Act′′)

(E′, F ′, <′, ♯′, ≺′)

isomorphisms (Theorem 8.7)

operational correspondence (Theorem 4.8)
denotational ES semantics operational ES semantics

PB ↾ ran(f )

remove labels

remove labels

f

f ′

f ′′ (Theorem 8.11)

Figure 2: A reversible process, P , with no past actions, expressed in the two calculi and the relationship
between them and the event structures generated by applying the two semantics to P . The functor PB is a
mapping from reversible bundle to reversible prime event structures. we have three mophisms f , f ′, and f ′′

such that f ′ = f ′′ ↾ ran(f ).

quiring �-conversion, whereas the denotational semantics assume that the process has
already been �-converted so that all free and bound names are different, and only use
�-conversion when expanding a replication. This means that in a simple process b(a),
the denotational semantics will generate one event, labelled b(a), while the operational
semantics will generate an infinite set of events, with the labels {b(x) ∣ x is a name},
and the inverse morphisms discussed above will be between the events labelled b(a) in
the two event structures, while the expanded morphism ignoring labels will map every
event in the second event structure to b(a).

The structure of the paper is as follows: Section 2 describes �IH; Section 3 describes
�IK; Section 4 describes the mapping from �IH to �IK; Section 5 recalls labelled re-
versible bundle event structures from [13]; and Section 6 gives event structure semantics
of �IK; Section 7 recalls mappings from [32, 11, 14] and uses them to get operational
event structure semantics of �IH; and Section 8 shows a correspondence between the
two event structure semantics.
Changes from [12]:.

• Sections 7 and 8 are entirely new, as the conference version focussed on using
�IK as an intermediary in getting denotational event structure semantics of �IH.
The introduction and conclusion have been modified to reflect the change in focus
to comparing operational and denotational event structure semantics.

• Figures 1 and 2 are new as they include references to Sections 7 and 8.
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• The causal operational semantics of �IH, which are necessary for operational
event structure semantics, have been added to Section 2.

• Definitions 2.16 and 2.19, Lemmas 2.17 and 2.18, and Propositions 2.20 and 2.21
based on[19] are new.

• A mapping from �IH to the full �-calculus defined by [14] is described in Defi-
nition 2.23.

• The following results regarding �IK have been added: Propositions: 3.6, 3.7, and
3.13, Theorem 3.9, and Lemma 3.8.

• We use the mapping from �IH to �IK to transfer a property of �IK to �IH in
Proposition 4.9.

• Theorems 6.10 and 6.11 proving correspondence between reverse transitions of
the operational and denotational semantics of �IK are added.

• Proofs of results are included, as well as intermediate results Lemmas 2.5, 3.3,
3.4, 4.4, 6.6, and Propositions 6.3, 6.4, 6.5

2. �I-calculus reversible semantics with extrusion histories

Stable non-interleaving, early operational semantics of the �-calculus were defined
in [14], using locations and extrusion histories to keep track of link causation. We will
in this section use a similar approach to define a reversible variant of the �I-calculus,
�IH, using the locations and histories to keep track of not just causation, but also past
actions. The �I-calculus is a restricted variant of the �-calculus wherein output binds
the name being sent, so in a(b).P name b is bound, corresponding to the �-calculus
process (�b)a ⟨b⟩ .P . The syntax of �IH processes is:

P ∶∶=
∑

i∈I
�i.Pi ∣ P0|P1 ∣ (�x)P ∣ !P � ∶∶= a(b) ∣ a(b)

The forward semantics of �IH can be seen in Table 1 and the reverse semantics in
Table 2. We associate each transition with an action � ∶∶= � | � and a location u
(Definition 2.1), describing where the action came from and what changes are made to
the process as a result of the action. We store these location and action pairs in extrusion
and communication histories associated with processes, so (H,H,H) ⊢P means that
if (�, u) is an action and location pair in the output historyH then � is an output action,
which P previously performed at location u. SimilarlyH contains pairs of input actions
and locations and H contains triples of two communicating actions and the location
associated with their communication. We use H as shorthand for (H,H,H).
Definition 2.1 (Location [14]). A location u of an action � is of one of the following
forms:

1. l[P ][P ′] if � is an input or output, where l ∈ {0, 1}∗ describes the path taken
through parallel compositions to get to �’s origin, P is the subprocess reached by
following the path before � has been performed, andP ′ is the result of performing
� in P .
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2. l ⟨0l0[P0][P ′
0], 1l1[P1][P

′
1]
⟩ if � = �, where l0l0[P0][P ′

0] and l1l1[P1][P ′
1] arethe locations of the two actions communicating.

Location l may be empty if the action was performed at the outer level of the process
before any parallel composition.

We also use the operations on extrusion histories from Definition 2.2. These (1) add
a branch to the path in every location, (2) isolate the extrusions whose locations begin
with a specific branch, (3) isolate the extrusions whose locations begin with a specific
branch and then remove the first branch from the locations, and (4) add a pair to the
history it belongs in.
Definition 2.2 (Operations on extrusion histories [14]). Given an extrusion history
(H,H,H), forH∗ ∈ {H,H,H} we have the following operations for i ∈ {0, 1}:

1. iH∗ = {(�, iu) ∣ (�, u) ∈ H∗}
2. [i]H∗ = {(�, iu) ∣ (�, iu) ∈ H∗}
3. [ǐ]H∗ = {(�, u) ∣ (�, iu) ∈ H∗}

4. H + (�, u) =

⎧

⎪

⎨

⎪

⎩

(H ∪ {(�, u)},H,H) if (�, u) = (a(n), u)

(H,H ∪ {(�, u)},H) if (�, u) = (a(x), u)

(H,H,H ∪ {(�, u)}) if (�, u) = ((a(x), a(n)), l⟨u0, u1⟩)

The forwards semantics of �IH have six rules. In [OUT] the action is an output,
the location is the process before and after doing the output, and they are added to the
output history. The equivalent reverse rule, [OUT−1], similarly removes the pair from
the history and transforms the process from the second part of the location back to the
first. The input rule [IN] works similarly, but performs a substitution on the received
name and adds the pair to the input history instead. In [PARi]we isolate the parts of thehistories whose locations start with i and use those to perform an action in Pi, getting
H′
i ⊢P

′
i . It then replaces the part of the histories parts of the histories whose locationsstart with iwithH′

i when propagating the action through the parallel. A communication
in [COMi] adds memory of the communication to the history. The rules [SCOPE] and
[STR] are standard and self-explanatory.

The reverse rules use the extrusion histories to find a location l[P ][P ′] such that the
current state of the subprocess at l is P ′, and change it to P .

In these semantics we define structural congruence as consisting of �-conversion,
(� a)(�b)P ≡ (� b)(� a)P , and !P ≡ !P |P . Here structural congruence is primarily used
to create and remove extra copies of a replicated process when reversing the action that
happened before the replication. Since we use locations in our extrusion histories, we
try to avoid using structural congruence any more than necessary. However, not using it
for parallel composition would mean that we would need some other way of preventing
traces such as H ⊢!P

�
←←←←←←←→
u

�

u
H ⊢!P |P , which allows a process to reach a state it could

not reach via a parabolic trace. Using structural congruence for replication does not
cause any problems for the locations, as we can tell past actions originating in each
copy of P apart by the path in their location, with actions from the ith copy having a
path of i 0s followed by a 1. We show in Example 2.3 how actions and locations are
stored in the histories.
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u = [
∑

i∈I
�i.Pi][P ′

j ] �j = a(n) j ∈ I (b(n), u′) ∉ H

H ⊢
∑

i∈I
�i.Pi

�j
←←←←←←←←→
u

(H ∪ {(a(n), u)},H,H) ⊢Pj
[OUT]

u = [
∑

i∈I
�i.Pi][Pj] P ′

j = Pj[x ∶= n] �j = a(x) j ∈ I

H ⊢
∑

i∈I
�i.Pi

a(n)
←←←←←←←←←←←←←→
u

(H,H ∪ {(a(n), u)},H) ⊢P ′
j

[IN]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi
�
←←←←←→
u
H′
i ⊢P

′
i P ′

1−i = P1−i

if � = a(n) then n ∉ fn(P1−i) and (b(n), u′) ∉ H

H ⊢P0|P1
�
←←←←←←←→
iu

((H ⧵ [i]H) ∪ iH ′
i , (H ⧵ [i]H) ∪ iH ′

i , (H ⧵ [i]H) ∪ iH ′
i ) ⊢P

′
0 |P

′
1

[PARi]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi
�i
←←←←←←←→
vi

H′
i ⊢P

′
i �i = a(n) �j = a(n)

([ǰ]H, [ǰ]H, [ǰ]H) ⊢Pj
�i
←←←←←←←←→
vj

H′
j ⊢P

′
j j = 1 − i n ∉ fn(Pj)

H ⊢P0|P1
�

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(0v0 ,1v1)

(H,H,H ∪ {((�0, �1), ⟨0v0, 1v1⟩)}) ⊢ (�n)(P ′
0 |P

′
1)

[COMi]

H ⊢P
�
←←←←←→
u
H′ ⊢P ′ x ∉ n(�)

H ⊢ (�x)P
�
←←←←←→
u
H′ ⊢ (�x)P ′

[SCOPE]
P ≡ P ′ H ⊢P ′ �

←←←←←→
u
H′ ⊢Q′ Q′ ≡ Q

H ⊢P
�
←←←←←→
u
H′ ⊢Q

[STR]

Table 1: Semantics of �IH (forwards rules)

Example 2.3. Consider the process a(x).(x(b)|x(y))|a(c). If we start with empty histo-
ries, each transition adds actions and locations:
(∅, ∅, ∅) ⊢a(x).(x(b)|x(y))|a(c)

a(c)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
1[a(c)][0]
({(a(c), 1[a(c)][0])}, ∅, ∅) ⊢a(x).(x(b)|x(y))|0

a(c)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
0[a(x).(x(b)|x(y))][(c(b)|c(y))]
({(a(c), 1[a(c)][0])}, {(a(c), 0[a(x).(x(b)|x(y))][(c(b)|c(y))])}, ∅) ⊢ (c(b)|c(y))|0

�
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
0⟨0[c(b)][0],1[c(y)][0]⟩
({(a(c), 1[a(c)][0])}, {(a(c), 0[a(x).(x(b)|x(y))][(c(b)|c(y))])},
{((c(b), c(b)), 0

⟨

0[c(b)][0], 1[c(y)][0]
⟩

)}) ⊢ (�b)(0|0)|0
The first transition adds an action and location to the output history, which allows

the input to receive the same name, c. The input transition is then added to the input
history, and finally the synchronisation history stores both of the actions involved in the
final transition and their locations.
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u = [
∑

i∈I
�i.Pi][Pj] �j = a(n) j ∈ I (a(n), u) ∈ H

H ⊢ Pj
�j

u
(H ⧵

{

(a(n), u)
}

,H,H) ⊢
∑

i∈I �i.Pi
[OUT−1]

u = [
∑

i∈I
�i.Pi][P ′

j ] P ′
j = Pj[x ∶= n] �j = a(x) j ∈ I (a(n), u) ∈ H

H ⊢ P ′
j

a(n)

u (H,H ⧵ {(a(n), u)} ,H) ⊢
∑

i∈I
�i.Pi

[IN−1]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢ Pi
�

u H′
i ⊢ P

′
i P ′

1−i = P1−i

if � = a(n) then n ∉ fn(P1−i)

H ⊢ P0|P1

�

iu
((H ⧵ [i]H) ∪ iH ′

i , (H ⧵ [i]H) ∪ iH ′
i , (H ⧵ [i]H) ∪ iH ′

i ) ⊢ P
′
0 |P

′
1

[PAR−1
i ]

([ǐ]H ∪ {(a(n), vi)}, [ǐ]H, [ǐ]H) ⊢ Pi
a(n)

vi
H′
i ⊢ P

′
i

([ǰ]H, [ǰ]H ∪ {(a(n), vj)}, [ǰ]H) ⊢ Pj
a(n)

vj
H′
j ⊢ P

′
j

j = 1 − i n ∉ fn(Pj) ((a(n), a(n)), ⟨0v0, 1v1⟩) ∈ H

H ⊢ (�n)(P0|P1)
�

⟨0v0 ,1v1⟩

(H,H,H ⧵
{

((a(n), a(n)), ⟨0v0, 1v1⟩)
}

) ⊢ P ′
0 |P

′
1

[COM−1
i ]

H ⊢ P
�

u H′ ⊢ P ′ x ∉ n(�)

H ⊢ (�x)P
�

u H′ ⊢ (�x)P ′
[SCOPE−1]

P ≡ P ′ H ⊢ P ′
�

u H′ ⊢ Q′ Q′ ≡ Q

H ⊢ P
�

u H′ ⊢ Q
[STR−1]

Table 2: Semantics of reversible �IH-calculus (reverse rules)

We will show that our calculus reverses in a causal manner from any reachable
process (Definition 2.4). We use↣ to denote that an action may be forwards or reverse.
Definition 2.4 (Reachable Process). Let P be a process. We say that H ⊢ P is reach-
able, denoted reach(H ⊢ P ), if there exists a process (∅, ∅, ∅) ⊢ Q such that (∅, ∅, ∅) ⊢
Q↣∗ H ⊢ P .

We say thatH ⊢ P is forwards reachable if there exists a standard process (∅, ∅, ∅) ⊢
such that (∅, ∅, ∅) ⊢→∗ H ⊢ P .

We then show a correspondence between forward and reverse transitions.
Lemma 2.5. Let P be a process. If there exists an extrusion history H such that H ⊢

P
�

u
H′ ⊢ P ′ then there exists (�′, u′) such that H = H′ + (�′, u′), and for any

extrusion history H′′ not containing (�′, u′), H′′ + (�′, u′) ⊢ P
�

u
H′′ ⊢ P ′.

9



PROOF. [SCOPE−1] and [PAR−1
i ] simply propagate the changes to extrusion histories,

and [COM−1
i ], [IN−1], and [OUT−1] remove exactly one extrusion from the histories,

which is the only one they depend on.
Proposition 2.6 (Loop).

1. Given a forwards reachable �IH-calculus process P and an extrusion historyH,
if H ⊢ P

�
←←←←←←→
u

H′ ⊢ Q, then H′ ⊢ Q
�
u H ⊢ P .

2. Given a forwards-reachable �IH-calculus process P and an extrusion historyH,
if H ⊢ P

�
u H′ ⊢ Q, then H′ ⊢ Q

�
←←←←←←→
u

H ⊢ P .

PROOF. We prove this by induction on the transitions in Appendix B.1.
To get causal semantics of �IH, we add a set of causes, D, to each transition. Set

D associates the non-output names of an action with the locations where they were
extruded, and thereby tells us which actions extruded those names necessary for the
current action. If the non-output names in an action were always free thenD is empty.
Definition 2.7 (Causal semantics [14]). The early causal semantics consist of transi-
tions of the form H ⊢P

�
←←←←←←←←←←←←←←→
u,D

H′ ⊢P ′ where H ⊢P
�
←←←←←←→
u

H′ ⊢P ′ and

1. (n, u) ∈ D ⇒ ∃a. (a(n), u) ∈ H ;
2. if (n, u), (n, u′) ∈ D then u = u′;
3. (n, u) ∈ D if and only if (a(n), u′) ∈ H for some a, u′ and n ∈ no(�) where

no(�) is the set of non-output names in �, defined by no(a(b)) = {a} ⧵ {b},
no(a(b)) = {a, b} and no(�) = ∅.

This lets us define a notion of independence on locations and causes. Our definition of
independence differs from the notions of concurrency used by other reversible process
calculi, in that it is not just defined on coinitial [10] or composable [8] transitions. Hav-
ing the definition apply to any two transitions becomes important in our event structure
semantics in Section 7.
Definition 2.8 (Path). Given a location u, its set of paths is defined as

loc(u) =

{

{l} if u = l[P ][P ′]
{ll0, ll1} if u = l

⟨

l0[P0][P ′
0], l1[P1][P0]

⟩

Definition 2.9 (Independence [14]). Two locations, u0 and u1, are independent, de-
noted u0Iu1, if for all l0 ∈ loc(u0) and l1 ∈ loc(u1), there exist l, l′0, l′1 such that either
l0 = l0l′0 and l1 = l1l′1 or l0 = l1l′0 and l1 = l0l′1.

Two transitions �0

u0,D0
and �1

u1,D1
are independent if u0 and u1 are independent, and

there does not exist n such that Di(n) = u1−i.

10



We prove the square property using our definition of independence of transitions.
Unlike R� [8], we are not keeping track of which restriction was opened by each output
action. We therefore get transitions to P ′ with the same labels as the original, rather
than equivalent labels.
Proposition 2.10 (Square [10]). IfH ⊢P

�0

u0,D0
H0 ⊢P0 andH ⊢P

�1

u1,D1
H1 ⊢P1

are independent transitions then there existsH′ ⊢P ′ such thatH0 ⊢P0
�1

u1,D1
H′ ⊢P ′

and H1 ⊢P1
�0

u0,D0
H′ ⊢P ′.

PROOF. See Appendix B.2.
Unlike in the previous section, since we have an explicit notion of independence,

we can define trace equivalence. We can then use trace equivalence to get an alternative
description of the parabolic property we want our reversible calculus to have. We use t
to refer to traces of the form H0 ⊢ P0

�0

u0,D0
H1 ⊢ P1…

�n−1

un−1,Dn−1
Hn ⊢ Pn, and t to

refer to the reversal of t, which according to Proposition 2.6 is a trace if and only if t is.
We use t; t′ to compose traces, and " to refer to the empty trace.
Definition 2.11 (Causal equivalence [10]). We define trace equivalence ∼ as the least
equivalence relation closed under composition such that:

t; t ∼ "
t; t ∼ "

H ⊢P
�0

u0,D0

�1

u1,D1
H′ ⊢P ′ ∼ H ⊢P

�1

u1,D1

�0

u0,D0
H′ ⊢P ′ if �1

u1,D1
and �0

u0,D0

are independent
Lemma 2.12. Given a forwards-reachable process H ⊢ P with possible transitions
H ⊢P

�0

u0,D0
H0 ⊢P0 and H ⊢P

�1

u1,D1
H1 ⊢P1, either �0 = �1, u0 = u1, D0 = D1,

and H0 ⊢P0 ≡ H1 ⊢P1, or
�0

u0,D0
and

�1

u1,D1
are independent.

PROOF. See Appendix B.3.
Lemma 2.13. Given a process, H ⊢P , we cannot have an infinite reverse trace H ⊢
P ⇝∗.

PROOF. Each reverse transition removes an element from H. Since H is finite, so is
every reverse trace.
Theorem 2.14 (Parabola [10]). Let t be a trace, then there exists a forward trace tf
and a backward trace tb such that t ∼ tb; tf .

11



PROOF. Follows from Proposition 2.10 and Lemma 2.12 according to [19].
Theorem 2.15 (Trace equivalence [10]). Let t and t′ be cofinal and coinitial traces.
Then t ∼ t′.

PROOF. Follows from Theorem 2.14 and Lemma 2.13 according to [19].
Theorems 2.14 and 2.15 are not the only results from [19] we can apply to the �IH

calculus. We gain several interesting properties by proving some simple results, both of
which follow easily from our definition of independence. First we recall their definition
of an event.
Definition 2.16 (Events [19]). Let∼ be the smallest equivalence relation on transitions
satisfying: if HP ⊢P

�0

u0,D0
HQ ⊢Q, HP ⊢P

�1

u1,D1
HR ⊢R, HQ ⊢Q

�1

u1,D1
HS ⊢

S, HR ⊢R
�0

u0,D0
HS ⊢S,

�0

u0,D0
and �1

u1,D1
are independent, and

• HQ ⊢Q ≠ HR ⊢R if �0

u0,D0
and �1

u1,D1
are either both forwards or both back-

wards;
• HP ⊢P ≠ HS ⊢S otherwise;

then HP ⊢P
�0

u0,D0
HQ ⊢Q ∼ HR ⊢R

�0

u0,D0
HS ⊢S. The equivalence classes of

forward transitions, written [HP ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q]∼, are events. The equivalence
classes of backwards transitions, written [HP ⊢P

�0

u0,D0
HQ ⊢Q]∼ are reverse events.

Lemma 2.17 (Coinitial propagation of independence [19]). Given a diamond con-
sisting of transitions HP ⊢ P

�0
←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢ Q and HP ⊢ P
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

HR ⊢ R and

HQ ⊢Q
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

HS ⊢ S and HR ⊢ R
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HS ⊢ S with HP ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q

and HP ⊢ P
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

HR ⊢ R independent, we get HQ ⊢ Q
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

HS ⊢ S and

HQ ⊢Q
�0

u0,D0
HP ⊢P are independent.

PROOF. Follows from independence being defined on labels of transitions.
Lemma 2.18 (Independence respects events [19]). Whenever HP ⊢P

�0

u0,D0
HQ ⊢

Q ∼ HP ′ ⊢P ′ �0

u0,D0
HQ′ ⊢Q′ and HP ′ ⊢P ′ �0

u0,D0
HQ′ ⊢Q′ and HR ⊢R

�1

u1,D1

HS ⊢S are independent, we get HP ⊢P
�0

u0,D0
HQ ⊢Q and HR ⊢R

�1

u1,D1
HS ⊢S

are independent.
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PROOF. Follows from independence being defined on labels of transitions.
These lemmas along with Proposition 2.10 and Lemmas 2.12 and 2.13 give �IH

a number of key properties from [19], including causal safety (Proposition 2.20) and
causal liveness (Proposition 2.21). To define these properties, we first define how to
count occurrences in a path.
Definition 2.19 ([19]). Let t be a trace and e be an event. Let ♯ (t, e) be the number of
occurrences of transitions HP ⊢P

�0
←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q in t such that HP ⊢P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢

Q ∈ e, minus the number of occurrences of transitions HR ⊢R
�1

u1,D1
HS ⊢S such

that HS ⊢S
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

HR ⊢R ∈ e.

Proposition 2.20 (Causal safety [19]). Whenever we have a transitionHP ⊢P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q and a trace t = HQ ⊢Q ↣∗ HR ⊢R such that ♯ (t, [HP ⊢P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢

Q]∼) = 0, and a transition HS ⊢ S
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HR ⊢ R with HP ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢

Q ∼ HS ⊢ S
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HR ⊢ R, we get that all HP ′ ⊢ P ′ �1

u1,D1
HQ′ ⊢ Q′ such that

♯ (t, [HP ′ ⊢P ′ �1

u1,D1
HQ′ ⊢Q′]∼) > 0, are independent of HP ⊢P

�0
←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q.

PROOF. Follows from Proposition 2.10 and Lemmas 2.12, 2.13, 2.17, and 2.18.
Proposition 2.21 (Causal liveness [19]). When we have a transition HP ⊢P

�0
←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q and a trace t = HQ ⊢Q ↣∗ HR ⊢R such that ♯ (t, [HP ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢

Q]∼) = 0, and all HP ′ ⊢P ′ �1

u1,D1
HQ′ ⊢Q′ such that ♯ (t, [HP ′ ⊢P ′ �1

u1,D1
HQ′ ⊢

Q′]∼) > 0, are independent of HP ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢ Q, then we get a transition

HS ⊢S
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HR ⊢R with HP ⊢P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢Q ∼ HS ⊢S
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HR ⊢R.

PROOF. Follows from Proposition 2.10 and Lemmas 2.12, 2.13, 2.17, and 2.18.
The last result required by [19] to get all the properties defined in their paper is that

independence of events is coinitial. However, our definition of independence allows
a process to have independent transitions without having a state in which both can be
performed. Consider the process (∅, ∅, ∅) ⊢ a(b).(c(d) ∣ 0) + e(f ).(0 ∣ g(ℎ)). This
process will eventually be able to do c(d)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
0[c(d)][0],∅

or g(ℎ)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
1[g(ℎ)][0],∅

, which are independent
transitions, but no state of P exists where both can be performed. We therefore can-
not say that independence of events is coinitial in �IH. Allowing actions on opposite

13



sides of a choice to be independent sets us apart from most traditional definitions of
independence or concurrency, such as [3]. However, since these independent events on
opposite sides of a choice are caused by conflicting events due to guarded choice, and
are therefore not coinitial or consecutive, this does not cause us any problems.

Independence of events being coinitial is used in [19] to prove that reversing pre-
serves independence.
Lemma 2.22 (Reversing preserves independence).

• Given independent transitions HP ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HQ ⊢ Q and HP ′ ⊢ P ′ �1

u1,D1

HQ′ ⊢ Q′, we also have independence between HQ ⊢ Q
�0

u0,D0
HP ⊢ P and

HP ′ ⊢P ′ �1

u1,D1
HQ′ ⊢Q′.

• Given independent transitions HP ⊢ P
�0

u0,D0
HQ ⊢ Q and HP ′ ⊢ P ′ �1

u1,D1

HQ′ ⊢ Q′, we also have independence between HQ ⊢ Q
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

HP ⊢ P and

HP ′ ⊢P ′ �1

u1,D1
HQ′ ⊢Q′.

PROOF. Follows from independence being defined on labels of transitions.
Since we based our calculus on the �-calculus presented in [14], we would like to

show a correspondence between the two. Our calculus is less expressive because it is
a �I-calculus rather than a �-calculus, but contains more information in the histories
because it is able to reverse. We show that by removing the extra information needed
to reverse from our extrusion histories, we can get a fragment of [14].
Definition 2.23 (Mapping from �IH to �-calculus with extrusion histories). Given
�IH process H ⊢ P , the corresponding �-calculus process with extrusion history,
I(H ⊢P ), is defined as:

I(H ⊢P ) = (I(H), I(H)) ⊢I(P ) I({(a(b), u)} ∪H) = {(b, u)} ∪ I(H)
I({(a(b), u)} ∪H) = {(b, u)} ∪ I(H) I(P0|P1) = I(P0)|I(P1)
I(

∑

i∈J
Pi) =

∑

i∈J
I(Pi) I((�a)P ) = (�a)I(P )

I(a(b).P ) = (�b)a ⟨b⟩ .I(P ) I(a(x).P ) = a(x).I(P )
I(!P ) = !I(P )

Proposition 2.24. Given a �IH process H ⊢P :

• if there exists a transition H ⊢ P
�
←←←←←←←→
u

H′ ⊢ P ′, then there exists a transition

I(H ⊢ P )
�
←←←←←←←→
u
I(H′′ ⊢ P ′′) for some H′′ ⊢ P ′′ ≡ H′ ⊢ P ′ in the semantics

of [14];
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• if I(H ⊢P )
�
←←←←←←←→
u
I(H′ ⊢P ′), then H ⊢P

�
←←←←←←←→
u

H′ ⊢P ′.

PROOF. The only difference between the semantics is outputs being treated as bound
names, and therefore put in extrusion histories automatically, adding a history of com-
munications, which I removes, and replacing the (Rep) rule with structural congruence.

3. �I-calculus reversible semantics with annotations

In this section we introduce �IK, our statically reversible �I-calculus. Unlike �IH
introduced in the previous section, �IK’s approach to reversibility is based on previous
statically reversible calculi [21, 25]. Both of these papers use communication keys to
denote past actions and which other actions they have interacted with, so a(x)|a(b) �[n]

←←←←←←←←←←←←←←←→
a(b)[n]|a(b)[n]means a communication with the key n has taken place between the two
actions. We apply this idea to define early semantics of �IK, which has the following
syntax:

P ∶∶= �.P ∣ �[n].P ∣ P0 + P1 ∣ P0|P1 ∣ (�x)P ∣ !P � ∶∶= a(b) ∣ a(b)

The primary difference between applying communication keys to CCS and the �I-
calculus is the need to deal with substitution. We need to keep track of not only which
actions have communicated with each other, but also which names were substituted
when. We do this by giving the substituted names a key, a[n], but otherwise treating themthe same as those without the key, except when undoing the input associated with n. By
restricting ourselves to the �I-calculus, we avoid using the keys to keep track of opened
restrictions as in [21].
Example 3.1 (Substitution). The process a(x).x(c)|a(b) can perform a communica-
tion of a with key n:

a(x).x(c)|a(b)
�[n]
←←←←←←←←←←←←←←←→ (�b)(a(b)[n].b[n](c)|a(b)[n])

This assigns the key n to both parts of the communication, just as in CCSK [25], and
additionally assigns n to all the names that were substituted during this communication.
After performing the substitution, the process does not remember the variable used in
the input. Therefore, when reversing, the process simply picks a new one and substitute
that for any occurrences of b[n]:

(�b)(a(b)[n].b[n](c)|a(b)[n])
�[n]

a(y).y(c)|a(b)

Table 3 shows the forward semantics of the �IK-calculus. The reverse semantics
can be seen in Table 4. We use � to range over input and output actions and � over
input, output, and �. We use ⇝ to denote reverse actions, std(P ) to denote that P is a
standard process, meaning it does not contain any past actions, keys(P ) to denote the
keys mentioned in P , and fsh[n](P ) to denote that a key n is fresh for P . The semantics
use structural congruence as defined in Table 5. Our semantics very much resemble
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std(P ) P ′ = P [x ∶= b[n]]

a(x).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P ′

std(P )

a(b).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P

P
�[m]
←←←←←←←←←←←←←←←→ P ′ m ≠ n if � = a(x) then x ∉ n(�)

�[n].P
�[m]
←←←←←←←←←←←←←←←→ �[n].P ′

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 fsh[n](P1) if � = a(b) then b ∉ fn(P1)

P0|P1
�[n]
←←←←←←←←←←←←←←→ P ′

0 |P1

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 std(P1)

P0 + P1
�[n]
←←←←←←←←←←←←←←→ P ′

0 + P1

P0
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ P ′

0 P1
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ P ′

1 b ∉ fn(P0)

P0|P1
�[n]
←←←←←←←←←←←←←→ (�b)(P ′

0 |P
′
1)

std(P )

a(b).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P

P
�[m]
←←←←←←←←←←←←←←←→ P ′ a ∉ n(�)

(�a)P
�[m]
←←←←←←←←←←←←←←←→ (�a)P ′

P ≡ Q
�[n]
←←←←←←←←←←←←←←→ Q′ ≡ P ′

P
�[n]
←←←←←←←←←←←←←←→ P ′

Table 3: �IK-calculus forward semantics

std(P ) x ∉ n(P ) P ′ = P [b[m] ∶= x]

a(b)[m].P
a(b)[m]

a(x).P ′

std(P )

a(b)[n].P
a(b)[n]

a(b).P

P
�[m]

P ′ m ≠ n

�[n].P
�[m]

�[n].P ′

P0

�[n]
P ′
0 fsh[n](P1) if � = a(b) then b ∉ fn(P1)

P0|P1

�[n]
P ′
0 |P1

P0

a(b)[n]
P ′
0 P1

a(b)[n]
P ′
1

(�b)(P0|P1)
�[n]

P ′
0 |P

′
1

P0

�[n]
P ′
0 std(P1)

P0 + P1

�[n]
P ′
0 + P1

P
�[m]

P ′ b ∉ n(�)

(�b)P
�[m]

(�b)P ′

P ≡ Q
�[n]

Q′ ≡ P ′

P
�[n]

P ′

Table 4: �IK reverse semantics

those of CCSK, with the exceptions of substitution and ensuring that any name being
output does not appear elsewhere in the process.

The reason we need to consider substitution despite dealing with �I-calculus is that
we are describing early semantics. In early semantics, unlike late, an input can receive
a name from the environment that is also a free name of the process.
Example 3.2. The process a(x).b(c).x(y) can, since b is free, perform a transition

a(x).b(c).x(y)
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].b(c).b[n](y)

In this case, when reversing the input, we would not want to substitute the b doing the
output.

We show that forwards and reverse transitions are inverse of one another in Propo-
sition 3.5. We apply the same notions of reachability here as in the previous section,
but using a standard process instead of a process with empty histories.
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P |0 ≡ P P0|P1 ≡ P1|P0 P0|(P1|P2) ≡ (P0|P1)|P2
P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2
!P ≡ !P |P (�x)(�y)P ≡ (�y)(�x)P (�a)(P0|P1) ≡ ((�a)P0|P1) if a ∉ n(P1)

Table 5: Structural congruence

Lemma 3.3. Given a forwards reachable process P , any subprocess of P , P ′ is also
forwards reachable.

PROOF. By straightforward induction on P .

Lemma 3.4. Given a forwards reachable process P , if P
a(x)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←→ then there cannot

exist a past output action b(x)[m] anywhere in P .

PROOF. See Appendix C.1.
Proposition 3.5 (Loop).

1. Given a process P , if P
�[n]
←←←←←←←←←←←←←←←←→ Q then Q

�[n]
P .

2. Given a forwards reachable process P , if P
�[n]

Q then Q
�[n]
←←←←←←←←←←←←←←←←→ P .

PROOF. We prove this by induction on the transitions in Appendix C.2.
We also have a diamond confluence property for reverse transitions. This means

we can reverse any independent actions in whichever order we want and always get the
same result.
Proposition 3.6 (Reverse diamond). Given forwards reachable processes P , Q, and

R, if P
�[m]

Q and P
�′[n]

R and m ≠ n, then there exists a process S such that

Q
�′[n]

S and R
�[m]

S.

PROOF. We use structural induction on P to prove both these at once in Appendix C.3.
We also show that whenever we have a reverse transition for a key, every reverse

transition with that key has the same label and structurally congruent end processes.
This means we cannot e.g. reverse one part of a communication without reversing the
other, or get two different results from reversing the same action.

Proposition 3.7. Given forwards reachable processes P , Q, and R, if P
�[m]

Q and

P
�′[m]

R then � = �′ and R ≡ Q.

PROOF. We prove this by structural induction in Appendix C.4.
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We also have what Danos and Krivine [10] refer to as a parabolic trace, meaning
a trace wherein all reverse transitions happen before any forward transitions, whenever
we have a trace between two processes.

Lemma 3.8. Given a forwards-reachable process P , if P
�[m]

Q thenQ is forwards-
reachable.

PROOF. Since P is forwards-reachable, by Proposition 3.5, we have a process P ′ such
that P ⇝∗ P ′ and std(P ′). By repeated use of Proposition 3.6, we get Q ⇝∗ P ′.
Therefore, by Proposition 3.5, Q is forwards-reachable.
Theorem 3.9 (Parabola). Given processes P andQ, such that P ↣∗ Q, there exists a
process R such that P ⇝∗ R→∗ Q.

PROOF. See Appendix C.5.
Corollary 3.10. A process P is reachable if and only if it is forwards-reachable.

This means all reachable processes are forwards-reachable, and we can therefore
take any previous results about forwards-reachable processes and apply them to all
reachable processes. We also get a forwards diamond confluence (Proposition 3.13),
similar to the reverse diamond in Proposition 3.6. We can view actions as being inde-
pendent if the resulting processes are not structurally congruent but can still eventually
reach the same state.
Lemma 3.11. Given a process P , if P

�[m]
←←←←←←←←←←←←←←←←←←→ then m ∉ keys(P )

PROOF. Straightforward from the semantics.
Lemma 3.12. Given processes P , Q, if P →∗ Q then keys(P ) ⊆ keys(Q).

PROOF. Straightforward from the semantics.
Proposition 3.13 (Forward diamond [25]).

1. Given reachable processes P , Q, and R, if P
�[m]
←←←←←←←←←←←←←←←←←←→ Q, P

�′[n]
←←←←←←←←←←←←←←←←←←←→ R, m = n, and

there exists a process T such thatQ→∗ T andR→∗ T , then � = �′ andR ≡ Q.

2. Given reachable processes P , Q, and R, if P
�[m]
←←←←←←←←←←←←←←←←←←→ Q, P

�′[n]
←←←←←←←←←←←←←←←←←←←→ R, and there

exists a process T such that Q→∗ T and R →∗ T , then there exists a process S

such that Q
�′[n]
←←←←←←←←←←←←←←←←←←←→ S and R

�′[m]
←←←←←←←←←←←←←←←←←←←←←→ S and S →∗ T .

PROOF. We prove both simultaneously by structural induction on P in Appendix C.6.
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4. Mapping from �IH to �IK

We will now define a mapping from �IH to �IK and show that we have an opera-
tional correspondence in Theorem 4.8. The extrusion histories store more information
than the keys, as they keep track of which names were substituted, as illustrated by Ex-
ample 4.1. This means we lose some information in our mapping, but not information
we need.
Example 4.1. Consider the processes (∅, {(a(b), [a(x)][0])}, ∅) ⊢0 and a(b)[n]. These
are the result of a(x) receiving b in the two different semantics. We can see that the
extrusion history remembers that the input name was x before b was received, but the
keys do not remember, and when reversing the action could use any name as the input
name. This does not make a great deal of difference, as after reversing a(b), the process
with the extrusion history can also �-convert x to any name.

Since we intend to define a mapping from processes with extrusion histories to pro-
cesses with keys, we first describe how to add keys to substituted names in a process
in Definition 4.2. The function S takes a process, P1, in which we will be adding keys
to the previously substituted names, the key we want to add, [n], the name x which has
been substituted and we want to add keys to, and P2, a previous state of P1 where thesubstitution has not yet taken place. We use P2 to distinguish instances of x created by
the substitution we are currently marking from instances of x which existed before the
substitution took place.
Definition 4.2 (Substituting in �IK-process). Given a �IK process P1, a �I-calculusprocess without keys, P2, a key n, and a name x, we can add the key n to any names
which x has been substituted with, by applying S(P1, P2, [n], x), defined as:

1. S (0, 0, [n], x) = 0

2. S
(

∑

i∈I
Pi1,

∑

i∈I
Pi2, [n], x

)

=
∑

i∈I
S
(

Pi1, Pi2, [n], x
)

3. S (

P1|Q1, P2|Q2, [n], x
)

= S
(

P1, P2, [n], x
)

|S
(

Q1, Q2, [n], x
)

4. S (

(�a)P1, (�b)P2, [n], x
)

= P ′
1 where:if x = b then P ′

1 = (�a)P1 and otherwise P ′
1 = (�a)S

(

P1, P2, [n], x
).

5. S (

�1.P1, �2.P2, [n], x
)

= �′1.P
′
1 where:if �2 ∈ {x(c), x(c)} then �′1 = �1[n] and otherwise �′1 = �1;

if �2 ∈ {c(x), c(x)} then P ′
1 = P1 and otherwise P ′

1 = S
(

P1, P2, [n], x
).

6. S (

�1[m].P1, �2.P2, [n], x
)

= �′1[m].P
′
1 where:if �2 ∈ {x(c), x(c)} then �′1 = �1[n] and otherwise �′1 = �1;

if �2 ∈ {c(x), c(x)} then P ′
1 = P1 and otherwise P ′

1 = S
(

P1, P2, [n], x
).

7. S (

!P1, !P2, [n], x
)

= !S
(

P1, P2, [n], x
)

8. S (

P1|P ′
1 , !P2, [n], x

)

= S
(

P1, !P2, [n], x
)

|S
(

P ′
1 , P2, [n], x

)
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9. S (

!P1, P2|P ′
2 , [n], x

)

= S
(

!P1, P2, [n], x
)

|S
(

P1, P ′
2 , [n], x

)

where a(b)[n] = a[n](b) and a(b)[n] = a[n](b)

We also define the root of a �IK process as removing all keys from the process.
Definition 4.3 (Root). We say that a �IK process, P , has a root, rt(P ), defined as:

rt(0) = 0 rt(!P ) = rt(P ) rt(P0|P1) = rt(P0)|rt(P1) rt(�.P ) = �.rt(P )
rt(P0 + P1) = rt(P0) + rt(P1) rt(�[m].P ) = �.rt(P ) rt((�x)P ) = (�x)rt(P )

In Lemma 4.4 we demonstrate that S does indeed annotate any name, which was
was substituted for x1, with n.
Lemma 4.4. Given a standard �IK-calculus process P , a �IK-calculus process P ′, a
series of substitutions [x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak], such that rt(P ′) ≡ P [x1 ∶=
a1][x2 ∶= a2]… [xk ∶= ak] using the definition of ≡ from Section 2, and a key [n],
we get S(P ′, P , [n], x1) = P ′′ for some P ′′ such that rt(P ′′) ≡ P [x1 ∶= a1[n] ][x2 ∶=
a2]… [xk ∶= ak].

PROOF. We prove this by structural induction on P in Appendix D.1.
Being able to annotate our names with keys, we can define a mapping, E, from

extrusion histories to keys in Definition 4.6, thereby creating a �IK process which has
performed the same actions as the �IH process. This is done by E iterating over the
extrusions, having one process which builds �IK-process, and another that keeps track
of which state of the original �IH process has been reached. When turning an extrusion
into a keyed action, we use the locations as key and also give each extrusion an extra
copy of its location to use for determining where the action came from. This way we
can use one copy to iteratively go through the process, removing splits from the path
as we go through them, while still having another intact copy of the location to use
as the final key. If E encounters a parallel composition (case 2), it splits its extrusion
histories in three. One part, Hshared contains the locations which have an empty path,
and therefore belong to actions from before the processes split. Another part contains
the locations beginning with 0, and goes to the first part of the process. And finally the
third part contains the locations beginning with 1, and goes to the second part of the
process. When turning an input memory from the history into a past input action in the
process (case 4), we use S (Definition 4.2) to add keys to the substituted names. When
E encounters a restriction (case 5), it iteratively moves a memory that can be used inside
the restriction inside. It does this iteratively until there are no such memories left in the
extrusion histories. We apply E to a process in Example 4.7.
Definition 4.5. The function lcopy gives each member of an extrusion history an extra
copy of its location:

lcopy(H∗) = {(�, u, u) ∣ (�, u) ∈ H∗}
lcopy(H,H,H) = (lcopy(H), lcopy(H), lcopy(H))

Definition 4.6. Given a �IH process,H ⊢P , we can create an equivalent �IK process,
E(lcopy(H) ⊢P , P ) = P ′ defined as
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1. E((∅, ∅, ∅) ⊢P , P ′) = P

2. E(H ⊢P0|P1, P ′
0|P

′
1) = E(Hshared ⊢P ′′

0 |P
′′
1 , P

′′′
0 |P ′′′

1 ) where:
Hshared = ({(�, u, u′) ∣ (�, u, u′) ∈ H and u ≠ iu′′}, {(�, u, u′) ∣ (�, u, u′) ∈ H
and u ≠ iu′′}, ∅)
P ′′
0 = E((H0,H0,H0) ⊢P0, P ′

0) where:
H0 = {(a(b), u0, u′0) ∣ (a(b), 0u0, u

′
0) ∈ H or ((a(b), �1), ⟨0u0, 1u1⟩ , u′0) ∈

H}
H0 = {(a(b), u0, u′0) ∣ (a(b), 0u0, u

′
0) ∈ H or ((a(b), �1), ⟨0u0, 1u1⟩ , u′0) ∈

H}
H0 = {((�, �′), u, u′) ∣ ((�, �′), 0u, u′) ∈ H}

P ′′
1 = E((H1,H1,H1) ⊢P1, P ′

1)) where:
H1 = {(a(b), u1, u′1) ∣ (a(b), 1u1, u

′
1) ∈ H or ((�0, a(b)), ⟨0u0, 1u1⟩ , u′1) ∈

H}
H1 = {(a(b), u1, u′1) ∣ (a(b), 1u1, u

′
1) ∈ H or ((�0, a(b)), ⟨0u0, 1u1⟩ , u′1) ∈

H}
H1 = {((�, �′), u, u′) ∣ ((�, �′), 1u, u′) ∈ H}

Hi ⊢P ′
i

�i,0

ui,0
…

�i,n

ui,n
(∅, ∅, ∅) ⊢P ′′′

i for i ∈ {0, 1}

3. E((H ∪ {(a(b), [Q][P ′], u)},H,H) ⊢P , P ′) = E(H ⊢P ′′, Q)
where P ′′ = a(b) [u] .P +

∑

i∈I⧵{j}
�i.Pi

if Q =
∑

i∈I �i.Pi, a(b) = �j , and P ′ = Pj

4. E((H,H∪{(a(b), [Q][P ′], u)},H) ⊢P , P ′) = E(H ⊢a(b) [u] .S(P , Pj , [u], x)+
∑

i∈I⧵{j}
�i.Pi, Q)

if Q =
∑

i∈I �i.Pi, a(x) = �j , and P ′ = Pj[x ∶= b]

5. E(H ⊢ (�x)P , (�x)P ′) = E(H − (�, u, u′) ⊢P ′′, (�x)Q′)
where P ′′ = (�x)E((∅, ∅, ∅) + (�, u, u′) ⊢P , P ′)

if (�, u, u′) ∈ H ∪H and (∅, ∅, ∅) + (�, u, u) ⊢P
�
u (∅, ∅, ∅) ⊢Q′

6. E(H ⊢!P , !P ′) = E(H ⊢!P |P , !P ′
|P ′) if there exists (�, u, u′) ∈ H ∪ H ∪ H

such that u ≠ [Q][Q′].
Example 4.7. We will now apply E to the process

({(b(c), u2)}, ∅, {((b(a), b(a)), ⟨0u0, 1u1⟩)}) ⊢a(x) ∣ 0

with locations u0 = [b(y).y(x)][a(x)], u1 = [b(a)][0], and u2 = [b(c).(b(y).y(x) ∣
b(a)][b(y).y(x) ∣ b(a)]. We perform

E(lcopy(({(b(c), u2)}, ∅, {((b(a), b(a)), ⟨0u0, 1u1⟩)})) ⊢ a(x) ∣ 0, a(x) ∣ 0)

Since we are at a parallel, we use Case 2 of Definition 4.6 to split the extrusion histo-
ries and processes into three to get E(({(b(c), u2, u2)}, ∅, ∅) ⊢P0 ∣ P1, b(y).y(x) ∣ b(a))
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and look separately at the parallel components P0 = E((∅, {(b(a), u0, ⟨0u0, 1u1⟩)}, ∅) ⊢
a(x), a(x)) and P1 = E(({(b(a), u1, ⟨0u0, 1u1⟩)}, ∅, ∅) ⊢0, 0).

To find P0, we look at u0, and find that it has a(x) as its result, meaning we can
apply Case 4. This gives us

E((∅, ∅, ∅) ⊢b(a)[⟨0u0, 1u1⟩].S(a(x), y(x), [⟨0u0, 1u1⟩], y), b(y).y(x))

And by applying Case 5 of Definition 4.2, S(a(x), y(x), [⟨0u0, 1u1⟩], y) = a[⟨0u0,1u1⟩](x).
Since we have no more extrusions to add, we apply Case 1 to get our process P0 =
b(a)[⟨0u0, 1u1⟩].a[⟨0u0,1u1⟩](x).

To find P1, we similarly look at u1 and find that we can apply Case 3. This gives us
P1 = b(a)[⟨0u0, 1u1⟩].0.

We can then apply Case 3 to E(({(b(c), u2, u2)}, ∅, ∅) ⊢ P0 ∣ P1, b(y).y(x) ∣ b(a)).
This gives us our final process,

b(c)[u2].b(a)[⟨0u0, 1u1⟩].a[⟨0u0,1u1⟩](x) ∣ b(a)[⟨0u0, 1u1⟩].0

We can then show, in Theorem 4.8, that we have an operational correspondence
between our two calculi and E preserves transitions. Item 1 states that every transition
in �IH corresponds to one in �Ik process generated by E, and Item 2 vice versa.
Theorem 4.8. Given a reachable �IH process, H ⊢P , and an action, �,

1. if there exists a location u such that H ⊢P
�

u H′ ⊢P ′ then we get a transition

E(lcopy(H) ⊢P , P )
�[u]

E(lcopy(H′) ⊢P ′, P ′);

2. if E(lcopy(H) ⊢P , P )
�[n]

Q then there exists a location, u, and a �IH process,

H′ ⊢P ′, such that H ⊢P
�

u H′ ⊢P ′ and P ′′ ≡ E(lcopy(H′) ⊢P ′, P ′).

PROOF. We prove both these properties by induction on the size of H ∪ H ∪ H and
the structure of P in Appendix D.2.

A correspondence between CCSK and RCCS was used to transfer results between
the two calculi in [16]. Our correspondence is not as strong as theirs, since we cannot
get the location (or set of causes) of a �IH transition from a �IK transition. We can
however use our correspondence to transfer results from �IK to �IH. For example, the
forward diamond property of Proposition 3.13, implies Proposition 4.9.
Proposition 4.9 (�IH forward diamond). Given reachable processesHP ⊢ P ,HQ ⊢

Q, and HR ⊢ R, if HP ⊢ P
�0
←←←←←←←←←←→
u0

HQ ⊢ Q, HP ⊢ P
�1
←←←←←←←←←←→
u1

HR ⊢ R, and there exists

a process HT ⊢ T such that HQ ⊢ Q →∗ HT ⊢ T and HR ⊢ R →∗ HT ⊢ T , then

there exists processes HS ⊢ S and H′
S ⊢ S′ such that HQ ⊢ Q

�1
←←←←←←←←←←→
u1

HS ⊢ S and

HR ⊢ R
�0
←←←←←←←←←←→
u0

H′
S ⊢ S′ and E(lcopy(HS ) ⊢ S,S) ≡ E(lcopy(H′

S ) ⊢ S′, S′) and

HS ⊢ S →∗ HT ⊢ T and H′
S ⊢ S

′ →∗ HT ⊢ T .

PROOF. We prove this in Appendix C.7 using Theorem 4.8, Proposition 3.13, and
Lemma 2.12.
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5. Bundle event structures

In this section we will recall the definition of labelled reversible bundle event struc-
tures (LRBESs), which we intend to use later to define the event structure semantics
of �IK and through that �IH. We also describe some operations on LRBESs, which
our semantics will make use of. This section is a review of definitions from [13] (with
the exception of Definition 5.3); we include the material to fix notation and make this
work more self-contained. We use bundle event structures, rather than the more com-
mon prime event structures, because LRBESs yield more compact event structures with
fewer events and simplifies parallel composition.

An LRBES consists of a set of events, E, a subset of which, F , are reversible, and
three relations on them. The bundle relation, ↦, says that if X ↦ e then one of the
events of X must have happened before e can and all events in X are in conflict with
each other. The conflict relation, ♯, says that if e ♯ e′ then e and e′ cannot occur in
the same configuration. The prevention relation, ⊳, says that if e ⊳ e′ then e′ cannot
reverse after e has happened. Since the event structure is labelled, we also have a set of
labels Act, and a labelling function � from events to labels. We use e to denote e being
reversed, and e∗ to denote either e or e.
Definition 5.1 (Labelled Reversible Bundle Event Structure [13]). A labelled re-
versible bundle event structure (LRBES) is a 7-tuple  = (E, F ,↦, ♯,⊳, �,Act) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the bundle set, ↦ ⊆ 2E × (E ∪ F ), satisfies X ↦ e∗ ⇒ ∀e1, e2 ∈ X.e1 ≠ e2 ⇒
e1 ♯ e2 and for all e ∈ F , {e} ↦ e;

4. the conflict relation, ♯ ⊆ E × E, is symmetric and irreflexive;
5. ⊳ ⊆ E × F is the prevention relation.
6. � ∶ E → Act is a labelling function.

Definition 5.2 (causal LRBES [13]).  = (E, F,↦, ♯,⊳, �,Act) is a causal LRBES
(CLRBES) if (1) if e ⊳ e′ then either e ♯ e′ or there exists an X ⊆ E such that X ↦ e
and e′ ∈ X, (2) if X ↦ e and e′ ∈ X ∩ F , then e ⊳ e′, and (3) if X ↦ e then e ∈ X.

An event in a LRBES can have multiple possible causes as defined in Definition 5.3.
A possible causeX of an event e is a conflict-free set of events which contains a member
of each bundle associated with e and contains possible causes of all events in X. This
definition is not necessary for the denotational semantics, but will be useful in Section 8
for comparing the denotational and operational event structure semantics.
Definition 5.3 (Possible Cause). Given an LRBES,  = (E, F,↦, ♯,⊳, �,Act) and an
event e ∈ E, X ⊆ E is a possible cause of e if

• e ∉ X, Xis finite, whenever X′ ↦ e we have X′ ∩X ≠ ∅;
• for any e′, e′′ ∈ {e} ∪X, we have e′ ̸♯ e′′ (X ∪ {e} is conflict-free);
• for all e′ ∈ X, there exists X′′ ⊆ X, such that X′′ is a possible cause of e′;
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• there does not exist any X′′′ ⊂ X, such that X′′′ is a possible cause of e.
Since we want to compare the event structures generated by a process to the opera-

tional semantics, we need a notion of transitions on event structures. For this purpose
we use configuration systems (CSs), which event structures can be translated into.
Definition 5.4 (Configuration system [27]). A configuration system (CS) is a quadru-
ple  = (E, F,C,→) where E is a set of events, F ⊆ E is a set of reversible events,
C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is a labelled transition
relation such that if X A∪B

←←←←←←←←←←←←←←←←←←←→ Y then:
• X, Y ∈ C, A ∩X = ∅; B ⊆ X ∩ F ; and Y = (X ⧵ B) ∪ A;

• for all A′ ⊆ A and B′ ⊆ B, we have X A′∪B′

←←←←←←←←←←←←←←←←←←←←←←←←→ Z
(A⧵A′)∪(B⧵B′)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Y , meaning

Z = (X ⧵ B′) ∪ A′ ∈ C.
Definition 5.5 (From LRBES to CS [13]). We define a mappingCbr from LRBESs to
CSs as: Cbr((E, F,↦, ♯,⊳, �,Act)) = (E, F,C,→) where:

1. X ∈ C if X is conflict-free;
2. For X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X A∪B

←←←←←←←←←←←←←←←←←←←→ Y if:
(a) Y = (X ⧵ B) ∪ A; X ∩ A = ∅; B ⊆ X; and X ∪ A conflict-free;
(b) for all e ∈ B, if e′ ⊳ e then e′ ∉ X ∪ A;
(c) for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;
(d) for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅.

For our semantics we need to define a prefix, restriction, parallel composition, and
choice. Causal prefixing takes a label, �, an event, e, and an LRBES,  , and adds e
to  with the label � and associating every other event in  with a bundle containing
only e. Restriction removes a set of events from an LRBES.
Definition 5.6 (Causal Prefixes [13]). Given an LRBES  = (E, F,↦, ♯,⊳, �,Act),
a label �, and an event e, (�)(e). = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. E′ = E ∪ e;
2. F ′ = F ∪ e;
3. ↦′ = ↦ ∪({{e}} × (E ∪ {e}));
4. ♯′ = ♯;

5. ⊳′ = ⊳ ∪ (E × {e});
6. �′ = �[e↦ �];
7. Act′ = Act ∪ {�}.

Removing a set of labelsL from an LRBES removes not just events with labels inA
but also events dependent on events with labels in L.
Definition 5.7 (Removing labels and their dependants). Given an LRBES  =
(E, F,↦, ♯,⊳, �,Act) and a set of labels L ⊆ Act, we define � (L) = X as the maxi-
mum subset of E such that

1. if e ∈ X then �(e) ∉ L;
2. if e ∈ X then there exists a possible cause of e, x, such that x ⊆ X.

A choice between LRBESs puts all the events of one event structure in conflict with the
events of the others.
Definition 5.8 (Choice [13]). Given LRBESs 0, 1,… , n, the choice between them
is ∑

0≤i≤n
i = (E, F,↦, ♯,⊳, �,Act) where:
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1. E =
⋃

0≤i≤n
{i} × Ei;

2. F =
⋃

0≤i≤n
{i} × Fi;

3. X ↦ e∗ if e = (i, ei), Xi ↦i e∗i , and
X = {i} ×Xi;

4. (i, e) ♯ (j, e′) if i ≠ j or e ♯i e′;
5. (i, e) ⊳ (j, e′) if i ≠ j or e ♯i e′;
6. �(j, e) = �j(e);
7. Act =

⋃

0≤i≤n
Acti.

Definition 5.9 (Restriction [13]). Given an LRBES,  = (E, F,↦, ♯,⊳, �,Act), re-
stricting  to a set of events E′ ⊆ E creates  ↾ E′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′)
where:

1. F ′ = F ∩ E′;
2. ↦′ = ↦ ∩((E′) × (E′ ∪ F ′));
3. ♯′ = ♯ ∩(E′ × E′);

4. ⊳′ = ⊳ ∩ (E′ × F ′);
5. �′ = � ↾E′ ;
6. Act = ran(�′).

We say that (E′, F ′,↦′, ♯′,⊳′, �′,Act′) ≤ (E, F,↦, ♯,⊳, �,Act).
For parallel composition we construct a product of event structures, which consists

of events corresponding to synchronisations between the two event structures. The pos-
sible causes of an event (e0, e1) contain a possible cause of e0 and a possible cause of
e1.
Definition 5.10 (Parallel [13]). Given twoLRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0)and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), their parallel composition 0 × 1 = (E, F,↦
, ♯,⊳, �,Act) with projections �0 and �1 where:

1. E = E0×∗E1 = {(e, ∗) ∣ e ∈ E0}∪{(∗, e) ∣ e ∈ E1}∪{(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0 ×∗ F1 = {(e, ∗) ∣ e ∈ F0} ∪ {(∗, e) ∣ e ∈ F1} ∪ {(e, e′) ∣ e ∈ F0 and e′ ∈
F1};

3. for i ∈ {0, 1} we have (e0, e1) ∈ E, �i((e0, e1)) = ei;
4. for any e∗ ∈ E ∪F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} andXi ⊆ Ei suchthat Xi ↦ �i(e)∗ and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
5. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′);

6. for any e ∈ E, e′ ∈ F , e ⊳ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e′);

7. �(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�0(e0) if e = (e0, ∗)
�1(e1) if e = (∗, e1)
� if e = (e0, e1) and either �0(e0) = a(x) and �1(e1) = a(x)

or �0(e0) = a(x) and �1(e1) = a(x)
0 otherwise

8. Act = {�} ∪ Act0 ∪ Act1.
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6. Denotational event structure semantics of �IK

In this section we define event structure semantics of �IK-calculus using a similar
denotational approach to [13].

As we want to ensure that all free and bound names in our process are distinct, we
modify our syntax for replication, assigning each replication an infinite set, x, of names
to substitute into the place of bound names in each created copy of the process, so that
!xP ≡ !x⧵{x0,…,xk}P |P {

x0,…,xk∕a0,…,ak} if {x0,… , xk} ⊆ x and bn(P ) = {a0,… , ak}

Before proceeding to the semantics we also define the standard bound names of a
process P , sbn(P ), meaning the names that would be bound in P if every action was
reversed, in Definition 6.1.
Definition 6.1. The standard bound names of a process P , sbn(P ), are defined as:

sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(P0|P1) = sbn(P0) ∪ sbn(P1) sbn(P0 + P1) = sbn(P0) ∪ sbn(P1)
sbn(�x)P ′ = {x} ∪ sbn(P ′) sbn(!xP ) = x

We can now define the event structure semantics in Table 6. We do this using rules
of the form ⦃P⦄( ,l) = ⟨ , Init, k⟩ where l is the level of unfolding of replication, 
is an LRBES, Init is the initial configuration,  ⊇ n(P ) is a set of names, which any
input in the process could receive, and k ∶ Init →  is a function assigning communi-
cation keys to the past actions, which we use in parallel composition to determine which
synchronisations of past actions to put in Init. We define ⦃P⦄ = supl∈ℕ ⦃P⦄( ,l)Most of the cases in Table 6 are straightforward uses of the RBES operators defined
in Section 5. The input creates a case for each name in  and a choice between the
cases. We have two cases for restriction, one for restriction originating from a past
communication and another for restriction originating from the original process. The
parallel composition is more complex as it needs to consider link causation caused by
the early semantics. Each event labelled with an input of a name in standard bound
names gets a bundle consisting of the event labelled with the output on that name. And
each output event is prevented from reversing by the input names receiving that name.

Note that the only difference between a future and a past action is that the event
corresponding to a past action is put in the initial state and given a communication key.
⦃0⦄( ,l) = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃P0 + P1⦄( ,l) = ⟨0 + 1, ({0} × Init0) ∪ ({1} × Init1), k((i, e)) = ki(e)⟩ where
⦃Pi⦄ = ⟨i, Initi, ki⟩ for i ∈ {0, 1}

⦃

a(n).P
⦄

( ,l) =
⟨

a(n)(e).P , InitP , kP
⟩ for some fresh e ∉ E where

⦃P⦄( ,l) = ⟨P , InitP , kP ⟩

⦃a(x).P⦄( ,l) =

⟨

∑

n∈(⧵sbn(P ))
a(n)(en).Pn ,

⋃

n∈(⧵sbn(P ))
{n} × InitPn , (n, e) ↦ kPn (e)

⟩

for some fresh en ∉ En where ⦃P [x ∶= n]⦄( ,l) =
⟨

Pn , InitPn , kPn
⟩

Table 6: Denotational event structure semantics of �IK
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⦃

a(n)[m].P
⦄

( ,l) =
⟨

a(n)(e).P , InitP ∪ {e}, kP [e↦ m]
⟩ for some fresh e ∉ E where

⦃P⦄( ,l) = ⟨P , InitP , kP ⟩ and

⦃a(b)[m].P⦄( ,l) =

⟨

∑

n∈(⧵sbn(P ))
a(n)(en).Pn , (

⋃

n∈(⧵sbn(P ))
{n} × InitPn ) ∪ {(b, eb)}, k

⟩

for some fresh en ∉ En where ⦃P [b[m] ∶= n]⦄( ,l) =
⟨

Pn , InitPn , kPn
⟩

k((n, e)) =

{

m if e = eb and n = b
kPn (e) otherwise

⦃(�a)P⦄( ,l) = ⟨ ↾ E� , Init ∩ E� , k ↾ E�)⟩ where:
⦃P⦄( ,l) = ⟨ , Init, k⟩ E� = �({� ∣ a ∈ n(�)}
if whenever there exist past actions b(a)[m] and b(a)[m] in P then
they are guarded by a restriction (�a) in P

⦃(�a)P⦄( ,l) = ⟨ , Init, k⟩ where ⦃P⦄( ,l) = ⟨ , Init, k⟩ and
if there exist past actions b(a)[m] and b(a)[m] in P which
are not guarded by a restriction (�a) in P

⦃P0|P1⦄( ,l) =
⟨

(E, F,↦, ♯,⊳, �,Act) ↾ {e ∣ �(e) ≠ 0}, Init, k
⟩ where

for i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
(E0, F0,↦0, ♯0,⊳0) × (E0, F0,↦0, ♯0,⊳0) = (E, F ,↦′, ♯,⊳′)

�(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�0(e0) if e = (e0, ∗)
�1(e1) if e = (∗, e1)
� if e = (e0, e1) and

for i ∈ {0, 1}, �i(ei) = a(x) and �1−i(e1−i) = a(x)
0 otherwise

Act = {�} ∪ Act0 ∪ Act1
Init = {(e0, ∗)|e0 ∈ Init0 and ∄e1 ∈ Init1.k1(e1) = k0(e0)}∪
{(∗, e1)|e1 ∈ Init1 and ∄e0 ∈ Init0.k1(e1) = k0(e0)}∪
{(e0, e1)|e0 ∈ Init0 and e1 ∈ Init1 and k1(e1) = k0(e0)}
X ↦ e if X ↦′ e or there exists x ∈ no(�(e)) such that
X = {e′ ∣ ∃a.�(e′) = a(x)} and x ∈ sbn(P )
e ⊳ e′ if either e ⊳′ e′ or
there exists x ∈ no(�(e)) such that ∃a.�(e′) = a(x)

k(e) =

{

k0(e0) if e = (e0, ∗) or e = (e0, e1)
k1(e1) if e = (∗, e1)

⦃!xP⦄( ,0) = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃!xP⦄( ,l) =
⦃

!x⧵{x0 ,…,xk}P |P {
x0 ,…,xk∕a0 ,…,ak}

⦄

( ,l−1)if {x0,… , xk} ⊆ x and bn(P ) = {a0,… , ak}Table 6: Denotational event structure semantics of �IK (continued)

Example 6.2. Consider the process a(b)[n] ∣ a(b)[n]. Our event structure semantics

27



a(x)

a(a)

a(b)

� a(b)

∅

{a(a)} {a(b)} {a(x)} {�}

{a(a), a(b)} {a(b), a(b)} {a(x), a(b)}

Figure 3: The LRBES seen in Example 6.2 and its configurations.

generate a LRBES
⦃

a(x)[n] ∣ a(b)[n]
⦄

{a,b,x} =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

where:

E = F = {a(b), a(a), a(x), a(b), �} �(e) = e
{a(b)} ↦ a(b) Act = {a(b), a(a), a(x), a(b), �}
a(b) ♯ a(a), a(b) ♯ a(x), a(a) ♯ a(x), Init = {�}
a(b) ♯ �, a(a) ♯ �, a(x) ♯ �, a(b) ♯ � k(�) = n
a(b) ⊳ a(b)

From this we see that (1) receiving b is causally dependent on sending b, (2) all the
possible inputs on a are in conflict with one another, (3) the synchronisation between
the input and the output is in conflict with either happening on their own, and (4) since
the two past actions have the same key, the initial state contains their synchronisation.

We show that there exists a least upper bound of our unfolding in Proposition 6.3.
Proposition 6.3 (Unfolding). Given a process P , a set of names  ⊇ n(P ), and a
level of unfolding l, if ⦃P⦄( ,l) = ⟨ , Init, k⟩ and ⦃P⦄( ,l−1) =

⟨

 ′, Init′, k′
⟩

, then
 ′ ≤  , Init = Init′, and k = k′.

PROOF. Follows from Lemmas E.1 to E.4 in Appendix E.1, and ×(∅, ∅, ∅, ∅, ∅, ∅, ∅) ≅
 .
Proposition 6.4. Let P be a forwards reachable process wherein all bound and free
names are different and ⊇ n(P ) be a set of names. If ⦃P⦄ = ⟨ , Init, k⟩ then  is
causal.

PROOF. Follows from the event structure semantics.
Proposition 6.5 shows that structurally congruent processes generate isomorphic

event structures.
Proposition 6.5 (Structural Congruence). Given two processes P and P ′ and a set
of names  ⊇ n(P ) ∪ n(P ′), if P ≡ P ′, ⦃P⦄ = ⟨ , Init, k⟩, and ⦃P ′

⦄ =
⟨

 ′, Init′, k′
⟩

, then there exists an isomorphism f ∶  →  ′ such that f (Init) = Init′

and for all e ∈ Init, k(e) = k′(f (e)).
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PROOF. We prove this by case analysis on the structural congruence rules in Appendix
E.2

We show in Theorems 6.7 and 6.8 that given a process P with a conflict-free initial
state, including any reachable process, there exists a transition P �[m]

←←←←←←←←←←←←←←←←←←→ P ′ if and only if
the event structure corresponding to P is isomorphic to the event structure correspond-
ing to P ′ and an event labelled � is available in P ’s initial state, and P ′’s initial state is
P ’s initial state with this event added.
Lemma 6.6. If P is a forwards reachable process and ⊇ n(P ) is a set of names with
⦃P⦄ = ⟨ , Init, k⟩. Then Init = ∅ if and only if std(P ).

PROOF. The only rules in the event structure semantics adding events to an empty initial
set involve past actions, and the only rule removing events from the initial state requires
the event to be behind a restriction not created by a communication.
Theorem 6.7. LetP be a forwards reachable process wherein all bound and free names
are different and let  ⊇ n(P ) be a set of names. If (1) ⦃P⦄ = ⟨ , Init, k⟩ where
 = (E, F,↦, ♯,⊳, �,Act), and Init is conflict-free, and (2) there exists a transition

P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′

⦄ =
⟨

 ′, Init′, k′
⟩

, then there exists an isomorphism f ∶

 →  ′ and a transition in Cbr(), Init
{e}
←←←←←←←←←←←←←→ X, such that �(e) = �, f◦k′ = k[e ↦ m],

and f (X) = Init′.

PROOF. We prove this by induction on P �[m]
←←←←←←←←←←←←←←←←←←→ P ′ in Appendix E.3.

Theorem 6.8. LetP be a forwards reachable process wherein all bound and free names
are different and let  ⊇ n(P ) be a set of names. If (1) ⦃P⦄ = ⟨ , Init, k⟩ where

 = (E, F,↦, ♯,⊳, �,Act), and (2) there exists a transition Init
{e}
←←←←←←←←←←←←←→ X in Cbr(),

then there exists a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′

⦄ =
⟨

 ′, Init′, k′
⟩

and an
isomorphism f ∶  →  ′ such that �(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′.

PROOF. We prove this by structural induction on P in Appendix E.4.
Corollary 6.9. Let P be a forwards reachable process and ⊇ n(P ) be a set of names
such that ⦃P⦄ = ⟨ , Init, k⟩. Then Init is forwards-reachable in  if and only if there
exists a standard process Q such that Q→∗ P .

PROOF. Follows from Lemma 6.6 and Theorems 6.8 and 6.7.
We then prove the same operational correspondence on reverse transitions, with the

event being removed rather than added to the initial state.
Theorem 6.10. Given a process P , if ⦃P⦄ = ⟨ , Init, k⟩,  = (E, F,↦, ♯,⊳, �,Act),

Cbr() = (E, F,C,→),Init is conflict-free, and there exists a transition P
�[m]
⇝ P ′ such

that ⦃P ′
⦄ =

⟨

 ′, Init′, k′
⟩

, then there exist isomorphisms f ∶  →  ′ and g ∶  ′ → 

and a transition Init
{e}
←←←←←←←←←←←←←→ X such that �(e) = �, f◦k′ = k[e↦ m], and f (X) = Init′.
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PROOF. Implied by Proposition 6.4, Theorem 6.7, and Corollary 6.9.
Theorem 6.11. Given a process P , if ⦃P⦄ = ⟨ , Init, k⟩,  = (E, F,↦, ♯,⊳, �,Act),
Cbr() = (E, F,C,→), Init is conflict-free, and there exists a transition Init

e
←←←←←→ X in

Cbr(), then there exists a a key m and a transition P
�(e)[m]
⇝ P ′, such that ⦃P ′

⦄ =
⟨

 ′, Init′, k′
⟩

and there exist isomorphisms f ∶  →  ′ and g ∶  ′ →  such that
f◦k′ = k[e ↦ m] and f (X) = Init′.

PROOF. Implied by Proposition 6.4, Theorem 6.8, and Corollary 6.9.

7. Operational event structure semantics of �IH-calculus

In this section, we define event structure semantics of the �IH calculus. Unlike the
denotational event structure semantics we have previously defined, these operational
semantics generate event structures from the transitions rather than the syntax.

We generate a labelled asynchronous transition system (LATS) (Definition 7.1)
based on the causal semantics of �IH.
Definition 7.1 (Labelled asynchronous transition system [32]). A labelled asyn-
chronous transition system (LATS) is a tuple (S, i, E,  , I, lab,), where

• (S, i, E,  ) is a transition system with the set of states S, the initial state i, the
set of events E, and the transition relation  ⊆ S × E × S;

• lab ∶ E →  is the labelling function from the set of events to the set of actions;
• I ⊆ E × E is the irreflexive, symmetric independence relation satisfying:

– e ∈ E ⇒ ∃s, s′ ∈ S.(s, e, s′) ∈  ;
– (s, e, s′) ∈  ∧ (s, e, s′′) ∈  ⇒ s′ = s′′;
– e0Ie1 ∧ {(s, e0, s0), (s, e1, s1)} ⊆  ⇒ ∃s2.{(s0, e1, s2), (s1, e0, s2)} ⊆  ;
– e0Ie1 ∧ {(s, e0, s0), (s0, e1, s2)} ⊆  ⇒ ∃s1.{(s, e1, s1), (s1, e0, s2)} ⊆  .

Definition 7.2 (Generated transition system [14]). A �IH process generates a transi-
tion system TS = (S, i, E,  , I, lab,) defined as follows:

• The set of states, S contains equivalence classes with respect to ≡ as defined in
Section 2 of pairs of histories and processes:
S =

{

ℙ |

|

∀H ⊢ P ,H′ ⊢ P ′ ∈ ℙ ∶ H = H′ and P ≡ P ′}

• the set of events, E, consists of triples of actions, locations, and causes:
E =

{

(�, u,D)
|

|

|

|

∃H, P ,H′, P ′ ∶ H ⊢ P
�

←←←←←←←←←←←←←←→
u,D

H′ ⊢ P ′
}

which are labelled with their action, �
•  ⊆ S × E × S are the transitions from Definition 2.7.

 =
{

ℙ, (�, u,D),ℙ′)
|

|

|

|

∃H ⊢ P ∈ ℙ,H′ ⊢ P ′ ∈ ℙ′ ∶ H ⊢ P
�

←←←←←←←←←←←←←←→
u,D

H ⊢ P ′
}
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• Events (�0, u0, D0) and (�1, u1, D1) are independent if
�0

u0,D0
and �1

u1,D1
are in-

dependent according to Definition 2.9.
We use action, location, and causes respectively to extract the action, location, and
causes from events.

For a particular process P , we select the initial state i = {(∅, ∅, ∅) ⊢ P }≡, andrestrict the transition system to the part reachable from this state to get TS(P ).
Theorem 7.3. TS is an LATS.

PROOF. See Appendix F.1.
In Definition 7.2, we showed how to generate an LATS using our extrusion history-

based semantics. In [32], a mapping from LATSs to labelled prime event structures
(LPESs) via trace languages was defined, which we can use this to generate event struc-
tures from �IH processes. An example of this applied to a �IH-calculus process can be
seen in Example 7.5. Since events are sets of traces, independent actions with conflict-
ing causes become conflicting events.
Definition 7.4 (From LATS to LPES [32]). Given LATS  = (S, i, E,  , I, lab,),
we can generate a labelled prime event structure LP ( ) = (E′, <, ♯, �,) where:

• E′ is the equivalence classes of non-empty forward-only traces of  with respect
to ≈, where ≈ is the smallest equivalence relation on non-empty traces such that
ta ≈ tba if bIa and sa ≈ ta if s∼t
where ∼ is the smallest equivalence relation such that sabt∼sbat if aIb

• Given e, e′ ∈ E′, e < e′ if there exists a trace s ∈ e such that for all t ∈ e′, there
exists t′∼t such that s is a prefix of t′.

• Given e, e′ ∈ E′, e ♯ e′ if there exist e0 ≤ e and e′0 ≤ e′ such that there exist
traces t0a ∈ e0 and t0b ∈ e′0 such that a ≠ b and ¬(aIb)

• For e ∈ E′, if t.a ∈ e then �(e) = lab(a).

Example 7.5. Consider the process (∅, ∅, ∅) ⊢ a(x)|a(b). This generates the LATS
(where we leave out traces using �-conversion and only consider one possible free name
as input, as otherwise there would infinitely many events and states) seen in Figure 4
with the independence relation (a(x), 0[a(x)][0], ∅)I(a(b), 1[a(b)][0], ∅).

This gives us the events:

1. {(a(x), 0[a(x)][0], ∅); (a(b), 1[a(b)][0], ∅), (a(x), 0[a(x)][0], ∅)}
2. {(a(b), 1[a(b)][0], ∅); (a(x), 0[a(x)][0], ∅), (a(b), 1[a(b)][0], ∅)}
3. {(�,⟨0[a(x)][0], 1[a(b)][0]⟩ , ∅)}
4. and {(a(b), 1[a(b)][0], ∅), (a(b), 0[a(x)][0], {(a(b), 1[a(b)][0])})}
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(∅, ∅, ∅) ⊢ a(x)|a(b)

(∅, {(a(x), 0[a(x)][0])}, ∅) ⊢ 0|a(b)
({(a(b), 1[a(b)][0])}, ∅, ∅) ⊢ a(x)|0

(∅, ∅, {((a(b), a(b)),
⟨

0[a(x)][0], 1[a(b)][0]
⟩

) ⊢ 0|0

({(a(b), 1[a(b)][0])}, {(a(x), 0[a(x)][0])}, ∅) ⊢ 0|0

({(a(b), 1[a(b)][0])}, {(a(b), 0[a(b)][0])}, ∅) ⊢ 0|0

(a(x), 0[a(x)][0], ∅) (a(b), 1[a(b)][0], ∅)
(�,

⟨

0[a(x)][0], 1[a(b)][0]
⟩

, ∅)

(a(b), 1[a(b)][0], ∅) (a(x), 0[a(x)][0], ∅)

(a(b), 0[a(x)][0], {(a(b), 1[a(b)][0])})

Figure 4: The LATS generated by the process in Example 7.5

with 2 < 4, 1 ♯ 3, and 2 ♯ 3.
Because 4 is the only event which does not contain a trace of length 1, it is also the

only event with a cause. Events 1 and 2 are in conflict with 3 because 0[a(x)][0] and
1[a(b)][0] are not independent of

⟨

0[a(x)][0], 1[a(b)][0]
⟩

.
In the denotational event structure semantics 1 would be an event labelled a(x), 2

would be an event labelled a(b), 3 would be an event labelled �, and 4 would be an
event labelled a(b).

Finally, since we are modelling a reversible calculus, we need to turn our LPES into
a causal labelled reversible prime event structure (CLRPES).
Definition 7.6 (Causal Labelled Reversible Prime Event Structure [11]). A labelled
reversible prime event structure (LRPES) is a sextuple  = (E, F, <, ♯, ≺,⊳, �,Act)
where E is the set of events and

1. < is an irreflexive partial order such that for every e ∈ E, {e′ ∈ E ∣ e′ < e} is
finite and conflict-free;

2. ♯ is irreflexive and symmetric;
3. if e < e′ then not e ♯ e′;
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4. F ⊆ E is the set of reversible events;
5. ⊳ ⊆ E × F is the prevention relation;
6. ≺ ⊆ E × F is the reverse causality relation where for each e ∈ F , e ≺ e and

{e′ ∣ e′ ≺ e} is finite and conflict-free;
7. if e ≺ e′ then not e ⊳ e′;
8. ♯ is hereditary with respect to sustained causation ≺≺, where e ≺≺ e′ means that
e < e′ and if e ∈ F then e′ ⊳ e;

9. ≺≺ is transitive;
10. � ∶ E → Act is a labelling function.
A causal LRPES (CLRPES)  = (E, F, <, ♯, ≺,⊳, �,Act) is an RPES such that for

all e ∈ E and e′ ∈ F , e′ < e if and only if e ⊳ e′, and e ≺ e′ if and only if e = e′.
Definition 7.7 (From LPES to CLRPES [11]). Given a PES, (E,<, ♯, �,Act), gener-
ated from a process, LR((E,<, ♯, �,Act)) = (E, F, <, ♯, ≺,⊳, �,Act) where F = E;
e′ ≺ e′ for all e′ ∈ F ; and e ⊳ e′ if and only if e′ < e.

8. Correspondence between denotational and operational event structure seman-
tics

With event structure semantics defined for two variants of reversible �I-calculus,
we will now compare them. Example 8.1 shows the difference between how our pro-
cesses are represented by LRBESs and LRPESs, and illustrates the difficulty ofmapping
LRPESs to LRBESs in a way, that gives us the intended result. We therefore create a
function to turn the CLRBESs into CLRPESs (Definition 8.3). We do this by splitting
each event into multiple events, based on the different sets of possible causes.
Example 8.1 (Turning a LRPES into a LRBES). The LRPES generated by the pro-
cess (∅, ∅, ∅) ⊢a(b).b(x)|a(y) has two events labelled b(x), one which is caused by an
event labelled a(b), and another caused by an event labelled �, representing the com-
munication on a. The obvious way to represent this in an LRBES would be to keep two
events labelled b(x) and say {a(b)} ↦ b(x)1 and {�} ↦ b(x)2.

However, if we look at
⦃

a(b).b(x)|a(y)
⦄

{a,b,x,y}, we get one event labelled b(x), with
{a(b), �} ↦ b(x).

These RBESs have the same configurations and transitions (up to labels), but are
not isomorphic, and determining which events and bundles need to be merged from a
larger RPES would be difficult.

Recall that we defined the possible causes of an event in a CRBES in Definition 5.3. We
now give an alternative equivalent definition in Lemma 8.2. Requiring that X is finite
and e ∉ X for any RPES event (X, e) means we give each event a finite set of causes,
and the event does not cause itself. Some processes can generate cycles of bundles, such
as a(x).b(c)|d(y).e(f ), where a(f ) is a possible cause of b(c), which is a possible cause
of d(c), which is a possible cause of e(f ), which is a possible cause of a(f ). These
kinds of cycles are allowed in LRBESs, but when transforming them into LRPESs, we
only take the instance of a(f ), which was not transitively caused by d(c), but instead
by d receiving some other name.
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Lemma 8.2. Given a CLRBES,  = (E, F,↦, ♯,⊳, �,Act),X ⊆ E is a possible cause
of e ∈ E if and only if in Cbr(),

1. X is a reachable and finite configuration;
2. X e

←←←←←→;
3. for all reachable configurations X′′ ⊂ X, X′′ ̸

e
←←←←←→.

PROOF. We prove that if X is a possible cause, then it fulfils these conditions by in-
duction on the size of X. We the prove that if X fulfils these conditions then it fits
Definition 5.3. The full proof can be seen in Appendix G.1.

Having defined possible causes, we can use them to define a mapping from the
CLRBESs generated by our denotational semantics to LRPESs which can more easily
be compared with the LRPESs generated by our operational semantics.
Definition 8.3 (CLRBES to LRPES). Given a CLRBES  = (E, F,↦, ♯,⊳, �,Act),
we can create an LRPES pB() = (E′, F ′, <, ♯′, ≺,⊳′, �′,Act) ↾ {e ∣ e′ < e and
e′′ < e⇒ e′ ̸♯ e′′} where:

1. E′ = {(X, e) ∣ X is a possible cause
of e};

2. F ′ = {(X, e) ∣ (X, e) ∈ E′ and
e ∈ F };

3. (X, e) < (X′, e′) if X ∪ {e} ⊆ X′;
4. (X, e) ♯′′ (X′, e′) if e ♯ e′ or both

e = e′ and X ≠ X′, and ♯′ is ♯′′
closed under conflict heredity and
symmetry;

5. ≺= ∅ × ∅;
6. (X, e)⊳′ (X, e′) if (X′, e′) < (X, e);
7. �′((X, e)) = �(e).

Definition 8.4. We define a functor PB such that:
• PB() = pB();
• PB(f ) = f ′ where f ′((X, e)) = (f (X), f (e)).

Proposition 8.5. PB is a functor.

PROOF. See Appendix G.2 for full proof.
Lemma 8.6 (PB preserves transitions). Given a CLRBES,  , and a reachable con-
figuration, Y , of Cbr(), Y

e
←←←←←→ if and only if there exists a reachable configuration of

Cpr(PB()), Y ′ = {(X′, e′) ∣ X′ ∪ {e′} ⊆ Y } and X ⊆ Y such that Y ′ (X,e)
←←←←←←←←←←←←←←←←←←←←→.

PROOF. We prove this by induction on the size of Y . The full proof can be seen in
Appendix G.3.

Now that both our event structure semantics can generate LRBESs, we can show
that the LRPES generated by the denotational semantics is isomorphic with the sub-
LRPES of the LRPES generated by the operational semantics, which does not include
any actions generated by �-converting apart from when unfolding replication.
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In Example A.1 in Appendix A we show the event structures generated by the two
different semantics for the process a(x)|a(b).b(c). We see that we can create morphisms
between the two LRPESs if we restrict the event structure generated by the operational
semantics to actions involving the names considered by the denotational semantics.

We now show isomorphism between the two event structure semantics.
Theorem 8.7. Given a standard �I-calculus process P with guarded choice, distinct
names and ⦃P⦄ = ⟨ , Init, k⟩ for some  ⊇ n(P ) and  ′ being the event structure
generated by the causal semantics of (∅, ∅, ∅) ⊢P , we can define two LRPESmorphisms,
f ∶ PB() →  ′ and f ′ ∶  ′ → PB(), such that f◦f ′ = 1PB() and if f ′(e′) is
defined, then f (f ′(e′)) = e′.

PROOF. We prove this by induction on the level of nested replication and structure of
P in Appendix G.4.

The operational event structure semantics generate additional events corresponding
to the actions the process can take if �-converted, and the input actions receiving names
not in  . We would like to show that the way these events interact corresponds to the
way the events generated by the denotational semantics interact, although the events
will have different labels. In order to get a correspondence between events generated
by �-converting the process and events generated without �-converting the process, we
wish to define substitution on traces.

We specifically want to define substitution of a name x for a in trace t, at location u
in which a is bound, but not continuing after a set of locations, U , at which new xs
are bound. To do this we look at each triple (�, u′, D) in t in order, and determine
whether it is in a location where the substitution should take place, that is u′ is within
the gap from u to U as defined in Definition 8.8. If this is the case, then we substitute
free occurrences of x for a in � and the processes of u′. If x is bound in �, then we
add u′ to U before continuing. If a is bound in � then we substitute a for some new
name, d. If � is an input of x and u′ is not a location where the substitution should take
place, then we use D to determine whether the x being received is the same as the one
being substituted or a different one. If � is �, then we use the processes in u′ to figure
out which channel communicated which name, and then treat it as separate input and
output. The full definition can be seen in Definition 8.9.
Definition 8.8 (location order). We define an ordering on locations, ≺, as follows:

• l[P ][Q] ≺ l′[P ′][Q′] if l′ = ll′′ or l′ = l and Q→∗ P ′;
• l ⟨l0[P0][Q0], l1[P1][Q1]⟩ ≺ l′[P ′][Q′] if there exists an i ∈ {0, 1} such that
lli[Pi][Qi] ≺ l′[P ′][Q′];

• l[P ][Q] ≺ l′
⟨

l′0[P
′
0][Q

′
0], l

′
1[P

′
1][Q

′
1]
⟩ if there exists an i ∈ {0, 1}such that

l[P ][Q] ≺ l′l′i[P
′
i ][Q

′
i];

• l ⟨l0[P0][Q0], l1[P1][Q1]⟩ ≺ l′
⟨

l′0[P
′
0][Q

′
0], l

′
1[P

′
1][Q

′
1]
⟩ if for some i, j ∈ {0, 1},

we have lli[Pi][Qi] ≺ l′l′j[P ′
j ][Q

′
j].
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Given a start location u and a set of end locations U , we say that u′ is within the gap
from u to U , withinu−U (u′), if u ≺ u′ and there does not exist u′′ ∈ U such that u′′ ≺ u′.
Definition 8.9. Given a trace t, a location u, a set of locations, U , and names a, x, t
with x substituted for a starting at location u but not continuing after locations in U ,
t[x ∶= a](u−U ) is defined as:

1. ((�, l[P ][Q], D)t)[x ∶= a](u−U ) = (�′, l[P ′][Q′], D′)t′ where:
(a) �′ = �′′[x ∶= a] if withinu−U (l[P ][Q]) and otherwise �′ = �′′

where if � = x(n), �[x ∶= a] = a(n) and if � = x(n), �[x ∶= a] = a(n) and
otherwise �[x ∶= a] = �.
And �′′ = b(a) if � = b(x) and (x, u′) ∈ D, �′′ = b(d) if � = b(a),
�′′ = b(d) if � = b(a), and otherwise �′′ = �.

(b) P ′ = P [x ∶= a] if withinu−U (l[P ][Q]) and otherwise P ′ = P .
(c) Q′ = Q′′[x ∶= a] if withinu−U (l[P ][Q]) and otherwise Q′ = Q′′

where Q′′ = Q[a ∶= d] if a ∈ bn(�) and withinu−U (l[P ][Q]), and other-
wise Q′′ = Q.

(d) D′ = D′′[x ∶= a](u−U ) where D′′ = D[a ∶= d](l[P ][Q]−∅) if a ∈ bn(�) and
withinu−U (l[P ][Q]), and otherwise D′′ = D.

(e) t′ = t′′[x ∶= a](u−U ′) where U ′ = U ∪ {l[P ′][Q′]} if x ∈ bn(�) and
otherwise U ′ = U
where t′′ = t[a ∶= d](l[P ][Q]−∅) if a ∈ bn(�) and withinu−U (l[P ][Q]),
t′′ = t[x ∶= a](u−∅) if � = b(x), and otherwise t′′ = t.

for d ∉ fn(Q)
2. ((�, l ⟨l0[P0][Q0], l1[P1][Q1]⟩ , D)t)[x ∶= a](u−U ) =

((�, l
⟨

l0[P ′
0][Q

′
0], l1[P

′
1][Q

′
1]
⟩

, D′)t′)

where Pi
b(n)
←←←←←←←←←←←←←←←→ Qi and P1−i

b(n)
←←←←←←←←←←←←←←←→ Q1−i and:

(a) P ′
j = Pj[x ∶= a] if withinu−U (llj[Pj][Qj])

(b) Q′
j = Q′′

j [x ∶= a] if withinu−U (llj[Pj][Qj]) and n ≠ x, and otherwise
Q′
j = Q′′

j
whereQ′′

j = Qj[a ∶= d] if n = a andwithinu−U (l ⟨l0[P0][Q0], l1[P1][Q1]⟩),
and otherwise Q′′

j = Qj .
(c) D′ = D′′[x ∶= a](u−U ) where D′′ = D[a ∶= d](l⟨l0[P0][Q0],l1[P1][Q1]⟩−∅) ifboth n = a and withinu−U (l ⟨l0[P0][Q0], l1[P1][Q1]⟩), and otherwise D′′ =

D

(d) t′ = t′′[x ∶= a](u−U ′) where t′′ = t[a ∶= d](l⟨l0[P0][Q0],l1[P1][Q1]⟩−∅) if both
n = a and withinu−U (l ⟨l0[P0][Q0], l1[P1][Q1]⟩), and otherwise t′′ = t
where U ′ = U ∪ {l ⟨l0[P0][Q0], l1[P1][Q1]⟩} if n = x and otherwise U ′ =
U .

for d ∉ fn(Q0) ∪ fn(Q1)
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Here we use the following definition of substitution on a set of causes:
D[x ∶= a](u−U ) =

{

(�′′, u′′) ∣ (�′, l[P ][Q]) ∈ D and if l[P ][Q] ≺ u or there
exists u′ ∈ U such that u′ ≺ l[P ][Q], then �′′ = �′ and u′′ = l[P ][Q], otherwise
�′′ = �′[x ∶= a] and u′′ = l[P [x ∶= a]][Q[x ∶= a]]

}

We then use this definition to prove that we can “�-convert” traces by substituting a
bound name in an input or output action in the trace and then substituting that name on
that location in the rest of the trace.
Lemma 8.10. Given a �IH-calculus process with empty extrusion histories, (∅, ∅, ∅) ⊢
P , and a trace, t = (�0, u0, D0),… , (�n, un, Dn) such that

(∅, ∅, ∅) ⊢P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

H1 ⊢P1…Hn ⊢Pn
�n

←←←←←←←←←←←←←←←←←←←←←←→
un,Dn

H′ ⊢P ′

Then for any (�i, li[Qi][Q′
i], Di) such that either �i = b(x) or �i = b(x) and, we can

define new traces
t0 = (�0, u0, D0)… , (�i−1, ui−1, Di−1)

and
t1 = (�i+1, ui+1, Di+1),… , (�n, un, Dn)[x ∶= a](li[Qi][Q′

i]−∅)

and combine them to get

t′ = t0(�′i , li[Qi][Qi[x ∶= a]], D′
i)t1 = (�′0, u

′
0, D

′
0),… , (�′n, u

′
n, D

′
n)

where �′i = b(a) if �i = b(x) and �′i = b(a) if �i = b(x), and D′
i = (Di ⇀ b) ∪ (a, u) if

(c(a), u ∈ H i and otherwise D′
i = (Di ⇀ b).

We can then use this trace to get

(∅, ∅, ∅) ⊢P
�′0

←←←←←←←←←←←←←←←←←←←←←←→
u′0,D

′
0

…
�′n

←←←←←←←←←←←←←←←←←←←←←←→
u′n,D′

n

PROOF. See Appendix G.5.
Finally we show our label-ignoring morphism from all the events generated by the

operational semantics to the events generated by the denotational semantics. For this
we use a label removing function lr((E, F, <, ♯, ≺,⊳, �,Act)) = (E, F, <, ♯, ≺,⊳).
Theorem 8.11. Given a standard �I-calculus process P with guarded choice, distinct
names and ⦃P⦄ = ⟨ , Init, k⟩ for some  ⊇ n(P ) and  ′ being the event structure
generated by the causal semantics of (∅, ∅, ∅) ⊢ P , and f and f ′ defined as above,
we have an RPES morphism f ′′ ∶ lr( ′) → lr(PB()) such that dom(f ′′) = E′ and
f ′′ ↾ dom(f ′) = f ′.

PROOF. We prove this by induction on the level of nested replication and structure of
P in Appendix G.6 using Lemma 8.10.
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9. Conclusion and future work

All existing reversible versions of the �-calculus use reduction semantics [17, 30] or
late semantics [8, 21], despite the early semantics being used more widely than the late
in the forward-only setting. We have introduced �IH and �IK, the first reversible early
�-calculi. They are reversible forms of the internal �-calculus, where names being sent
in output actions are always bound. As well as structural causation, as in CCS, the early
form of the internal �-calculus also has a form of link causation created by the seman-
tics being early, which is not present in other reversible �-calculi. In �IH, past actions
are tracked by using extrusion histories adapted from [14], which move past actions and
their locations into separate histories for dynamic reversibility. In contrast, �IK keeps
the structure of the process intact but annotates past actions with keys, similarly to the
framework for reversible �-calculi [21] and CCSK [25] We showed that a process �IH
with extrusion histories can be mapped to a �IK process with keys, creating an oper-
ational correspondence (Theorem 4.8). This is similar to the correspondence proved
between statically reversible CCS (CCSK) and dynamically reversible CCS (RCCS)
by [16], however we are not aware of such a mapping between �-calculi.

The event structure semantics of �IK, are defined inductively on the syntax of the
process. We use labelled reversible bundle event structures [13], rather than prime event
structures, to get a more compact representation where each action in the calculus has
only one corresponding event. While causation in the internal �-calculus is simpler
that in the full �-calculus, our early semantics means that we still have to handle link
causation, in the form of an input receiving a free name being caused by a previous
output of that free name. We show an operational correspondence between �IK pro-
cesses and their event structure representations in Theorems 6.7 and 6.8. Cristescu et
al. [9] have used rigid families [5], related to event structures, to describe the semantics
of R� [8]. However, unlike our denotational event structure semantics, their seman-
tics require one to reverse every action in the process before applying the mapping to
a rigid family, and then redo every reversed action in the rigid family. Our approach
of using a static calculus as an intermediate step means we get the current state of the
event structure immediately, and do not need to redo the past steps.

The event structure semantics of �IH on the other hand are defined operationally,
being derived from a labelled asynchronous transition system. This creates a LRPES in
which each event is a set of traces of the process, all of which end with the same action
and contain the same causes of this action.

The denotational semantics assume that the process has already been �-converted
so all free and bound names are distinct, and only uses �-conversion when expanding a
replication. Therefore the denotational event structure semantics do not include actions
requiring �-conversion, and we do not get an exact correspondence between the two
event structure semantics, as the events requiring �-conversion in the RPES created
by the operational semantics will not have corresponding events with the same labels
in the LRPES created by the denotational semantics. However, we do get a morphism
mapping all actions requiring �-conversion to an equivalent action in the denotationally
generated RPES (Theorem 8.11), which when restricted to only the events present in
both event structures forms one half of an isomorphism between the LRPESs generated
by the denotational and the operational semantics (Theorem 8.7).
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With these morphisms we have shown that not only do we have a correspondence
between the statically and dynamically reversible calculi, but between the event struc-
tures generated by their operational and denotational event structure semantics. This
does not mean there are no benefits to using one calculus over the other. Having a no-
tion of independence of transitions meant we could easily prove useful properties of
�IH, which we do not have for �IK. On the other hand, not keeping past actions in a
shared memory makes �IK more compositional than �IH. This is also reflected in the
event structure semantics, which are more compositional for �IK, but were simpler to
define and prove correctness of based on existing mappings for �IH.
Future work:. We could expand the event structure semantics of �IK to a statically re-
versible full �-calculus. This would entail significantly more link causation, but would
give us event structure semantics of a full �-calculus. Another possibility is to expand
�IH to get a full reversible early �-calculus.
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A. Example of applying both event structures to a process

Example A.1. Consider the process, a(x)|a(b).b(c). We would like to show the corre-
spondence between the LRPESs generated by this process using the two methods pre-
sented. Using the denotational event structure semantics of Section 6, we get the event
structure

⦃

a(x)|a(b).b(c)
⦄

a,b,c,x
=
⟨

(E, F,↦, ♯,⊳, �,Act), ∅, ∅
⟩

shown in Figure A.5,
where, since there is only one event per label, we assume the events have the same name
and label for simplicity:

E = F = {a(x), a(a), a(b), a(c), �, a(b), b(c)}
{a(b)} ↦ a(b), {a(b), �} ↦ b(c), {b(c)} ↦ a(c)
a(x) ♯ a(a), a(x) ♯ a(b), a(x) ♯ a(c), a(a) ♯ a(b), a(a) ♯ a(c), a(b) ♯ a(c),
a(x) ♯ �, a(a) ♯ �, a(b) ♯ �, a(c) ♯ �, a(b) ♯ �
a(b) ⊳ a(b), b(c) ⊳ �, b(c) ⊳ a(b), a(c) ⊳ b(c)

We then turn this LRBES into an LRPES,PB((E, F,↦, ♯,⊳, �,Act)) = (EP , FP , <P
, ♯P , ≺P ,⊳P , �P ,ActP ):
EP = FP = {(∅, a(x)), (∅, a(a)), ({a(b)}, a(b)), ({b(c), a(b)}, a(c)),
(∅, a(b)), (∅, �), ({a(b)}, b(c)), ({�}, b(c))}

{(∅, a(b))} <P ({a(b)}, a(b)), (∅, a(b)) <P ({a(b)}, b(c)),
(∅, �) <P ({�}, b(c)), ({a(b)}, b(c)) <P ({b(c), a(b)}, a(c)),

(∅, a(b)) <P ({b(c), a(b)}, a(c))

(∅, a(x)) ♯P (∅, a(a)), (∅, a(x)) ♯P ({a(b)}, a(b)),
(∅, a(x)) ♯P ({b(c), a(b)}, a(c)), (∅, a(a)) ♯P ({a(b)}, a(b)),
(∅, a(a)) ♯P ({b(c), a(b)}, a(c)), ({a(b)}, a(b)) ♯P ({b(c), a(b)}, a(c)),
(∅, a(x)) ♯P (∅, �), (∅, a(a)) ♯P (∅, �),

({a(b)}, a(b)) ♯P (∅, �), (∅, �) ♯P ({b(c), a(b)}, a(c)),
(∅, a(b)) ♯P (∅, �), (∅, a(x)) ♯P ({�}, b(c)),
(∅, a(a)) ♯P ({�}, b(c)), ({a(b)}, a(b)) ♯P ({�}, b(c)),

({b(c), a(b)}, a(c)) ♯P ({�}, b(c)), (∅, a(b)) ♯P ({�}, b(c)),
({a(b)}, b(c)) ♯P (∅, �), ({a(b)}, b(c)) ♯P ({�}, b(c))

({a(b)}, a(b)) ⊳P (∅, a(b)), ({a(b)}, b(c)) ⊳P (∅, a(b)),
({b(c), a(b)}, a(c)) ⊳P (∅, a(b)), , ({�}, b(c)) ⊳P (∅, �)
({b(c), a(b)}, a(c)) ⊳P ({a(b)}, b(c))

�P ((X, e)) = �(e)

.
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b(c)

a(x)

a(a)

a(b)

a(c)

� a(b)

Figure A.5: The LRBES seen in Example A.1

Note that there are now two b(c) events, but only one a(c) event, as a(c) is in conflict
with �, and therefore cannot be caused by it, so we do not get ({b(c), �}, a(c)).

We also generate another LRPES by applying the operational semantics of Section 7
to (∅, ∅, ∅) ⊢ a(x)|a(b).b(c) to get a PES. Similarly to Example 7.5 we exclude traces
requiring �-conversion and any inputs of names not already present in the process in
order to get a finite number of events. We apply LR to turn it into a CLRPES, as seen
in Definition 7.7, giving us (E′, F ′, <′, ♯′, ≺′,⊳′, �′,Act′) with E′ = F ′ consisting of:

e′a(x) =
[(

a(x), 0[a(x)][0], ∅
)]

≈
e′a(a) =

[(

a(a), 0[a(x)][0], ∅
)]

≈

e′a(b) =
[(

a(b), 1[a(b).b(c)][b(c)], ∅
)

,
(

a(b), 0[a(x)][0], {(a(b), 1[a(b).b(c)][b(c)])}
)]

≈
e′a(c) =

[ (

a(b), 1[a(b).b(c)][b(c)], ∅
)

,
(

b(c), 1[b(c)][0], {(a(b), 1[a(b).b(c)][b(c)])}
)

,
(

a(c), 0[a(x)][0], {b(c), 1[b(c)][0]}
) ]

≈
e′� =

[(

�,
⟨

0[a(x)][0], 1[a(b)][0]
⟩

, ∅
)]

≈
e′a(b) =

[(

a(b), 1[a(b).b(c)][b(c)], ∅
)]

≈
e′
b(c)a(b)

=
[(

a(b), 1[a(b).b(c)][b(c)], ∅
)

,
(

b(c), 1[b(c)][0], {(a(b), 1[a(b).b(c)][b(c)])}
)]

≈
e′
b(c)�

=
[

(

�,
⟨

0[a(x)][0], 1[a(b)][0]
⟩

, ∅
)

,
(

b(c), 1[b(c)][0], ∅
)]

≈

where
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e′a(b) <′ e′a(b), e′a(b) <′ e′
b(c)a(b)

, e′� <′ e′
b(c)�

,

e′
b(c)a(b)

<′ e′a(c), e′� <′ e′a(c)

e′a(x) ♯′ e′a(a), e′a(x) ♯′ e′a(b), e′a(x) ♯′ e′a(c),
e′a(a) ♯′ e′a(b), e′a(a) ♯′ e′a(c), e′a(b) ♯′ e′a(c),
e′a(x) ♯′ e′� , e′a(a) ♯′ e′� , e′a(b) ♯′ e′� ,
e′a(c) ♯′ e′� , e′a(c) ♯′ e′

b(c)a(b)
, e′� ♯ e′a(b),

e′a(x) ♯′ e′
b(c)�

, e′a(a) ♯′ e′
b(c)�

, e′a(b) ♯′ e′
b(c)�

,

e′a(c) ♯′ e′
b(c)�

, e′� ♯′ e′
b(c)�

, e′
b(c)a(b)

♯′ e′
b(c)�

e′a(b) ⊳′e′a(b), e′
b(c)a(b)

⊳′e′a(b), e′
b(c)�

⊳′e′
b(c)�

,

e′a(c) ⊳′e′
b(c)a(b)

, e′� ⊳′e′
b(c)a(b)

�(e′) =

⎧

⎪

⎨

⎪

⎩

� if e′ = e′� and � ∈ {a(x), a(a), a(b), a(c), �, a(b)}

b(c) if e′ ∈ {e′
b(c)a(b)

, e′
b(c)�

}

Act′ = {a(x), a(a), a(b), a(c), �, a(b), b(c)}
We can define a mapping between these two event structures,

f ((X, e) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e′e if e ∈ {a(x), a(a), a(b), a(c), �, a(b)}

e′
b(c)a(b)

if e = b(c) and a(b) ∈ X

e′
b(c)�

if e = b(c) and � ∈ X

and f and f−1 are both morphisms, since the event structures only differ in the names
of the events.

However, as noted above, the real event structure generated by the operational se-
mantics would also include events corresponding to traces in which �-conversion is
performed, such as [

(

�,
⟨

0[a(y)][0], 1[a(d)][0]
⟩

, ∅
)

]≈, which corresponds to the same
action as e′� , but the communication is only performed after x has been �-converted to
y and b to d. The denotational event structure semantics do not generate any event for
this possibility, as they assume all names are distinct and the only �-conversion done
is one necessitated by wanting to keep all names distinct after a replication.

B. Proofs from Section 2

B.1. Proof of Proposition 2.6

PROOF. 1. We prove this by induction on H ⊢ P
�
←←←←←←→
u

H′ ⊢ Q:
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[SCOPE] In this case P = (�x)P ′ and Q = (�x)Q′, x ∉ n(�), and by induction
H′ ⊢ Q′ �

u H ⊢ P ′. From rule [SCOPE−1] we therefore get H′ ⊢ Q
�
u

H ⊢ P .
[PARi] In this case P = P0|P1 and Q = Q0|Q1, P1−i = Q1−i, in � = a(n) then

n ∉ fn(P1−i), and by induction we have a transition ([ǐ]H ′
, [ǐ]H ′, [ǐ]H ′) ⊢

Qi
�
u ([ǐ]H, [ǐ]H, [ǐ]H) ⊢ Pi, meaning according to rule [PAR−1

i ], H′ ⊢

Q
�
u H ⊢ P .

[COMi] In this case P = P0|P1 and Q = Q0|Q1, n ∉ fn(Pj), H = H
′, H =

H ′, and H ′ = H ∪ {((�0, �1), (0v0, 1v1))}. By induction and Lemma 2.5,
we get transitions ([ǐ]H ′

, [ǐ]H ′, [ǐ]H ′) ⊢ Qi
�i
vi

([ǐ]H, [ǐ]H, [ǐ]H) ⊢ Pi

and ([ǰ]H ′
, [ǰ]H ′, [ǰ]H ′) ⊢ Qj

�j

vj
([ǰ]H, [ǰ]H, [ǰ]H) ⊢ Pj . This means

according to [COM−1], H′ ⊢ Q
�
u H ⊢ P .

[STR] In this case Q ≡ Q′,H′ ⊢ Q′ �
u H ⊢ P ′, and P ′ ≡ P , and by rule

[STR−1], H′ ⊢ Q
�
u H ⊢ P .

[OUT] In this Case P =
∑

i∈I
�i.Pi, Q = Pj and � = a(n) = �j for some j ∈ I ,

and by [OUT−1], H′ ⊢ Q
�
u H ⊢ P .

[IN] Similar to [OUT].
2. Similar to previous.

B.2. Proof of Proposition 2.10
PROOF. This proof is similar to Theorem 14 of [14]. Either we have a path l such that
ui = l0u′i and u1−i = l1u′1−i, or we have �i = �.

In the first case, if Q|R is the parallel composition at location l, then we have
transitions ([ľ0]H, [ľ0]H, [ľ0]H) ⊢ Q

�i

u′i
and ([ľ1]H, [ľ1]H, [ľ1]H) ⊢ Q

�1−i

u′1−i
and there does not exist n such that Di(n) = u1−i or there does not exist n such that
D1−i(n) = ui, and by [PARi] and [PAR−

i 1], this means H0 ⊢ P0
�1
←←←←←←←←←←→
u1

H′
0 ⊢ P

′ and
H1 ⊢ P1

�0
←←←←←←←←←←→
u0

H′
1 ⊢ P

′ and by Lemma 15 of [14], H′
0 = H′

1. This goes for reverse
transitions too.

If �i = � then ui = li ⟨li0[P0][Q0], li1[P1][Q1]⟩ and we can split the transition into
li0[P0][Q0] and li1[P1][Q1] at the parallel composition on location l and use similar
logic.
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B.3. Proof of Lemma 2.12

PROOF. If �0

u0,D0
and �1

u1,D1
are not independent, then either u0 and u1 are not indepen-

dent, or there exists n such that Di(n) = u1−i.Obviously, if u0 and u1 are not independent, then u0 = u1 and �0 = �1, D0 = D1,and H0 ⊢P0 ≡ H1 ⊢P1 follows from that.
If u0 and u1 are independent and exists n such that Di(n) = u1−i, then by [PAR−1

i ],
we cannot have H ⊢P

�1−i

u1−i,D1−i
H1−i ⊢P1−i.

C. Proofs from Section 3

C.1. Proof of Lemma 3.4
PROOF. This would require b(x)[m] to either prefix, be in parallel with, or be an al-
ternative choice to a(x) in P . The first two cases are impossible due to the “if � =
a(x) then x ∉ n(�)” and “if � = a(x) then x ∉ fn(P1)” requirements in the rules for
propagating a(x)[n] past past actions and parallel composition, and the last case is pre-
vented by requiring alternative paths to be standard if we want to propagate an action
past the choice.
C.2. Proof of Proposition 3.5

PROOF. 1. We perform induction on P �[n]
←←←←←←←←←←←←←←←←→ Q:

(a) Suppose P = a(x).P ′, � = a(b), std(P ′), Q = a(b)[n].Q′, and Q′ =

Q[x ∶= b[n]]. Then, since x ∉ n(Q′), Q a(b)
P .

(b) Suppose P = a(x).P ′, � = a(x), std(P ′), Q = a(x)[n].P ′. Then clearly
Q

a(x)
P .

(c) Suppose P = �[m].P ′, P ′ �[n]
←←←←←←←←←←←←←←←←→ Q′, Q = �[m].Q′, n ≠ m, and if � = a(x)

then x ∉ n(�). Then by induction Q′ �[n]

P
′, and clearly Q �[n]

P .
(d) Suppose P = P0|P1, P0

�[n]
←←←←←←←←←←←←←←←←→ Q0, fsh[n](P1), Q = Q0|P1, and if � = a(x)

then x ∉ fn(P1). Then by induction,Q0
�[n]

P0, and obviouslyQ
�[n]

P .
(e) Suppose P = P0|P1, P0

a(x)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←→ Q0, P1

a(x)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←→ Q1, � = �, and Q =

(�x)(Q0|Q1). Then by induction Q0
a(x)

P0 and Q1
a(x)

P1, meaning
clearly Q �[n]

P .
(f) Suppose P = P0 + P1, P0

�[n]
←←←←←←←←←←←←←←←←→ Q0, std(P1), and Q = Q0 + P1. Then by

induction Q0
�[n]

P0, meaning Q �[n]
P .

(g) Suppose P = (�x)P ′, P ′ �[n]
←←←←←←←←←←←←←←←←→ Q′, x ∉ n(�), and Q = (�x)Q′. Then by

induction Q′
�[n]

P ′, and we get Q �[n]
P .
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(h) Suppose P ≡ P ′, P ′ �[n]
←←←←←←←←←←←←←←←←→ Q′, andQ ≡ Q′. Then by inductionQ′

�[n]
P ′,

and therefore Q �[n]
P .

2. We prove this by induction on P �[n]
Q:

(a) Suppose P = a(b)[n].P ′, � = a(b), std(P ′), x ∉ n(P ′), Q′ = P ′[b[n] ∶=

x], and Q = a(x).Q′. Then clearly Q �[n]
←←←←←←←←←←←←←←←←→ P .

(b) Suppose P = a(x)[n].P ′, � = a(x), std(P ′), Q = a(x).P ′. Then clearly
Q

a(x)
←←←←←←←←←←←←←←←←→ P .

(c) Suppose P = �[m].P ′, P ′
�[n]

Q′, m ≠ n, and Q = �[n].Q′. Then by
induction, Q′ �[n]

←←←←←←←←←←←←←←←←→ P ′, and since P is forwards reachable, if � = a(x) then
x ∉ n(�). This means Q �[n]

←←←←←←←←←←←←←←←←→ P .
(d) Suppose P = P0|P1, P0

�[n]
Q0, fsh[n](P1), Q = Q0|P1, and if � = a(x)

then x ∉ fn(P1). Then by induction Q0
�[n]
←←←←←←←←←←←←←←←←→ P0, and clearly Q �[n]

←←←←←←←←←←←←←←←←→ P .
(e) Suppose P = (�x)(P0|P1), � = �, P0

a(x)[n]
Q0, P1

a(x)[n]
Q1, and

Q = Q0|Q1. Then by induction Q0
a(x)
←←←←←←←←←←←←←←←←→ P0 and Q1

a(x)
←←←←←←←←←←←←←←←←→ P1, meaning

clearly Q �[n]
←←←←←←←←←←←←←←←←→ P .

(f) Suppose P = P0 + P1, P0
�[n]

Q0, std(P1), and Q = Q0 + P1. Then by
induction Q0

�[n]
←←←←←←←←←←←←←←←←→ P0, meaning Q �[n]

←←←←←←←←←←←←←←←←→ P .
(g) Suppose P = (�x)P ′, P ′

�[n]
Q′, x ∉ n(�), and Q = (�x)Q′. Then by

induction Q′ �[n]
←←←←←←←←←←←←←←←←→ P ′, and we get Q �[n]

←←←←←←←←←←←←←←←←→ P .
(h) Suppose P ≡ P ′, P ′

�[n]
Q′, andQ ≡ Q′. Then by inductionQ′ �[n]

←←←←←←←←←←←←←←←←→ P ′,
and therefore Q �[n]

←←←←←←←←←←←←←←←←→ P .
C.3. Proof of Proposition 3.6
PROOF. We use structural induction on P to prove both these at once:

1. Suppose P = 0 or P = �.P ′. Then P cannot do any backwards transitions.
2. Suppose P = �[n′].P ′. Then either std(P ′) and n = m = n′, or Q = a(b)[n′].Q′,
R = a(b)[n′].R′, P ′

�[m]
Q′, and P ′

�′[n]
R′, meaning by induction there

exists S′ such that Q′
�′[n]

S′ and R′
�[m]

S′. We say that S = �[n].S′, and
the property holds.

3. Suppose P = P0 + P1, then either std(P0), P1
�[m]

Q1, P
�′[n]

R1, Q =

P0 +Q1, and R = P0 +R1, or std(P1), P0
�[m]

Q0, P
�′[n]

R0, Q = Q0 + P1,and R = R0 + P1. In the first case, by induction there exists an S1 such that
Q1

�′[n]
S1 and R1

�[m]
S1, and we define S = P0 + S1, and the property

holds. The second case is similar.
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4. Suppose P = (�x)P ′. Then either (1) P ′
�[m]

Q′ and x ∉ n(�) andQ = (�x)Q′

or (2) P ′ = P0|P1, Pi
a(x)[m]

Qi, P1−i
a(x)[m]

Qi−1, � = �, and Q = Q0|Q1,
and either (a) P ′

�′[n]
R′ and x ∉ n(�′) and R = (�x)R′ or (b) P ′ = P0|P1,

Pi
a(x)[n]

Ri, P1−i
a(x)[n]

Ri−1, �′ = �, and R = R0|R1.
In case 1a, by induction there exists S′ such that Q′

�′[n]
S′ and R′

�[m]
S′,

and we define S = (�x)S′, and the property holds.
In case 1b, there exists Pj such that Pj

�[m]
Qj , and fsh[m](P1−j), and if � =

a(x) then x ∉ fn(P1). If j = i then by induction there exists an Si such that
Qj

�′[n]
Si and Ri

a(x)[m]
Si, and we define S = Si|R1−i, and the property

holds. If I = 1 − j, the argument is similar.
Case 2a is similar to case 1b.
Case 2b cannot occur because we cannot have more than one past action out-
putting the same name according to Lemma 3.4.

5. Suppose P = P0|P1. Then there exists an i such that either Pi
�[m]

Qi and
Pi

�′[n]
Ri and Q = Qi|P1−i and R = Ri|P1−i, or Pi

�[m]
Qi and P1−i

�′[n]

R1−i and Q = Qi|P1−i and R = Pi|R1−i.
In the first case, there exists Si such that Qi

�′[n]
Si and Ri

�[m]
Si, and we

define S = Si|P1−i and the property holds.
If the second case we define S = Qi|R1−i, and the property holds.

C.4. Proof of Proposition 3.7
PROOF. We prove this by structural induction:

1. Suppose P = 0 or P = �.P ′. Then P cannot do any reverse transitions.
2. Suppose P = �[n].P ′. Then either std(P ′), meaning � = �′ = �, n = m, and
Q ≡ R, or P ′

�[m]
Q′, P ′

�′[m]
R′, Q = �[n].Q′, and R = �[n].R′, and the

result follows from induction.
3. Suppose P = P0 + P1. Then the result follows from induction.
4. Suppose P = (�x)P ′. Then either (1) P ′

�[m]
Q′ and x ∉ n(�) andQ = (�x)Q′

or (2) P ′ = P0|P1, Pi
a(x)[m]

Qi, P1−i
a(x)[m]

Qi−1, � = �, and Q = Q0|Q1,
and either (a) P ′

�′[m]
R′ and x ∉ n(�′) and R = (�x)R′ or (b) P ′ = P0|P1,

Pi
a(x)[m]

Ri, P1−i
a(x)[m]

Ri−1, �′ = �, and R = R0|R1.In case 1a the result follows from induction.
In case 1b Pj such that Pj

�[m]
Qj , and fsh[m](P1−j), contradicting P1−j

�[m]
←←←←←←←←←←←←←←←←←→

R1−j . Meaning this case cannot occur.
Similar for case 2a.
Case 2b follows from induction.
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5. Suppose P = P0|P1. Then there exists an i such that either Pi
�[m]

Qi and
Pi

�′[m]
Ri and Q = Qi|P1−i and R = Ri|P1−i, or Pi

�[m]
Qi and P1−i

�′[m]

R1−i and Q = Qi|P1−i and R = Pi|R1−i.
In the first case the result follows from induction. In the second case Pi

�[m]
Qi

requires fsh[m](P1−i), which contradicts P1−i
�′[m]

R1−i, meaning this case
cannot occur.

C.5. Proof of Theorem 3.9

PROOF. We say that P �0[m0] P0…
�n[mn] Pn = Q and perform induction on the

length of the trace, the number of pairs �i[mi]
←←←←←←←←←←←←←←←←←←←←←←←→

�i+1[mi+1] in the trace, and the location
of the first such pair.

If no such pair exists then R must exist.
Otherwise, we say that �i[mi]

←←←←←←←←←←←←←←←←←←←←←←←→
�i+1[mi+1] is the first such pair in the trace. We have

two cases, either mi = mi+1 or not.If mi = mi+1 then by Propositions 3.5 and 3.7, Pi−1 = Pi+1, and we therefore have
a trace P �0[m0] P0…

�i−1[mi−1] Pi−1
�i+2[mi+2] …

�n[mn] Pn = Q.
If mi ≠ mi+1 then by Lemma 3.8, Pi is forwards-reachable, and therefore by Propo-

sition 3.5, we get a transition Pi
�i[mi]

Pi−1, and by Proposition 3.6 we have a trace
P

�0[m0] P0…Pi−1
�i+1P ′

i [mi+1] �i[mi]
←←←←←←←←←←←←←←←←←←←←←←←→ Pi+1…

�n[mn] Pn = Q

C.6. Proof of Proposition 3.13
PROOF. We prove both simultaneously by structural induction on P .

• Suppose P = 0. Then P cannot perform any actions, and the results are trivial.
• Suppose P = a(x).P ′. Then � = a(b) for some b, Q = a(b)[n].P ′[x ∶= b],
�′ = a(c) for some c, R = a(c)[m].P ′[x ∶= c], and since no subsequent action
can change b and c,we get b = c, and the results hold.

• Suppose P = a(x).P ′. Then � = a(x) Q = a(x)[n].P ′, �′ = a(x), R =
a(x)[m].P ′a(x), and the results hold.

• Suppose P = �[n].P ′. Then the results follow from induction.
• Suppose P = P0 + P1. Then the results follow from induction, and the fact that

both actions must use the same branch of the choice.
• Suppose P = (�x)P ′. Then the result follows from induction.
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• Suppose P = P0|P1. Then there exists an i such that either (1) Pi
�[m]
←←←←←←←←←←←←←←←←←←→ Qi and

Q = Qi|P1−i or (2) Pi
a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Qi, P1−i

a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Qi−1, � = �, and Q = Q0|Q1

and there exists a j such that either (a) Pj
�′[n]
←←←←←←←←←←←←←←←←←←←→ Rj and R = Rj|P1−j or (b)

Pj
b(y)[n]
←←←←←←←←←←←←←←←←←←←←←←←←→ Rj , P1−j

b(y)[n]
←←←←←←←←←←←←←←←←←←←←←←←←→ Rj−1, �′ = �, and R = R0|R1

In Case 1a, either i = j or i ≠ j. If i = j then the result follows from induction. If
i ≠ j, since we require fsh[m](P1−i) and fsh[n](Pj−i), some where inR →∗ T and
Q →∗ T respectively, m ≠ n. For similar reasons, we cannot have that � = a(x)

and x ∈ n(�′) or vice versa, meaning Q �′[n]
←←←←←←←←←←←←←←←←←←←→ S and R �[m]

←←←←←←←←←←←←←←←←←←→ S and S →∗.
In Case 1b, suppose i = j. Then by induction, there exists Si such thatQi

b(y)[n]
←←←←←←←←←←←←←←←←←←←←←←←←→

Si, requiring fsh[n](R1−i) meaning n ≠ m, and Ri
�[m]
←←←←←←←←←←←←←←←←←←→ Si, meaning we can

define S = Si|R1−i, and requiring fsh[n](R1−i), and the result holds for that. If
i ≠ j then the result is similar.
Case 2a is similar.
Case 2b follows from induction.

• Suppose P = !P ′. Then !P ′
|P ′ �[m]

←←←←←←←←←←←←←←←←←←→ Q, and !P ′
|P ′ �′[n]

←←←←←←←←←←←←←←←←←←←→ R, and this falls
under the previous case.

C.7. Proof of Proposition 4.9

PROOF. By Theorem 4.8, E(lcopy(HP ) ⊢ P , P )
�0[m0]
←←←←←←←←←←←←←←←←←←←←←←←←←→ E(lcopy(HQ) ⊢ Q,Q) and

E(lcopy(HP ) ⊢ P , P )
�1[m1]
←←←←←←←←←←←←←←←←←←←←←←←←←→ E(lcopy(HR) ⊢ R,R) and E(lcopy(HQ) ⊢ Q,Q) →∗

E(lcopy(HT ) ⊢ T , T ) andE(lcopy(HR) ⊢ R,R) →∗ E(lcopy(HT ) ⊢ T , T ). By Propo-
sition 3.13, we get anS′ such thatE(lcopy(HQ) ⊢ Q,Q)

�1[m1]
←←←←←←←←←←←←←←←←←←←←←←←←←→ S′ andE(lcopy(HR) ⊢

R,R)
�0[m0]
←←←←←←←←←←←←←←←←←←←←←←←←←→ S′ and by Theorem 4.8 we get HQ ⊢ Q

�1
←←←←←←←←←←→
u′1

HS ⊢ S and HR ⊢

R
�0
←←←←←←←←←←→
u′0

H′
S ⊢ S′ such that E(lcopy(HS ) ⊢ S,S) ≡ E(lcopy(H′

S ) ⊢ S′, S′), and
by Lemma 2.12, u0 = u′0 and u1 = u′1. And by Theorem 4.8 and Proposition 3.13,
HS ⊢ S →∗ HT ⊢ T and H′

S ⊢ S
′ →∗ HT ⊢ T .

D. Proofs from Section 4

D.1. Proof of Lemma 4.4
PROOF. We prove this by structural induction on P :

• Assume P = 0. Then P ′ = P [x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak] = 0 and
S(P [x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak], P , [n], x1) = 0.

50



• Assume P = b(c).Q Then either P ′ = d(e).Q′, or P ′ = d(e)[m].Q′, for some
d, e, m. We then get 4 cases: either b = x1, c = x1, b = c = x1, or b ≠ x1 and
c ≠ x1.
Assume b = x1 and c ≠ x1. Then S(P ′, P , [n], x1) = d[n](c).S(Q′, Q, [n], x1)and d = a1, and the result follows from induction.
Assume c = x1 and b ≠ x1. Then, since c is bound, P [x1 ∶= a1] = P [x1 ∶=
a1[n]] = P , and the result follows.
Assume b = c = x1. Then d = a1 and Q[x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak] =
Q[x2 ∶= a2]… [xk ∶= ak] = Q′, and the result follows.

• Assume P = b(c).Q. This is similar to the previous case.
• Assume P =

∑

i∈I
Pi. Then the result follows trivially from induction.

• Assume P = P0|P1. Then either P ′ = P ′
0|P

′
1 , or P0 ≡ !P1 and P ′ = P ′

0 .
If P ′ = P ′

0|P
′
1 then the result follows trivially from induction.

If P0 = !P1 and P ′ = P0, then P ′′ = S
(

!P ′
0 , P0, [n], x

)

|S
(

P ′
0 , P1, [n], x

), and
the result follows from induction.

• Assume P = (�b)Q. Then P ′ = (�c)Q′ and either b = x1 or b ≠ x1.
If b = x1, then P [x1 ∶= a1] = P [x1 ∶= a1[n]] = P .
If b ≠ x1, then the result follows from induction.

• Assume P = !Q. Then either P ′ = !Q′, or P ′ = P ′
0|P

′
1 .

If P ′ = !Q′, the result follows trivially from induction.
Otherwise the case is similar to the second case on parallel composition.

D.2. Proof of Theorem 4.8

PROOF. We first show that if there exists a location u such thatH ⊢ P
�
←←←←←←←→
u

H′ ⊢ P ′, then
E(lcopy(H) ⊢ P , P )

�[m]

E
(lcopy(H′) ⊢ P ′, P ′) by induction on the size ofH∪H∪H

and the structure of P :
Assume H = (∅, ∅, ∅). Then E(H ⊢ P , P ) = P .
AssumeH ≠ (∅, ∅, ∅). Then we perform structural induction on P .
• Assume P = a(x).Q. Then � = a(b), u = [P ][Q[x ∶= b]], and H′ ⊢ P ′ =

(∅, {(a(b), u)}, ∅) ⊢ Q[x ∶= b]. We then by Lemma 4.4 get E(H′ ⊢ P ′, P ′) =
a(x) [[P ][Q[x ∶= b]]] .Q[x ∶= b[[P ][Q[x∶=b]]]], and the rest of the case follows
naturally.

• Assume P = a(x).Q. This case is similar to the previous.
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• Assume P = P0|P1. Then either u = iu′, or u = ⟨0u0, 1u1⟩.
If u = 0u′, then (∅, ∅, ∅) ⊢ P0

�
←←←←←←←←→
u′

H′
0 ⊢ P ′

0 , H′ ⊢ P ′ = (0H ′
0, 0H ′

0, 0H
′
0) ⊢

P ′
0|P1, and if � = a(b) then b ∉ fn(P1). By induction we have a transition
P0

�[u′]
←←←←←←←←←←←←←←←←←←←→ E(H′

0 ⊢ P ′
0 , P0), and therefore P0|P1

�[u]
←←←←←←←←←←←←←←←←→ E(H′

0 ⊢ P ′
0 , P0)|P1 =

E((0H ′
0, 0H ′

0, 0H
′
0) ⊢ P

′
0|P1, P

′
0|P1).

If u = 1u′, the case is similar to u = 0u′.
If u = ⟨0u0, 1u1⟩, then (∅, ∅, ∅) ⊢ Pi

a(b)
←←←←←←←←←←←←←←←→
ui

H′
i ⊢ P ′

i and (∅, ∅, ∅) ⊢ P1−i
a(b)
←←←←←←←←←←←←←←←←→
u1−i

H1−i ⊢ P ′
1−i for some i ∈ {0, 1} and H′ ⊢ P ′ = (∅, ∅, {((a(b), a(b)), u)}) ⊢

P ′
0|P

′
1 and b ∉ fn(Pi). By induction, E((∅, ∅, ∅) ⊢ Pi, Pi)

a(b)[ui]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ E(H′

i ⊢

P ′
i , P

′
i ) and E((∅, ∅, ∅) ⊢ P1−i, P1−i)

a(b)[u1−i]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ E(H′

1−i ⊢ P ′
1−i, P

′
i−1). There-

fore we have a transition P0|P1
�[u]
←←←←←←←←←←←←←←←→ E((∅, ∅, {((a(b), a(b)), ⟨0u0, 1u1⟩ , m)}) ⊢

(�b)(P ′
0|P

′
1), (�b)(P

′
0|P

′
1)) =

(�b)E((∅, ∅, {(a(b), a(b), ⟨0u0, 1u1⟩ , m)}) ⊢ (P ′
0|P

′
1), (P

′
0|P

′
1)).

• Assume P = (�x)Q. Then (∅, ∅, ∅) ⊢ Q
�
←←←←←←←→
u

H′ ⊢ Q′, x ∉ n(�), and P ′ =

(�x)Q′. We then get by induction Q �[u]
←←←←←←←←←←←←←←←←→ E(H′ ⊢ Q′, Q′), and therefore

(�x)Q
�[u]
←←←←←←←←←←←←←←←←→ (�x)E(H′ ⊢ Q′, Q′) = E(H′ ⊢ (�x)Q′, (�x)Q′).

• Assume P = !Q. Then (∅, ∅, ∅) ⊢!Q|Q
�
←←←←←←←→
u

H′ ⊢ P ′, and the rest follows from
the parallel case.

If for any (�′, u′) ∈ H∪H∪H , if there exists a location u such thatH−(�′, u′) ⊢ P
�
←←←←←←←→
u

H′′ ⊢ P ′, then there exists a key m, such that E(H − (�′, u′) ⊢ P , P )
�[u]
←←←←←←←←←←←←←←←←→ E(H′′ ⊢

P ′, P ′), then E only adds past actions and unused choice branches to the process, both
of which one can easily propagate the action past.

We then show that if E(lcopy(H) ⊢P , P )
�[n]
←←←←←←←←←←←←←←←←→ Q then there exists a location, u and

a �IH process,H′ ⊢P ′, such thatH ⊢P
�
←←←←←←←→
u

H′ ⊢P ′ and P ′′ ≡ E(lcopy(H′) ⊢P ′, P ′).
We again do this by induction on the number of extrusions in H ∪ H ∪ H , and the
structure of P .

Assume H ∪ H ∪ H = ∅. Then E(lcopy(H) ⊢ P , P ) = P . Since we are only
proving operational correspondence up to structural congruence, we can discount any
rules employing that.

• Assume P = a(x).Q. Then � = a(b), we say that u = [P ][Q[x ∶= b]], and
E(lcopy(H′) ⊢ P ′, P ′) = a(b)[[P ][Q[x ∶= b]]].Q[x ∶= b[[P ][Q[x∶=b]]]]. We see
that, H′ ⊢ P ′ = (∅, {(a(b), [P ][Q[x ∶= b]], [P ][Q[x ∶= b]])}, ∅) ⊢ Q[x ∶= b],
and by Lemma 4.4 the result follows.
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• Assume P = a(b).Q. This case is similar to the previous.
• Assume P = P0|P1. Then E(lcopy(H) ⊢P , P ) = Q0 ∣ Q1 and either Qi

�[m]
←←←←←←←←←←←←←←←←←←→

Q′
i and Q = Q′

i|Q1−i, or Q0
�0[m]
←←←←←←←←←←←←←←←←←←←←←→ Q′

0 and Q1
�1[m]
←←←←←←←←←←←←←←←←←←←←←→ Q′

1 and �i = a(b) and
�1−i = a(b) and � = � and Q = (�b)(Q′

0|Q
′
1).

If Qi
�[m]
←←←←←←←←←←←←←←←←←←→ Q′

i and Q = Q′
i|Q1−i then by induction there exists ui such that

Qi
�
←←←←←←←←→
ui
P ′′
i and there exists H′

i ⊢P
′
i , such that [ǐ]H ⊢Pi

�

ui
H′
i ⊢P

′
i and P ′′

i ≡

E(lcopy(H′
i) ⊢ P

′
i , P

′
i ). We therefore get (∅, ∅, ∅) ⊢ P

�
←←←←←←←←←←←→
iui

(iHi, iHi, iHi) ⊢

P ′
0|P

′
1 with P ′

1−i = P1−i.
If Q0

�0[m]
←←←←←←←←←←←←←←←←←←←←←→ Q′

0 and Q1
�1[m]
←←←←←←←←←←←←←←←←←←←←←→ Q′

1 and �i = a(b) and �1−i = a(b) and � = � and
Q = (�b)(Q′

0|Q
′
1), then by induction there exist ui such that Qi

�i
←←←←←←←←←→
ui
P ′′
i and there

existsH′
i ⊢P

′
i , such that [ǐ]H ⊢Pi

�

ui
H′
i ⊢P

′
i and P ′′

i ≡ E(lcopy(H′
i) ⊢P

′
i , P

′
i )

for i ∈ {0, 1}. We say u = ⟨u0, u1⟩ and get (∅, ∅, ∅) ⊢ P
�
←←←←←←←→
u

(∅, ∅, ((�0, �1), u, u) ⊢
(�b)(P ′′

0 |P
′′
1 )

• Assume P = (�x)Q. Then x ∉ n(�), E(lcopy(H′) ⊢ P ′, P ′) = (�x)Q′ and
Q

�[u]
←←←←←←←←←←←←←←←←→ Q′. We therefore get P ′ = (�x)Q′′, and by induction H ⊢ Q

�
←←←←←←←→
u

H′ ⊢

Q′, and therefore H ⊢ P
�
←←←←←←←→
u

H′ ⊢ P ′.
• Assume P = !Q. Then the transition must involve structural congruence and

!Q|Q
�[u]
←←←←←←←←←←←←←←←←→ P ′′′ for P ′′′ ≡ P ′′, and the rest follows from the parallel case.

If for any (�′, u′) ∈ H ∪H ∪H , if there exists a key m, such that E(H− (�′, u′) ⊢

P , P )
�[m]
←←←←←←←←←←←←←←←←←←→ E(H′′ ⊢ P ′, P ′), then there exists a location u such that H − (�′, u′) ⊢

P
�
←←←←←←←→
u

H′′ ⊢ P ′, then having more past extrusions does not stop H − (�′, u′) ⊢ P
from performing any forwards actions and having more past actions does not allow
E(H − (�′, u′) ⊢ P , P ) to perform additional forward actions.

We then need to prove that if there exists a location u such thatH ⊢ P
�

u
H′ ⊢ P ′,

then there exists a key m, such that E(lcopy(H) ⊢ P , P )
�[m]

E(lcopy(H′) ⊢ P ′, P ′).
This follows naturally from the above properties, and Propositions 3.5 and 2.6.
We finally need to prove that if E(lcopy(H) ⊢ P , P )

�[n]
Q then there exists a

location, u, such that E(lcopy(H) ⊢ P , P )
�[u]

P ′′, and there exists a �IH process,
H′ ⊢P ′, such that H ⊢P

�

u
H′ ⊢P ′ and P ′′ ≡ E(lcopy(H′) ⊢P ′, P ′).
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As we have proven the above properties, and Propositions 3.5, and 2.6, we only
need to prove that there exists a �IH-calculus process H′ ⊢ P ′, such that P ′′ ≡
E(lcopy(H′) ⊢ P ′, P ′). Since none of the transition rules - forward or reverse - in the
�IK-calculus can create unguarded choice from guarded choice, and E only generates
�I-calculus processes with guarded choice, we know P ′′ has guarded choice.

If P ′′ is a standard process, then H′ ⊢ P ′ = (∅, ∅, ∅) ⊢ P ′′. Otherwise, by The-
orems 3.9 and 2.14, P ′′ must be forwards reachable from a standard process P ′′′ such
that P ′′′ ≡ E((∅, ∅, ∅) ⊢ P ′′′, P ′′′), and by the above properties, H′ ⊢ P ′ exists.

E. Proofs from Section 6

E.1. Proof of Proposition 6.3
Lemma E.1. Let P be a consistent process and  ⊇ n(P ) be a set of names such
that ⦃P⦄( ,l) = ⟨0, Init0, k0⟩, ⦃P⦄( ,l+1) = ⟨1, Init1, k1⟩, and 0 ≤ 1. Then for
any process P ′, where ⦃P ′

⦄( ,l) = ⦃P ′
⦄( ,l)+1 and n(P ′) ⊆  , if ⦃P + P ′

⦄( ,l) =
⟨

 ′
0, Init

′
0, k

′
0
⟩

and ⦃P + P ′
⦄( ,l+1) =

⟨

 ′
1, Init

′
1, k

′
1
⟩

, then  ′
0 ≤  ′

1.

PROOF. Obvious.
Lemma E.2. Let P be a consistent process and  ⊇ n(P ) be a set of names such
that ⦃P⦄( ,l) = ⟨0, Init0, k0⟩, ⦃P⦄( ,l+1) = ⟨1, Init1, k1⟩, and 0 ≤ 1. Then for
any action �, if ⦃�.P⦄( ,l) =

⟨

 ′
0, Init

′
0, k

′
0
⟩

and ⦃�.P⦄( ,l+1) =
⟨

 ′
1, Init

′
1, k

′
1
⟩

, then
 ′
0 ≤  ′

1.

PROOF. Obvious.
Lemma E.3. Let P be a consistent process and ⊇ n(P ) be a set of names such that
⦃P⦄( ,l) = ⟨0, Init0, k0⟩, ⦃P⦄( ,l+1) = ⟨1, Init1, k1⟩, and 0 ≤ 1. Then for any
process P ′ where n(P ′) ⊆  , if ⦃P |P ′

⦄( ,l) =
⟨

 ′
0, Init

′
0, k

′
0
⟩

and ⦃P |P ′
⦄( ,l+1) =

⟨

 ′
1, Init

′
1, k

′
1
⟩

, then  ′
0 ≤  ′

1.

PROOF. Let ⦃P ′
⦄ =

⟨

 ′, Init′, k′
⟩. Obviously 0 × 2 ≤ 1 × 2 and for any (e, ∗), (∗

, e′) ∈ E′
0, there exist names x ∈ no(�′0((e, ∗))) and a such that �′0((∗, e′)) = a(x) if

and only if x ∈ no(�′1((e, ∗))) and �′1((∗, e′)) = a(x). Additionally, the standard bound
names of P0 and P1. are the same.
Lemma E.4. Let P0 and P1 be consistent processes and  ⊇ n(P0) ∪ n(P1) be a
set of names such that ⦃P0⦄( ,l) = ⟨0, Init0, k0⟩, ⦃P1⦄( ,l) = ⟨1, Init1, k1⟩, and
0 ≤ 1. Then for any name n, if ⦃(�n)P0⦄( ,l) =

⟨

 ′
0, Init

′
0, k

′
0
⟩

and ⦃(�n)P1⦄( ,l) =
⟨

 ′
1, Init

′
1, k

′
1
⟩

, then  ′
0 ≤  ′

1.

PROOF. Obvious.
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E.2. Proof of Proposition 6.5
PROOF. We say that  = (E, F,↦, ♯,⊳, �,Act) and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′)
and do a case analysis on the structural congruence rules:
P = P0|P1 and P ′ = P1|P0: In this case, products are unique up to isomorphism, and

the function f (e) =
⎧

⎪

⎨

⎪

⎩

(e1, e0) if e = (e0, e1)
(e1, ∗) if e = (∗, e1)
(∗, e0) if e = (e0, ∗)

clearly fulfils the other conditions

and remains a morphism after the enablings and preventions describing the link
dependencies are added to the product.

P = P0|(P1|P2) and P ′ = (P0|P1)|P2: We know that products are associative up to
isomorphism, and the function f ((e0, (e1, e2)) = ((e0, e1), e2) clearly fulfils the
other conditions and remains a morphism after the enablings and preventions de-
scribing the link dependencies are added to the product.

P = P ′
|0: If f ((e, ∗)) = e, then this clearly holds.

P = P0 + P1 and P ′ = P1 + P0: Coproducts are unique up to isomorphism, and the
mapping f (i, e) = (1 − i, e) clearly fulfils the other conditions.

P = P0 + (P1 + P2) and P ′ = (P0 + P1) + P2: We know that coproducts are associa-
tive up to isomorphism, and f ((e0, (e1, e2))) = ((e0, e1), e2) clearly fulfils the
other conditions.

P = P ′ + 0: Clearly f (0, e) = e is an isomorphism, Init = {0} × Init′, and k(0, e) =
k′(e).

P = !xQ, P ′ = !x⧵{x0,…,xk}Q|Q{
x0,…,xk∕a0,…,ak} , {x0,… , xk} ⊆ x, and bn(P ) = {a0,… , ak}:Straightforward from the requirement that all free and bound names are distinct.

E.3. Proof of Theorem 6.7
PROOF. Let  = (E, F,↦, ♯,⊳, �,Act) and  ′ = (E′, F ′,↦′, cf ′,⊳′, �′,Act′). We
prove the theorem by induction on P �[m]

←←←←←←←←←←←←←←←←←←→ P ′:
1. Suppose P = a(x).Q, P ′ = a(x)[m].Q[x ∶= b[n]], std(Q), and � = a(b). Then

for all n ∈ ( ⧵ sbn(Q)) = ( ⧵ sbn(Q[x ∶= b[n]])), we have ⦃Q[x ∶= n]⦄ =
⟨n, Initn, kn⟩,

⦃

Q[x ∶= b[n]][b[n] ∶= n]
⦄

=
⟨

 ′
n, Init

′
n, k

′
n
⟩, and an isomorphism

fn ∶ n →  ′
n. We define our isomorphism

f ((n, en)) =
{(n, fn(en)) if en ∈ En
(n, e′n) for {e′n} = {e′ ∣ (n, e′) ∈ E′ and e′ ∉ E′

n} otherwise
Since all bound names are different from all other bound and free names, b ∉
bn(Q), and therefore there exists an e ∈ E such that �(e) = a(b), and for all
e′ ∈ E either e′ = e, e′ ♯ e, or {e} ↦ e′. We therefore get Init = ∅

{e}
←←←←←←←←←←←←←→ X and

f (X) = Init′, and the rest of the conditions fulfilled.

55



2. Suppose P = a(x).Q, P ′ = a(x)[m].Q, � = a(x), and std(Q). This case is similar
to the previous, without the choice of substitutions.

3. Suppose P = �[n].Q, P ′ = �[n].Q′, Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′, m ≠ n, and if � = a(x)

then x ∉ n(�). Then let ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩ and ⦃Q′

⦄ =
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

.
We have an isomorphism fQ ∶ Q →  ′

Q and a transition InitQ
eQ
←←←←←←←←←←←→ XQ such

that �Q(eQ) = �, f◦k′Q = kQ[eQ ↦ m], and f (XQ) = Init′Q. We define our
isomorphism

f ((n, en)) =
{(n, fn(en)) if en ∈ En
(n, e′n) for {e′n} = {e′ ∣ (n, e′) ∈ E′ and e′ ∉ E′

n} otherwise
and e = (x, eQ) if � = a(x), and

f (e′) =

{

fQ(e′) if e′ ∈ EQ
e′′ for {e′′} = {e′′′ ∣ e′′′ ∈ E′ and e′′′ ∉ E′

Q} otherwise
and e = eQ if � = a(x). These clearly fulfil the conditions.

4. Suppose P = P0|P1, P ′ = P ′
0|P1, P0

�[m]
←←←←←←←←←←←←←←←←←←→ P ′

0 , fsh[n](P1), and if � = a(x)
then x ∉ fn(P1). Then let ⦃P0⦄ = ⟨0, Init0, k0⟩,

⦃

P ′
0
⦄

=
⟨

 ′
0, Init

′
0, k

′
0
⟩,

and ⦃P1⦄ = ⟨1, Init1, k1⟩. We then have an isomorphism f0 ∶ 0 →  ′
0 and

transition Init0
e0
←←←←←←←←←→ X0 such that �0(e0) = �, f0◦k′0 = k0[e0 ↦ m], and f0(X0) =

Init′0. We define our isomorphism

f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)

(∗, e′1) if e′ = (∗, e′1)

(f0(e′0), e
′
1) if e′ = (e′0, e

′
1)

and e = (e0, ∗). Since sbn(P0) = sbn(P ′
0) this is an isomorphism, and since all

free and bound names are different, no(�) ∩ sbn(P1) = ∅, implying Init
e
←←←←←→. The

other conditions are clearly fulfilled.
5. SupposeP = P0|P1, P ′ = (�x)(P ′

0|P1), � = �, P0
a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

0 , andP1
a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

1 .Then let ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃

P ′
0
⦄

=
⟨

 ′
0, Init

′
0, k

′
0
⟩, ⦃P1⦄ = ⟨1, Init1, k1⟩,

and ⦃

P ′
1
⦄

=
⟨

 ′
1, Init

′
1, k

′
1
⟩. Then we have isomorphisms f0 ∶ 0 →  ′

0 and
f1 ∶ 1 →  ′

1 and transitions Init0
e0
←←←←←←←←←→ X0 and Init1

e1
←←←←←←←←←→ X1 such that �0(e0) =

a(x), �1(e1) = a(x), f0◦k′0 = k0[e0 ↦ m], f1◦k′1 = k1[e1 ↦ m], f0(X0) = Init′0,and f1(X1) = Init′1. We then define our isomorphism

f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)

(∗, f1(e′1)) if e′ = (∗, e′1)

(f0(e′0), f1(e
′
1)) if e′ = (e′0, e

′
1)
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and e = (e0, e1). Since sbn(P0) = sbn(P ′
0) and the existence of (f0(e0), f1(e1)) ∈

Init′ and a(x)[m] and a(x)[m] prevents (�x) from affecting  ′, f is an isomor-
phism, and since no(�) = ∅, we have a transition Init

e
←←←←←→. The other conditions

are clearly fulfilled.
6. Suppose P = P0 + P1, P ′ = P ′

0 + P1, P0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′

0 , and std(P1). Then let
⦃P0⦄ = ⟨0, Init0, k0⟩,

⦃

P ′
0
⦄

=
⟨

 ′
0, Init

′
0, k

′
0
⟩, and ⦃P1⦄ = ⟨1, Init1, k1⟩.

We then have an isomorphism f0 ∶ 0 →  ′
0 and transition Init0

e0
←←←←←←←←←→ X0 such

that �0(e0) = �, f0◦k′0 = k0[e0 ↦ m], and f0(X0) = Init′0. We define out
isomorphism

f ((i, ei)) =
{(0, f0(e0)) if i=0
(1, e1) if i=1

and e = (0, e0). Isomorphism is preserved by the coproduct, and the remaining
conditions are clearly fulfilled.

7. Suppose P = (�x)Q, P ′ = (�x)Q′, Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′, and x ∉ n(�). Then let

⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩ and ⦃Q′

⦄ =
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

. We have an isomor-
phism fQ ∶ Q →  ′

Q and a transition InitQ
eQ
←←←←←←←←←←←→ XQ such that �Q(eQ) = �,

f◦k′Q = kQ[eQ ↦ m], and f (XQ) = Init′Q. Either there exist past actions
b(a)[m] and b(a)[m] in P which are not guarded by a restriction (�a) in P or
not. If such b(a)[m] and b(a)[m] exist, then ⟨ , Init, k⟩ =

⟨

Q, InitQ, kQ
⟩ and

⟨

 ′, Init′, k′
⟩

=
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

, and the rest follows trivially. Otherwise re-
striction preserves morphisms, and clearly does not affect e = eQ.

8. Suppose P ≡ Q, P ′ ≡ Q′, and Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′. Then the result follows from

induction and Proposition 6.5
E.4. Proof of Theorem 6.8
PROOF. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅, and no transition Init
{e}
←←←←←←←←←←←←←→ X exists.

• Suppose P = a(x).Q. Let ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Then there exists e such
that E ⧵ EQ = {e}, and for all e′ ∈ E, if e′ ≠ e then {e} ↦ e′. Therefore this
is the only possible e such that Init {e}

←←←←←←←←←←←←←→. Additionally we have �(e) = a(x) and
P

a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ a(x)[m].Q for any key m, and the rest of the case is straightforward.

• Suppose P = a(x).Q. Then there must exist b ∈  ⧵ sbn(P ) such that �(e) =
a(b), and for all e′ ∈ E either e = e′, e ♯ e′, or {e} ↦ e′. There then exists a
transition P a(b)[m]

←←←←←←←←←←←←←←←←←←←←←←←←←←→ a(b)[m].Q[x ∶= b[m]] and the rest of the case is straightfor-
ward.
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• Suppose P = a(x)[n].Q. Let ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩, Q = (EQ, FQ,↦Q

, ♯Q,⊳Q, �Q,ActQ), and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Then Init
{e}
←←←←←←←←←←←←←→ X

implies InitQ
{e}
←←←←←←←←←←←←←→ X ∩ EQ. We therefore have a transition Q �[m]

←←←←←←←←←←←←←←←←←←→ Q′ such
that ⦃Q′

⦄ =
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

and an isomorphism fQ ∶ Q →  ′
Q such that

�Q(e) = �, fQ◦k′Q = kQ[e ↦ m], and fQ(X ∩ EQ) = Init′Q. This gives us a
transition P �[m]

←←←←←←←←←←←←←←←←←←→ a(x)[n].Q′ and the rest of the case is straightforward.
• Suppose P = a(x)[n].Q. This case is a combination of the previous two.
• Suppose P = Q + R. Let ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), ⦃R⦄ = ⟨R, InitR, kR⟩, R = (ER, FR,↦R, ♯R,⊳R, �R,ActR),and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Either e = (0, eQ) or e = (1, eR). In
the first case we get a transition transition Q �[m]

←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′
⦄ =

⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

and an isomorphism fQ ∶ Q →  ′
Q such that �Q(eQ) = �,

fQ◦k′Q = kQ[eQ ↦ m], and fQ({e′Q|(0, e′Q) ∈ X}) = Init′Q. We therefore define

f (e) =
{(0, fQ(eQ)) if e = (0, eQ)
e otherwise

and the rest of the case is straightforward. If e = (1, eR), the proof is similar.
• Suppose P = Q|R. Let ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩, ⦃R⦄ = ⟨R, InitR, kR⟩,

Q = (EQ, FQ,↦Q, ♯Q,⊳Q, �Q,ActQ), R = (ER, FR,↦R, ♯R,⊳R, �R,ActR),and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Either e = (eQ, ∗), e = (∗, eR), or e =

(eQ, eR). If e = (eQ, ∗) then we have a transitionQ
�[m]
←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′

⦄ =
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

and an isomorphism fQ ∶ Q →  ′
Q such that �Q(eQ) = �,

fQ◦k′Q = kQ[eQ ↦ m], and fQ({e′Q|(e′Q, ∗) ∈ X or (e′Q, e′R) ∈ X}) = Init′Q.
We therefore get P �[m]

←←←←←←←←←←←←←←←←←←→ Q′
|R so long as fsh[m](R), and if not we can do the

same with a different m. We can then define

f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)

(∗, e′1) if e′ = (∗, e′1)

(f0(e′0), e
′
1) if e′ = (e′0, e

′
1)

and the rest of the case is straightforward. If e = (∗, eR), the case is similar. If e =
(eQ, eR), thenwe have transitionQ

�[m]
←←←←←←←←←←←←←←←←←→ Q′ such that⦃Q′

⦄ =
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

and isomorphism fQ ∶ Q →  ′
Q such that �Q(eQ) = �, fQ◦k′Q = kQ[eQ ↦ m],

and fQ({e′Q|(e′Q, ∗) ∈ X or (e′Q, e′R) ∈ X}) = Init′Q, and transition R �′[m]
←←←←←←←←←←←←←←←←←←←←→ R′

such that ⦃R′
⦄ =

⟨

 ′
R, Init

′
R, k

′
R
⟩ and isomorphism fR ∶ R →  ′

R such that
�R(eR) = �′, fR◦k′R = kR[eR ↦ m], and fR({e′R|(∗, e′R) ∈ X or (e′Q, e′R) ∈
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X}) = Init′R and there exist names a, b such that either � = a(b) and �′ = a(b)

or �′ = a(b) and � = a(b). We therefore get a transition P �[m]
←←←←←←←←←←←←←←←←←→ (�b)(Q′

|R′) and
define

f (e) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e = (e′0, ∗)

(∗, f1(e′1)) if e = (∗, e′1)

(f0(e′0), f1(e
′
1)) if e = (e′0, e

′
1)

and the rest of the case is straightforward.
• Suppose P = (�a)Q. Let ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Then either there exist
past actions b(a)[m] and b(a)[m] inQ which are not guarded by a restriction (�a)
in Q or not. If such b(a)[m] and b(a)[m] do exist, then they must be in parallel,
and therefore there exists an event e′ ∈ E ⧵ Init such that �(e) = b(a), and for
all other events e′′ ∈ E, if �(e′) outputs a then e′ = e, and if a ∈ no(�(e′)) then
{e′} ↦ e′′. Additionally there exists e′′′ ∈ Init such that e′′′ ♯ e′ and �(e′′′) = �.
We therefore get that a ∉ n(e). Additionally InitQ = Init

{e}
←←←←←←←←←←←←←→ X and by induction

we have a transition Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′

⦄ =
⟨

 ′
Q, Init

′
Q, k

′
Q

⟩

and an
isomorphism fQ ∶ Q →  ′

Q such that �Q(e) = �, fQ◦k′Q = kQ[e ↦ m], and
fQ(X) = Init′Q = Init′. We define f = fQ and the result follows. If no such
b(a)[m] and b(a)[m] exist in Q then clearly a ∉ n(�(e)), and restriction preserves
morphisms, meaning the proof is straightforward.

F. Proofs from Section 7

F.1. Proof of Theorem 7.3
PROOF. I is clearly irreflexive and symmetric, based on Definition 2.9.

We prove the three requirements on the definition of an LATS:
1. If (�, u,D) ∈ E, then there exist processes H ⊢ P and H′ ⊢ P ′ such that

H ⊢ P
�

←←←←←←←←←←←←←←→
u,D

H′ ⊢ P ′ by definition.
2. IfH ⊢ P

�
←←←←←←←←←←←←←←→
u,D

H′ ⊢ P ′ andH ⊢ P
�

←←←←←←←←←←←←←←→
u,D

H′′ ⊢ P ′′ then we can use similar argu-
ments to Theorem 4.2 of [14] to show that P ′ ≡ P ′′ and H′ = H′′. Unlike [14],
we do not need to take into account a (Rep) rule, eliminating that case, but instead
a [STR] rule, which we do by only requiring P ′ ≡ P ′′, rather than P ′ = P ′′.

3. If H ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

H0 ⊢ P0, H ⊢ P
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

H1 ⊢ P1 and (�0, u0, D0) and
(�1, u1, D1) are independent then by Proposition 2.10, we get H0 ⊢ P0

�1
←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

H2 ⊢ P2 and H1 ⊢ P1
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

H2 ⊢ P2 for some H2 ⊢ P2.
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4. If H ⊢ P
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

H0 ⊢ P0, H0 ⊢ P0
�1

←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

H2 ⊢ P2 and (�0, u0, D0) and
(�1, u1, D1) are independent then we can use similar arguments to Theorem 4.2
of [14] to show that H ⊢ P

�1
←←←←←←←←←←←←←←←←←←←←←←→
u1,D1

H1 ⊢ P1 and H1 ⊢ P1
�0

←←←←←←←←←←←←←←←←←←←←←←→
u0,D0

H2 ⊢ P2 for
some H1 ⊢ P1.

G. Proofs from Section 8

G.1. Proof of Lemma 8.2
PROOF. We first prove that if X is a possible cause, then it fulfils these conditions by
induction on the size of X.

If X = ∅, then this is obvious.
Otherwise, if X ≠ ∅ is a possible cause of e then for each e′ ∈ X, these exists

X′ ⊆ (X ⧵ {e′} such that X′ is a possible cause of e′. By definition, X is finite and
conflict free. Additionally, there can only exist one such X′, since different possible
causes of the same event must include different events from the same bundle, and are
therefore in conflict. We can therefore say that e′ <X e′′ if there exists a possible
cause of e′′, X′′, such that X′ ⊆ X′′ ⊆ X, and since events cannot appear in their
own possible causes, ≤X is a partial order. By induction,X must then be reachable, by
performing the events in a sequence ordered by <X .Since X contains one event from each bundle associated with e, and X ∪ {e} is
conflict free and therefore a configuration, X e

←←←←←→.
For any reachable configuration, X′′ ⊂ X, since X′′ is reachable, if e′ ∈ X ⧵X′′,

then there cannot exist e′′ ∈ X′′ such that e′ <X e′′. Therefore there must exist at least
one e′′′ ∈ X ⧵ X′′ such that e′′′ is a maximal element of X with regards to <X . This
means that e′′′ ∈ Y ↦ e for some Y , and therefore X′′ ∩ Y = ∅, and X′′ ̸

e
←←←←←→.

If X is reachable, X e
←←←←←→, and for all reachable configurations X′′ ⊂ X, X′′ ̸

e
←←←←←→,

and for any eY and Y ⊂ X such that Y is reachable, Y eY
←←←←←←←←←←←→, and for all reachable

configurations Y ′′ ⊂ Y , Y ′′ ̸
eY
←←←←←←←←←←←→, Y is a possible cause of eY , then we show that X

fulfils the conditions of Definition 5.3:
• Since X e

←←←←←→, e ∉ X.
• X is finite by definition.
• Since X e

←←←←←→, by definition, for any X′ ↦ e, X′ ∩X ≠ ∅.
• Since X e

←←←←←→, X ∪ {e} is a configuration and therefore conflict free.
• Since X is reachable, there exists a trace, ∅ e0

←←←←←←←←←→ X1
e1
←←←←←←←←←→ …Xn

en
←←←←←←←←←→ X, and for any

ei, there exists X′
i ⊆ Xi, which fulfils the conditions and is therefore a possible

cause of ei.
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• If X′ ⊆ X then either X′ is not a reachable configuration, or X′ ̸
e
←←←←←→. In the

first case, if X′ is not a configuration, then X′ is not conflict-free and therefore
cannot be a possible cause. If X′ is a non-reachable configuration, then there
exists e′ ∈ X′ such that for all reachable X′′ ⊂ X′, X′′ ↛ e′. As shown in the
first part of this proof, this means that no X′′ ⊆ X′ is a possible cause of e′, and
thereforeX′ is not a possible cause. IfX′ is a reachable configuration andX′ ̸

e
←←←←←→,

then eitherX′ ∪{e} is not a configuration and therefore not conflict free, or there
exists Y ↦ e such that Y ∩X′ = ∅. Either way, X′ is not a possible cause of e.

G.2. Proof of Proposition 8.5
PROOF. We first show that given a CLRBES,  = (E, F,↦, ♯,⊳, �,Act), PB() is aCLRPES. This is straightforward. We then show that given a morphism f ∶ 0 →
1 between two CLRBESs PB(f ) ∶ PB(0) → PB(1) is an LRPES morphism. Let
0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0), PB(0) = (E′

0, F
′
0, <

′
0, ♯

′
0, ≺

′
0,⊳

′
0, �

′
0,Act

′
0), 1 =

(E1, F1,↦1, ♯1,⊳1, �1,Act1), and PB(1) = (E′
1, F

′
1, <

′
1, ♯

′
1, ≺

′
0,⊳

′
0, �

′
0,Act

′
0).We then show that PB(f ) fulfils the conditions of a LRPES morphism.

• Given (X0, e0) ∈ E′
0 with PB(f )((X0, e0)) = (X1, e1) ≠ ⊥ then {(X′

1, e
′
1) ∣

(X′
1, e

′
1) <

′
1 (X1, e1)} = {(X′

1, e
′
1) ∣ X

′
1 ∪ {e′1} ⊆ X1} ⊆ {f ((X′

0, e
′
0)) ∣ X

′
0 ∪

{e′0} ⊆ X0}.
• Given (X, e), (X′, e′) ∈ E′

0 such that PB(f )((X, e)) ≠ ⊥ ≠ PB(f )((X′, e′)), if
PB(f )((X, e)) ♯′1 PB(f )((X

′, e′)) then either PB(f )((X, e)) ♯′′1 PB(f )((X′, e′)),
PB(f )((X′, e′)) ♯′1 PB(f )((X, e)), or there exists (X′′, e′′) such that (X′′, e′′) <′

1
PB(f )((X′, e′)) and PB(f )((X, e)) ♯′1 (X′′, e′′).
If PB(f )((X, e)) ♯′′1 PB(f )((X′, e′)) then either f (e) ♯1 f (e′) or f (e) = f (e′),
and in either case e ♯0 e′, meaning (X, e) ♯′0 (X′, e′).
If PB(f )((X′, e′)) ♯′1 PB(f )((X, e)), then (X′, e′) ♯′0 (X, e) and since ♯′0 is closedunder symmetry, (X, e) ♯′0 (X′, e′).
If there exists (X′′, e′′) such that (X′′, e′′) <′

1 PB(f )((X
′, e′)) andPB(f )((X, e)) ♯′1

(X′′, e′′), then X′′ ∪ {e′′} ⊆ f (X′), meaning we have e′′0 such that f (e′′0 ) = e′′

and e′′0 ∈ X′′′
0 ↦0 e′ and X′′

0 ⊆ X′ such that (X′′, e0) ∈ E0 and f (X′′
0 ) = X′′.

We therefore get (X′′, e′′) <′
0 (X′, e′) and (X, e) ♯′0 (X′′, e′′), and therefore

(X, e) ♯′0 (X
′, e′).

• ≺0=≺0= ∅ × ∅.
• Given (X, e), (X′, e′) ∈ E′

0 such that PB(f )((X, e)) ≠ ⊥ ≠ PB(f )((X′, e′)), if
PB(f )((X, e)) ⊳′

1 PB(f )((X
′, e′)) then PB(f )((X′, e′)) <′

1 PB(f )((X, e)), mean-
ing f (X′) ∪ {f (e′)} ⊆ f (X). Since f is a morphism, we get e ⊳0 e′, andsince 0 is causal, e′ ∈ X′′ ↦0 e, meaning (X′, e′) <′

0 (X, e), and therefore
(X, e) ⊳′

0 (X
′, e′).

• If PB(f )((X, e)) = PB(f )((X, e′)) ≠ ⊥ and (X, e) ≠ (X′, e′) then either e = e′
and X ≠ X′, or e ≠ e′ and f (e) = f (e′). Either way (X, e) ♯′0 (X

′, e′).
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• Straightforward.
• Straightforward.

The rest of the proof of PB being a functor is straightforward.
G.3. Proof of Lemma 8.6

PROOF. We first prove that if Y e
←←←←←→ then there exists a reachable configuration Y ′ =

{(X′, e′) ∣ X′ ∪ {e′} ⊆ Y } and X ⊆ Y such that Y ′ (X,e)
←←←←←←←←←←←←←←←←←←←←→. We do this by induction on

the size of Y .
If Y = ∅, then clearly ∅ is a possible cause of e, and Y ′ = ∅

(∅,e)
←←←←←←←←←←←←←←←←←→.

If Y ≠ ∅ then since  is causal, Y must be forwards reachable. Therefore, by
induction, Y is also forwards reachable. And clearly Y ′ contains all causes of and no
conflicts with (X, e), giving us Y ′ (X,e)

←←←←←←←←←←←←←←←←←←←←→.
We then prove that if Y ′ (X,e)

←←←←←←←←←←←←←←←←←←←←→ then Y = X ∪
⋃

(X′,e′)∈Y ′
X′ ∪ {e′} is a reachable

configuration and Y e
←←←←←→. We prove this by induction on the size of Y ′.

If Y ′ = ∅ then X = ∅ and therefore Y = ∅. And since ∅ is a possible cause of e,
Y

e
←←←←←→.
If Y ′ ≠ ∅ then since PB() is causal, Y ′ must be forwards reachable. And since

Y ′ (X,e)
←←←←←←←←←←←←←←←←←←←←→, X ⊆ Y ′, and Y =

⋃

(X′,e′)∈Y ′
X′ ∪ {e′}. Therefore, by induction, Y is also

forwards reachable. And since Y contains a possible cause of e, Y e
←←←←←→.

G.4. Proof of Theorem 8.7
PROOF. Suppose  = (E, F,↦, ♯,⊳, �,Act),  ′ = (E′, F ′,↦′, ♯′, ≺′,⊳′, �′,Act′),
and PB() = (EP , FP , <P , ♯P , ≺P ,⊳P , �P ,ActP ).We first note that, if an event in E′ has a minimal representative, t, containing an
action, which either receives names not in  , or can only be reached by using �-
conversion in a way other than what is used for replication when generating  , then
e cannot cause any events, for which the above does not hold.

We prove the theorem by induction on the structure and level of nesting of replica-
tion in P .

If P does not contain replication, then we look at the structure of P :
1. Suppose P = 0. Then  and  ′ both have no events.
2. Suppose P = a(x).Q. Then for each name n,  ′ has an event containing the trace

(a(n), [P ][Q[x ∶= n]]), ∅) and for each name n′ ∈  ,  has an event with no
bundles, a(n′). We have for each Q[x ∶= n], ⦃Q[x ∶= n]⦄ = ⟨n, Initn, kn⟩
and  ′

n being the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢
Q[x ∶= n] and by induction we have morphisms fn ∶ PB(n) →  ′

n and f ′
n ∶
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 ′
n → PB(n) such that fn◦f ′

n = 1PB(n). This means we can define f ∶ PB() →
 ′ as

f (e) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{(a(n), [P ][Q[x ∶= n]]), ∅)} if �(e) = a(n) and no
e′ exists such that e′ < e

{(a(n), [P ][Q[x ∶= n]]), ∅)t ∣ t ∈ fn(e′)} if e = (n, e′) and there
exists e′′ such that e′′ < e

This is clearly a morphism.
We also define f ′ ∶  ′ → PB() and

f ′(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

e′ if ((a(n), [P ][Q[x ∶= n]]), ∅) ∈ e,
�(e′) = a(n), and
no e′′ exists such that e′′ < e′

f ′
n(T ) if T = {t ∣ ((a(n), [P ][Q[x ∶= n]]), ∅)t ∈ e} ≠ {"}
⊥ otherwise

This is clearly also amorphism and f◦f ′ = 1PB(). Additionally, for any e′ ∈ E′,
if f ′(e′) is defined, then f (f ′(e′)) = e′.

3. Suppose P = a(x).Q. This case is similar to the previous.
4. Suppose P = Q|R. Then we have ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩, PB(Q) = PQ ,

and  ′
Q being the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢

Q as well as ⦃R⦄ = ⟨R, InitR, kR⟩, PB(R) = PR , and  ′
R being the event

structure generated by the causal semantics of (∅, ∅, ∅) ⊢ R, and by induction
there exist morphisms fQ ∶ PB(Q) →  ′

Q, f ′
Q ∶  ′

Q → PB(Q), fR ∶
PB(R) →  ′

R, and f ′
R ∶  ′

R → PB(R), such that fQ◦f ′
Q = 1PB(Q) and

fR◦f ′
R = 1PB(R). We then define f ∶ PB() →  ′ as
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f ((X, e)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[(�, 0u, ∅)]≈ if X = ∅, e = (eQ, ∗), and fQ(eQ) = (�, u, ∅)
[(�, 1u, ∅)]≈ if X = ∅, e = (∗, eR), and fR(eR) = (�, u, ∅)
[(�, ⟨0u0, 1u1⟩ , ∅)]≈ if X = ∅, e = (eQ, eR), fQ(eQ) = (�0, u0, ∅),

and fR(eR) = (�1, u1, ∅)
e′ if e = (eQ, ∗), fQ(eQ) = (�, u,D),

last(e′) = (�, 0u,D′),
and e′′ < e′ iff
∃(X′′′, e′′′).f ((X′′′, e′′′) = e′′

and X′′′ ∪ {e′′′} ⊆ X
e′ if e = (∗, eR), fR(eR) = (�, u,D),

last(e′) = (�, 1u,D′),
and e′′ < e′ iff
∃(X′′′, e′′′).f ((X′′′, e′′′) = e′′

and X′′′ ∪ {e′′′} ⊆ X
e′ if e = (eQ, eR), fQ(eQ) = (�0, u0, D0),

fR(eR) = (�1, u1, D1),
last(e′) = (�, ⟨0u0, 1u1⟩ , D′),
and e′′ < e′ iff
∃(X′′′, e′′′).f ((X′′′, e′′′) = e′′

and X′′′ ∪ {e′′′} ⊆ X

To define the inverse of f , f ′ ∶  ′ → PB(), we first define two helper functions
g0 and g1, which extract the part of a trace which took place in each half of the
process:

gQ(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

� if t = �
gQ(t′)(�, u,D′) if t = t′(�, 0u,D),D′ = {(n, u) ∣ (n, 0u) ∈ D}
gQ(t′) if t = t′(�, 1u,D)
gQ(t′)(�0, u0, D′) if t = t′(�,

⟨

0l0[P0][P ′
0], 1l1[P1][P

′
1]
⟩

, D),
∃i ∈ {0, 1}.Pi

a(b)
←←←←←←←←←←←←←←←→ P ′

i , P1−i
a(b)
←←←←←←←←←←←←←←←→ P ′

1−i,
�i = a(b), and �1−i = a(b), and
D′ = {(n, u) ∣ n ∈ no(�0) and t = t0(a(n), 0u,D0)t1}
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gR(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

� if t = �
gR(t′)(�, u,D′) if t = t′(�, 1u,D),D′ = {(n, u) ∣ (n, 1u) ∈ D}
gR(t′) if t = t′(�, 0u,D)
gR(t′)(�1, u1, D′) if t = t′(�,

⟨

0l0[P0][P ′
0], 1l1[P1][P

′
1]
⟩

, D),
∃i ∈ {0, 1}.Pi

a(b)
←←←←←←←←←←←←←←←→ P ′

i , P1−i
a(b)
←←←←←←←←←←←←←←←→ P ′

1−i, �i = a(b),
and �1−i = a(b), and
D′ = {(n, u) ∣ n ∈ no(�1) and t = t0(a(n), 1u,D1)t1}

It is clear that if t is a trace in Q|R, then gQ(t) is a trace in Q and GR(t) is a tracein R. We then define f ′ on e′ with minimal representative t(�, u, ∅):

f ′(e′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(X, (eQ, eR)) where if u = 0u0 or u = ⟨0u0, 1u1⟩ then
(XQ, eQ) = f ′

Q([gQ(t(�, u, ∅))]≈) ≠ ⊥,
and otherwise eQ = ∗
and if u = 1u1 or u = ⟨0u0, 1u1⟩ then
(XR, eR) = f ′

R([gR(t(�, u, ∅))]≈) ≠ ⊥,
and otherwise eR = ∗
if t is empty, then X = ∅,
otherwise X =

⋃

∃e′′<e′.f ′′(e′′)=(X′,e)
X′ ∪ {e}

⊥ if f ′′
Q([gQ(t(�, u, ∅))]≈) = ⊥ or

f ′′
R ([gR(t(�, u, ∅))]≈) = ⊥

in the relevant cases

We must first prove that if (X, e) ∈ EP , then f ((X, e)) ∈ E′. By Theorems 4.8,
6.7, and 6.8 and Lemma 8.6, this only requires proving that there exists a trace
e0, e1,… , en, e from ∅ where {e0, e1,… , en} = X. If X = ∅, then there exist no
bundlesX′ ↦ e, and this is obvious. IfX ≠ ∅, then for each e′ ∈ X, there exists
X′ ⊆ X such that X′ is a possible cause of e′, so we order X based on e′′ < e′
if e′′ ∈ X′, and any sequence obeying this order is a trace. We then show that
X

e
←←←←←→ in the CS of E, This is obvious from Definition 5.5.

We then prove that for any eP = (X, e) ∈ EP , f ′(f (eP )) = eP . We do this by
induction on the size of X.
If X = ∅, then this is obvious.
If X ≠ ∅, and for all (X′, e′) ∈ EP with X′ smaller than X, f ′(f ((X′, e′))) =
(X′, e′) then:
If e = (eQ, ∗), then by induction, there exists an event (XQ, eQ) ∈ EQP such
that f ((XQ, eQ)) = [gQ(f (eP ))]≈ and f ′([gQ(f (eP ))]≈) = (XQ, eQ). Therefore,
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f ′(f (eP )) = (X′′, e) for some X′′. For any e′P < eP , we know f ′(f (e′P )) = e′P ,and therefore we get X′′ = X.
We then prove that f ′ is a morphism, if e′ ∈ E′ and f ′(e′) ≠ ⊥, then there exists
f ′(e′) ∈ EP , and f (f ′(e′)) = e′. We do this by induction on the length of the
minimal representatives of e′, showing that that f ′(e′) = (XP , eP ) ∈ EP and
f ′
n = f ′ ↾ {e ∣ all minimal representatives of e are of length n} is a morphism,

and f (f ′
n(e

′) = e′.
If the length of the minimal representatives of e′ is 1, then we have three cases:
If t = (�, 0u, ∅) is a minimal representative of e′ and f ′(e′) ≠ ⊥, then by Theo-
rems 4.8, 6.7, and 6.8 and Lemma 8.6 there must exist an event eQ ∈ EQ, suchthat f ′

Q((�, u, ∅)) = (X, eQ), which can be performed from the configuration ∅
and has no link causes from R, meaningX = ∅ and (∅, (eQ, ∗)) ∈ EP . Addition-ally, by induction, fQ(f ′

Q([(�, u, ∅)]≈)) = [(�, u, ∅)]≈, and therefore f (f ′
n(e

′) =
e′.
If t = (�, 0u, ∅) is a minimal representative of e′ then the argument is similar.
If t = (�, ⟨0u0, 1u1⟩ , ∅) is a minimal representative of e′, then by induction we
have events

(XQ, eQ) = f ′
Q([gQ((�, ⟨u0, u1⟩ , ∅))]≈) ∈ EPQ

and
(XR, eR) = f ′

R([gR((�, ⟨u0, u1⟩ , D))]≈) ∈ EPR
and by Theorems 4.8, 6.7, and 6.8 and Lemma 8.6 neither eQ or eR have any
causes, meaningXQ = XR = ∅ and (∅, (eQ, eR)). Additionally, by induction, weget

fQ(f ′
Q([gQ((�, ⟨u0, u1⟩ , ∅))]≈)) = [gQ((�, ⟨u0, u1⟩ , ∅))]≈

and
fR(f ′

R([gR((�, ⟨u0, u1⟩ , ∅))]≈)) = [gQ((�, ⟨u0, u1⟩ , ∅))]≈
and therefore f (f ′

n(e
′) = e′.

We now prove that f ′ ↾ {e ∣ all minimal representatives of e are of length 0} =
f ′
0 is a morphism.
(a) for all e ∈ E′, if f ′

0(e) ≠ ⊥ then {e′ ∣ e <P f ′
0(e

′)} = ∅ = {f (e′′) ∣ e′′ <′

e′}.
(b) for all e, e′ ∈ E′, if f ′

0(e) ≠ ⊥ ≠ f ′
0(e

′) and f ′
0(e) ♯P f ′

0(e
′) then e has

a minimum representative (�, u, ∅) and e′ has a minimum representative
(�′, u′, ∅) and either (a) f ′

0(e) = (∅, (eQ, ∗)) and f ′
0(e

′) = (∅, (e′Q, ∗)), (b)
f ′
0(e) = (∅, (eQ, ∗)) and f ′

0(e
′) = (∅, (e′Q, e

′
R)), (3) f ′

0(e) = (∅, (eQ, eR)) and
f ′
0(e

′) = (∅, (e′Q, e
′
R)), (4) f ′

0(e) = (∅, (eQ, eR)) and f ′
0(e

′) = (∅, (e′Q, ∗)), (5)
f ′
0(e) = (∅, (∗, eR)) and f ′

0(e
′) = (∅, (∗, e′R)), (6) f ′

0(e) = (∅, (∗, eR)) and
f ′
0(e

′) = (∅, (e′Q, e
′
R)), or (7) f ′

0(e) = (∅, (eQ, eR)) and f ′
0(e

′) = (∅, (∗, e′R)).If f ′
0(e) = (∅, (eQ, ∗)) and f ′

0(e
′) = (∅, (e′Q, ∗)), then by induction (∅, eQ) ♯QP

(∅, eQ) and u = 0uQ and u′ = 0u′Q, meaning [(�, uQ, ∅)]≈ ♯′Q [(�′u′Q, ∅)]≈,and therefore e′ ♯ e′′.
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If f ′
0(e) = (∅, (eQ, ∗)) and f ′

0(e
′) = (∅, (e′Q, e

′
R)), then by induction we

have (∅, eQ) ♯QP (∅, eQ), u = 0uQ, u′ =
⟨

0u′Q, 1u
′
R

⟩

, and [(�, uQ, ∅)]≈ ♯′Q
[gQ((�, u′, ∅)]≈. Therefore, e′ ♯′ e′′.The other cases are similar.

(c) for all e′ ∈ F ′, if f ′
0(e) ≠ ⊥ then {e ∣ e ≺P f ′

0(e)} = ∅ = {f ′
0(e

′′) ∣ e′′ ≺′

e′}.
(d) for all e ∈ E′ and e′ ∈ F ′, if f ′

0(e) ≠ ⊥ ≠ f ′
0(e

′) then f ′
0(e) ⋫Pf

′
0(e

′).
(e) for all e, e′ ∈ E′, if f ′

0(e) = f ′
0(e

′) ≠ ⊥ and e ≠ e′ then (�, u, ∅) is a
minimal representative of e, (�′, u′, ∅) is a minimal representative of e′,
and for some i ∈ {R,Q}, f ′

i ([gQ((�, u, ∅))]≈) = f ′
i ([gi((�

′, u′, ∅))]≈) and
[gi((�, u, ∅))]≈ ≠ [gi((�′, u′, ∅))]≈.If i = Q then [gQ((�, u, ∅))]≈ ♯′Q [gQ((�′, u′, ∅))]≈, and therefore e ♯0 e′. If
i = R, the argument is similar.

(f) f ′
0(F

′) ⊆ FP = EP .
If the length of the minimal representatives of e′ is n > 1, and for any e′′ ∈ E′

with minimal representatives of length n′ < n, f ′(e′′) = (X′′
P , e

′′
P ) ∈ EP , and wehave a morphism f ′

n−1 = f ′ ↾ {e ∣ all minimal representatives of e are of length
n − 1}, then we first show that f ′(e′) ∈ EP , for which we again have 3 cases for
e′:
If last(e′) = (�, 0u,D) and t of length n is a minimal representative of e′, then
gQ(t) is a trace in Q, and therefore by induction, f ′

Q(t) = (XQ, eQ) ∈ EPQ ,meaning there exists (X, (eQ, ∗)) ∈ EP for some X. We therefore need to prove
thatX =

⋃

∃e′′<e′.f ′(e′′)=(X′,e)
X′∪{e} is a possible cause of (eQ, ∗) in  . If e′′ < e′,

then e′′ must have a minimum representative t′ of length n′ < n such that t′′∼t′
is a prefix of t. By induction, this means f ′(e′′) ∈ EP . By Lemma 8.2, we only
need to prove the following:
(a) X is a configuration, which it is because {e′′ ∣ e′′ < e′} is conflict free, and

by induction {f ′
n−1(e

′′) ∣ e′′ < e′} is conflict free, making X conflict free.
(b) X is reachable, which it is because for each e ∈ X, there exists a possible

cause of e, X′ ⊂ X, and if we order the events of X by inclusion of these
associated possible causes, we get a partial order in which the events can be
performed, similarly to Lemma 8.2.

(c) X is finite, which it is because {e′′ ∣ e′′ <′ e′} is finite, and each potential
cause of e′′ is finite.

(d) X e
←←←←←→ by Theorems 4.8, 6.7, and 6.8 and Lemma 8.6.

(e) IfX′′ ⊂ X is a reachable configuration, then there exists e′′ <′ e′ such that
f ′
n−1(e

′′) = (X′′, e) and e ∉ X′′, and since X′′ is reachable, and therefore
must include all causes of its events, we have minimum representative of
e′′, t′′, such that t = t0t1 and t0∼t′′. Since t is a minimal representative,
there must exist an action, (�, u,D) in t1 such that ¬(last(t′′)I(�, u,D)). If
(�, u,D) ≠ last(t), then by induction, sinceX′′ is reachable, there exists e′′′
such that last(e′′′) = (�, u,D) and e′′ < e′′′ < e′ and f ′

n−1(e
′′′) = (X′′′, e′′′P )

for eP ∈ X ⧵X′′. If (�, u,D) = last(t), then by Theorems 4.8, 6.7, and 6.8
and Lemma 8.6, X′′ ̸

e
←←←←←→.
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In addition, we must show that f (f ′(e′)) = e′. To do this, we merely need to
show that there does not exist e ∈ E′ such that last(e) = last(e′) and for all
e′′ ∈ E′, e′′ < e iff e′′ < e′, but e ≠ e′. This is clearly not possible.
If last(e′) = (�, 1u,D) or last(e′) = (�, ⟨0u0, 1u1⟩ , D), then the arguments are
similar.
We then prove that f ′

n = f ′ ↾ {e ∣ all minimal representatives of e are of length n}
is a morphism:
(a) for all e′ ∈ E′, if f ′

n(e
′) = (X, e) ≠ ⊥ then {e′′ ∣ e′′ <P fn(e′)} =

{(X′′, e′′) ∣ {e′′} ∪ X′′ ⊆ X}. We must now show that there cannot exist
(X′′, e′′) ∈ EP such that {e′′}∪X′′ ⊆ X and there does not exist e′′′ ∈ E′

such that f ′
n(e

′′′) = (X′′, e′′). This follows from Theorems 4.8, 6.7, and 6.8
and Lemmas 8.2 and 8.6.

(b) for all e, e′ ∈ E′, if fn(e) = (X, eP ) ≠ ⊥ ≠ fn(e′) = (X′, e′P ) and
fn(e) ♯P fn(e′) then we have minimal representatives of e and e′, t and
t′ and either eP ♯ e′P , or eP = e′P and X ≠ X′. In the first case, the conflict
comes from either f ′

Q([gQ(t)]≈) ♯QP f ′
Q([gQ(t

′)]≈) or f ′
R([gR(t)]≈) ♯RP

f ′
R([gR(t

′)]≈), and by induction, either [gQ(t)]≈ ♯′Q [gQ(t′)]≈ or [gR(t)]≈ ♯′Q
[gR(t′)]≈, meaning e ♯′ e′. In the second case, there must exist an action
(�, u,D) in t, which is not in t′, and (�′, u′, D′) in t′, which is not in t, and
¬((�, u,D)I last(t′)) and ¬((�′, u′, D′)I last(t)). Therefore, e ♯′ e′.

(c) for all e′ ∈ F ′, if f ′
n(e

′) ≠ ⊥ then {e ∣ e ≺P f ′
n(e

′)} = ∅ = {f ′
n(e) ∣ e ≺

′

e′};
(d) for all e ∈ E and e′ ∈ F0, if f ′

n(e) ≠ ⊥ ≠ f ′
n(e

′) and f ′
n(e) ⊳P f

′
n(e

′)
then f ′

n(e
′) <P f ′

n(e), meaning as previously shown, e′ <′ e, and therefore
e ⊳′ e′.

(e) for all e, e′ ∈ E′, if f ′
n(e) = f ′

n(e
′) ≠ ⊥ then e = e′.

(f) f (F0) ⊆ F1.
We then prove that f is a morphism.
(a) for all e ∈ EP , if f (e) ≠ ⊥ then {e′ ∣ e′ <′ f (e)} = {e′ ∣ ∃t′ ∈

e′.∀t ∈ f (e).∃t′′∼t.t′′ is a prefix of t′} = {f ((X′, eP ) ∣ X′ ∪{eP } ⊆ X} =
{f (eP ) ∣ eP <P e};(b) for all e0, e1 ∈ EP , if f (e0) ≠ ⊥ ≠ f (e1) and f (e0) ♯′ f (e1) then there
exist events e′0 ≤′ f (e0) and e′1 ≤′ f (e1) and traces t(�0, u0, D0) ∈ e′0 and
t(�1, u1, D1) ∈ e′1, such that (�0, u0, D0) ≠ (�1, u1, D1) and we do not have
independence (�0, u0, D0)I(�1, u1, D1). We therefore have e′′0 , e′′1 ∈ EP ,
such that e′′0 ≤ e0 and f (e′′0 ) = e′0 and e′′1 ≤ e1 and f (e′′1 ) = e′1. Since
♯P is closed under conflict heredity, we only need to prove that e′′0 ♯ e′′1 .If there exists i ∈ 0, 1 such that u0 = iu′0 and u1 = iu′1, then this follows
from induction. Otherwise, there exists i ∈ {0, 1} and n ∈ ℕ such that
(n, ui) ∈ D1−i, but this would require some (�′i , ui, D′

i) to appear in t, whichcontradicts t(�i, ui, Di) being a trace.
(c) for all e ∈ FP , if f (e) ≠ ⊥ then {e′ ∣ e′ ≺′ f (e)} = ∅ = {f (e′) ∣ e′ ≺P e};
(d) for all e ∈ EP and e′ ∈ FP , if f (e) ≠ ⊥ ≠ f (e′) and f (e) ⊳′ f (e′) then

f (e′) <′ f (e), and from Item 1 we get e′ <P e, and therefore e ⊳P e′ ;
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(e) for all e, e′ ∈ E0, if f (e) = f (e′) ≠ ⊥ then e = e′;
(f) Straightforward
(g) Straightforward

5. Suppose P = Q + R. Then we have ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩ and  ′

Q being
the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢ Q as well
as ⦃R⦄ = ⟨R, InitR, kR⟩ and  ′

R being the event structure generated by the
causal semantics of (∅, ∅, ∅) ⊢ R, and there exist morphisms fQ ∶ PB(Q) →  ′

Q,
f ′
Q ∶  ′

Q → PB(Q), fR ∶ PB(R) →  ′
R, and f ′

R ∶  ′
R → PB(R) such that

fQ◦f ′
Q = 1PB(Q) and fR◦f ′

R = 1PB(R). We define f ∶ PB() →  ′ as

f (e) =
{{(�, [Q′ + R][Q′′], D)t ∣ (�, [Q′][Q′′], D)t ∈ fQ(e′)} if e = (Q, e′)
{(�, [Q + R′][R′′], D)t ∣ (�, [R′][R′′], D)t ∈ fR(e′)} if e = (R, e′)

This is clearly a morphism.
We then define f ′ ∶  ′ → PB() as

f ′(e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f ′
Q({(�, [Q

′][Q′′], D)t ∣ (�, [Q′ + R][Q′′], D)t ∈ e})
if ∃�,Q′, Q′′, D, t.
(�, [Q′ + R][Q′′], D)t ∈ e
and (�, [Q′][Q′′], D)t ∈ eQ ∈ E′

Q
f ′
R({(�, [R

′][R′′], D)t ∣ (�, [Q + R′][R′′], D)t ∈ e})
if ∃�,R′, R′′, D, t.
(�, [Q + R′][R′′], D)t ∈ e
and (�, [R′][R′′], D)t ∈ eR ∈ E′

R
⊥ otherwise

This is clearly also a morphism and since all names n P are distinct and therefore,
Q ≠ R, f◦f ′ = 1PB(). Additionally, for any e′ ∈ E′, if f ′(e′) is defined, then
f (f ′(e′)) = e′

6. Suppose P = (�x)Q. Isomorphism is preserved by restriction.
If P contains a nested replication of level n, and the result holds for all processes

with a maximum level nested replication of m < n, then we again look at the structure
of P . If P ≠!P ′, then we can use the same arguments as above.

If P = !P ′, then ⦃!xP ′
⦄ = supl∈ℕ ⦃!xP⦄( ,l) =

⦃

…((P ′{x1,…,xk∕a1,…,ak}|P
′{xk+1,…,x2k∕a1,…,ak})|P

′{x2k+1,…,x3k∕a1,…,ak})…
⦄



where {a1,… , ak} = bn(P ′), x1,⋯ ∈ x, and xi ≠ xj for i ≠ j. The set of traces
of !P is the set of traces of …((P ′

|P ′)|P ′)|… . By induction on the level of nesting
replication, we get that the result holds for

…((P ′{x1,…,xk∕a1,…,ak}|P
′{xk+1,…,x2k∕a1,…,ak})|P

′{x2k+1,…,x3k∕a1,…,ak})…

and we refer to the morphisms in question as fx and f ′
x. Since we have

…((P ′
|P ′)|P ′)|… ≡�
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…((P ′{x1,…,xk∕a1,…,ak}|P
′{xk+1,…,x2k∕a1,…,ak})|P

′{x2k+1,…,x3k∕a1,…,ak})…
we know the traces of

…((P ′{x1,…,xk∕a1,…,ak}|P
′{xk+1,…,x2k∕a1,…,ak})|P

′{x2k+1,…,x3k∕a1,…,ak})…

are the same as the traces of …((P ′
|P ′)|P ′)|… . The result therefore follows from

induction.
G.5. Proof of Lemma 8.10
PROOF. We obviously have a transition

Hi ⊢Pi
�′i

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
li[Qi][Q′

i],D
′
i

Hi+1 − (�i, li[Qi][Q′
i]) + (�′i , li[Qi][Q

′
i[x ∶= a]]) ⊢ P ′

i+1

created by simply receiving a different name.
We can then show that there exists a transition
Hi+1 − (�i, li[Qi][Q′

i]) + (�′i , li[Qi][Q
′
i[x ∶= a]]) ⊢ P ′

i+1
�i+1

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
u′i+1,D

′
i+1

…
�′n

←←←←←←←←←←←←←←←←←←←←←←→
u′n,D′

n

by simple induction on the length of the trace.
G.6. Proof of Theorem 8.11
PROOF. We say that we have PB() = (E, F, <, ♯, ≺,⊳, �,Act) and  ′ = (E′, F ′, <′, ♯′
, ≺′,⊳′, �′,Act′) and again prove this by induction on the structure and level of nesting
of replication in P .

1. Suppose P = 0. Then both  and  ′ have no events.
2. Suppose P = a(x).Q. Then for each name n,  ′ has an event containing the trace

(a(n), [P ][Q[x ∶= n]]), ∅) and for each name n′ ∈  ,  has an event with no
bundles, a(n′). We have for each Q[x ∶= n], ⦃Q[x ∶= n]⦄ = ⟨n, Initn, kn⟩,
and  ′

n being the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢
Q[x ∶= n] and by induction we have morphisms fn ∶ PB(n) →  ′

n and f ′
n ∶

 ′
n → PB(n), defined as previously and f ′′

n ∶ lr( ′
n) → lr(n) such that f ′′

n ↾
dom(f ′

n) = f ′
n.We then define f ′′ as

f ′′(e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f ′
n({t ∣ (a(n), u, D)t ∈ e}) if (a(n), u, D)t ∈ e for t ≠ �

and n ∈ 
e′ if (a(n), u, ∅) ∈ e, n ∈  ,

�(e′) = a(n), and
no e′′ exists such that e′′ < e′

f ′
x({t[m ∶= x](u−∅) ∣ (�, u,D)t ∈ e}) if (a(m), u, D)t ∈ e for t ≠ �

and m ∉ 
e′ if (a(m), u, ∅) ∈ e, m ∉ 

�(e′) = a(x), and
no e′′ exists such that e′′ < e′
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Clearly f ′′ ↾ dom(f ′) = f ′, and f ′′ is a morphism.
3. Suppose P = a(b).Q. This case is similar to the previous.
4. Suppose P = Q|R. Then we have ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩, and  ′

Q be-
ing the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢ Q as
well as ⦃R⦄ = ⟨R, InitR, kR⟩, and  ′

R being the event structure generated
by the causal semantics of (∅, ∅, ∅) ⊢ R, and by induction we have the mor-
phisms fQ ∶ PB(Q) →  ′

Q and f ′
Q ∶  ′

Q → PB(Q) and f ′′
Q ∶ lr( ′

Q) → lr(Q)
and fR ∶ PB(R) →  ′

R, f ′
R ∶  ′

R → PB(R) and f ′′
R ∶ lr( ′

R) → lr(R), with fQ,
f ′
Q, fR, and f ′

R as before, and f ′′
Q ↾ dom(f ′

Q) = f ′
Q and f ′′

R ↾ dom(f ′
R) = f ′

R.To define f ′′, we again use the two helper functions g0 and g1 defined in the
parallel case of the previous proof, which extract the part of a trace which took
place in each half of the process:

gQ(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

� if t = �
gQ(t′)(�, u,D′) if t = t′(�, 0u,D), and D′ = {(n, u) ∣ (n, 0u) ∈ D}
gQ(t′) if t = t′(�, 1u,D)
gQ(t′)(�0, u0, D′) if t = t′(�,

⟨

0l0[P0][P ′
0], 1l1[P1][P

′
1]
⟩

, D),
∃i ∈ {0, 1}.Pi

a(b)
←←←←←←←←←←←←←←←→ P ′

i , P1−i
a(b)
←←←←←←←←←←←←←←←→ P ′

1−i, �i = a(b),
and �1−i = a(b), and
D′ = {(n, u) ∣ n ∈ no(�0) and t = t0(a(n), 0u,D0)t1}

gR(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

� if t = �
gR(t′)(�, u,D′) if t = t′(�, 1u,D), and D′ = {(n, u) ∣ (n, 1u) ∈ D}
gR(t′) if t = t′(�, 0u,D)
gR(t′)(�1, u1, D′) if t = t′(�,

⟨

0l0[P0][P ′
0], 1l1[P1][P

′
1]
⟩

, D),
∃i ∈ {0, 1}.Pi

a(b)
←←←←←←←←←←←←←←←→ P ′

i , P1−i
a(b)
←←←←←←←←←←←←←←←→ P ′

1−i, �i = a(b),
and �1−i = a(b), and
D′ = {(n, u) ∣ n ∈ no(�1) and t = t0(a(n), 1u,D1)t1}

It is clear that if t is a trace in Q|R, then gQ(t) is a trace in Q and GR(t) is a trace
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in R. We define f ′′ of an event e′ with a minimal trace t(�, u, ∅):

f ′′(e′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(X, (eQ, eR)) where if u = 0u0 or u = ⟨0u0, 1u1⟩ then
(XQ, eQ) = f ′′

Q([gQ(t(�, u, ∅))]≈) ≠ ⊥,
and otherwise eQ = ∗
and if u = 1u1 or u = ⟨0u0, 1u1⟩ then
(XR, eR) = f ′′

R ([gR(t(�, u, ∅))]≈) ≠ ⊥,
and otherwise eR = ∗
if t is empty, then X = ∅,
otherwise X =

⋃

∃e′′<e′.f ′′(e′′)=(X′,e)
X′ ∪ {e}

⊥ if f ′′
Q([gQ(t(�, u, ∅))]≈) = ⊥ or

f ′′
R ([gR(t(�, u, ∅))]≈) = ⊥

in the relevant cases
Clearly, f ′′ ↾ dom(f ′) = f ′, and the proof of f ′′ being a morphism is similar to
the proof of f ′ being a morphism in the previous theorem.

5. Suppose P = Q + R. Then we have ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩, and  ′

Q being
the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢ Q as well
as ⦃R⦄ = ⟨R, InitR, kR⟩, and  ′

R being the event structure generated by the
causal semantics of (∅, ∅, ∅) ⊢ R, and by inductions we have morphisms fQ ∶
PB(Q) →  ′

Q, f ′
Q ∶  ′

Q → PB(Q), f ′′
Q ∶ lr( ′

Q) → lr(Q), fR ∶ PB(R) →  ′
R,

f ′
R ∶  ′

R → PB(R), f ′′
R ∶ lr( ′

R) → lr(R), with fQ, f ′
Q, fR, and f ′

R as before,
and f ′′

Q ↾ dom(f ′
Q) = f ′

Q and f ′′
R ↾ dom(f ′

R) = f ′
R. We then define

f ′′(e) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f ′′
Q({(�, [Q

′][Q′′], D)t ∣ (�, [Q′ + R][Q′′], D)t ∈ e})
if ∃�,Q′, Q′′, D, t.
(�, [Q′ + R][Q′′], D)t ∈ e
and (�, [Q′][Q′′], D)t ∈ eQ ∈ E′

Q
f ′′
R ({(�, [R

′][R′′], D)t ∣ (�, [Q + R′][R′′], D)t ∈ e})
if ∃�,R′, R′′, D, t.
(�, [Q + R′][R′′], D)t ∈ e
and (�, [R′][R′′], D)t ∈ eR ∈ E′

R

This obviously is a morphism and f ′′ ↾ dom(f ′) = f ′.
6. Suppose P = (�x)Q. Then Then we have ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩, and  ′

Q

being the event structure generated by the causal semantics of (∅, ∅, ∅) ⊢Q and
by inductions we have morphisms fQ ∶ PB(Q) →  ′

Q, f ′
Q ∶  ′

Q → PB(Q), and
f ′′
Q ∶ lr( ′

Q) → lr(Q), with fQ and f ′
Q as before, and f ′′

Q ↾ dom(f ′
Q) = f ′

Q. Thetraces of P will be a subset of the traces of Q, and we define f ′′ as:
f ′′(e) = f ′′

Q(e
′) if e′ ⊆ e and e′ ∈ E′

Q
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7. Suppose P = !Q. Then the argument is much the same as in Theorem 8.7.
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