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Abstract. This paper gives a formal definition of the protocol speci-
fication language Scribble. In collaboration with industry, Scribble has
been developed as an engineering incarnation of the formal multiparty
session types. In its ten years of development, Scribble has been applied
and extended in manyfold ways as to verify and ensure correctness of
concurrent and distributed systems, e.g. type checking, runtime monitor-
ing, code generation, and synthesis. This paper introduces a core version
of Scribble, Featherweight Scribble. We define the semantics of Scrib-
ble by translation to communicating automata and show a behavioural-
preserving encoding of Scribble protocols to multiparty session type.

1 Introduction

The computational model, Klaim, introduced by De Nicola and others [8] advo-
cates a hybrid (dynamic and static) approach for access control against capa-
bilities (policies) to support static checking integrated within a dynamic access-
control procedure. Their capabilities can specify crucial operations for mobile
computation such as read, write and execute of processes in relation to the various
localities, as types. Around the same period, (binary) session types [14,27] were
proposed to describe a sequence of read (output), write (input) and choice oper-
ations for channel passing protocols. Later binary session types were extended
to multiparty session types [7,15], as a model of abstract choreographies of Web
Services Choreography Description Language [6]. See [16, §1] for more historical
backgrounds.

Scribble [13,26] is a protocol description language, formally based on the
multiparty session type theory. A protocol in Scribble represents an agreement
on how participating systems interact with each other. It specifies a format and
a predefined order for messages to be exchanged. The name of the language
embodies the motivation for its creation, as explained by the following quote
from the inventor of the Scribble language Kohei Honda:

The name (Scribble) comes from our desire to create an effective tool for
architects, designers and developers alike to quickly and accurately write
down protocols.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 236–259, 2019.
https://doi.org/10.1007/978-3-030-21485-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_14


Featherweight Scribble 237

Global Protocol

Local Protocol Local Protocol Local Protocol

FSM FSM FSM

Projection

. . . . . .

FSM Generation

. . . . . .

Fig. 1. Scribble development methodology

The development of Scribble is a result of a persistent dialogue between
researchers and industry partners. Currently Scribble tools are applied to verifi-
cation of main stream languages such as Java [18,19], Python [9,17], MPI [24],
Go [5], F# [22], Erlang [23].

All great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling

Although Scribble is often referred as “the practical incarnation of multiparty
session types (MPST)” [13,26], a formal correspondence between the two is not
proven in the literature. In this paper we present the semantics of Scribble proto-
cols, given by translation to communicating automata, and show a behavioural-
preserving encoding of Scribble protocols to multiparty session type.

Section 2 gives an overview of Scribble and explains the Scribble framework.
Section 3 presents the formal semantics of the Scribble language. Section 4 proves
the encoding of Scribble local and global protocols to global and local session
types to be behaviour-preserving. Section 5 gives the translation between local
Scribble protocols and Communicating Finite State machines (CFSMs) [10].
Section 6 concludes. Appendix contains omitted proofs.

2 Scribble Overview

Scribble protocols describe an abstract structure of message exchanges between
roles: roles abstract from the actual identity of the endpoints that may partici-
pate in a run-time conversation instantiating the protocol. Scribble enables the
description of abstract interaction structures including asynchronous message
passing, choice, and recursion.

Here we demonstrate the basic Scribble constructs via an example of an online
payment service. Figure 2 (left) shows the global Scribble protocol OnlineWallet.
The first line declares, under the name OnlineWallet, the Scribble global protocol
and the two participating roles. The protocol has a recursion at thetop-level. In
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global protocol OnlineWallet(
role S, role C){
rec LOOP {
Balance(int) from S to C;
Overdraft(int) from S to C;
choice at C {
Payment(int) from C to S;
continue LOOP;

} or {
CloseAccount () from C to S;

} or {
Quit() from C to S;

}}}

local protocol OnlineWallet(
self S, role C) {
rec LOOP {

Balance(int) to C;
Overdraft(ints) to C;
choice {

Payment(int) from C;
continue LOOP;

} or {
CloseAccount () from C;

} or {
Quit() from C;

}}}

Fig. 2. A global (left) and local (right) Scribble protocol

each iteration, the Server (S) sends theClient (C) the current balance and the
overdraft limit for client’s account. The Balance message has an int payload;
similarly for the Overdraft. Client then can choose to either make a payment,
close the account or quit this session.

Figure 1 gives an abstract overview of the Scribble verification process. From
a global Scribble protocol, the toolchain produces (1) a set of local protocols or
(2) a set of finite state machines (FSMs). We outline the tasks performed by the
Scribble toolchain.

Well-Formedness Check: A global Scribble protocol is verified for correctness
to ensure that the protocol is well-formed, which intuitively represents that a
protocol describes a meaningful interaction, beyond the basic syntax defined by
the language grammar. This well-formed checking is necessary because some of
the protocols are unsafe or inconsistent even if they follow the grammar. For
example, two choice branches from the same sender to the same receiver with
the same message signature lead to ambiguity at the receiver side. A protocol
is well-formed if local protocols can be generated for all of its roles, i.e., the
projection function is defined for all roles. The formal definition of projection
is given in Definition 4.10. Here we give intuition as to what the main syntactic
restrictions are. First, in each branch of a choice the first interaction (possibly
after a number of unfoldings) is from the same sender (e.g., A) and to the same set
of receivers. Second, in each branch of a choice the labels are pair-wise distincs
(i.e., protocols are deterministic).

Projection: A global Scribble protocol is projected to a set of local protocols.
More precisely, a local Scribble protocol is generated per each role declared in
the definition of the global protocol. Local protocols correspond to local (MPST)
types, they describe interactions from the viewpoint of a single entity. They can
be used directly by a type checker to verify that an endpoint code implementation
complies to the interactions prescribed by a specification. Figure 2 (right) lists
the Scribble local protocol OnlineWallet projected for role Server.

FSM Generation: An alternative representation of a local protocol can be
given in the form of a communicating finite state machine (FSM). This repre-
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sentation is useful for runtime verification. Specifically, at runtime the traces
emitted by a program are checked against the language accepted by the FSM.

An implementation of Java and Python based Scribble tools for projection
and validation [26], as well as static verification for various languages can be
found in [1].

3 Syntax and Semantics of Scribble

3.1 Scribble Global Protocols

We now define the syntax of Scribble global protocols. The grammar is given
below.

Definition 3.1 (Scribble Global Protocols)

P :: = global protocol pro (role A1, ..., role An){G} specification

G :: = a(S) from A to B; G interaction

| choice at A {G} or . . . or {G} choice

| rec t {G} recursion

| continue t call

Protocol names are ranged over by pro. A (global) specification P declares a
protocol with name pro, involving a list (A1, ..An) of roles, and prescribing the
behaviour in G. The other constructs are explained below:

– An interaction a(S) from A to B; G specifies that a message a(S) should be sent
from role A to role B and that the protocol should then continue as prescribed
by the continuation G. Messages are of the form a(S) with a being a label and
S being the constant type of exchanged messages (such as real, bool and
int).

– A choice choice at A {G} or . . . or {G} specifies a branching where role
A chooses to engage in the interactions prescribed by one of the options G.
The decision itself is an internal process to role A, i.e. how A decides which
scenario to follow is not specified by the protocol.

– A recursion rec t {G} defines a scope with a name t and a body G. Any
call continue t occurring inside G executes another recursion instance (if
continue t is not in an appropriate scope than it remains idle).

Formal Semantics of Global Protocols. The formal semantics of global protocols
characterises the desired/correct behaviour of the roles in a multiparty protocol.
We give the semantics for Scribble protocols as a Labelled Transition System
(LTS). The LTS is defined over the following set of transition labels:

�:: = AB!a(S) | AB?a(S)
Label AB!a(S) is for a send action where role A sends to role B a message a(S).
Label AB?a(S) is for a receive action where B receives (i.e., collects from the
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queue associated to the appropriate channel) message a(S) that was previously
sent by A. We define the subject of an action, modelling the role that has the
responsibility of performing that action, as follows:

subj(AB!a(S)) = A subj(AB?a(S)) = B

As, due to asynchrony, send and receive are two distinct actions, the LTS
shall also model the intermediate state where a message has been sent but it
has not been yet received. To model these intermediate states we introduce the
following additional global Scribble interaction:

transit : a(S) from A to B; G

to describe the state in which a message a(S) has been sent by A but not yet
received by B. We call runtime global protocol a protocol obtained by extending
the syntax of Scribble with these intermediate states.

The transition rules are given in Fig. 3. Rule �send� models a sending action;
it produces a label AB!a(S). The sending action yields a state in which the global
protocol is in an intermediate state.

Rule �recv� models the dual receive action, from an intermediate state to a
continuation G. Rule �choice� continues the execution of the protocol as a con-
tinuation of one of the branches. Rule �rec� is standard and unfolds recursive
protocols.

We explain the remaining rules with more detailed illustration.
Due to asynchrony and distribution, in a particular state of a Scribble global

protocol it may be possible to trigger more than one action. For instance, the
protocol in (1) allows two possible actions: AB!a(S) or CD!a(S).

a(S) from A to B;
a(S) from C to D; (1)

This is due to the fact that the two send actions are not causally related as they
have different subjects (which are independent roles). We want the semantics
of Scribble to allow, in the state with protocol (1), not only the first action
that occurs syntactically (e.g., AB!a(S)) but also any action that occurs later,
syntactically, but it is not causally related with previous actions in the protocol
(e.g., CD!a(S)). Rule �async1� captures this asynchronous feature. CD!a(S), which
occurs syntactically later than AB!a(S) to possibly occur before. In fact, the
LTS allows (1) to take one of these two actions: either AB!a(S) by rule �send� or
CD!a(S) is allowed by �async1�. Rule �async2� is similar to �async1� but caters for
intermediate states, and is illustrated by the protocol in (2).

transit :a(S) from A to B;
a(S) from C to D; (2)

The protocol in (2) is obtained from (1) via transition AB!a(S) by rule �send�.
The above protocol can execute either AB?a(S) by rule �recv�, or CD!a(S) by rule
�async2�.
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Fig. 3. Labelled transitions for global protocols.

Fig. 4. Labelled transitions for local protocols (from A’s point of view)

Fig. 5. Syntax for global and local types

Fig. 6. Labelled transitions for global types (adapted from [11])

Fig. 7. LTS for local session types (adapted from [11])
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3.2 Scribble Local Protocols

Scribble local protocols describe a session from the perspective of a single par-
ticipant. The syntax of Scribble local protocols is given below.

Definition 3.2 (Scribble Local Protocols)

L :: = local protocol pro at Ai(role A1, ..., roleA1){T}
T :: = a(S) to B; T | a(S) from B; T | choice at A {T1} or . . . or {Tn}

| rec pro {T} | continue pro | end

The construct a(S) to B; T models a send action from A to B; the dual
local protocol is a(S) from B; T that models a receive action of A from B.
The other protocol constructs are similar to the corresponding global proto-
col constructs. Recursive variables are guarded in the standard way, i.e. they
only occur under a prefix. For convenience we will, sometimes, use the nota-
tion choice at {ai(Si) from A; Ti}i∈{1,..,n} to denote protocols of the form
choice at {a1(S1) from A; T1} or . . . or {an(Sn) from A; Tn} with n > 1, or
of the form a(S) from A; T when n = 1.

Decomposing global protocols into a set of local protocols is called projection.
Projection is a key mechanism to enable distributed enforcement of global prop-
erties. Projection preserves the interaction structures and message exchanges
required for the target role to fulfil his/her part in the conversation. The for-
mal definition of projection, for a normal (canonical) form of global protocols,
is given by Definition 4.10.

Formal Semantics of Local Protocols. The LTS for local protocols is defined
by the rules in Fig. 4, and uses the same labels as the global semantics in Fig. 3.
The rules �send�, �recv�, �choice�, �rec� are similar to the respective rules for global
protocols. No rules for asynchrony are required as each participant is assumed
to be single threaded.

Formal Semantics of Configurations. The LTS in Fig. 4 describes the
behaviour of each single role in isolation. In the rest of this section we give
the semantics of systems resulting from the composition of Scribble local pro-
tocols and communication channels. Given a set of roles {1, . . . , n} we define
configurations (T1, . . . , Tn, #»w) where #»w :: = {wij}i�=j∈{1,...,n} are unidirectional,
possibly empty (denoted by ε), unbounded FIFO queues with elements of the
form a(S).

Definition 3.3 (Semantics of configurations). The LTS of (T1, . . . , Tn, #»w)
is defined as follows: (T1, . . . , Tn, #»w) �−→ (T′

1, . . . , T
′
n,

#»w ′) iff: :

(1) TB
AB!a(S)−−−−→ T′

B ∧ w′
AB = wAB · a(S) ∧ (ij �= AB ⇒ wij = w′

ij ∧ Ti = T′
i)

(2) TB
AB?la(S)−−−−−→ T′

B ∧ a(S) · w′
AB = wAB ∧ (ij �= AB ⇒ wij = w′

ij ∧ Tj = T′
j)

with A, B, i, j ∈ {1, . . . , n}.
In (1) the configuration makes a send action given that one of the participants
can perform that send action. Case (1) has the effect of adding a message, that
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Fig. 8. Workflow of proving soundness of the projection

is sent, to the corresponding queue. In (2) the configuration makes a receive
action given that one of its participant can perform such an action and that the
message being received is currently stored in the corresponding queue. Thus, (2)
has the effect of removing the message received from the queue.

4 Correspondence Between Scribble and MPST

In this section we show that a trace of a global protocol corresponds exactly to a
trace of its projected local protocols. Correspondence is important as it ensures
that the composition of processes, each implementing some local protocol, will
behave as prescribed by the original global specification. In the context of MPST,
this property is known as soundness of the projection (Theorem 3.1, [11]) and has
already been proven for global types as defined in [11]. As explained in Sect. 4.1
a translation of this result to Scribble, however, is not obvious.

Figure 8 gives a high level overview of the results presented in this section.
First, we discuss the (syntactic) differences between global types and global
protocols. We present a normal form for global protocols such that a Scribble
global protocol in a normal form can be encoded into (MPST) global types and it
preserves semantics. We then prove a similar correspondence between Scribble
local protocols and (MPST) local types. The soundness of the projection of
global protocols then follows from soundness of the projection of MPST global
types (Theorem 3.1 from [11]).

4.1 Scribble Normal Form

We recall the syntax of global types from [11] in Fig. 5. It is very similar to the
syntax of Scribble global protocols in Sect. 3 except: (1) Scribble does not cater
for delegation and higher order protocols whereas global types do; and (2) the
choice and interaction protocols are two separated constructs in Scribble while
they are modelled as a unique construct in global types and (3) differently than
MPST, Scribble allows unguarded choice. The case of (2) is a consequence of the
specific focus of Scribble as a protocol design language directed at practition-
ers that are familiar with e.g., Java notation, who proved to find this notation
friendlier [12,13,26,28]. Regarding (3) the choice construct in Scribble directly
supports recursion and choice while in MPST the choice is always directly fol-
lowed by an interaction. In the following section we explain that these differences
are indeed syntactic and do not affect the soundness of the language.
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Fig. 9. Scribble protocol (left), and its
flatten form (right)

Fig. 10. Scribble protocol (left), and
its normal form (right)

Definition 4.1 (Scribble Normal Form (SNF))

G :: = choice at A {Ni}i∈{1,..,n} | N | rec t {N}
N :: = a(S) from A to B; G | continue t | end

First, we observe that a Scribble syntax with a guarded and a singleton choice
directly corresponds to MPST. We refer to a Scribble protocol, where all choices
are guarded, as a Scribble Normal Form (SNF). Later we show that there is a
behaviour preserving translation between a well-formed Scribble protocol and
its normal form. The Scribble Normal Form (SNF) for global protocols is given
below.

The encoding of Scribble global protocols to SNF requires two auxiliary func-
tions: flatten(G) and unfold(G). The latter collects top level global types from
a choice type, and is utilised in the encoding as to remove nested choice. The
former performs one unfolding of a recursion. We demonstrate flatten(G) in
the example in Fig. 9.

Definition 4.2 (Flatten). Given a Scribble protocol G then flatten(G) is
defined as flatten(G0)∪...∪flatten(Gn) if G=choice at A {Gi}i∈{1,..,n}. In all other cases,
flatten(G) is homomorphic, flatten(G) = G

Definition 4.3 (Unfold). Given a global Scribble protocols G then unfold(G) is
defined as unfold(G′[rec t {G′}/continue t])) if G = rec t {G′} and homomrhic
otherwise

Thus for any recursive type, unfold is the result of repeatedly unfolding the
top level recursion until a non-recursive type constructor is reached. Unfold
terminates given the assumption that recursive types are contractive, as in our
case. Intuitively, a protocol is translated to a normal form after first unfolding
all recursions once and then flattening nested choice. Figure 10 shows a Scribble
protocol and its translation to its normal form, and the encoding is given in
Definition 4.4.
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Definition 4.4 (Encoding 〈〉 of Global Protocols to SNF)

〈a(S) from A to B; G〉 = a(S) from A to B; 〈G〉
〈choice at A {Gi}i∈{1,..,n}〉 = choice at A {flatten(〈Gi〉)}i∈{1,..,n}

〈end〉 = end 〈rec t {G}〉 = unfold(rec t {〈G〉}) 〈continue t〉 = continue t

Trace Equivalence. The definition of trace equivalence, denoted by ≈ is stan-
dard. We write G ≈ G′ if TR(G) = TR(G′) where TR(G) is the set of traces
obtained by reducing G

TR(G) = { #»

� | ∃G′, G
#»
�−→ G′}

We assume G is closed, i.e does not contain free type variables, where a type
variable t is bound in rec t {G′}, and free otherwise. We extend the definition
of traces for local protocols, global and local types, and we also extend ≈ and
� to local protocols, as well as global and local types, and configuration of local
protocols.

Lemma 4.5. Given a global protocol G then: (1) G ≈ flatten(G) (2) G ≈
unfold(G); and (3) 〈G′〉[rec t {〈G′〉}/continue t] ≈ 〈G′[rec t {G′}/continue t]〉
Proposition 4.6 (SNF Translation). Let G be a Scribble local protocol, then
G ≈ 〈G〉.

4.2 From Global Protocols to Global Types

Definition 4.7 (Encoding of Global Protocols to Global Types). The
encoding �� from SNF to global types is given below:

� a(S) from A to B; G� = A → B : {a〈S〉.�G�}
�choice at A {aj(Sj) from A to B; Gj}j∈{1···n}� = A → B : {aj〈Sj〉.�Gj�}j∈{1···n}
�rec t {G}� = μt.�G� �continue t� = t �end� = end

For convenience, we recall the semantics of global types in Fig. 6. The seman-
tics of global protocols and global types are similar except that the one for
MPSTs from [11] have no rule �Choice� as choice is handled directly in the rule
for send/selection and branch/receive. To match Scribble global protocols and
MPST step by step we extend the definition of encoding to account for interme-
diate steps:

�transit :a(S) from A to B; G′′� = A � B : a〈S〉.�G′′�

Proposition 4.8 (Correspondence of Global Protocols and Global
Types). Let G be a Scribble global protocol, then G ≈ �G�.
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4.3 From Local Protocols to Local Types

The syntactic differences between Scribble local protocols and local types (given
in Fig. 5) reflect the difference between Scribble global protocols and MPST
global types. We define an encoding of local protocols (Definition 3.2) to local
types on the normal form of a Scribble local protocol (Definition 4.9).

Definition 4.9 (Local Scribble Normal Form (LSNF))

T :: = choice at A{Ni}i∈I | N | rec t {N}
N :: = a(S) from B; T | a(S) to B; T | continue t | end

Local types are generated from global types following a syntactic procedure,
called projection. In a similar way we define projection on global protocols. The
definition of projection is given in Definition 4.10. We denote by P(G) the set of
roles in a protocol G.

Definition 4.10 (Projection). The projection of G onto A ∈ P(G), written
G ↓A, is defined by induction on G as follows:

(a(S) from B to C; G′) ↓A=⎧
⎪⎨

⎪⎩

a(S) from B; (G′ ↓A) if A = C

a(S) to C; (G′ ↓A) if A = B

G′ ↓A if A �= B, C

(rec t {G′}) ↓A={
rec t {(G′ ↓A)} G′ �= continue t

end otherwise

(choice at B {ai(Si) from B to C; Gi}i∈I) ↓A=⎧
⎪⎨

⎪⎩

choice at B {ai(Si) from B; (Gi ↓A)}i∈I if A = C

choice at B {ai(Si) to C; (Gi ↓A)}i∈I if A = B

choice at D (�{(Gi ↓A)}i∈I) if A �= B, C; Gi ↓A= ai(Si) from D; G′
i ↓A,∀i ∈ I

(continue t) ↓A= continue t (end) ↓A= end

If no side condition applies then G is not projectable on A and the global protocol
G is not well-formed. The case for choice uses the merge operator � to ensure
that (1) the locally projected behaviour is independent of the chosen branch (i.e
Gi = Gj, for all i, j ∈ I), or (2) the chosen branch is identifiable by A via a unique
label. The merge operator � [11] is defined as a partial commutative operator
over two types s.t.

{ai(Si) from B; Ti}i∈I � {a′
j(S

′
j) from B; T′

j}j∈J = {ak(Sk) from B; Tk}k∈I\J

∪ {a′
j(S

′
j) from B; T′

j}j∈J\I ∪ {ak(Sk) from B; Tk � T′
k}k∈I∩J

where for each k ∈ I ∩ J, ak = a′
k, Sk = S′

k Merge is homomorphic for all other
types (i.e E [Tk] � E [T′

k] = E [Tk � T′
k], where E is a context for local protocols.).

We say that G is well-formed if for all A ∈ P(G), G ↓A is defined. Note that a
normal form is preserved during projection, i.e a Sribble global protocol in a
normal form is projected to a Scribble local protocol in a normal form. Next
we give the encoding between Scribble local protocols and MPST local types.
Hereafter we write Scribble local protocol when referring to LSNF protocols.
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Definition 4.11 (Encoding of Local Protocols to Local Types). The
encoding �� from (Scribble) local protocols to MPST local types is given below:

�a(S) to B; T� = B!{a : 〈S〉.�T�} �a(S) from B; T� = B?{a : 〈S〉.�T�}
�choice at A {T′

i}i∈I� =

{
B!{ai : 〈Si〉.�T′

i�}i∈I if T′
i = ai(Si) to B; Ti

A?{ai : 〈Si〉.�T′
i�}i∈I if T′

i = ai(Si) from A; Ti
�rec t {T}� = μt.�T� �continue t� = t �end� = end

Proposition 4.12 (Correspondence of Local Protocols and Local
Types). Let T be a Scribble local protocol, then T ≈ �T�.

Proposition 4.13 (Correspondence of Configurations). Let (T1, . . . ,
Tn,

#»w) be a configuration of Scribble local protocols, then (T′
1, . . . , T

′
n,

#»w) ≈
(�T1′�, . . . , �T′

n�,
# »

w′).

4.4 Correspondence of Global and Local Protocols

Theorem 4.14 gives the correspondence between the traces produced by a global
protocol G and those produced by the configuration that consists of the compo-
sition of the projections of G onto P(G).

Theorem 4.14 (Soundness of projection). Let G be a Scribble global protocol
and {T1, . . . , Tn} = {G ↓A}A∈P (G) be the set of its projections, then

G ≈ (T1, . . . , Tn, #»ε )

Theorem 4.14 directly follows by: (i) the correspondence between (Scribble)
global protocols and MPSTs global types given in Sect. 4; (ii) trace equivalence
between global types and configuration of projected global types (Theorem 3.1
in [11]); (iii) the correspondence between configurations of MPSTs local types
and configurations of Scribble local protocols given in Sect. 4.

5 From Scribble to CFSMs

This section gives the translation of local protocols to CFSMs [4]. First, we start
from some preliminary notations. ε is the empty word. A is a finite alphabet and
A∗ is the set of all finite words over A. |x| is the length of a word x and x.y or
xy the concatenation of two words x and y. Let P be a set of participants fixed
throughout the section: P = {A, B, C, . . . p, q, . . .}.

Definition 5.1 (CFSM). A communicating finite state machine is a finite
transition system given by a 5-tuple M = (Q,C, q0, A, δ) where (1) Q is a
finite set of states; (2) C = {AB ∈ P2|A �= B} is a set of channels; (3)
q0 ∈ Q is an initial state; (4) A is a finite alphabet of message labels, and
(5) δ = Q × (C × {!, ?} × A) × Q is a finite set of transitions.



248 R. Neykova and N. Yoshida

Final State is a state q ∈ Q, which does not have any outgoing transitions.
If all states in Q are final, δ is the empty relation. A (communicating) system
S is a tuple S = (Mp)p∈P of CFSMs such that Mp = (Qp, C, q0p , A, δp). We
define a configuration for Mp to be a tuple s = ( #»q , #»w) where #»q = (qp)p∈P and
where w = (wpq)p�=q∈P with wpq ∈ A∗. A path in M is a finite sequence of

q0, . . . , qn(n ≥ 0) such that (qi, �, qi+1) ∈ δ(0 ≤ i ≤ n − 1) and we write q
�−→ q′

if (q, �, q′) ∈ δ.
Definition 5.2 gives the translation of local Scribble protocols to CFSMs.

For convenience, we do not separate a label from a payload and we write msg
instead of a(S). Without loss of generality we assume all nested recursive types
are given as rec #»

t {T}, where rec #»
t {T} = T if | #»

t | = 0. If #»
t = (t0, . . . , tn), T′ �=

rec t {T′′}, then rec
#»
t {T} = rec t0{. . . rec tn {T′} . . .}.

We use the auxiliary function body(T) to denote the body of a recursive
term. Hence body(T) = T′if T = rec

#»
t {T′}; in all other cases body(T) = T. We

remind that recursive variables are guarded in the standard way, i.e. they only
occur under a prefix and therefore body(T) cannot be continue t.

Definition 5.2 (Translation from local types to CFSMs). We write
T′ ∈ T if T′ occurs in T. Let T0 be the normal form of the local type of par-
ticipant A projected from G. The automaton corresponding to T0 is A(T0) =
(Q,C, q0, A, δ) where: (1) Q = {T′|T′ ∈ T0, T′ �= continue t} \ ({T′|rec #»

t {T′} ∈
T0} ∪ {Ti|choice at A {Ti}i∈I ∈ T0}); (2) q0 = T0 (3) C = {AB | A, B ∈ G}; (4)
A = {msg | msg occurs in G} is the set of labels msg in G; and (5) δ is defined
below:

1. if body(T) = msg to B; T′ ∈ Q, then
{

1)(T, (AB!msg), rec #»
t

t∈ #»t
{T′′}) ∈ δ if T′ = continue t, rec

#»
t

t∈ #»t
{T′′} ∈ T0

2)(T, (AB!msg), T′) ∈ δ otherwise

2. if body(T) = msg from B; T′ ∈ Q, then
{

1)(T, (BA?msg), rec #»
t

t∈ #»t
{T′′}) ∈ δ if T′ = continue t, rec

#»
t

t∈ #»t
{T′′} ∈ T0

2)(T, (BA?msg), T′) ∈ δ otherwise

3. if T = choice at A {Ti}i∈I , then:
(a) if Ti = msgi to B; T′

{
1)T, (AB!msgi), rec

#»
t

t∈ #»t
{T′′}) ∈ δ if T′ = continue t, rec

#»
t

t∈ #»t
{T′′} ∈ Q,

2)T, (AB!msgi), T
′) ∈ δ otherwise

(b) if Ti = msgi from A; T′

{
1)(T, (BA?msgi), rec

#»
t

t∈ #»t
{T′′}) ∈ δ if T′ = continue t, rec

#»
t

t∈ #»t
{T′′} ∈ Q

2)(T, (BA?msgi), T
′) ∈ δ otherwise
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Fig. 11. Scribble protocol (left) and
corresponding CFSM (right)

Fig. 12. Scribble protocol (left) and
corresponding CFSM (right)

Examples. We illustrate the translation with two examples, in Figs. 11 and
12. The CFSM A (T) for the local protocol T from Fig. 11 (left) is A (T) =
(Q,C, q0, A, δ). We first generate the states Q of A (T) from the suboccurrences of
the initial local protocol T. The states are denotes as s1 and s2 where s1 = T and
s2 = (m2 to B; continue t1;). A (T) is defined as the 5-tuple: 1) Q = {s1, s2}; 2)
C = {AB, BA}; 3) q0 = s1; 4) A = {m1, m2}; 5) δ = {(s1, m1!AB, s2), (s2, m2!AB, s1)}.

Next we consider the local type T, given on Fig. 12 (left). From the suboccur-
rences of the local protocol T we generate three states s1, s2, and s3, where s1 = T;
s2 = rec t2 m2 to B; choice at A m3 to B; continue t2 or m4 to B; continue t1;
and s3 = choice at A m3 to B; continue t2 or m4 to B; continue t1. Then the cor-
responding automaton A (T) is the 5-tuple (Q,C,A, q0, δ) where 1) Q =
{s1, s2, s3}; 2) C = {AB, BA}; 3) q0 = s1 4) A = {m1, m2, m3, m4}; 5) δ =
{(s1, m1!AB, s2), (s2, m2!AB, s3), (s3, m3!AB, s2), (s3, m4!AB, s1)}.

We proceed by proving operational correspondence between a local type T
and its corresponding A (T). We use an auxiliary function to map recursive
variables to types.

Definition 5.3 (Unfold mapping). We define a function unfMap : T × σ →
σ, where T is a type and σ is a mapping from recursive variables to types
unfMap(T, σ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃

i∈I

unfMap(Ti, σ) if T = choice at A {Ti}i∈I

unfMap(T′, σ) if either T = msg to B; T′, or T = msg from B; T′

unfMap(T′[rec #»
t {T′}/continue t]∀t∈ #»t , σ

⋃

ti∈ #»t

{ti �→ T})

if T = rec
#»
t {T′}; ti /∈ σ

σ if either T = rec
#»
t {T′} and ∃t′ ∈ #»

t : t′ ∈ σ, or T = end

We assume all recursive variables are distinct and also rec
#»
t {T′}σ = T′σ.

Hence, σ can contain t ∈ #»
t and we apply the substitution σ without α-renaming.

Lemma 5.4 (Suboccurrences). Given a local protocol T, with a suboccurrence
rec

#»
t {T′}(t∈ #»

t ) ∈ T and a substitution σ s.t σ = unfMap((T, ∅)),then

rec
#»
t {T′}(t∈ #»

t )σ = T′′ with {t �→ T′′} ∈ σ

Theorem 5.5 (Soundness of translation). Given a local protocol T, then
T ≈ A (T).
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6 Conclusion and Related Work

De Nicola is the first person who proposed a location-based distributed model
with rich capability types, and implemented that model in Java as to demon-
strate a practical use of formal foundations for mobile computing. Following his
spirits, this paper gave a formal definition of a practical protocol description
language, Scribble. We proved a correspondence between Scribble and MPST
and showed that a global protocol corresponds to a system of CFSMs.

The work [10] is the first to explore the connection of MPST and CFSMs.
[10] gives a sound and complete characterisation of a class of communicating
automata that can be expressed by the language of multiparty session types. The
presented work is closely based on the translation of session types to CFSMs pre-
sented in [10], and hence we adhere to the same conditions as theirs, namely the
CFSM is deterministic and directed without mixed states (each state is either
sending or receiving to the same participant with distinct labels). Lange et al.
[20] presents an algotithm for synthesising global graphs from local multiparty
specifications, given as CFSMs, that allows more general constructs, such as fork
and join. Scribble currently does not support such constructs. The correspon-
dence of MPST and CFSMs with time constraints is further explored in [2,3].
The work [21] uses the result in [3] to implement a runtime monitor based on an
extension of Scribble with time annotations, but the work does not prove formal
correspondence between timed Scribble and timed automata.

The encoding of Scribble protocols to CFSMs presented in this article is an
important basis when building and verifying distributed systems. It guarantees
that global safety properties can be ensured through local, i.e, decentralised
verification. The setting defined by CFSMs does not require synchronisation at
runtime. Therefore our approach is more efficient to implement than a centralised
approach. In [9,17], we rely on this result to design and build a sound Scribble-
based framework for runtime and hybrid verification.

Several implementation works use the Scribble toolchian and the local CFSM
representation to generate APIs for programming distributed protocols [18,22].
In recent years, Scribble-based code generation has been extended with various
contructs, e.g. parameterised role [5] for distributed Go programming, delega-
tion in Scala [25], time constarints in Python [3], explicit connections [19] for
dynamic joining of roles in Java, and payload constraints in F# [22]. The above
mentioned works are either practical (hence no formal semantics nor operational
correspondence results are given) and/or informally rely on the correspondence
between MPST and Scribble as to justify the soundness of their respective imple-
mentations and extensions.

Future work includes formalisations of extended Scribble in the literature
explained above. In particular, there exists no operational semantics of multiple
multiparty session types with delegations and higher-order code mobility since
a single system of CFSMs corresponds to a single multiparty session type with
fixed participants. We plan to tackle this problem first extending CFSM models
from a fixed set to a family of participants.
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A Scribble Normal Form

Proposition 4.6 (SNF Translation): Let G be a Scribble local protocol, then
G ≈ 〈G〉.

Proof. First we consider G � 〈G〉. The proof is mechanical and is done by induc-
tion on the transition rules applied for closed terms of G.

1. (base case) If G = end then both trmG and 〈G〉 produce an empty set of traces
and no rules can be applied.

2. (inductive case) if G �−→ G′ then 〈G〉 �−→ G′′ such that G′ ≈ G′′.
(a) if G = a(S) from A to B; G′

G can do AB!msg or � by �send� or �async1� respectively.
Then G � 〈G〉 follows by the induction hypothesis (IH) and by the defini-
tion of encoding

(b) G = rec t {G′}
G

�−→ G′′

By �rec� G′[rec t {G′}/continue t] �−→ G′′

By IH 〈G′[rec t {G′}/continue t]〉 �−→ G′′′ s.t G′′ ≈ G′′′

By Lemma 4.5
〈G′〉[rec t {〈G′〉}/continue t] ≈ 〈G′[rec t {G′}/continue t]〉
Thus, 〈G′〉[rec t {〈G′〉}/continue t] �−→ G′′′′ s.t G′′′ ≈ G′′′′

By �rec�rec t {〈G′〉} �−→ G′′′′

By Lemma 4.5 rec t {〈G′〉} ≈ unfold(rec t {〈G′〉}) = 〈G〉
(c) G = choice at A {Gi}i∈{1,..,n}

From �choice�G �−→ G′ with Gi
�−→ G′

From IH 〈Gi〉 �−→ G′′ s.t G′′ ≈ G′ From flatten(G) ≈ G it follows that
flatten(Gi)

�−→ G′′′ s.t G′′′ ≈ G′′

From �choice� it follows 〈G〉 �−→ G′′′

Now we consider 〈G〉 � G. The proof is by induction on the definition of
encoding of closed terms of G.

1. (base case) If 〈G〉 = end then both G and 〈G〉 produce an empty set of traces
and no rules can be applied.

2. (inductive case) if 〈G〉 �−→ G′ then G
�−→ G′′ such that G′ ≈ G′′.

(a) 〈a(S) from A to B; G〉 = a(S) from A to B; 〈G〉
〈G〉 can do AB!msg or � by �send� or �async1� respectively.
Then G � 〈G〉 follows by the IH and by the definition of encoding



252 R. Neykova and N. Yoshida

(b) 〈rec t {G}〉 = unfold(rec t {〈G〉}) = 〈G〉[rec t {〈G〉}/continue t]
From IH: G[rec t {G}/continue t] ≈ 〈G〉[rec t {〈G〉}/continue t]
Thus, if 〈G〉[rec t {〈G〉}/continue t] �−→ G′

then G[rec t {G}/continue t] �−→ G′′ s.t G′ ≈ G′′

From �rec� rule: rec t {G} �−→ G′′

(c) 〈G〉 = 〈choice at A {Gi}i∈{1,..,n}〉 = choice at A {flatten(〈Gi〉)}i∈{1,..,n}
From �choice�〈G〉 �−→ G′ with flatten(〈Gi〉) �−→ G′

By Lemma 4.5 flatten(〈G〉) ≈ 〈G〉 it follows that
〈Gi〉 �−→ G′′ s.t G′′ ≈ G′

From IH it follows that G
�−→ G′′′ s.t G′′′ ≈ G′′ ≈ G′.

B From Global Protocols to Global Types

Proposition 4.8 (Correspondence of Global Protocols and Global
Types): Let G be a Scribble global protocol, then G ≈ �G�.

Proof. First, we consider G � �G�. The proof is done by induction (on the depth
of the tree) on the transition rule applied.

1. (Base case) If G = end then both G and �G� produce an empty set of traces.
2. (Inductive case) if G �−→ G′ and we have to prove that �G�

�−→ �G′�.

– if G = a(S) from A to B; G′′ then we either have a send action by �send� or �
transition by �ASYNC1�

• �send� G
AB!a〈S〉−−−−→ transit :a(S) from A to B; G′′

By (1) �G� = A → B : {a〈S〉.�G′′�} and
(2) �transit :a(S) from A to B; G′′� = A � B : a〈S〉.�G′′� and

(3) �Select�MPST : A → B : {a〈S〉.�G′′�} AB!a〈S〉−−−−→ A � B : a〈S〉.�G′′�

we have �G�
AB!a〈S〉−−−−→ �G′�

• �async1�a(S) from A to B; G′′ �−→ a(S) from A to B; G′′ By (1) �G� = A →
B : {a〈S〉.�G′′�} and �G′� = A → B : a〈S〉.�G′′′� By (2) �G′′� �−→ �G′′′�, which
follows from the premise G′′ �−→ G′′′ of the �async1� and by IH and (3)
B �∈ subj(�), which follows from the premise of �async1�:
we can apply the �async1�MPST rule: �G�

�−→ �G′�
– if G = transit :a(S) from A to B; G′′

We proceed as in the above case. We either have a receive action by the rule
�recv� or � transition by the rule �async2�.

• �recv�G
AB?a〈S〉−−−−→ G′ where G′ = G′′

By (1) �G� = A � B : a〈S〉.�G′′� and �G′� = �G′′� and

(3) �branch�MPST : A � B : a〈S〉.�G′′�
AB?a〈S〉−−−−→ �G′′�

therefore �G�
AB?a〈S〉−−−−→ �G′�
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• �async2�G �−→ G′ where G′ = transit :a(S) from A to B; G′′

By (1) �G� = A � B : a〈S〉.�G′′� and �G′� = A → B : {a〈S〉.�G′′′�} By (2)
�G′′� �−→ �G′′′�, which follows from the premises G′′ �−→ G′′′ of the �async1�
and by the induction hypothesis and
(3) A, B �∈ subj(�), which follows from the premise of �async2�:
we can apply the �async2�MPST rule: �G�

�−→ �G′�
– if G = choice at A {Gbj}j∈{1,..,n})

By �choice� we have G
�−→ G′ where by the rule premise we have for G′ that

ai(Si) from A to B; G′′ �−→ G′ for (i ∈ I) which brings us back to the first case.
– if G = rec t {G′′} the thesis directly follows by induction since

(1) by �rec�G �−→ G′ where G[rec t {G}/continue t] �−→ G′

(2) �G� = μt�G′′�
By �rec� �G′′�[μt.�G′′�/t]) �−→ �G′�
(3) From IH, G′ � �G′� and therefore G � �G�

Now we consider �G� � G.
The proof is done by induction on transition rules applied to the encoding

of G.

1. �G� = end then both �G� and G then no rules can be applied.
2. if �G� = A → B : {a〈S〉.�G�}, then we either have a send action by �select�MPST

or � transition by �async1�.

– �select�MPST �G�
AB!a〈S〉−−−−→ �G′�

By G = a(S) from A to B; G′′ and G′ = transit :a(S) from A to B; G′′ and

�send� it follows that G
AB!a〈S〉−−−−→ G′

– �async1�MPST �G�
�−→ �G′� where

�G� = A → B : {a〈S〉.�G′′�} and �G′� = A � B : a〈S〉.�G′′�
By (1) the rule premise �G′′� �−→ �G′′′� and by (2) IH it follows that G′′ �−→ G′′′.
Given also that A, B �∈ subj(�), we can apply �async1�. Thus, G �−→ G′

3. if �G� = �choice at A aj(Sj) from A to B; Gj� = A → B : {aj〈Sj〉.�Gj�}j∈{1,..,n}
Then by �choice� we have that �G�

�−→ �G′� when �ai(Si) from A to B; Gi�
�−→ �G′�

for i ∈ I.
Thus, we have to prove that
if �ai(Si) from A to B; Gi�

�−→ �G′� then ai(Si) from A to B; Gi
�−→ �G′�, which

follows from a).
4. if �G� = A � B : a〈S〉.�G′′� �G� can do a receive action by �branch�MPST or �

transition by �async2�.

– �branch�MPST �G�
AB!a〈S〉−−−−→ �G′�

By G = transit :a(S) from A to B; G′′ and

G′ = transit :a(S) from A to B; G′′ and �recv� it follows that G
AB?a〈S〉−−−−→ G′
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– �async2�MPST �G�
�−→ �G′� where

�G� = A � B : a〈S〉.�G′′� and �G′� = A → B : a〈S〉.�G′′�
By (1) the rule premise �G′′� �−→ �G′′′� and by (2) IH it follows that G′′ �−→ G′′′.
Given also that A, B �∈ subj(�), we can apply �async2�. Thus, G �−→ G′

5. if �G� = μt.�G′′� the thesis directly follows by induction.

C From Local Protocols to Local Types

Proposition 4.12 (Correspondence of Local Protocols and Local
Types): Let T be a Scribble local protocol, then T ≈ �T�.

Proof. First, we consider T � �T�.
The proof is done by induction (on the depth of the tree) on the transition

rule applied.

1. (Base case) If T = end then both T and �T� produce an empty set of traces.
2. (Inductive case) T

�−→ T′ and we have to prove that �T�
�−→ �T′�. We proceed

by case analysis on the structure of T

(a) if T = a(S) to B; T′′ AB!a〈S〉−−−−→ T′′ by �send�

�T� = B!{a : 〈S〉.�T′′�} AB!a〈S〉−−−−→ �T′′� by �LSel�

(b) if T = a(S) from B; T′′ AB?a〈S〉−−−−→ T′′ by �recv�

�T� = B?{a : 〈S〉.�T′′�} AB?a〈S〉−−−−→ �T′′� by �LBra�
(c) if T = choice at A {Ti}i∈I)

�−→ T′

Depending on the structure of Ti, this case folds back to previous cases
a) and b).

if Ti = ai(Si) from B; T′′ AB!a〈S〉−−−−→ T′′ = T′ then �Ti�
AB!a〈S〉−−−−→ �T′� by �LSel�

if Ti = B?{ai : 〈Si〉.�T′′�} AB?a〈S〉−−−−→= T′′ = T′ then �Ti�
AB?a〈S〉−−−−→ �T′� by

�LBra�
(d) if T = μt.T′′ the thesis directly follows by induction.

Now we consider �T� � T.
The proof is done by induction on transition rules applied to the encoding.

1. (Base case) If �T� = end then both �T� and T produce an empty set of traces.
2. (Inductive case) �T�

�−→ �T′� and we have to prove that T
�−→ T′. We proceed

by case analysis on the structure of �T�

– if �T� = B!{a : 〈S〉.�T′′�}
B!{a : 〈S〉.�T′′�} AB!a〈S〉−−−−→ �T′′� by �LSel�

T = a(S) to B; T′′ AB!a〈S〉−−−−→ �T′′� by �send�
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– if �T� = B?{a : 〈S〉.�T′′�}
B?{a : 〈S〉.�T′′�} AB?a〈S〉−−−−→ �T′′� by �Lbra�

T = a(S) from B; T′′ AB?a〈S〉−−−−→ T′′ by �recv�
– if �T� = B?{ai : 〈Si〉.�Ti�}i∈I

B?{ai : 〈Si〉.�Ti�}i∈I
AB?a〈S〉−−−−→ �Tj�(j ∈ I)

By �recv� and the structure of Ti we have that ai(Ti) to B; Ti
AB!a〈S〉−−−−→ Ti and

therefore we can apply �choice�

Thus, T
AB!a〈S〉−−−−→ Tj

– if �T� = A!{ai : 〈Si〉.�T�}i∈I the case is analogical to the previous one.
– if �T� = μt.T′′ the thesis directly follows by induction.

Proposition 4.13 (Correspondence of Configurations): Let (T1, . . . , Tn, w)
be a configuration of Scribble local protocols, then (T′

1, . . . , T
′
n, w) ≈

(�T1′�, . . . , �T′
n�, w

′).

Proof. The proof is by induction on the number of transition steps. Inductive
hypothesis: (T1, . . . , Tn, w) ≈ (�T1�, . . . , �Tn�, w)
Now we want to prove that if (T1, . . . , Tn, w) �−→ (T′

1, . . . , T
′
n, w

′) then
(�T1�, . . . , �Tn�, w) �−→ (�T′

1�, . . . , �T
′
n�, w

′)
We do a case analysis on the transition label �:

(1) if � = AB!a〈S〉
By TB

AB!a〈S〉−−−−→ TB and Proposition 4.12 it follows: �TB�
AB!a〈S〉−−−−→ �TB�

By definition of configuration of local protocols:
w′

AB = wAB · a(T) ∧ (wij = w′
ij)for ij �=AB.

(2) if � = AB?a〈S〉
By TB

AB?a〈S〉−−−−→ T′
B and Proposition 4.12 it follows: �TB�

AB?a〈S〉−−−−→ �T′
B�

By definition of configuration of local protocols:
w′

AB = wAB · a(S) ∧ (⇒ wij = w′
ij)ij �=AB

In (1) and (2) we have by definition that Ti = T′
i( for �= AB), which by the

inductive hypothesis implies that �Ti� = �T′
i�

Then by the definition of configuration of local protocols (from (1) and (2))
it follows that (�T1�, . . . , , . . . , �Tn�, w) �−→ (�T′

1�, . . . , �T
′
n�, w

′).

D From Sribble to CFSM

Lemma 5.5 (Soundness of the translation). Given a local protocol T , then
T ≈ A (T).

Proof. In the proof we assume σ = unfMap(T, ∅). Also we assume T �= end.
When T = end the lemma is trivially true since T produces an empty set of
traces, δ is an empty relation and q0, the initial state, is also a final state.
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First, we consider T � A (T). Next we prove that if T �−→ T′ then ∃TA, T′
A ∈ Q such

that TAσ = T and T′
Aσ = T′, and (TA, �, T′

A) ∈ δ.
The proof is by induction on the transition relation for local types. In all

cases we assume that T = TAσ.

– �send� if the reduction is by �send� we have
TAσ = (msg to B; T′

A)σ = msg to B; (T′
Aσ).

Thus, TAσ
�−→ T′

Aσ where � = msg!AB.
Since body(TA) = msg to B; T′

A we proceed by case analysis on T′
A.

Case 1: T′
A �= continue t;

By Definition 5.2(1-2) and body(TA) = msg to B; T′
A ⇒ (TA, �, T′

A) ∈ δ.
Case 2: T′

A = continue t;
We have that T′

Aσ = continue t σ = T′′, where {t �→ T′′} ∈ σ.
By �send� we have TAσ

�−→ T′′.
By Definition 5.2(1-1) and bodyTA = msg to B; T′

A it follows that
(TA, �, rec

#»
t {T′′

A}) ∈ δ with rec
#»
t {T′′

A} ∈ T0.
By Lemma 5.4 we have rec

#»
t {T′′

A}σ = T′′ and we conclude the case.
– �recv� is similar to Case �send� and thus we omit.
– �choice� if the reduction is by �choice� we have
TAσ = (choice at A{TAi}i∈I)σ = choice at A{(TAiσ)}i∈I .
Case 1: if TAiσ has the shape (msgi to B; T′

Ai)σ = msgi to B; (T′
Aiσ),∀i ∈ I

then we have TAσ
�−→ T′

Ajσ for some j ∈ I with � = msgj !AB.
Since body(TA) = TA, we proceed by case analysis on T′

Aj.
Case 1.1: T′

Aj �= continue t;
By Definition 5.2(3-a-2) and body(TA) = TA we have (TA, �, T′

Aj) ∈ δ.
Case 1.2: TAj′ = continue t;

(1*) We have that T′
Ajσ = continue t σ = T′′, where {t �→ T′′} ∈ σ.

(2*) By �choice� we have TAσ
�−→ T′′.

By Definition 5.2(3-a-2) and body(TA) = TA ⇒ (TA, �, rec
#»
t {T′′

A}) ∈ δ
with rec

#»
t {T′′

A} ∈ T0.
By Lemma 5.4 we have rec

#»
t {T′′

A}σ = T′′.
Applying the IH to (1*) and (2*) we conclude the case.
Case 2: if TAiσ has the shape (msgi to B; T′

Ai)σ = msgi to B; (T′
Aiσ)

this case is similar to Case 1 and thus we omit.
Note that since the normal form of local types does not allow for unguarded
choice, hence, all possible transitions of TAσ are the transitions from Case 1
and Case 2.

– �rec� if the reduction is by �rec� we have then TAσ = (rec t {T′
A})σ = T′

Aσ. We
note that T′

Aσ does not contain the term continue t since unguarded recursive
variables are not allowed. Hence, T′

Aσ is either send, receive or choice and by
IH and �send�, �recv�, �choice� we conclude this case.

We next consider A (T) � T. We prove that given a local protocol T0

if (TA, �, T′
A) ∈ δ then ∃T s.t. T = TAσ and T

�−→ T′ and T′ = T′
Aσ with

σ = unfMap(T0, ∅). We proceed by case analysis on the transitions in δ.
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Case 1: TA = msg to B; T′′
A and � = msg?AB.

Then T′ = TAσ and we have by �send�TAσ
�−→ T′′

Aσ.
Case 1.1: if T′′

A = T′
A �= continue t

The hypothesis follows from TAσ
�−→ T′

Aσ.
Case 1.2: if T′′

A = continue t
By Definition 5.2 T′

A = rec
#»
t {T′′′

A } ∈ T0, t ∈ t.
By Definition 5.3 and Lemma 5.4 we have t �→ T′′ s.t. rec #»

t {T′′′
A }σ = T′′.

From IH and TAσ
�−→ T′′

Aσ = T′′ = rec
#»
t {T′′′

A }σ = T′
Aσ we conclude the case.

Case 2: TA = msg from B; T′′
A and � = msg!AB.

Proceeds in a similar way as Case 2 and thus we omit.
Case 3: TA = choice at{msgi to B; TAi}i∈I

Then we have by �choice�
TAσ = choice at{msgi to B; TAiσ}i∈I

msg!AB−−−−→ TAjσ for some j ∈ I.
Case 3.1: if TAj = T′

A �= continue t

From IH and TAσ
�−→ T′

Aσ we conclude the case.
Case 3.2: if TAj = continue t
By Definition 5.2 TAj = rec

#»
t {T′′′

A } ∈ T0, t ∈ t
By Definition 5.3 and Lemma 5.4 we have t �→ T′′ s.t. rec #»

t {T′′′
A }σ = T′′.

We have that TAσ
�−→ TAjσ = T′′ = rec

#»
t {T′′′

A }σ = T′
Aσ, hence we conclude the

case.
Case 4: TA = choice at{msgi from B; TAi}i∈I

Proceeds in a similar way as Case 3 and thus we omit.
Case 5: TA = rec

#»
t {T′′

A}
Note that the T′′

A is either message send or message receive. Hence, By applying
the IH and Case 1, 2 we conclude the case.
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