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Advancements in mobile device computing power have made interactive web applications possible,
allowing the web browser to render contents dynamically and support low-latency communication
with the server. This comes at a cost to the developer, who now needs to reason more about cor-
rectness of communication patterns in their application as web applications support more complex
communication patterns.

Multiparty session types (MPST) provide a framework for verifying conformance of implemen-
tations to their prescribed communication protocol. Existing proposals for applying the MPST frame-
work in application developments either neglect the event-driven nature of web applications, or lack
compatibility with industry tools and practices, which discourages mainstream adoption by web de-
velopers.

In this paper, we present an implementation of the MPST framework for developing interactive
web applications using familiar industry tools using TypeScript and the React.js framework. The de-
veloper can use the Scribble protocol language to specify the protocol and use the Scribble toolchain
to validate and obtain the local protocol for each role. The local protocol describes the interactions
of the global communication protocol observed by the role. We encode the local protocol into Type-
Script types, catering for server-side and client-side targets separately. We show that our encoding
guarantees that only implementations which conform to the protocol can type-check. We demon-
strate the effectiveness of our approach through a web-based implementation of the classic Noughts
and Crosses game from an MPST formalism of the game logic.

1 Introduction

Modern interactive web applications aim to provide a highly responsive user experience by minimising
the communication latency between clients and servers. Whilst the HTTP request-response model is
sufficient for retrieving static assets, applying the same stateless communication approach for interactive
use cases (such as real-time multiplayer games) introduces undesirable performance overhead. Devel-
opers have since adopted other communication transport abstractions over HTTP connections such as
the WebSockets protocol [7] to enjoy low-latency full-duplex client-server communication in their appli-
cations over a single persistent connection. Enabling more complex communication patterns caters for
more interactive use cases, but introduces additional correctness concerns to the developer.

Consider a classic turn-based board game of Noughts and Crosses between two players. Both play-
ers, identified by either noughts (O’s) or crosses (X’s) respectively, take turns to place a mark on an
unoccupied cell of a 3-by-3 grid until one player wins (when their markers form one straight line on the
board) or a stalemate is reached (when all cells are occupied and no one wins). A web-based implemen-
tation may involve players connected to a game server via WebSocket connections. The players interact
with the game from their web browser, which shows a single-page application (SPA) of the game client
written in a popular framework like React.js [20]. SPAs feature a single HTML page and dynamically
render content via JavaScript in the browser. Players take turns to make a move on the game board, which
sends a message to the server. The server implements the game logic to progress the game forward until
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a result (either a win/loss or draw) can be declared, where either the move of the other player or the game
result is sent to players.

Whilst WebSockets make this web-based implementation possible, they introduce the developer to
a new family of communication errors, even for this simple game. In addition to the usual testing for
game logic correctness, the developer needs to test against deadlocks (e.g. both players waiting for each
other to make a move at the same time) and communication mismatches (e.g. player 1 sending a boolean
to the game server instead of the board coordinates). The complexity of these errors correlates to the
complexity of the required tests and scales with the complexity of communication patterns involved.

Multiparty Session Types (MPST) [5] provide a framework for formally specifying a structured com-
munication pattern between concurrent processes and verifying implementations for correctness with
respect to the communications aspect. By specifying the client-server interactions of our game as an
MPST protocol and verifying the implementations against the protocol for conformance, MPST theory
guarantees well-formed implementations to be free from communication errors.

We see the application of the MPST methodology to generating interactive TypeScript web appli-
cations to be an interesting design space — to what extent can the MPST methodology be applied to
deliver a workflow where developers use the generated TypeScript APIs in their application to guarantee
protocol conformance by construction? Such a workflow would ultimately decrease the overhead for
incorporating MPST into mainstream web development, which reduces development time by program-
matically verifying communication correctness of the implementation.

Contributions This paper presents a workflow for developing type-safe interactive SPAs motivated
by the MPST framework: (1) An endpoint API code generation workflow targeting TypeScript-based
web applications for multiparty sessions; (2) An encoding of session types in server-side TypeScript that
enforces static linearity; and (3) An encoding of session types in browser-side TypeScript using the React
framework that guarantees affine usage of communication channels.

2 The Scribble Framework

Development begins with specifying the expected communications between participants as a global pro-
tocol in Scribble [23], a MPST-based protocol specification language and code generation toolchain. We
specify the Noughts and Crosses game as a Scribble protocol in Listing 1. In the protocol, the role Svr
stands for the Server, and the roles P1 and P2 stand for the two Players respectively.

We leverage the Scribble toolchain to check for protocol well-formedness. This directly corresponds
to multiparty session type theory [16]: a Scribble protocol maps to some global type, and the Scribble
toolchain implements the algorithmic projection defined in [5] to derive valid local type projections for
all participants. We obtain a set of endpoint protocols (corresponds to local types) — one for each role
from a well-formed global protocol. An endpoint protocol only preserves the interactions defined by the
global protocol in which the target role is involved, and corresponds to an equivalent Endpoint Finite
State Machine (EFSM) [6]. The EFSM holds information about the permitted IO actions for the role.
We use the EFSMs as a basis for API generation and adopt the formalisms in [11].

3 Encoding Session Types in TypeScript

Developers can implement their application using APIs generated from the EFSM to guarantee correct-
ness by construction. Our approach integrates the EFSM into the development workflow by encoding
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1 module NoughtsAndCrosses;

2 type <typescript > "Coordinate" from "./Types" as Point; // Position on board

3
4 global protocol Game(role Svr , role P1, role P2) {

5 Pos(Point) from P1 to Svr;

6 choice at Svr {

7 Lose(Point) from Svr to P2; Win(Point) from Svr to P1;

8 } or {

9 Draw(Point) from Svr to P2; Draw(Point) from Svr to P1;

10 } or {

11 Update(Point) from Svr to P2; Update(Point) from Svr to P1;

12 do Game(Svr , P2, P1); // Continue the game with player roles swapped

13 }

14 }

Listing 1: Noughts and Crosses in a Scribble protocol.

session types as TypeScript types. Communication over the WebSocket protocol introduces additional
constraints: communication is always initiated in the front-end and driven by user interactions, whilst
back-end roles can only accept connections. This motivates our design of encoding the session types
differently for server (Section 3.1) and client (Section 3.3) targets.

3.1 Server-Side API Generation

Figure 1: EFSM for Svr.

We refer to the Svr EFSM (Figure 1) as
a running example in this section. For
server-side targets, we encode EFSM
states into TypeScript types and con-
sider branching (receiving) and selec-
tion (sending) states separately. We as-
sign TypeScript encodings of states to
their state identifiers in the EFSM, pro-
viding syntactic sugar when referring
to the successor state when encoding
the current state. For any state S in
the EFSM, we refer to the TypeScript
type alias of its encoding as JSK. We
outline the encoding below using ex-
amples from the Noughts and Crosses
game (Listing 2).

Branching State We consider a re-
ceiving state as a unary branching state
for conciseness. A branching state is
encoded as an object literal [18] (a
record type), with each branch i ∈ I (I
denoting set of all branches), corresponding to a member field. A branch expecting to receive a message
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labelled labeli carrying payload of type Ti with successor state Si is encoded as an member field named
labeli of function type (payload : Ti) → JSiK. The developer implements a branching operation by
passing callbacks for each branch, parameterised by the expected message payload type for that branch.

Selection State We consider a sending state as a unary selection state for conciseness. A selection
state is encoded as a union type [18] of internal choice encodings: each internal choice i ∈ I (I denoting
set of all choices), sending a message labelled labeli carrying payload of type Ti with successor state
Si is encoded as a tuple type of [Labels.labeli, Ti, JSiK]. The developer implements a selection
operation by passing the selected label and payload to send in the message. We generate a string enum
(named Labels) wrapping the labels in the protocol.

1 export type S13 = { Pos: (payload: Point) => S15 };

2 export type S15 = [ Labels.Lose , Point , S16 ]

3 | [ Labels.Draw , Point , S17 ]

4 | [ Labels.Update , Point , S18 ];

Listing 2: Example encodings from Noughts and Crosses Svr EFSM.

In the case of Listing 2, the developer is expected to implement S13 which handles the Pos message
sent by P1, and the code in S13 returns a value of type S15, which corresponds to a selection of messages
to send to P2. Listing 4 illustrates how the developer may implement these types.

We make a key design decision not to expose communication channels in the TypeScript session type
encodings to provide static linearity guarantees (Section 3.1.2). Our encoding sufficiently exposes seams
for the developer to inject their program logic, whilst the generated session API (Section 3.1.1) handles
the sending and receiving of messages.

3.1.1 Session Runtime

The generated code for our session runtime performs communication in a protocol-conformant manner,
but does not expose these IO actions to the developer by delegating the aforementioned responsibilities
to an inner class. The runtime executes the EFSM by keeping track of the current state (similar to the
generated code in [10]) and only permitting the specified IO actions at the current state. The runtime
listens to message (receiving) events on the communication channel, invokes the corresponding callback
to obtain the value to send next, and performs the sending. The developer instantiates a session by
constructing an instance of the session runtime class, providing the WebSocket endpoint URL (to open
the connection) and the initial state (to execute the EFSM).

3.1.2 Linear Channel Usage

Developers writing their implementation using the generated APIs enjoy channel linearity by construc-
tion. Our library design prevents the two conditions detailed below:

Repeated Usage We do not expose channels to the developer, which makes reusing channels impossi-
ble. For example, to send a message, the generated API only requires the payload that needs to be sent,
and the session runtime performs the send internally, guaranteeing this action is done exactly once by
construction.
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Unused Channels The initial state must be supplied to the session runtime constructor in order to in-
stantiate a session; this initial state is defined in terms of the successor states, which in turn has references
to its successors and so forth. The developer’s implementation will cover the terminal state (if it exists),
and the session runtime guarantees this terminal state will be reached by construction.

3.2 The React Framework

Our browser-side session type encodings for browser-side targets build upon the React.js framework,
developed by Facebook [20] for the Model-View-Controller (MVC) architecture. React is widely used in
industry to create scalable single-page TypeScript applications, and we intend for our proposed workflow
to be beneficial in an industrial context. We introduce the key features of the framework.

Components A component is a reusable UI element which contains its own markup and logic. Com-
ponents implement a render() function which returns a React element, the smallest building blocks
of a React application, analogous to the view function in the MVU architecture. Components can keep
states and the render() function is invoked upon a change of state.

For example, a simple counter can be implemented as a component, with its count stored as state.
When rendered, it displays a button which increments count when clicked and a div that renders the
current count. If the button is clicked, the count is incremented, which triggers a re-rendering (since
the state has changed), and the updated count is displayed.

Components can also render other components, which gives rise to a parent/child relationship be-
tween components. Parents can pass data to children as props (short for properties). Going back
to the aforementioned example, the counter component could render a child component <StyledDiv
count={this.state.count} /> in its render() function, propagating the count from its state to
the child. This enables reusability, and for our use case, gives control to the parent on what data to pass
to its children (e.g. pass the payload of a received message to a child to render).

3.3 Browser-Side API Generation

We refer to the P1 EFSM (Figure 2) as a running example in this section. Preserving behavioural typing
and channel linearity is challenging for browser-side applications due to EFSM transitions being trig-
gered by user events: in the case of Noughts and Crosses, once the user makes a move by clicking on
a cell on the game board, this click event must be deactivated until the user’s next turn, otherwise the
user can click again and violate channel linearity. Our design goal is to enforce this statically through
the generated APIs.

For browser-side targets, we extend the approach presented in [9] on multiple model types motivated
by the Model-View-Update (MVU) architecture. An MVU application features a model encapsulating
application state, a view function rendering the state on the Document Object Model (DOM), and an up-
date function handling messages produced by the rendered model to produce a new model. The concept
of model types express type dependencies between these components: a model type uniquely defines
a view function, set of messages and update function – rather than producing a new model, the update
function defines valid transitions to other model types. We leverage the correspondence between model
types and states in the EFSM: each state in the EFSM is a model type, the set of messages represent
the possible (IO) actions available at that state, and the update function defines which successor state to
transition to, given the supported IO actions at this state.
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3.3.1 Model Types in React

Figure 2: EFSM for P1.

State An EFSM state is encoded as an abstract
React component. This is an abstract class to
require the developer to provide their own view
function, which translates conveniently to the
render() function of React components. Our
session runtime (Section 3.3.2) “executes” the
EFSM and renders the current state. Upon tran-
sitioning to a successor state, the successor’s view
function will be invoked, as per the semantics ex-
pressed in [9].

Model Transitions Transitions are encoded as
React component props onto the encoded states
by the session runtime (Section 3.3.2). We mo-
tivate the design choice of not exposing channel
resources to provide guarantees on channel usage.
React components in TypeScript are generic [18],
parameterised by the permitted types of prop and
state. The parameters allow us to leverage the
TypeScript compiler to verify that the props for
model transitions stay local to the state they are defined for. The model transitions for EFSMs are mes-
sage send and receive.

Sending We make the assumption that message sending is triggered by some user-driven UI event
(e.g. clicking a button, pressing a key on the keyboard) which interacts with some DOM element. We
could pass a send() function as a prop to the sending state, but the developer would be free to call the
function multiple times which makes channel reuse possible. Instead, we pass a factory function as a
prop, which will, given an HTML event and an event handler function, return a fresh React component
that binds the sending action on construction. So once the bound event is triggered, our session runtime
executes the event handler function to obtain the payload to send, perform the send exactly once and
transition to (which, in practice, means render) the successor state.

1 // Inside some render () function ..

2 {board.map((row , x) => (

3 row.map((col , y) => {

4 const SelectPoint = this.props.Pos(’click’, (event: UIEvent) => {

5 event.preventDefault ();

6 return { x: x, y: y };}

7 return <SelectPoint ><td >.</td ></SelectPoint >;

8 });}

Listing 3: Model transition for message sending in Noughts and Crosses P1 implementation.

We demonstrate the semantics using the Noughts and Crosses example in Listing 3. The session
runtime passes the factory function this.props.Pos as a prop. For each x-y coordinate on the game
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board, we create a SelectPoint React component from the factory function (which reads “build a React
component that sends the Pos message with x-y coordinates as payload when the user clicks on it”) and
we wrap a table cell (the game board is rendered as an HTML table) inside the SelectPoint component
to bind the click event on the table cell.

Receiving The React component for a receiving state is required to define a handler for each sup-
ported branch. Upon a message receive event, the session runtime invokes the handler of the correspond-
ing branch with the message payload and renders the successor state upon completion.

3.3.2 Session Runtime

The session runtime can be interpreted as an abstraction on top of the React VDOM that implements the
EFSM by construction. The session runtime itself is a React component too, named after the endpoint
role identifier: it opens the WebSocket connection to the server, keeps track of the current EFSM state
as part of its React component state, and most importantly, renders the React component encoding of the
active EFSM state. Channel communications are managed by the runtime, which allows it to render the
successor of a receive state upon receiving a message from the channel. Similarly, the session runtime is
responsible for passing the required props for model transitions to EFSM state React components. The
session runtime component is rendered by the developer and requires, as props, the endpoint URL (so it
can open the connection) and a list of concrete state components.

The developer writes their own implementation of each state (mainly to customise how the state is
rendered and inject business logic into state transitions) by extending the abstract React class compo-
nents. The session runtime requires references to these concrete components in order to render the user
implementation accordingly.

3.3.3 Affine Channel Usage

A limitation of our browser-side session type encoding is only being able to guarantee that channel
resources are used at most once as opposed to exactly once.

Communication channels are not exposed to the developer so multiple sends are impossible. This
does not restrict the developer from binding the send action to exactly one UI event: for Noughts and
Crosses, we bind the Pos(Point) send action to each unoccupied cell on the game board, but the
generated runtime ensures that, once the cell is clicked, the send is only performed once and the successor
state is rendered on the DOM, so the channel resource used to send becomes unavailable.

However, our approach does not statically detect whether all transitions in a certain state are bound
to some UI event. This means that it is possible for an implementation to not handle transitions to a
terminal state but still type-check, so we cannot prevent unused states. Equally, our approach does not
prevent a client closing the browser, which would drop the connection.

4 Case Study

We apply our framework to implement a web-based implementation of the Noughts and Crosses run-
ning example in TypeScript; the interested reader can find the full implementation in [14]. In addition
to MPST-safety, we show that our library design welcomes idiomatic JavaScript practices in the user
implementation and is interoperable with common front- and back-end frameworks.
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1 const handleP1Move: S13 = (move: Point) => {

2 board.P1(move); // User logic

3 if (board.won ()) {

4 return [Labels.Lose , move , [Labels.Win , move ]];

5 } else if (board.draw ()) {

6 return [Labels.Draw , move , [Labels.Draw , move ]];

7 } else {

8 return [Labels.Update , move , [Labels.Update , move , handleP2Move ]];

9 }

10 }

11
12 // Instantiate session - ‘handleP2Move ‘ defined similarly as S19

13 new NoughtsAndCrosses.Svr(webSocketServer , handleP1Move );

Listing 4: Session runtime instantiation for Noughts and Crosses Svr.

Game Server We set up the WebSocket server as an Express.js [8] application on top of a Node.js [17]
runtime. We define our own game logic in a Board class to keep track of the game state and expose
methods to query the result. This custom logic is integrated into our handleP1Move and handleP2Move

handlers (Listing 4), so the session runtime can handle Pos(Point)messages from players and transition
to the permitted successor states (Listing 1) according to the injected game logic: if P1 played a winning
move (Line 4), Svr sends a Lose message to P2 with the winning move, and also sends a Win message
to P1; if P1’s move resulted in a draw (Line 6), Svr sends Draw messages to both P2 and P1; otherwise,
the game continues (Line 8), so Svr updates both P2 and P1 with the latest move and proceeds to handle
P2’s turn.

Note that, by TypeScript’s structural typing [18], replacing handleP2Move on Line 8 with a recursive
occurrence of handleP1Move would be type-correct — this allows for better code reuse as opposed to
defining additional abstractions to work around the limitations of nominal typing in [11]. There is also
full type erasure when transpiling to JavaScript to run the server code, so the types defined in TypeScript
will not appear in the JavaScript after type-checking. This means state space explosion is not a runtime
consideration.

Game Clients We implement the game client for P1 and P2 by extending from the generated abstract
React (EFSM state) components and registering those to the session runtime component.

For the sake of code reuse, [14] uses higher-order components (HOC) to build the correct state
implementations depending on which player the user chooses to be. We leverage the Redux [1] state
management library to keep track of the game state, thus showing the flexibility of our library design
in being interoperable with other libraries and idiomatic JavaScript practices. Our approach encourages
the separation of concerns between the communication logic and program logic — the generated session
runtime keeps track of the state of the EFSM to ensure protocol conformance by construction, whilst
Redux solely manages our game state.

5 Related Work

The two main approaches for incorporating our MPST workflow into application development are native
language support for first-class linear channel resources [22] and code generation. The latter closely
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relates to our proposal; we highlight two areas of existing work under this approach that motivate our
design choice.

Endpoint API Generation Neykova and Yoshida targeted Python applications and the generation of
runtime monitors [15] to dynamically verify communication patterns. Whilst the same approach could
be applied to JavaScript, we can provide more static guarantees with TypeScript’s gradual typing system.
Scribble-Java [11] proposed to encode the EFSM states and transitions as classes and instance methods
respectively, with behavioural typing achieved statically by the type system and channel linearity guar-
antees achieved dynamically since channels are exposed and aliasing is not monitored. Scribble-Java
can generate callback-style APIs similar to the approach we present, but this approach is arguably less
idiomatic for Java developers.

Session Types in Web Development King et al. [13] targeted web development in PureScript using the
Concur UI framework and proposed a type-level encoding of EFSMs as multi-parameter type classes.
However, it presents a trade-off between achieving static linearity guarantees from the type-level EFSM
encoding under the expressive type system and providing an intuitive development experience to de-
velopers, especially given the prevalence of JavaScript and TypeScript applications in industry. Fowler
[9] focused on applying binary session types in front-end web development and presented approaches
that tackle the challenge of guaranteeing linearity in the event-driven environment, whereas our work is
applicable to multiparty scenarios.

Our work applies the aforementioned approaches in a multiparty context using industrial tools and
practices to ultimately encourage MPST-safe web application development workflows in industry.

6 Conclusion and Future Work

We have presented an MPST-based framework for developing full-stack interactive TypeScript applica-
tions with WebSocket communications. The implementation conforms to a specified protocol, statically
providing linear channel usage guarantees and affine channel usage guarantees for back-end and front-
end targets respectively.

Future work includes incorporating explicit connection actions introduced in [12] in our API gen-
eration to better model real-world communication protocols that may feature in interactive web appli-
cations. Server-side implementations may perform asynchronous operations on the received messages,
so supporting asynchronous values (such as JavaScript Promises [3]) in IO actions would be a welcome
addition. Whilst our approach supports multiparty sessions, the nature of WebSockets require some
server-based role in the communication protocol and clients to interact via the server. Extending support
to WebRTC [21] would cater for peer-to-peer communication between browsers, which further opens up
possibilities for communication protocols supported by our approach.
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