
Intensional and Extensional Characterisation of
Global Progress in the π-Calculus

Luca Fossati, Kohei Honda, and Nobuko Yoshida

Queen Mary University of London and Imperial College London

Abstract. We introduce an observational theory of a linear π-calculus for a rigorous
behavioural characterisation of global progress properties such as non-blockingness
and wait-freedom. On the basis of typed asynchronous transitions, we introduce a gen-
eral framework to capture global progress through a combination of fair transitions and
partial failures, the latter to represent stalling activities in a fair transition sequence, and
show how we can rigorously capture representative global progress properties such as
non-blockingness and wait-freedom, both extensionally and intensionally. The inten-
sional characterisations offer a faithful formalisation of the intuitive notions, while the
extensional characterisations offer their counterpart capturing a wider class of proper-
ties solely based on external observables independent from internal implementations.
We introduce a fairness-enriched bisimilarity which preserves these progress properties
and which is a congruence, and demonstrate its usage through semantic characterisa-
tion and separation results for some of the representative concurrent data structures.

1 Introduction
Imperative concurrent data structures such as lock-based and non-blocking queues play
a fundamental role in practice, and have been extensively studied from the algorithmic
viewpoint for decades [13, 27]. In spite of these studies, our understanding on some of
their key properties such as non-blockingness and wait-freedom still lacks a rigorous se-
mantic foundation, which is essential for critical engineering practice such as verification.

For example, we may wish to compare different queue implementations, some using
locks and some lock-free [9, 21, 22] but with a common interface, for substituting a better
algorithm for an already existing one. Can we exactly identify their similarities and dif-
ferences in their observable effects? Can such identifications be extensible to concurrent
data structures based on message passing? To answer these questions, we need a uniform
semantic theory applicable to a large class of concurrent data structures through which
we can accurately analyse their key properties.

Consider the following standard algorithmic description of non-blockingness (also
called lock-freedom), taken from [27].

“A data structure is non-blocking if it guarantees that some process will always
be able to complete its pending operation in a finite number of its own steps,
regardless of the execution speed of other processes.”

Here we are considering a data structure which offers a set of operations. When a client
requests an operation (say an enqueue), a process/thread is spawned to perform it. When
multiple requests arrive, several threads will run concurrently, each of which trying to
complete its own operation. The above description says that, in a non-blocking data struc-
ture, some of these threads can always complete their operations regardless of how slow or
fast other threads are. If we change “some” into “all”, we obtain wait-freedom. Although

1

the description concisely captures the key algorithmic aspects of non-blockingness, it
leaves the meaning of its central notions, described in such phrases as “in a finite number
of its own steps” and “the execution speed of other processes” informal. It also leaves un-
specified whether a run (an execution sequence) being considered can contain unbound-
edly many requests, hence unboundedly many threads (we shall see the significance of
this point in our formal inquiry in § 3). Another issue, from a semantic viewpoint, is that
this description is intensional in that it refers to concrete executions of processes (e.g. “its
own steps”), which is natural as an algorithmic definition but may not be general enough
from a semantic viewpoint, for example for substitutability arguments.

In this paper we introduce a rigorous behavioural theory of concurrent data struc-
tures based on a linear π-calculus. The theory can accurately capture not only functional
correctness of concurrent data structures but also their global progress properties. The
framework uses fair transitions (intuitively because we only wish to consider those runs
in which all threads are given sufficient chances to complete) and stalling reductions (for-
malising the possibility of zero or more threads stopping their execution in a finite or
infinite run, in order to measure its effects on other threads, which has been left implicit
in standard descriptions such as the above). The framework is uniform in that it can rig-
orously capture existing global progress properties both intensionally and extensionally.
The intensional characterisations offer a faithful formalisation of existing intuitive no-
tions, assigning them a rigorous semantics; whereas the extensional ones capture a wider
class of properties solely based on external observables, while being capable of differen-
tiating among typical concurrent data structures.

Another key element of our theory is the use of a series of linear interactions to rep-
resent a semantically atomic action: the theory shows how linearity can effectively model
the building blocks of diverse synchronisation algorithms. As a result, combined with
the expressiveness of the π-calculus, our theory is independent from concrete atomic-
ity primitives such as semaphore and compare-and-swap (cas) or specific programming
languages, applicable to a general class of behaviours representable in the π-calculus.

Summary of Contributions. In §2 we introduce a linear π-calculus. Our main technical
contributions include:

– A behavioural theory of asynchronous fair typed labelled transitions augmented with
partial failures (stalling), giving rigorous behavioural characterisations of blocking
and non-blocking global progress properties in both intensional and extensional set-
tings, leading to their classification (§3).

– An application of the proposed framework to the analysis of process encodings of
lock-based and non-blocking queues (§4 and §5). A rigorous operational analysis us-
ing linear typed transitions leads to a concise proof of semantic linearisability of non-
blocking queues (Th. 5.4) and semantic separation between a non-blocking queue
and a lock-based queue (Th. 5.9).

As far as we know, the present work offers the first rigorous complete observational theory
of non-blockingness and wait-freedom. See § 7 for further discussions, including compar-
isons with related works. The Appendix lists auxiliary definitions, further examples and
full proofs of all technical results.

2

2 The π-Calculus with Linear Types
2.1 Processes, Reduction and Types

Processes. Following [15, 29, 33], we use the asynchronous π-calculus augmented with
branching/selection. We use the following identifiers: channels (or names) (a,b,c,g,h,
r,u,. . .); value variables (x, y, . . .); process variables (X,Y, . . .); constants for which we
use booleans {tt,ff} and numerals {0, 1, ..}; values (v, v′, . . .) which are the union of
channels and constants; and first-order expressions (e, e′, . . .), inductively generated from
values, value variables and first-order operations on them (e.g.−e, e1+e2, e1∧e2, ¬e and
e1 =e2).1 We write ~x (~e) for a vector of distinct variables (expressions).

Processes (P,Q, ...) are given by the following grammar.

P ::= u&i∈I{li(~xi).Pi} | u⊕ l〈~e〉 | if e then P else Q

| P |Q | (ν u)P | (µX(~x).P)〈~e〉 | X〈~x〉 | 0

A branching u&i∈I{li(~xi).Pi} offers non-empty branches, each with a branch label li,
formal parameters ~xi and continuation Pi. Dually, a selection u⊕l〈~e〉 chooses l and passes
~e after evaluation. In each, u occurs as the subject, while ~xi and ~e as objects. Branchings
and selections are encodable into unary inputs [15], but play a key role in the linear typing
we use in this paper. We also use the standard conditional, if e then P else Q; parallel
composition, P |Q; hiding (ν u)P where u binds in its free occurrences in P ; recursion
(µX(~x).P)〈~e〉, where the initial X and ~x bind in their free occurrences in P , while X in
P should occur guarded under an input; and, finally, the instantiation of a recursionX〈~e〉,
where ~e is the vector of actual parameters.

Branchings and selections are often called inputs and outputs, respectively. Without
loss of generality, we assume a unique fixed branch label for all single-branch inputs,
and omit it in all examples, as in u(~x).P for input and u〈~e〉 for output. We also use the
following standard notations: u(~a)P (for (ν ~a)(u〈~a〉|P)), a and a.P (for a〈〉 and a().P ,
respectively) and the replication !u&i{li(~xi).Pi} (for (µX().u&i{li(~xi).(Pi|X〈〉))〈〉).

Reduction. The structural congruence≡ is defined by the standard rules augmented with
the unfolding of recursion, (µX(~x).P)〈~e〉 ≡ P{(µX(~x).P)/X}{~e/~x}. The reduction
relation −→ is generated from:

u&i∈I{li(~xi).Pi} | u⊕ lj〈~e〉 −→ Pj{~v/~xj} (j ∈ I, ~e ↓ ~v)
if e then P else Q −→ P (e ↓ tt) if e then P else Q −→ Q (e ↓ ff)

where ~e ↓ ~v says that the pointwise evaluation of ~e is ~v. The first rule says that an input
interacts with an output at u, the former’s j-th branch Pj is chosen, and ~xj are instantiated
with the evaluation of ~e. We close the relation under composition by | and ν , modulo ≡.

Types and Typing. We use the following grammar for types (τ, τ ′, σ, σ′, . . .).

τ ::= &L
i∈I li(~τi) | &?

i∈I li(~τi) | ⊕Li∈I li(~τi) | ⊕?i∈I li(~τi) | ⊥ | bool | int

In the grammar above, the first four are types for linear/non-linear channels, used for
typing branching (&) and selection (⊕) prefixes, where each type in ~τi should not be

1 In the equality e1=e2, we shall later exclude the name matching by typing.

3

⊥. These types are annotated with linear (L) / non-linear (?) modes. Linearity is used
for representing a single semantically atomic behaviour by a sequence of interactions, as
we shall illustrate later. The dual of τ (for τ 6∈ {⊥, bool, int}), denoted τ , is defined by
exchanging & and ⊕. We write ↑L(~τ) for ⊕L1 l1(~τ) (i.e. singleton). Similarly for ↓L(~τ),
↑? (~τ) and ↓? (~τ). Type ⊥ indicates that both an input and an output are present at a
linear channel. bool and int are types for booleans and integers respectively. We define a
partial commutative operator � generated from: τ � τ = ⊥ when the modality is linear;
τ � τ = τ with τ a non-linear input; τ � τ = τ with τ a non-linear output; and otherwise
undefined. In words, composition is allowed for at most one input and at most one output
on a linear channel; and, on a non-linear one, it is allowed for at most one input and zero
or arbitrarily many outputs.

We use the standard linear typing with branching [15]. A typing environment or sim-
ply an environment (Γ,∆, . . .) is a collection of type assignments, each of the form u : τ
(channel/variable to type) or X : ~τ (process variable to a vector of its argument types),
forming a finite map. A typing judgement Γ ` P reads: “P has typing Γ ”. Γ ` P is
closed if Γ contains no free value/process variables. Other rules are left to § C.1. The
subsequent technical development does not depend on details of typing rules except for
the basic properties of typed processes which we shall discuss soon, after introducing the
labelled transition.

Linearity Annotation on Terms and Reduction. In a typed process, a linear channel
is a channel typed with a linear type, ensured to be used exactly once through typing;
if not, it is non-linear, and may be used zero or more times. A linear input/output is an
input/output with linear subject. A linear conditional is a conditional whose condition
may only contain constants, variables and linear channels. Linear inputs, outputs and
conditionals are often annotated by a linear mode L, as in u&L

i∈I{li(~xi).Pi}, u ⊕L l〈~e〉
and ifLv then P else Q. We extensively use linear reduction, denoted −→L, which is
a reduction induced by interaction at a linear channel or by reducing a linear conditional.

Processes, Reduction and Types: Examples. An atomic operation, such as atomic read-
/write and cas, is represented using a sequence of linear reductions. Formally, it consists
of an initial invocation (i.e. a synchronisation selecting the associated branch) followed
by a series of linear reductions, until a response. The channel on which it is invoked
is usually non-linear, allowing the operation to be invoked several times. The following
example uses recursive equations for readability (easily translatable into recursion).

Ref〈u, v〉 def
= u&

{
read(z) : zL〈v〉 | Ref〈u, v〉, write(y, z) : zL | Ref〈u, y〉

}
Refcas〈u, v〉 def

= u&

{
read(z) : zL〈v〉 | Refcas〈u, v〉, write(y, z) : zL | Refcas〈u, y〉,
cas(x, y, z) : ifLx=vthen(zL〈tt〉|Refcas〈u, y〉)else(zL〈ff〉|Refcas〈u, v〉)

}
Above Ref〈u, v〉 represents an atomic reference, to which Refcas〈u, v〉 adds the standard
cas operation. An example of reduction of the cas atomic operation follows.

Refcas〈a, 0〉|(ν c)(a⊕cas〈0, 1, c〉|c(x).P)

−→ (ν c)((if 0 = 0 then c〈tt〉 | Refcas〈a, 1〉 else c〈ff〉 | Refcas〈a, 0〉) | c(x).P)

−→L (ν c)(c〈tt〉 | Refcas〈a, 1〉 | c(x).P)

−→L Refcas〈a, 1〉 | P{tt/x}

4

Intuitively, linear reductions inevitably take place regardless of other reductions, because
they never get interfered by other actions. Hence we may semantically regard the above
sequence as a single atomic action. Later we justify this intuition formally.

As another example, we show two different forms of mutual exclusion. When Mtx〈u〉
gets locked, its principal channel u becomes unavailable [17]; while Mtxspin〈u〉 uses cas
and spins for representing a locking behaviour.

Mtx〈u〉 def
= u(x).x(h)h.Mtx〈u〉

Mtxspin〈u〉 def
= (ν c)(!u(x).µX.(if cas(c, 0, 1) then x(h)h.CAS(c, 1, 0) elseX) | Refcas〈c, 0〉)

Above, the notation “if cas(u, v, w) then P else Q” stands for the following condi-
tional behaviour, “(ν c)(u⊕ cas〈v, w, c〉|c(x).if x then P elseQ)”; while the notation
“CAS(u, v, w)” stands for doing cas once, i.e. “if cas(u, v, w) then 0 else 0”.

2.2 Untyped and Typed Labelled Transitions
Untyped Labelled Transition. For our behavioural theory, we use a typed labelled tran-
sition system (LTS). The action labels `, `′, . . . are given by the grammar:

` ::= τττ | (ν ~c)a&l(~v) | (ν ~c)a⊕ l〈~v〉

Above we assume the names in ~c are pairwise distinct, are disjoint from a, and should
occur in ~v in the same order (e.g. (ν cf)a⊕l〈bcdfg〉). If ~c is empty, we omit (ν ~c), writing
e.g. a ⊕ l〈~v〉. For single-branch value passing, we write (ν ~a)u〈~v〉, (ν ~a)a〈~v〉, a〈~v〉 and
a〈~v〉. Using these action labels, we first define the untyped asynchronous LTS. First we
set P τττ−→ Q iff P −→ Q. Further we define:

(Bra) P
(ν ~c)a&l〈~v〉−−−−−−−→ P |a⊕ l〈~v〉 (Sel) (ν ~c)(P |a⊕ l〈~v〉) (ν ~c)a⊕l〈~v〉−−−−−−−→ P

where, in (Bra), no name in ~c may occur in P . We then close the relation under ≡ as:
P

`−→ Q when P ≡ P0, P0
`−→ Q0 and Q0 ≡ Q. Intuitively, in (Bra), an observer

asynchronously sends a message to P which it receives; symmetrically for (Sel).

Environment Transition and Typed Transition. Next we introduce a key technical
element of the typed LTS, the transitions of typing environments. Γ `−→ Γ ′ says that Γ
allows the action ` and the resulting environment is Γ ′. First we set Γ τττ−→ Γ , i.e. τττ -action
is always possible. Further:

Γ, a :&?{li(~τi~ρi)}i∈I
(ν ~c)a&lj〈~v~c〉−−−−−−−−→ Γ � ~v :~τj , ~c :~ρi, a :&?{li(~τi~ρi)}i∈I

Γ � ~v :~τj , a :⊕?{li(~τi~ρi)}i∈I
(ν ~c)a⊕lj〈~v~c〉−−−−−−−−→ Γ, ~c :~ρj , a :⊕?{li(~τi~ρi)}i∈I

Γ, a :&L{li(~τi~ρi)}i∈I
(ν ~c)a&lj〈~v~c〉−−−−−−−−→ Γ � ~v :~τj , ~c :~ρj , a :⊥

Γ � ~v :~τj , a :⊕L{li(~τi~ρi)}i∈I
(ν ~c)a⊕lj〈~v~c〉−−−−−−−−→ Γ, ~c :~ρj

Above we separate ~v (free names and constants, typed as ~τj under Γ) and ~c (new names,
corresponding to ~ρj and disjoint from Γ) for legibility. In the second and fourth rules, ~τj
is the pointwise dualisation. In the second/fourth rules, if vi has a non-linear type, then
it occurs in Γ . In all rules, � should be defined. Intuitively, the first rule says that an

5

input type assignment to a allows a reception of a message for a and, because of its non-
linear type, the typing at a does not change. The second rule is its dual, while the third
and fourth rules are their linear variants (only differing in the resulting environments).
App. C.1 contains further illustration. The typability of processes and the environment
transition are consistent with each other in the following sense.

Proposition 2.1. If Γ ` P , Γ `−→ Γ ′ and P `−→ P ′, then Γ ′ ` P ′.

Proof. See Appendix E.1 to E.2. 2

We then set:

Γ ` P `−→ Γ ′ ` P ′ def⇔ Γ ` P , P `−→ P ′ and Γ `−→ Γ ′.

By Proposition 2.1, Γ ` P `−→ Γ ′ ` P ′ implies Γ ′ ` P ′.
The following example highlights how a typing controls a typed labelled transition.

Example 2.2 (typed asynchronous transition). Let τ def
= ↑L (int), τ ′ def

= ↓? (τ) and
Γ

def
= a : τ ′, c :τ . Let P def

= !a(x).x〈2〉 | a〈c〉.. Then we have:

Γ ` P (ν g)a〈g〉−−−−−−→ Γ, g :τ ` P |a〈g〉.

However Γ ` P does not have a transition a〈c〉 since Γ 6 a〈c〉−−→. Intuitively, this message
should be consumed by the unique input !a(x).x〈2〉.

Henceforth we assume processes and transitions are typed, even when we leave envi-

ronments implicit, as in P
`−→ Q. We use the standard notation P

ˆ̀
=⇒ Q standing

for P τττ−→
∗
Q when ` = τττ and P

τττ−→
∗ `−→ τττ−→

∗
Q otherwise. P

s
−−→ P ′ stands for

P
`1−→ . . .

`n−→ P ′, where s = `1 . . . `n, then P ′ is a transition derivative of P .

Proposition 2.3. Below we assume all processes are typed.

(1) (partial confluence) Suppose P `−→ Q1 and P −→L Q2 s.t. Q1 6≡ Q2. Then there is R
such that Q1 −→L R and Q2

`−→ R.
(2) (linear normal form) For any P , we have P −→∗L Q 6−→L for a unique Q.

(3) (asynchrony) P
s
−−→ `−→ Q s.t. the subject of input ` is not bound in s, implies

P
`−→

s
−−→ Q. And given a free output `, P `−→

s
−−→ Q implies P

s
−−→ `−→ Q.

Proof. See Appendix E.3. 2

We are now ready to introduce a typed bisimulation. A relationR over typed processes is
typed if it relates Γ ` P and ∆ ` Q only if Γ = ∆, in which case we write Γ ` PRQ.

Definition 2.4 (bisimilarity). A relation R over closed terms is a (weak) bisimulation if

PRQ and P `−→ P ′ imply Q
ˆ̀

=⇒ Q′ such that P ′RQ′, and symmetrically. The largest
bisimulation is extended to open terms in the standard way, denoted ≈.

Proposition 2.5. (1) ≈ is a typed congruence. (2) −→L⊂≈.

6

Proof. See Appendix E.4. 2

By Prop. 2.3 (1) and Prop. 2.5 (2), linear reductions are semantically neutral. Further by
Prop. 2.3 (2) any transition can be completed by consuming all potential linear reductions
at that time. This is why a reduction sequence like the one for Refcas〈u, v〉 given in the
example at the end of § 2.1, which contains a single non-linear reduction and one or more
linear reductions, may be considered as a single semantic action.

3 An Observational Theory of Global Progress

To motivate the semantic setting we introduce in this section, consider wait-freedom. A
distinguishing feature of a wait-free data structure is that it ensures the completion of ev-
ery requested operation, even if infinitely many requests arrive (in fact, as our formalisa-
tion in this section clarifies and as actual data structures attest, for finitely many requests,
non-blockingness also ensures that every operation completes).

Now consider encoding a wait-free queue as a π-calculus process, say P . A run (ex-
ecution sequence) of this queue, when invoked by one or more requests, corresponds to
a labelled transition sequence starting from P , where requests and answers correspond
to input and output transitions, respectively. Starting from P , we can easily find infinite
runs where some, or even all, of the requests are not answered. An example is a transition
sequence that contains only inputs, describing the run where new requests keep coming
but none of the requested operations makes progress.

To avoid such an anomaly, we consider only fair runs, where every active operation
is ensured to progress eventually, i.e. fair transition sequences where no redex is wait-
ing forever. It is well-known that any type of scheduler (sequential, parallel, or a mix
of the two) can easily realise fair runs, which are a natural abstraction for many practi-
cal implementations. But to our knowledge, no previous algorithmic description of wait-
freedom/non-blockingness mentions fairness explicitly, although some notion of fairness
must be present in the underlying model since runs like the above are implicitly excluded.

Explicitly including fairness means each thread can make some progress as far as it
continues to get enabled. This however causes the problem of representing the stalling of
a thread in a run. Consider a fair run of a lock-based queue, where concurrent operations
are protected by a lock. Fairness implies that each thread entering the critical section will
eventually exit (and complete), preventing us from capturing one of the central features
of lock-based implementations, i.e. a single thread stalling inside a critical section can
block all of the remaining threads whose operations are pending. We can however get an
accurate modelling by allowing to arbitrarily reduce an output action to the inaction 0
(thus making the corresponding thread stall forever). With this combination of fairness
and stalling, our model can accurately represent and differentiate a wide range of global
progress properties, both extensionally and intensionally.

3.1 Fair and Failing Sequences

Fairness. We proceed to formally define fair transition sequences. We use the standard
strong fairness, which is not restrictive because strongly fair transition sequences in π-
calculus encodings correspond to weakly fair runs in concurrent programs. This is due
to the fact that the π-calculus offers a more fined-grained representation. For example, in
a concurrent program, a request waiting forever to be served would be always enabled,

7

without discontinuity. This is encoded in the π-calculus as an output action which is in-
finitely often enabled (as defined below) by the recursive (re-)appearance of the dual input
(where each active output, also defined below, can be associated to a unique thread).

We define the notion of enabledness as follows (where we say that a channel is active
if it occurs as subject not under an input or conditional): 1) a conditional is enabled if it
can reduce; 2) an output is enabled when it either can reduce or has a free active subject;
3) a linear input is enabled if it has a free active subject (cf. Prop. 2.3).

Henceforth, Φ, Ψ, . . . range over possibly infinite typed transition sequences from
closed processes, often written as Φ : P1

`1−→ P2
`2−→ · · · (omitting environments). We

say that a transition sequence Φ is maximal if it is either infinite or ends with a process in
which no occurrence of conditional, output or linear input is enabled. Note finally that we
identify an occurrence across transitions (a rigorous treatment is found in [4] which uses
labels enriched with occurrences).

Now we define fairness:

Definition 3.1 (fairness). A transition sequence Φ is fair if Φ is maximal and no single
occurrence of conditional, output or linear input is infinitely often enabled in Φ.

Above we exclude non-linear inputs because we cannot expect the context to surely send
a message. On the other hand, a linear input should be inevitable in a fair transition.

Example 3.2 (fairness). In (!a.a)|a | (!b.b)|b, a non-fair transition sequence is generated
when we continuously reduce the a redex, because a single occurrence of b is enabled
infinitely often. A fair sequence is generated when we alternate the reductions on a and b,
because each output occurrence is enabled exactly twice and no more, before the reduction
on the other side and before its own.

Failing Reduction and Blocking. As observed already, we capture stalling by adding the
following reductions which we call failing transitions or failures, since we are in effect
representing stalling by a non-Bizantine partial failure. Below we assume u is not linear
and P and Q do not contain linear names.

u⊕lj〈~e〉 −→ 0 if v then P else Q −→ 0

We do not let linear selections/conditionals fail since they are used to denote atomic
operations (defined in § 2). A transition sequence containing a failing transition is said to
be failing. It is finitely failing if the number of failing reductions is finite.

The purpose of introducing failures is to observe their effects on later transitions: i.e.
we wish to observationally capture the notion of a failure in one component blocking
other components. This will later allow us to define a key notion in our theory, resilience.
Resilience itself is not a progress property (it gives a weaker notion of liveness). However
it serves as a basis for defining diverse global progress properties uniformly.

Let Φ be a transition sequence which starts from an initial configuration where no
requests have yet taken place. We define ended(Φ,Qi) as the set of the subjects of the
outputs appearing in Φ before the occurrence of a process Qi contained in Φ (to be ex-
act, in ended(Φ,Qi), the second element Qi should be an occurrence of a process in Φ
rather than a process itself: this can however be disambiguated by adding e.g. additional
inactions to processes (similarly in the next definition). Intuitively, ended(Φ,Qi) denotes
the set of “threads for which the responses have been returned”. We also say Γ allows

8

`, written Γ ` `, when Γ `−→ Γ ′ for some Γ ′. Further, allowed(Γ) denotes the set of
subjects of the transitions allowed by Γ .

The following notion can be understood as follows: a channel g is pending at some
point (corresponding to some process occurrence Γi ` Pi) in a transition sequence Φ, if
it is allowed (by Γi) but it has not received an answer yet.

pending(Φ, Γi ` Pi)
def
= allowed(Γi) \ ended(Φ,Pi) (3.1)

We call pending(Φ, Γi ` Pi), “the pending requests at Γi ` Pi in Φ”. A pending output
is blocked if a process can never emit it.

Definition 3.3 (blocked output). Let Φ : Γ0 ` P0
`1−→ · · · `i−→ Γi ` Pi

li+1−−→ · · · be a
possibly failing transition sequence.

1. c is blocked at Γi ` Pi in Φ if c ∈ pending(Φ, Γi ` Pi) and, moreover, no output
at c appears in any possible transition sequence from Γi ` Pi (not restricted to the
remaining sequence in Φ).

2. blocked(Φ, Γi ` Pi) denotes the set of blocked names in Pi. We sometimes write
blocked(Γi ` Pi) or even blocked(Pi) when Φ and the typing are clear from the
context. We further set blocked(Φ) = ∪i≥0blocked(Pi).

Example 3.4 (blocked output). We show how a failing reduction induces a blocked out-
put. Let

Lck〈u〉 def
= (νm)(!u(z).m(c)c(h).(z|h) |Mtx〈m〉)

This process is a server offering a single operation, which takes a lock and releases im-
mediately. Now consider:

Γ ` Lck〈u〉 |u〈z′〉 |u〈z′′〉

for a given Γ such that Γ `z′ and Γ `z′′. This can reduce to:

(νm)(!u(z).m(c)c(h).(z|h) | z′|(ν h′)(h′ |h′.Mtx〈m〉)) |u〈z′′〉;

We can now perform a failing reduction at h′. Then z′′ becomes blocked, as m becomes
permanently unavailable.

3.2 Intensional Global Progress Properties

We first introduce the notion of resilience which says that some or all threads can poten-
tially survive one or more failures by other threads, i.e. not all threads get blocked by the
stalling of one or more other threads. We capture this notion both extensionally and inten-
sionally, then on the basis of these two different characterisations we define intensional
and extensional progress properties, respectively. The former faithfully formalise an algo-
rithmic understanding of non-blockingness and wait-freedom, while the latter give their
extensional generalisations. We start from the intensional variants. Below, |S| indicates
the cardinality of a set S.

Definition 3.5 (strict resilience). A closed process P is strictly intensionally resilient or
often simply strictly resilient if for each finitely failing and fair Φ from P , |blocked(Φ)|
is no more than the number of failures in Φ.

9

By bounding the number of blocked outputs to the number of failures, strict resilience
ensures that each failure blocks only the component in which it occurs. This definition
is intensional because it assumes that the exact number of failures in Φ is known2. In
§ 7, Proposition 6.4, we show that strict resilience is essentially equivalent to obstruction-
freedom [12].

An interesting aspect of strict resilience is that we can easily weaken the notion by
asking that the number of blocked outputs is less than, say, n times the number of fail-
ures. We thus obtain a whole range of resilience properties, among which the extensional
resilience we shall define later represents a limiting point, while the others are intensional
in nature. Examples of (non-)strictly resilient processes follow.

Example 3.6 (strict resilience).

1. Consider the process Γ ` Lck〈u〉 |u〈z′〉 |u〈z′′〉 |u〈z′′′〉, which is obtained from Ex-
ample 3.4, by adding a further request in parallel. After the same reductions as in
Ex. 3.4, both z′′ and z′′′ become blocked. Hence the process is not strictly resilient.

2. In contrast, Ref〈u, v〉 (an atomic reference) is strictly resilient, since u is continuously
available, it is never possible (due to linearity) that an operation gets blocked.

Strict resilience is the base requirement for a precise formalisation of the current inten-
sional notions of non-blockingness and wait-freedom.

Definition 3.7. FT(P) denotes the set of fair transition sequences from P containing at
most finite failures.

Definition 3.8 (intensional non-blockingness/wait-freedom). A strictly resilient P is:

1. intensionally non-blocking (INB) if for any Φ ∈ FT(P) s.t. ∆ ` Q is in Φ and
allowed(∆) \ blocked(Φ) 6=∅, some output occurs in Φ after Q.

2. intensionally wait-free (IWF) if for any Φ ∈ FT(P) s.t. ∆ ` Q is in Φ and c ∈
allowed(∆) \ blocked(Φ), an output at c occurs in Φ after Q.

In addition to resilience, intensional non-blockingness asks that, in every execution, some
non-blocked outputs eventually come out; wait-freedom replaces “some” with “all”. With-
out resilience, the set allowed(∆) \blocked(Φ) could be empty for all Φ and ∆, so that
both properties would be trivially satisfied. This is the case when a failure in one com-
ponent blocks all other components, i.e. any lock-based implementation would become
non-blocking, defying our intention. Unlike previous definitions of non-blockingness and
wait-freedom, the use of resilience leads to a flexible articulation that can uniformly cap-
ture both intensional and extensional properties.

The process Refcas〈u, v〉 is a simple example of both intensional non-blockingness
and intensional wait-freedom. Further, more complex examples are given in § 4.

3.3 Extensional Global Progress and Inclusion Results
Next we introduce the extensional variant of resilience. The induced global progress prop-
erties are strictly more inclusive than their respective intensional counterparts. We then
explore the relationships among a variety of extensional progress properties.

2 Definition 3.5 allows |blocked(Φ)| to be less than the number of failures: this is because we
wish to include the cases when different requests carry overlapping response channels. In many
presentation of algorithms, one restricts the number of threads to execute an operation to one, but
in actual implementations, we can easily imagine other possibilities.

10

Extensional Global Progress. The intensional definitions accurately formalise previ-
ous informal presentations. But because of their intensionality, they may not be suitable
for compositional reasoning. We now turn our eyes to the extensional global properties,
simply by switching from strict resilience to its “observational” counterpart.

Definition 3.9 (extensional resilience, non-blocking, wait-free). P is extensionally re-
silient or simply resilient when, for all finitely failing Φ from P , blocked(Φ) is a finite
set. A process is non-blocking, NB (resp. wait-free, WF) if it satisfies (1) (resp. (2)) of
Def. 3.8, replacing strict resilience with resilience. Henceforth NB and WF denote, resp.,
the sets of NB and WF processes.

Extensional resilience abstracts away from counting failures, only requiring that each
failure blocks at most finitely many other operations. This abstraction makes sense from
an observational viewpoint, just as it makes sense to abstract away from finite τ -actions
in weak process equivalences such as weak trace equivalence and weak bisimilarities.

Example 3.10 (extensional progress properties). Suppose a server has two cores, one
fragile (a single thread’s failure can kill all threads running there) and the other robust.
Then a single thread’s failure in the former would block all the clients that are using
that core, but the remaining clients will continue to work and will return results (i.e.
are not blocked). For an external observer, there is no difference between this example
and all clients in that port failing: observationally, what matters is whether a failure has
sufficiently local effects. To abstract away all such local effects, we only demand, under
infinite requests, a finite number of failures only block a finite number of threads, i.e. the
surviving (non-blocked) threads are co-finite.

Below we write INB and IWF for the set of processes which are INB (intensionally non-
blocking) and IWF (intensionally wait-free), respectively.

Proposition 3.11. , INB (IWF, INB (NB and IWF (WF.

Proof. In the first clause, the inclusion is immediate from the definition while CQemp(r)
in Section 4 is a differentiating process. The remaining strict inclusions are also immediate
(for strictness we can use resources some of whose threads share their fate). 2

Relating Extensional Progress Properties. We also define the variants of NB and WF
obtained by disabling failures (then by fairness, for any output or conditional that is cycli-
cally enabled, the corresponding reduction or output transition eventually has to occur).

Definition 3.12 (WNB, WWF, RBL). P is weakly non-blocking (WNB) (respectively
weakly wait-free, WWF) if it satisfies (1) (respectively (2)) of Definition 3.8 restricted to
non-failing transitions. It is reliable (RBL) if it satisfies Definition 3.5 (strict resilience)
restricted to non-failing transitions (i.e. there are no blocked outputs at all). We let RBL /
WNB / WWF denote the sets of RBL/WNB/WWF processes, respectively.

Example 3.13. Two examples:

1. Lck〈u〉 in Example 3.4 is WWF, because by fairness every request is served.
2. Let Lckspin〈u〉 be the same agent but replacing Mtx〈m〉 with Mtxspin〈m〉. Lckspin〈u〉

is WNB but it is not WWF, since in an infinite execution some requests may spin
forever.

11

Proposition 3.14 (relating NB, WF, WNB, WWF, RBL).

1. P ≈ Q implies (P ∈ RBL ⇐⇒ Q ∈ RBL).
2. NB ∪WWF (WNB (RBL and WF (NB ∩WWF.

(1) is because reliability is an existential requirement. (2) underpins the inclusions among
behavioural properties. NB (WNB also says that, if no output comes out in a transi-
tion sequence of a non-blocking process, it is due to a failure, not to a functional flaw.
The following diagram contains the examples seen so far and two others (LQemp(r) and
CQemp(r), defined in § 4). Note also that resilience contains NB (by definition) but is
incomparable with WNB, WWF and RBL. Finally, as noted in Proposition intensionalex-
tensional, while not in this picture, the intensional versions of NB and WF are strictly
contained in WF and NB respectively and share CQemp(r) as a differentiating instance.

4 Application: Semantic Separation of Queues (1)
We now apply our observational theory to the semantic analysis of two imperative queues,
one based on a lock mechanism and the other based on the cas operation. The novelty lies
in our use of linear actions for rigorous and concise linearisability arguments; and the
establishment of an extensional separation.

We first provide an abstract specification of a queue and define the two queues in our
calculus (§ 4.1). Correctness is obtained by showing that both queues are bisimilar to the
abstract specification.

4.1 Specification

The specification should be as minimal and intuitive as possible, hence we use a state
abstraction rather than the π-calculus, as the latter is better suited for an in-depth analysis
which is not needed at this point. We first define a queue state, denoted st, st′, . . ., as a
triple 〈Rs, Vs, As〉, where (1) Rs is a set of requests, each of the form enq(v, g) or deq(g)
s.t. v and g are respectively its value and continuation name (2) Vs is a value sequence
v1 · · · vn, s.t. v1 is the head and vn is the tail; (3) As is a set of answers of the form g〈~v〉,
in which g is the continuation name and ~v a single value or ε.

An abstract queue (p, q, . . .) is a pair AQ(r, st) of a queue state st and a channel r,
known as its subject (e.g. AQ(r, 〈{enq(6, g1), deq(g2)}, 2·3·1, {g3〈5〉}〉) is an abstract
queue with subject r, two requests, three values and one answer). We set

AQemp(r)
def
= AQ(r, 〈∅, ∅, ∅〉)

which denotes the empty queue with subject r.

12

We define a LTS over abstract queues, where an input corresponds to asynchronously
receiving a request and an output corresponds to asynchronously emitting an answer:

AQ(r, 〈Rs, Vs, As〉) r&enq〈v,g〉−−−−−−−→ AQ(r, 〈Rs ∪ enq(v, g), Vs, As〉)

AQ(r, 〈Rs, Vs, As〉) r&deq〈g〉−−−−−→ AQ(r, 〈Rs ∪ deq(g), Vs, As〉)

AQ(r, 〈Rs, Vs, As〉) (ν g)r&enq〈v,g〉−−−−−−−−−−→ AQ(r, 〈Rs] enq(v, g), Vs, As〉)

AQ(r, 〈Rs, Vs, As〉) (ν g)r&deq〈g〉−−−−−−−−→ AQ(r, 〈Rs] deq(g), Vs, As〉)
AQ(r, 〈Rs] enq(v, g), Vs, As〉) τ−→ AQ(r, 〈Rs, Vs·v, As] g〉)
AQ(r, 〈Rs] deq(g), v ·Vs, As〉) τ−→ AQ(r, 〈Rs, Vs, As] g〈v〉〉)

AQ(r, 〈Rs] deq(g), , As〉) τ−→ AQ(r, 〈Rs, , As] g〈KO〉〉)

AQ(r, 〈Rs, Vs, As] g〈v〉〉) g〈v〉−−−→ AQ(r, 〈Rs, Vs, As〉)

Above, Rs]deq(g) is the union of Rs and {deq(g)} such that deq(g) 6∈ Rs. All τ -actions
represent state changes, which we call commit actions or more simply commits. We write

them as AQ(r, st)
com(g)−−−−−→ AQ(r, st′).

Convention 4.1 (distinct continuations). Henceforth, we assume that the continuation
names received in the input transitions are always bound, i.e. we assume that the first
two cases of transitions above never occur. Thus, starting from the empty queue, all con-
tinuations inside an abstract queue are distinct. This assumption does not make us lose
generality because all the arguments in the correctness proofs apply just as well if we
index each continuation name with a fresh index.

To define a consistent typed LTS over abstract queues, we need to equip abstract queues
with linear typing, which is easily done. For example, the queue above is typed under
r : &?{enq(int ↑? ()), deq(↑? (int)}, g1 :↑? (), g2 :↑? (int), g3 :↑? (int).

4.2 Two Queues
Lock-based Queue. Next we introduce a process encoding of a lock-based queue, which
implements the specification using a lock.

LQ(r, h, t, l)
def
= ! r&{enq(v, u) : l(g)g(y).P lckenq (v, t, y, u), deq(u) : l(g)g(y).P

lck
deq (h, t, y, u)}

LQemp(r) def
= (νh, t, s, l)(Mtx〈l〉|LQ(r, h, t, l)|LPtr(h, s)|LPtr(t, s)|LENode(s, 0))

where LQemp(r) is the empty configuration and LPtr(h, s), LPtr(t, s) and LENode(s, 0)
are (non-CAS) references from § 2. The queue is represented as a linked list. Pointers h
and t store the names of the head and tail nodes, respectively: when they coincide, the
list is empty, with a single dummy node (as above). The key steps are the non-linear
interactions with Mtx〈l〉. The remaining behaviours P lckenq(v, t, y) and P lckdeq(h, t, y) are the
obvious list manipulation followed by lock relinquishment (see § D).

CAS-based Queue. The last is a cas-based non-blocking queue due to [22]:

CQ(r, h, t)
def
= ! r&{enq(v, g) : Enqueuecas〈t, v, g〉, deq(g) : Dequeuecas〈h, t, g〉}

CQemp(r) def
= (νh, t, nd0, nxt0)(CQ(r, h, t) | Ptr(h, nd0, 0) | Ptr(t, nd0, 0)

| Node(nd0, 0, nxt0) | Ptr(nxt0, null, 0))

13

The cas-based queue is also represented as a linked list. A node Node(nd, v, ptr) is a
reference Ref〈nd, 〈v, ptr〉〉 storing a value and the name of a pointer Ptr(ptr, nxt, ctr),
which is a cas-reference Refcas〈ptr, 〈nxt, ctr〉〉, containing the name of the next node, or
null, and a counter incremented at each successful cas. To scan, we start from h, reach the
initial (dummy) node, get the pointer name and reach the first value node, and so on. The
enqueue operation Enqueuecas〈x , tail , u〉 is the key algorithm:

1 Enqueuecas〈x , tail , u〉 =
2 (ν node)((ν nlP tr)(Ptr(nlP tr, null, 0) | Node(node, x, nlP tr)) |
3 (µXtag(u

′).
4 tail / read(last, ctrT).
5 last / read(tP tr, ∗).
6 tP tr / read(next, ctr).
7 ifL (next = null) then
8 ifLcas(tP tr, 〈next, ctr〉, 〈node, ctr + 1〉) then
9 CAS(t, 〈last, ctrT 〉, 〈node, ctrT + 1〉);
10 u′

11 else Xtag〈u′〉
12 else CAS(t, 〈last, ctrT 〉, 〈next, ctrT + 1〉); Xtag〈u′〉
13)〈u〉)

The notations if cas(u, v, w) then P else Q and CAS(u, v, w);P are from § 2; the
notation x / read(~y).P is short for (νc)(x⊕ read〈c〉|cL(~y).P), where ∗ is for irrelevant
values. Enqueuecas〈x, t , u〉 uses cas to append a node and to swing the tail pointer t. The
dequeue operation Dequeuecas〈h, t, g〉 is defined as follows:

1 Dequeuecas〈head , tail , u〉 = (µXtag(u
′).

2 head / read(hn, h ctr).
3 tail / read(tn, t ctr).
4 hn / read(∗, hp).
5 hp / read(next, ∗).
6 ifL (hn = tn) then
7 ifL (next = null) then
8 u′〈null〉
9 else
10 CAS(tail, 〈tn, t ctr〉, 〈next, t ctr + 1〉);Xtag〈u′〉
11 else
12 next / read(x, ∗).
13 ifL (cas(head, 〈hn, ctr〉, 〈next, ctr + 1〉)) then
14 u′〈x〉
15 else Xtag〈u′〉)〈u〉

Above, Dequeuecas〈head , tail , u〉 and Enqueuecas〈x, tail , u〉 are slightly simplified ver-
sions of the corresponding algorithms in [22] (the latter can be obtained by adding a few
more checks for run-time optimisations). CQemp(r), LQemp(r) and AQ(r, 〈∅, ε, ∅〉)
are all typed under r : &?{enq(α ↑? ()), deq(↑? (α)}, for some type α.

4.3 Functional Correctness
cas-based Queues. We now establish the functional correctness of CQemp(r) by show-
ing that it is weakly bisimilar to AQemp(r), the empty abstract queue. We give the outline
of key arguments, leaving details to § G.

14

Henceforth we reason using molecular actions, denoted by P `7−→ Q and consisting
of a transition P `−→, followed by all available linear actions. This definition is justified by
Prop. 2.3(1,2). Molecular actions give high-level abstraction in operational proofs without
changing the nature of the semantic notions, e.g. the use of `7−→ as one-step transition does
not alter the notion of ≈, nor the global progress properties. We call cas-queue process
any molecular action derivative of CQemp(r).

We narrow down the length of the bisimilarity proof CQemp(r) ≈ AQ(r, 〈∅, ε, ∅〉)
by showing that any cas-queue process can be reduced to a unique normal form through
a sequence of internal non-commit actions (both of these notions are defined below), and
then reasoning on normal forms only. But before we do that, we need to define the general
form of such processes, as follows.

Definition 4.2 (general form). A cas-queue process P is in general form when:

P ≡ (νh, t, nd0..ndn)(CQ(r, h, t) |
∏

1≤i≤m Pi | LL)

typed under
r : &{enq(α ↑ ()), deq(↑ (α)}, {gi :↑ (~α)}1≤i≤n,

for some α; where each Pi is in local molecular form (as we shall define shortly) and
contains a single free occurrence of the name gi (we say Pi is a gi-thread, or simply
thread, of P); and LL (“linked list sub-process”) has the following form:

Ptr(h, 〈ndH , ctrH〉) | Ptr(t, 〈ndT , ctrT 〉) |
∏

1≤i≤n NnP〈ndi, vi, ndi+1, ctri〉

where we set NnP〈nd, v, nd′, ctr〉 def
= (ν nxt)(Node(nd, v, nxt)|Ptr(nxt, nd′, ctr))

such that ndn+1 = null, 0 ≤ H ≤ T ≤ n and either T = n − 1, then we say LL
is pre-quiescent; or T = n, then we say LL is quiescent. In both, ndT+1 is called the
successor of the tail, h the head pointer, and t the tail pointer.

We observe:

– ndH is the head of the linked list LL (the nodes from nd0 to ndH−1 have already
been dequeued and are semantic garbage).

– ndT may be the last or the second to last node in LL, for n− 1 ≤ T ≤ n (however,
t always points to the last node when the queue is in normal form, defined later).

– LL is quiescent when the successor of the tail is null. By construction, if a pointer in
LL has a null successor field then it is the final node in the linked-list.

Convention 4.3 (distinct continuations). Above and henceforth, we use continuation
names to index threads, assuming that all continuation names a process receives in re-
quests are fresh names, i.e. assuming all inputs are bound inputs w.r.t. received names.
This assumption reflects Convention 4.1. It does not lose generality at the level of bisim-
ilarity in the absence of name matching (name comparison) [24, 33]. All arguments in-
cluding bisimilarity can also be carried out by indexing processes following e.g. [4] rather
than using name indexes.

We now define the local molecular forms that we mentioned earlier, which give the
syntactic shapes of cas-queue processes modulo linear reductions. Below the notation

15

Enq(n)
cas 〈v1, . . . , vm〉 denotes the sub-process of the enqueue process Enqueuecas〈t, v, g〉,

up to arbitrarily many unfoldings of recursion, such that (1) it starts from Line n; (2) it
does not contain a free recursion variable; and (3) v1,. . . ,vm are instantiated in its free
value variables in this order (omitting the substitutions that are not used anymore). Simi-
larly we define Deq(n)

cas 〈v1, . . . , vm〉.

Definition 4.4 (local molecular form, LMF). A local molecular form, or LMF hence-
forth, for an enqueue operation, is one of the following processes. Below in the 2nd-5th
lines, we set C[·] as (ν nd)([·] | (νm)(Node(nd , v,m)|Ptr(m, null, 0))).

EnqReqcas〈r, v, g〉
def
= r ⊕ enq〈v, g〉

EnqRdTcas〈t, v, g〉
def
= C[Enq(4)

cas 〈t,nd , g〉]

EnqRdTNcas〈tn, t ctr , t, v, g〉
def
= C[Enq(5)

cas 〈tn, t ctr , t,nd , g〉]

EnqRdTPcas〈tp, tn, t ctr , t, v, g〉
def
= C[Enq(6)

cas 〈tp, tn, t ctr , t,nd , g〉]

EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉
def
= C[Enq(8)

cas 〈nxt , tp ctr , t ctr , tn, t,nd , g〉]

EnqSwFincas〈tn, t ctr , t,nd , g〉
def
= Enq(9)

cas 〈tn, t ctr , t,nd , g〉

EnqAnscas〈g〉
def
= Enq(10)

cas 〈g〉
def
= g

EnqSwReccas〈tn, t ctr , t,nd , g〉
def
= Enq(12)

cas 〈tn, t ctr , t,nd , g〉

Similarly a LMF for a dequeue operation is as one of the following processes.

DeqReqcas〈r, g〉
def
= r ⊕ deq〈g〉

DeqRdHcas〈h, t, g〉
def
= Deq(2)

cas 〈h, t, g〉

DeqRdTcas〈hn, h ctr , h, t, g〉 def
= Deq(3)

cas 〈hn, h ctr , h, t, g〉

DeqRdHNcas〈tn, t ctr , hn, h ctr , h, t, g〉 def
= Deq(4)

cas 〈tn, t ctr , hn, h ctr , h, t, g〉
DeqRdHPcas〈nxt, hp ctr , tn, t ctr ,

hn, h ctr , h, t, g〉 def
= Deq(5)

cas 〈nxt, tp ctr , tn, t ctr , hn, h ctr , h, t, g〉

DeqAnsNullcas〈g〉
def
= Deq(8)

cas 〈g〉
def
= g〈null〉

DeqSwcas〈nxt, t ctr , tn, h, t, g〉
def
= Deq(10)

cas 〈nxt, t ctr , tn, h, t, g〉

DeqRdNextcas〈h ctr , hn, h, g〉 def
= Deq(12)

cas 〈t, tn, h ctr , hn, h, g〉

DeqComcas〈x, t, h ctr , hn, h, g〉 def
= Deq(13)

cas 〈x, t, h ctr , hn, h, g〉

DeqAnscas〈v, g〉
def
= Deq(14)

cas 〈v, g〉
def
= g〈v〉

A LMF for either an enqueue operation or a dequeue operation, is simply called LMF. In
a LMF, g in each line is called the continuation name of the process.

Intuitively, the evolution of an enqueue LMF within a cas-queue process follows the
pattern given in Fig. 1, while a dequeue LMF follows Fig. 2. Labels on arrows indicate

commit and swinging actions: a commit action, denoted P
com(g)7−−−−−→ Q, is a molecular

action which makes an irreversible state change on the linked list; a swinging action,

denoted P
sw(g)7−−−−→ Q, is a molecular action which corresponds to a cas operation on the

16

EnqReqcas〈r, v, g〉

��
EnqRdTcas〈t, v, g〉

��
EnqRdTNcas〈tn, t ctr , t, v, g〉

��

EnqSwReccas〈tn, t ctr , t,nd , g〉

sw(g)

oo

EnqRdTPcas〈tp, tn, t ctr , t, v, g〉

[nxt=null]

��

[else]

OO

EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉

[CAS:true]com(g)

��

[else]

//

EnqSwFincas〈tn, t ctr , t,nd , g〉

sw(g)

��
EnqAnscas〈g〉

Fig. 1. Evolution patterns of LMFs for enqueue operations.

tail pointer to swing it forward to the next element in the linked list; we also define a

non-commit action, denoted P
nc(g)7−−−−→ Q, as any internal molecular action which is not

a commit. In Fig. 1 and 2 we have omitted non-commit actions since they can be easily
inferred (note that swinging actions are also non-commit). Labels in Fig. 1 and 2 also
indicate the outcome of the evaluation of a condition (within square brackets), where the
given molecular transition includes the reduction of a (linear) conditional. Note that an
action from some LMF may be a commit or not, according to the outcome of a condition
which is evaluated within the action itself.

With LMFs we have completed the definition of general form. Next, we show that this
is indeed a general form (i.e. that it is satisfied by any cas-queue process) as well as two
additional key invariants. The following definition is required.

Definition 4.5 (alignment). Let P be a cas-queue process and let Pi be a thread of P that
has read the contents of a pointer x in the linked-list sub-process of P . Let ctrx be the
value of the counter field that was read from x. We say Pi is aligned (resp. pre-aligned)
at x when ctrx is equal to (resp. less than) the current value in the counter field of x.

We can now state the key invariants of cas-queue processes.

Proposition 4.6 (invariants in cas-queue processes). Let P be a cas-queue process.

(a) P is in general form.
(b) The linked-list sub-process is quiescent if the successor of the tail is null, otherwise

it is pre-quiescent.
(c) Each thread Pi of P that has read the contents of a pointer x, is either aligned or

pre-aligned at x.

17

DeqReqcas〈r, g〉

��
DeqRdHcas〈h, t, g〉

��
DeqRdTcas〈hn, h ctr , h, t, g〉

��

DeqSwcas〈nxt, t ctr , tn, h, t, g〉

sw(g)

oo

DeqRdHNcas〈tn, t ctr , hn, h ctr , h, t, g〉

��
DeqRdHPcas〈nxt, hp ctr , tn, t ctr , hn, h ctr , h, t, g〉

[else]

��

[hn=tn]

[else]

OO

[nxt=null]com(g)

��
DeqRdNextcas〈h ctr , hn, h, g〉

��

DeqAnsNullcas〈g〉

DeqComcas〈x, t, h ctr , hn, h, g〉

[CAS:true]com(g)

��

[else]

//

DeqAnscas〈v, g〉

Fig. 2. Evolution patterns of LMFs for dequeue operations.

Proof. Suppose CQemp(r)
`17−→ ..

`n7−−→ P . We establish (a), (b) and (c) simultaneously,
by induction on n.
(Base Step.) This is when n = 0 and P = CQemp(r).

(a) Immediate since the linked list has only the dummy node and there are no threads.
(b) The linked-list is quiescent and the successor of the node recovered from t is null.
(c) Vacuous since no thread exists.

(Inductive Step.) We assume the result holds for n = m, and show it for n = m+1. Let:

CQemp(r)
`17−→ ..

`m7−−→ P
`m+17−−−−→ P ′.

By induction hypothesis, P is in general form, so that each Pi-component contains a
continuation name and has a prefix which is either part of a redex or an output of an
answer. By the typing, `m+1 can be either the input of a request, the output of an answer,
or a τ -action. The first two cases are almost trivial (Proposition G.11 (2)). If `m+1 =
τττ , it can be shown that the prefix of one of the threads, say Pi, is reduced by `m+1

(Proposition G.11 (1)). Then we reason on the shape of Pi.
Case EnqReqcas〈v, g〉 (request): Then the involved reduction is:

EnqReqcas〈r, v, g〉|CQ(r, h, t)
τ7−→ EnqRdTcas〈t, v, g〉|CQ(r, h, t)

reducing to a LMF without changing the contents of h and t nor the linked-list. Hence
(a), (b) and (c) immediately hold.

18

The same reasoning applies to the case of the dequeue request, DeqReqcas〈r, v, g〉.
Case EnqRdTcas〈t, v, g〉 (read operation): In this case, Pi reads a pointer:

EnqRdTcas〈t, v, g〉|Ptr(t, 〈tn, t ctr〉) τ7−→EnqRdTNcas〈tn, t ctr , t, v, g〉|Ptr(t, 〈tn, t ctr〉)

Note that the existence of the pointer t follows from the fact the P is in general form
(induction hypothesis). In the result, the process is aligned at t. The remaining conditions
are from induction hypothesis since the linked list has not been modified.

The same reasoning applies to all the other read operations (both on nodes and on
pointers), which are given by the following cases of LMF:

EnqRdTNcas〈tn, t ctr , t, v, g〉, EnqRdTPcas〈tp, tn, t ctr , t, v, g〉, DeqRdHcas〈h, t, g〉,
DeqRdTcas〈hn, h ctr , h, t, g〉, DeqRdHNcas〈tn, t ctr , hn, h ctr , h, t, g〉,
DeqRdHPcas〈nxt, hp ctr , tn, t ctr , hn, h ctr , h, t, g〉, DeqRdNextcas〈h ctr , hn, h, g〉

In particular, the existence of each node/pointer is also ensured by induction hypothesis
(i.e. since P is in general form, both the head and the tail pointer point to existing nodes
and each node in the linked list refers to an existing pointer).
Case EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉 (cas operation): We know that nxt is
null because the current LMF can only be reached after checking this condition. This
means that tp had not been modified prior to its reading, then we infer that tp ctr = 0.

If Pi is aligned at tp then the linked list sub-process must be quiescent, because tp
was accessed from t (through tn). The cas-operation makes nxt point to the new node:

EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉|Ptr(tp, 〈null, 0〉)
τ7−→ EnqSwFincas〈tn, t ctr , t,nd , g〉|Ptr(tp, 〈nd , 1〉)

Note that the remaining pending processes, if any, automatically become pre-aligned as
tp ctr is incremented. Also, since the linked list was quiescent before the transition, it
becomes pre-quiescent after the transition. Then (a), (b) and (c) are satisfied.

If Pi is not aligned at tp, then both fields of tp have changed. As a result, no change
is made to the linked list and (a), (b) and (c) are again satisfied:

EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉|Ptr(tp, 〈nxt ′, tp ctr ′〉)
τ7−→ EnqRdTcas〈t, v, g〉|Ptr(tp, 〈nxt ′, tp ctr ′〉)

A similar reasoning applies to the other cas operations, i.e. from the following LMFs:

EnqSwFincas〈tn, t ctr , t,nd , g〉, EnqSwReccas〈tn, t ctr , t,nd , g〉,
DeqSwcas〈nxt, t ctr , tn, h, t, g〉, DeqComcas〈x, t, h ctr , hn, h, g〉

In particular, the last case is a cas on the head pointer h. In this case quiescence (or pre-
quiescence) is preserved, since neither the tail pointer nor the last pointer in the linked
list sub-process are modified. Note also that the LMF is reached after checking that the
tail and head pointers point to different nodes. Then by induction hypothesis, t must point
to a later node (higher index) than h, which in turn means that the successor of the node
which was accessed from h is not null. Hence after the transition, h would still point to
some node in the linked list and all the three invariants are satisfied.

The other cases above are all cas operations on the tail pointer t. In each case, it
is checked that the successor of the tail is not null before reaching the LMF. Then a
successful cas in this case would make a pre-quiescent linked list into a quiescent one,
while satisfying the other invariants as well. 2

19

Normal forms are special cases of general forms. We define local and global normal
forms, in this order.

Definition 4.7 (local normal form, LNF). We say that a LMF Pi in a cas-queue process
is a local normal form (LNF) when one of the following two conditions holds.

1. Pi is ready to commit in the next step, i.e. it has one of the following forms:
(a) EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉,
(b) DeqRdHPcas〈nxt, hp ctr , tn, t ctr , hn, h ctr , h, t, g〉, and
(c) DeqComcas〈x, t, h ctr , hn, h, g〉.
Then we say that Pi is a pending process.

2. Pi is an answer to an enqueue/dequeue request, that is when it has one of the following
forms, DeqAnscas〈v, g〉, DeqAnsNullcas〈g〉, or EnqAnscas〈g〉. Then we say that Pi
is an answer at g or simply an answer.

Definition 4.8 (normal form, NF). A normal form is a quiescent cas-queue process in
general form, whose threads are all in LNF.

A critical argument is that from any general form we can reach a normal form by a se-
quence of non-commit actions. Such a sequence is called normalisation. Formally:

Definition 4.9 (normalisation). Let P be a cas-queue process.

1. Assume that P contains a g-thread. Then we write P
norm(g)7−−−−−→ P ′ if there is a se-

quence of zero or more molecular τ -actions from P to P ′, reducing the g-thread of

P , such that the g-thread in P ′ is in LNF.
norm(g)7−−−−−→ is called a local normalisation of

P at g, which is committing if it contains a commit action; is post-committing if the
g-thread in P has already committed; and is pre-committing if it is neither.

2. Let g1, g2, .., gn be threads of P . Then P
norm(g1g2..gn)7−−−−−−−−−−→ P ′ denotes

(∗) P
norm(g1)7−−−−−−→ norm(g2)7−−−−−−→ ..

norm(gn)7−−−−−−→ P ′

where, for some j s.t. 1 ≤ j ≤ n, each
norm(gi)7−−−−−−→ for 1 ≤ i ≤ j in (∗) is committing

or post-committing, while the remaining are pre-committing. We call (∗) above, a
(global) normalisation of P .

In (1), if the g-thread is already in normal form, its local normalisation is going to be
empty. In (2), the sequence of local normalisations is partitioned into committing/post-
committing and pre-committing, because a committing local normalisation after a pre-
committing one can invalidate the latter’s normal form.

We want to show that any cas-queue process P in general form admits a global nor-
malisation linearisable according to an arbitrary partition of its threads. For that purpose,
we use the following local permutations.

Proposition 4.10 (local permutation). Let P be a cas-queue process.

1. (nc-up) P
norm(gj)7−−−−−−→ nc(gi)7−−−−→ R and P

nc(gi)7−−−−→ imply P
nc(gi)7−−−−→ norm(gj)7−−−−−−→ nc(gi)7−−−−→

∗

R′ such that R
nc(gi)7−−−−→

∗
R′.

20

2. (sw-com) P
sw(gi)7−−−−→ com(gj)7−−−−−→ R implies P

com(gj)7−−−−−→ sw(gi)7−−−−→ R.

The proofs of these results are given in § G.3. For (nc-up), we had to require P
nc(gi)7−−−−→

because the read operation from DeqRdHPcas〈nxt, hp ctr , tn, t ctr , hn, h ctr , h, t, g〉 is
usually a non-commit action, but when it is moved left of an enqueue commit it may
become a commit (i.e. it is a commit only if the queue is empty). Since this particular

permutation is not used in the normalisation proof, we rule it out by requiring P
nc(gi)7−−−−→.

The following is the anticipated normalisation lemma. Below, a cas-queue process
is initial if it has the form CQemp(r, h, t) |

∏
1≤i≤m Pi, where Pi is either of the

form EnqReqcas〈r, vi, gi〉 or of the form DeqReqcas〈r, gi〉, for all 1 ≤ i ≤ m. Also,

P0
τ7−→

(n)
Q stands for a sequence of n molecular actions P0

τ7−→
∗
Q.

Lemma 4.11 (normalisation). Let P0 be initial and let P0
τ7−→

(n)
Q (n ≥ 0), where the

K0 = g1 . . . gi-threads (i ≥ 0) are all and the only threads in which a commit takes place
(in this order). Let K be a non-redundant sequence of all the threads in P0 which can be

partitioned as K0 ·K1 ·K2. Then Q
norm(K)7−−−−−−→ R and P0

norm(K)7−−−−−−→ R for some R such

that all the threads of the partition K0 ·K1 contain a commit in P0
norm(K)7−−−−−−→ R, while

those of the partition K2 do not.

Proof. By induction on n in P0
τ7−→

(n)
Q. BelowQ

norm(K)7−−−−−−→ R in the statement is called

completion while P0
norm(K)7−−−−−−→ R is the (corresponding) linearisation.

(Base Case) The case of n = 0 consists in sequentially normalising the threads of an
initial process in an arbitrary order. Since the process is initial, each normalisation only
requires one iteration (cf. Figures 1 and 2). The full proof is shown in § G (Prop. G.13).
(Induction Case) Assume the statement holds for n = m and

P0
τ7−→

(m)
Q0

τ7−→Q (4.1)

in which all and only theK0-threads commit, in the order ofK0. By induction hypothesis,
for any K1 and K2 which partition the remaining threads, we have:

Φ : Q0
norm(K0·K1·K2)7−−−−−−−−−−−→ R (4.2)

and
Ψ : P0

norm(K0·K1·K2)7−−−−−−−−−−−→ R (4.3)

where the local normalisations for the (K0 ·K1)-threads are committing in Ψ and those
for the K2-threads are pre-committing. Now let

Φ0 : Q0
τ7−→Q (4.4)

and assume, w.l.o.g., that the g′-thread is the one involved in this molecular action. Then
there are two cases of Φ0 (below we use some minor results which shall be shown in § G):

1. (Φ0 is a non-commit action at g′) We focus on Φ in (4.2). Note that the g′-thread in
Q0 is not a local normal form [because if it was pending then Φ0 should be a commit

21

and if it was an answer then Φ0 should be an output transition]. Hence Φ contains at
least one molecular τ -action at g′ by Proposition G.7. By taking the first molecular
τ -action at g′ in Φ and applying Proposition 4.10 (nc-up) repeatedly, we are able to
obtain a normalisation sequence after Q:

Φ′ : Q0
nc(g′)7−−−−→ Q

norm(K0·K1·K2)7−−−−−−−−−−−→ R (4.5)

It can be shown that the first
nc(g′)7−−−−→-action coincides with Φ0 (Proposition G.7) and

that the remaining normalisations in Φ′ give the desired completion from Q. While Ψ
is still the desired linearisation.

2. (Φ0 is a commit action at g′) Then g′ is not in K0, since a thread may not commit
twice (Proposition G.12). Again we focus on Φ in (4.2). Note that, having fixed K0,
the induction hypothesis holds for any partition K0 ·K1 ·K2. Then consider the case
where K1 starts with g′, i.e. Φ is equivalently written as follows:

Φ : Q0
norm(K0)7−−−−−−→ norm(g′)7−−−−−−→ norm(K′1·K2)7−−−−−−−−−→ R (4.6)

whereK1 = g′·K ′1. Since the normalisations inQ0
norm(K0)7−−−−−−→ are all post-committing,

they may only contain swinging actions (Proposition G.12). Note also that the nor-
malisation sequence for g′ above starts with a commit at g′ [by contradiction, suppose

it starts with a non-commit action. Since Q0
norm(K0)7−−−−−−→ only contains tail-swinging

operations, it is easy to see that the same non-commit action at g′ would be enabled
inQ0 as well. Then g′ would be able to perform two different actions inQ0, but it can
be shown that this is not possible (Prop. G.7)]. Then the commit at g′ can be permuted
up by repeated applications of Proposition 4.10 (sw-com), obtaining:

Q0
com(g′)7−−−−−→ Q

norm(K0·g′)7−−−−−−−−→ norm(K′1·K2)7−−−−−−−−−→ R (4.7)

which gives the completion from Q, while Ψ gives the linearisation. 2

From this follows that any cas-queue process can be normalised:

Corollary 4.12 (normalisability). For a cas-queue process P , P nc7−−→
∗
P ′ such that P ′

is in normal form, where we write P nc7−−→ Q when P
nc(g)7−−−−→ Q for some g.

Normalisability implies linearisability because a normal form can always be reached from
an initial process by a “linearised” sequence (where threads are not interleaved).

Now construct a relation Rcas between cas-queue processes and the derivatives of
AQ(r, 〈∅, ε, ∅〉) as follows: (1) CQemp(r) Rcas AQ(r, 〈∅, ε, ∅〉); (2) If P Rcas q, and

either P `7−→ P ′ and q `−→ q′, or P
com(g)7−−−−−→ P ′ and q

com(g)−−−−−→ q′, then P ′ Rcas q
′. (3) If

P Rcas q and P nc7−−→ P ′ then P ′ Rcas q. In Rcas, all non-commit τ -actions are associated
with the non-action in abstract queues.

Since every one-step transition in abstract queues is ≈-state-changing, Rcas may be
regarded as an abstract statement for atomicity and, therefore, linearisability. By Prop. 4.12,
we can normalise each Rcas-related cas-queue process, noting that a cas-queue process in
normal form has the same action capability as the related abstract queue. Then we define

22

an auxiliary relation R̂cas, which maps normal forms to abstract queues by extracting the
queue information from the former, as follows.

P R̂casp
def⇔ P normal form and p = AQ(r, 〈req(P),val(P),ans(P)〉)

where the functions req(−), val(−) and ans(−) are defined on cas-queue processes in
normal forms as follows. LetP = (νh, t, nd0, . . . , ndn)(CQ(r, h, t) | LLP |

∏
1≤i≤m Pi)

be a cas-queue process in normal form. Then:

– Let 1 ≤ i ≤ m, such that Pi is a pending process. We first define req(Pi), as follows:
• If Pi is of the form EnqComcas〈. . . , v, g〉, then req(Pi) = enq(v, g);
• On the other hand, if Pi is either DeqRdHPcas〈. . . , g〉 or DeqComcas〈. . . , g〉,

then req(Pi) = deq(g).
Then req(P) is the set {req(Pi) | 1 ≤ i ≤ m ∧ Pi is a pending process}.

– Let LLP be of the form:

Ptr(h, ndH , ctrH)|Ptr(t, ndT , ctrT)|Π0≤i≤n(Node(ndi, vi, nxti) | Ptr(nxti, ndi+1, ctri))

then val(P) = vH+1, . . . vn.
– Finally ans(P) = {Pi | 1 ≤ i ≤ m ∧ Pi is an answer}.

This extraction of information from the syntax makes reasoning very simple. Then it is
good to use R̂cas in place of Rcas when possible. The following lemma establishes a
bridge between the two relations:

Lemma 4.13. Let P be a cas-queue process in normal form. Then:

1. P Rcas p implies P R̂casp.
2. If P R̂cas p then P `7−→ iff p `−→, with ` being a commit or visible.

Proof of Lemma 4.13(1) It can be easily shown (Lemma G.17) that:

Φ : CQemp(r)
`17−→ . . .

`n7−−→ P Ψ : AQ(r, 〈∅, ε, ∅〉)
̂̀̂
1−→ . . .

̂̀̂
n−→ p

The proof consists of three steps: 1) we linearise Φ; 2) we simulate the linearised sequence
from AQ(r, 〈∅, ε, ∅〉), reaching an abstract queue p′, s.t. P R̂casp

′; 3) we show p = p′.
Since P is in normal form, it follows from Proposition 2.3(3) and from Lemma 4.11,

that we have:

Φ′ : CQemp(r)
s
−−→ norm(K)7−−−−−−→ norm(K′)7−−−−−−→

s′

−−→ P

where: s is a sequence of all the inputs and s′ is a sequence of all the outputs that appear
in Φ; K is the sequence of names of the threads which have committed in Φ (in the same
order) and K ′ contains the names of the remaining threads. The whole sequence can be
simulated from AQ(r, 〈∅, ε, ∅〉), omitting non-commit τ -actions. Let p′ be the abstract
queue obtained after this simulation. Note that:

1. each input adds a selection on r to the queue process and the corresponding request
to the abstract queue;

23

2. each local normalisation in the partition K reduces a selection on r in the queue
process, performs the requested operation (by adding a new node to the linked list if
it is an enqueue, by swinging the head pointer forward if it is a dequeue) and produces
an answer on the requested continuation name;

3. since only the commit action is simulated, the simulation of a local normalisation
in the partition K consists of a single τ -transition which removes the corresponding
request, modifies the queue accordingly (dequeue or enqueue) and produces the same
answer;

4. the local normalisations in the partition K ′ are not simulated by the abstract queue;
5. each output transition removes the same answer from both the queue process and the

abstract queue.

Then p′ = AQ(r, 〈req(P), val(P), ans(P)〉) and P R̂casp
′.

Now we show that p = p′. Let Ψ ′ : AQ(r, 〈∅, ε, ∅〉)
t
−−→ p′ be the transition sequence

simulating the linearised sequence from the abstract queue. Note that Ψ and Ψ ′ contain: 1)
the same inputs; 2) the same outputs; 3) the same commits (in the same order). Now, for
any request in p, a corresponding input must have occurred in Ψ , while a corresponding
commit may not have occurred. Since the same holds for Ψ ′, that request must be also in
p′. A similar reasoning applies to outputs and queue values. Note also that queue values
must occur in the same order in p as in p′, since the commits occurred in the same order
in Ψ as in Ψ ′. Then p = p′ and P R̂casp. 2
Proof of Lemma 4.13(2) Note first of all that P is in normal form, since the relation R̂cas

is only defined on queue processes in normal form. Then let {P1, . . . Pm} be the set of all
the pending processes and answers of P . We prove both directions by cases of `.

– Let ` be an input transition label on r, of either form:

r&enq(v, g) or r&deq(g)

By definition an `-labelled transition is always possible, both in queue processes and
in abstract queues. Then P `7−→ if and only if p `−→. Note also that, even though in the
untyped LTS P admits input transitions on channels different from r, this possibility
is prevented in the typed LTS.

– Now let ` be a commit action label com(g), for some continuation name g. Since P
is in normal form,

P
com(g)7−−−−−→⇐⇒ g appears free in a pending process Pi of P

The pending process Pi is associated to a request by req(P), where: req(Pi) =
enq(v, g) ∈ req(P), if Pi is of the form EnqComcas〈. . . , v, g〉; and req(Pi) =
deq(g) ∈ req(P), ifPi is of either form DeqComcas〈. . . , g〉 or DeqRdHPcas〈. . . , g〉.
So let req(Pi) = req(g) ∈ {enq(v, g) | v is a value} ∪ {deq(g)}. We have:

g appears free in a pending process Pi of P ⇐⇒ req(g) ∈ req(P)

Note that p = AQ(r, 〈req(P), val(P), ans(P)〉), since P R̂casp. Then, by the defi-
nition of the LTS for abstract queues, we have:

req(g) ∈ req(P) ⇐⇒ p
com(g)−−−−−→

Then P
com(g)7−−−−−→ if and only if p

com(g)−−−−−→.

24

– Finally, consider the output case. Let ` be a an output transition label on a continuation
name g: ` = g〈v〉, where v is a value (including ~v, the empty vector and null). The
proof for this case follows a similar reasoning as the previous one:

P
g〈v〉7−−−→ ⇐⇒ g〈v〉 is an answer of P By Def. of norm. form

⇐⇒ g〈v〉 ∈ ans(P) By Def. of ans(P)

⇐⇒ p = AQ(r, 〈req(P), val(P), ans(P)〉) g〈v〉−−−→ By Def. of the LTS

Then P
g〈v〉7−−−→ if and only if p

g〈v〉−−−→. 2

With these two key result we can establish the bisimilarity of Rcas:

Proposition 4.14. 1. Rcas is a weak bisimulation.
2. CQemp(r) ≈ AQemp(r).

Proof. (2) is an immediate corollary of (1), so we show (1). Assume P Rcas p. By Corol-
lary 4.12, we know P

nc7−−→
∗
P0 such that P0 is in normal form. By the construction of

Rcas, we have P0 Rcas p. By Lemma 4.13 (1), we have P0 R̂cas p. First assume P `7−→
P ′. If ` is a non-commit τ -action then P ′ Rcas p by construction. If ` is a commit τ -action
then P0

`7−→ (since the thread is already pending in P it should be pending in P0). By
Lemma 4.13 (2), p `−→ p′ for some p′. By the construction of Rcas, we have P ′ Rcas p

′,
as required. Same reasoning if ` is an output. The case of an input is immediate. For
the other direction, assume p `−→ p′. ` cannot be a non-commit τ . Let it be a commit or
visible. Then by Lemma 4.13 (2), P0

`7−→ P ′ for some P ′. That is, P nc7−−→
∗ `7−→ P ′. By

construction of Rcas, we have P ′ Rcas p
′, as required. 2

Lock-based Queues. The proofs of the functional correctness for the lock-based imple-
mentation is simpler, which is left to § G, obtaining:

Proposition 4.15.
LQemp(r) ≈ AQemp(r).

Combining Propositions 4.14 and 4.15, we obtain:

Theorem 4.16 (functional correctness of cas-queues and lock-queues).
CQemp(r) ≈ LQemp(r) ≈ AQ(r, 〈∅, ε, ∅〉).

5 Application: Semantic Separation of Queues (2)
5.1 Global Progress
We now move to the global progress properties. We focus on the proof of non-blockingness
of CQemp(r), the case of LQemp(r) is briefly discussed at the end and treated in detail
in §G.8. In order to ensure non-blockingness, we need to ensure resilience first. Resilience
is implied by the following key result in which linearisability (Lemma 4.11) plays again
a central role.

Proposition 5.1. Let P be a cas-queue process and let Φ : CQemp(r)−−→ P . Then an
output on a name g is blocked in Φ only if the g-thread of Φ contains a failing reduction.

25

Proof. By Lemma G.29, we can assume that P is in general form,

P ≡ (νh, t, nd0..ndn)(CQ(r, h, t) |
∏

1≤i≤m Pi | LL)

Since c /∈ allowed(ΓQ), c can only be allowed in ΓP if an input occurred in Φ carry-
ing c as continuation name and generating an enqueue/dequeue request, of either form
EnqReqcas〈r, v, c〉 or DeqReqcas〈r, c〉. Furthermore, the name c may not disappear from
the process until an output on c occurs, as the reductions of the above requests show.
However, an output on c may not have occurred in Φ because c ∈ allowed(ΓP). Then,
since the c-thread is non-failing in Φ, c must appear in a thread P c of P which is in LMF.

Now we can use Lemma 4.11 again, which implies that there is Ψ : ΓP ` P−−→
Γ ′P ` P ′, where P c is reduced to an answer, i.e. an output with subject c. Then we can
perform an output on c as the next step. Then c /∈ blocked(Φ). 2

Note that a finitely failing fair sequence Φ consists of a finitely failing prefix Φf and of a
non-failing postfix Φnf . Then Proposition 5.1 has the following corollary.

Corollary 5.2. Let Φ be a finitely failing fair transition sequence from a queue process
and let Γ ` P be in the non-failing postfix of Φ. If a g-thread is non-failing up to Γ ` P ,
either it terminates successfully or has infinite τ -transitions in Φ.

Finally:

Proposition 5.3 (NB). CQemp(r) is NB.

Proof. Resilience is from Prop. 5.1. Let Γ ` P occur in a finitely failing fair sequence
Φ from CQemp(r) and let Φnf be the post-fix of Φ from Γ ` P . W.l.o.g. let Φnf be
non-failing. By contradiction, assume that allowed(Γ) \ blocked(Φ) 6= ∅ and that no
non-failing thread of Φ commits in Φnf . Then by Corollary 5.2, any non-failing thread
contains infinitely many τ -transitions. Since no other thread commits, neither the linked-
list sub-process nor the head and tail pointers are ever affected. Then, by fairness, some
non-failing thread reaches its pending LNF and commits in Φnf : a contradiction. Hence,
if allowed(Γ) \ blocked(Φ) 6=∅ at least one thread commits and, by fairness, it reaches
an answer and outputs. 2

Note also that CQemp(r) is not WF, since we may not ensure that all the threads, in
every execution, end up committing. Instead, LQemp(r) is not resilient, hence it is not
NB either. This is because a failure in the critical section by one thread would block all
other threads. But in the absence of failures, every thread in a transition sequence from
LQemp(r) can enter the critical section by fairness (more details in § G.8).

To summarise:

Theorem 5.4 (global progress properties of cas-queues and lock-queues). CQemp(r)
is NB but not WF and LQemp(r) is WWF but not NB.

26

5.2 Fair Preorder and Separation
We now define a fair pre-order which can semantically separate, among others, CQemp(r)
and LQemp(r). Recall from § 3 that FT(Γ ` P) denotes the set of fair transition se-
quences with at most finite failures from Γ ` P . Below Φ̂ denotes the result of abstract-
ing away all τ -actions from the (possibly infinite) action label sequence of Φ. Then we
define:

WFT(Γ ` P)
def
= {〈Φ̂, blocked(Φ)〉 | Φ ∈ FT(Γ ` P)}

Above Φ̂ is needed because we wish to know what visible sequences are possible in the
presence of stalled threads; and blocked(Φ) is needed because we wish to know exactly
which threads are stalled besides those in which a failing reduction occurs. We define the
fair pre-order (the notion “weak bisimulations” below is directly from Definition 2.4).

Definition 5.5 (fair preorder and fair bisimilarity). A fair preorderR is a weak bisim-
ulation s.t. WFT(Γ ` P) ⊇ WFT(Γ ` Q), for any Γ ` PRQ. A fair bisimulation is a
symmetric fair preorder, wfair is the maximum fair preorder and ≈fair the maximum fair
bisimulation. Γ ` P �fair Q stands for P wfair Q but not P ≈fair Q.

For instance, Lckspin〈u〉 ≈ Lck〈u〉 (both defined in § 3) but Lckspin〈u〉 �fair Lck〈u〉, since
a fair sequence from the former allows useless infinite looping of a thread.

The fair pre-order ensures preservation of the global progress properties.

Proposition 5.6 (preservation of WF and NB). If P wfair Q and P ∈ NB (resp. P ∈
WF), then Q ∈ NB (resp. Q ∈WF).

Proof. We only show the proof for wait-freedom, the same reasoning applies also to non-
blockingness.

Let Γ be the typing of both P and Q. Let Φ′ : Γ ` Q−−→ Γ ′ ` Q′ and let s be
the sequence of labels appearing in Φ′. Let Φ′′ be a non-failing fair transition sequence
from Γ ′ ` Q′ such that a process Γ ′′ ` Q′′ appears in Φ′′ and c ∈ allowed(Γ ′′) \
blocked(Γ ′ ` Q′). Let t be the sequence of labels appearing in Φ′′ up to Γ ′′ ` Q′′ and
let u be the sequence of labels appearing in Φ′′ after Γ ′′ ` Q′′. Note that the concatenation
of Φ′ and Φ′′ is also fair.

Since WFT (Γ ` Q) ⊆ WFT (Γ ` P), there is a fair transition sequence Ψ from
Γ ` P whose sequence of labels after abstracting non-failing τ -transitions becomes ŝt̂û.
Then let Ψ decompose as follows: Ψ ′ : Γ ` P−−→ ∆′ ` P ′, Ψ ′′ : ∆′ ` P ′−−→ ∆′′ `
P ′′ and Ψ ′′′ : ∆′′ ` P ′′−−→ ; where ŝ appears in Ψ ′, t̂ appears in Ψ ′′ and û appears
in Ψ ′′′. Then blocked(∆′ ` P ′) = blocked(Γ ′ ` Q′), because they both started from
Γ and because the same input, output and failing transitions occurred since then (in the
same order). Similarly allowed(∆′′) = allowed(Γ ′′). Hence, c ∈ allowed(∆′′) \
blocked(∆′ ` P ′). But since Γ ` P is wait free, an output on c occurs in Ψ ′′′. Then an
output on c occurs in Φ′′ after Γ ′′ ` Q′′ as well. Then Γ ` Q is wait free. 2

Now, we show a strict inclusion of the weak finitely failing fair traces of cas-based and
lock-based queue processes (§ 4). The following lemma facilitates the reasoning.

Lemma 5.7. WFT(P) ⊆WFT(Q) iff it is so w.r.t. molecular action sequences.

Molecular action sequences are used on both sides in the following strict inclusion proof:

27

Lemma 5.8. WFT(CQemp(r)) ⊆WFT(LQemp(r)).

Intuitively, we only need to map a fair finitely failing trace of a cas-queue process to an
analogous trace of a lock-queue process related by the bisimulation of Theorem 4.16,
where a failure in the former is mapped to a failure before lock acquisition in the latter.

As for the separation result, we only need to show a weak fair finitely failing trace of
LQemp(r) not belonging to CQemp(r). Suppose a thread fails in the critical section and
then infinitely many other requests come, generating threads which may only progress up
to some point and then are blocked. Such a sequence is finitely failing and it is also fair:
in particular it is maximal, because no thread can progress further. It can be shown that
a sequence with the same external behaviour and set of blocked outputs is not possible
from CQemp(r), where every blocked output corresponds to a failing reduction (hence
infinitely many blocked outputs imply infinitely many failing reductions). Similarly we
can easily prove

The bisimilarity part of the proof comes from Theorem 4.16. We conclude:

Theorem 5.9. LQemp(r) �fair CQemp(r).

6 Strict Resilience and Obstruction-Freedom
As further results attesting the uniformity of our framework, we compare strict resilience
and obstruction-freedom [12], which ensures the completion of an operation if it is per-
formed in isolation. For the following comparison, we assume the notions of thread and
of threaded process to be as defined below. Recall that by derivative we mean a multi-step
labelled transition derivative, cf. § 3. Also, an active action is an output or a conditional
which does not occur under an input prefix or a conditional. A τ -redex is either a pair
of an input and an output which can induce a τ -action (reduction) or an active condi-
tional (which can thus be reduced as well, also inducing a τ -action). An output-redex is
an active output action which can be outputted by the underlying typing (i.e. its subject is
“allowed”). Finally, a redex is either a τ -redex or an output redex.

Below, note that the occurrence of an input transition (in general) adds a redex to
the receiving process; while the reduction of a redex spawns a new sub-process, possibly
inducing one or more new redexes.

Definition 6.1 (thread, thread redex, thread sub-process). Let Φ : P0
`0−→ P1

`1−→
P2

`2−→ A thread ηΦ of Φ is a sequence of redexes which appear in successive deriva-
tives of Φ, such that:

1. the first redex in ηΦ is a redex of Pk, for k ≥ 1, which has been induced by the input

transition Pk−1
`k−1−−−→ Pk;

2. the other redexes appear in later derivatives such that, for i > 1, the i-th redex has
been induced by the reduction of the j-th redex, for some j < i.

We may omit the indexing transition sequence name when not relevant and just write η.
We may also say that η is a thread from Pi (for any i < k).

A redex of η is any redex that appears in η. The sub-process of η at Pj consists of all
the sub-processes of Pj which have been spawned by reductions of redexes of η. We may
also indicate a sub-process of η (omitting the derivative in which it appears).

28

The initial input starting a thread may be considered as the request of an operation: i.e.
an enqueue or a dequeue operation in the case of cas-queue processes. And generally, the
following reduction spawns a sub-process like those defined for enqueue and dequeue.

Below we use the term “pending” in the sense of (3.1) on Page 9, i.e. when an action
appears whose subject is an allowed output channel on which no output has occurred yet.
To start with, we consider processes which do not have allowed output channels, so that
they may not contain any free output: a free output can only become available if it is
introduced from the outside. Without loss of generality, we still follow the assumption of
Convention 4.1, that all inputs of names are bound inputs (this ensures that every time an
output is introduced, it is fresh). We can now define threaded processes:

Definition 6.2 (threaded process). Let Γ ` P , where no output is allowed by Γ . We say
that P is threaded when any thread η from P is such that:

1. the reduction of any τ -redex of η induces exactly one other redex;
2. exactly one enabled output channel appears in each sub-process of η.

The first condition above enforces sequentiality inside each thread. It also enforces a cer-
tain shape to threads, by which a thread starts with a sequence of τ -redexes and possibly
ends with an output redex, such that: the first redex has been induced by the initial input
transition and the reduction of each τ -redex induces the following one in the sequence; an
output ends a thread because it does not induce any more redexes. The second condition
reflects the intuition that, in our observational framework, a thread is supposed to signal
completion by emitting an output. Note however that this condition alone does not imply
that the output will occur. Note also that the assumption that all inputs are bound ensures
that each enabled output appears in the sub-process of just one thread (at any time).

The standard presentation of shared variable algorithms focuses on what amounts to
threaded processes. For example, the process encoding of queues given in § 4 has this
structure. We now prove a basic characterisation result.

Definition 6.3 (obstruction-freedom). We say a threaded P is obstruction-free if the
following holds: for each maximal possibly failing Φ from P , such that P ′ occurs in Φ
and, after P ′, a single thread in P ′ is reduced contiguously and without failures; then
eventually an output occurs (from P ′).

Proposition 6.4 (characterisation of obstruction freedom). A threaded P is obstruc-
tion free if and only if it is strictly resilient.

Proof. Suppose P is obstruction-free. Take a finitely failing and fair Φ from P . By Def-
inition 6.3, if some thread η does not fail, it can output in Φ. Then the unique output
channel appearing in a(ny) sub-process of η is not blocked. Then the number of blocked
outputs |blocked(Φ)| may not be bigger than the number of failures in Φ. Then P is
strictly resilient.

Next suppose P is strictly resilient. Take P ′ as in Definition 6.3 and make every
thread of P ′ fail, except for a single thread Pc. Since we want to reduce Pc contiguously,
the failures in the other threads do not affect its future behaviour while they allow us to
use the strict resilience condition. Let c be the unique enabled output channel in Pc. By
definition of strict resilience c is not blocked (otherwise the number of blocked outputs
would be greater than the number of failures, Definition 3.5). Since we made all the other

29

threads fail, and since Pc generates a unique sequence of τ -redexes (by Definitions 6.1
and 6.2), a unique execution path is possible. Hence, this path must contain an output at
c (if not, c would be blocked, contradicting resilience). Hence P is obstruction-free, as
required. 2

Thus obstruction-freedom has now been articulated in a common framework based on
blocking effects. As we explained in § 4, the explicit inclusion of resilience in the global
progress properties is necessary in our setting, as it provides for a minimal safety condi-
tion. This makes the intensional version of the properties match the intuition that they
should be stronger than obstruction-freedom. Other than that, their definitions are as
expected, i.e. Definition 3.8: in non-blockingness, when an output is allowed and not
blocked, some output will occur; in wait-freedom, when an output is allowed and not
blocked, that output will occur.

Our definition of non-blockingness corresponds to the most general interpretation:
not only we allow an unbounded number of request to arrive, but also an unbounded
number of operations to be concurrently executed. In real-world environments, such as
web servers with popular demands, ours is a practically relevant approach, since the num-
ber of future requests may be unpredictable and we wish to know how they will affect
preceding actions. For instance, an extremely unfair execution consists of continuously
receiving new requests which prevent any operation to be carried out.

Traditionally, algorithmic studies have focused on an arbitrary but bounded number
of concurrently executing operations, where the above execution may not take place. For
example, this is the setting in which the informal notion of non-blockingness quoted in
§ 1 is based on. However, such a view also limits the applicability of the definition: it has
been shown that binding the number of concurrently executing operations is equivalent
to binding the number of requests [10]. We see this as a limitation because, when only a
finite number of requests arrive, non-blockingness and wait-freedom coincide: suppose n
requests arrive, non-blockingness ensures that one of them will be answered; afterwards
only n − 1 unanswered requests remain, so by applying the definition n times, all the
requests will be eventually answered.

Rather than binding the number of concurrent operations, we require the scheduler
to be fair, so that even if an infinite number of requests arrive, this does not prevent
other operations from making progress. Now we formally show that our intensional non-
blockingness strictly implies the finite requests definition as formalised below (the oppo-
site is obviously not true because a definition that works for a bounded number of requests
does not say anything in the case the number of requests is unbounded).

Definition 6.5 (thread-wise NB). Let P be threaded and suppose Φ is a finitely failing
fair transition sequence of P such that only finitely many non-linear inputs take place. We
say that P is thread-wise non-blocking if the following holds: if an output channel c is
pending in a derivative P ′ of Φ and c appears in a sub-process of a non-failing thread ηΦ,
then an output at c eventually occurs in Φ.

In a thread-wise non-blocking process, each (non-failing) thread can “complete its oper-
ation in a finite number of its own steps”, as far as only a finite number of requests occur.
This matches traditional informal definitions of non-blockingness, as explained above.

Proposition 6.6. Suppose a threaded P is intensionally non-blocking. Then it is also
thread-wise non-blocking.

30

Proof. Let P be threaded and intensionally non-blocking. Let Φ be a finitely failing and
fair transition sequence from P containing only finitely many inputs, let P ′ be a derivative
of P occurring in Φ and let c be an output channel pending in P ′. Since Φ has only finitely
many inputs and only finitely many failures, we can assume w.l.o.g. that all the inputs and
all the failures in Φ occur before P ′. Then the set A = {a1, a2, .., an} of pending output
channels in P ′ is finite (note also c ∈ A). By intensional non-blockingness, an output shall
take place at some channel of A, say ai, in Φ after P ′. Note that after an output occurs at
an enabled channel, that channel is not enabled anymore. By applying the same procedure
finitely many times, we are ensured that, within Φ, an output shall occur on each channel
of A. In particular, we know that an output at c shall occur in Φ. By threadedness, we
know this output comes from the thread introduced when c was received in an input. 2

7 Related Work and Further Topics
7.1 Comparison With Previous Formalisations
The first to propose a formal characterisation of non-blockingness and wait-freedom was
Dongol [6], who used an ad-hoc logical system, which may still be relatively unknown
to a wider community. Later, Gotsman et al. [10] have given a formalisation in the better
known separation logic combined with rely-guarantee assertions. Other works inspired by
the above followed ([23] and [28]).

The current paper has taken a completely different approach. Rather than giving an-
other logical formalisation, we have formalised the above properties in a process algebra
(which is by itself a novelty). This naturally lead to the first extensional characterisation of
these properties, captured only by observing the interactions between the system and its
environment. There are no obligations on the environment, except for its obedience to the
communication protocol (enforced by the typing system). In particular, the environment
can request a new operation at any time. Hence, the number of concurrently executing
operations is unbounded. This was not the case in the previous logical characterisations,
where each process from a finite set was only able to start one operation at a time.

Nowadays, servers have to deal with an ever increasing number of requests and a
model which binds the number of concurrently executing operations is not satisfactory.
Consider a model that binds the number of concurrent operations and set this bound toK.
Then consider a server which counts the number of operations it is performing, accepting
and serving up to K requests concurrently and discarding the successive ones. According
to the binding model, this server is wait-free, whereas the model presented in this paper
correctly identifies it as non-blocking (to be precise, extensionally non-blocking, since
discarded threads would be blocked without having failed).

Moreover, in our model we can represent any execution of any data structure. For
instance, CQemp(r) may receive an unbounded number of enqueue requests as follows:
after the first two requests, do a reduction in the second thread, then one in the first thread,
then receive another request and repeat (since the first thread always follows the second, it
will not be able to commit); once the second thread answers and the first one goes back to
the beginning of the loop, repeat everything (where what is now the second thread was the
third one in the previous round). This is an admissible execution in which the first thread
never commits (while the others do). Since the number of threads is ever increasing, it
cannot be represented in previous models.

With these two examples we have shown that our model is complete in the sense
that it captures the behaviour of any data structure, representing any possible execution

31

(even under unfair schedulers, see below). Note also that, as [10] shows, if the number of
concurrently executing operations is bounded, the non-blockingness proof can be reduced
to the proof of termination of an execution with finitely many requests. At the same time,
we have shown that if only finitely many requests come, non-blockingness implies wait-
freedom. This does not mean that with bounded concurrency, non-blockingness implies
wait-freedom, but it still gives an indication of the fact that unbounded concurrency is
harder to prove.

The above distinctions apply to all of the cited papers, nonetheless we can say that,
among those papers, [6] is the closest to our framework, since it takes failures into ac-
count, whereas [10] models failures by way of an unfair scheduler. Having an unfair
scheduler forces atomic operations to be executed in a single step (which is not what hap-
pens in practice), whereas the combination of fairness and failures allows to obtain both
the benefits of a fair scheduler (by specifying that a failure may not occur inside an atomic
operation) and the ability to represent an unfair one (through failures).

While [6] manually forbids failures inside atomic operations, we forbid them by the
use of linear types. Note also that Dongol only requires weak fairness: the reason why we
require strong fairness is that the π-calculus model provides a finer representation, hence
weak fairness in [6] is interpreted as strong fairness in our model. This is not constraining
because, as we said, failures enable us to represent even unfair schedulers. Failures are
exploited much further in our model: rather than just enabling them, we are interested
in observing their effects on other threads, i.e. a failure in one thread may block another
thread. This lead us to characterising resilience, which is one fundamental part of non-
blockingness: any model with failures has to include some form of resilience. Implicitly,
even the notion of non-blockingness in [6] does, by requiring that each failure only blocks
the thread in which it occurs (strict resilience). We have further shown a whole class of
resilience properties: by relaxing strict resilience, we obtain a whole range of new non-
blocking properties. In the most relaxed notion of resilience, the exact number of failures
is irrelevant. As a result, we obtain a fully observational characterisation of progress,
allowing verification through compositional semantics.

7.2 Other Related Works

A key feature in our model is fairness, adapted from [4] to our asynchronous and typed
framework (process typing inducing “enabled transitions”). The use of fairness to capture
progress properties was first suggested in [31]. Later, other works have employed fairness
in different calculi and to capture different progress properties than ours (cf. [3] and [5]).

Some of the previous formalisations of progress (liveness) properties in the π-calculus
have also used fairness, including [1] and [17], whose common goal is to enforce liveness
by typing. The merit of these and other type-based approaches to liveness is that it allows
to statically ensure liveness. At the same time, it is hard to capture such global progress
properties as non-blockingness and wait-freedom through static typing. Consider non-
blockingness, which ensures that the output of some operation will eventually occur. Our
theory correctly identifies all instances of non-blocking behaviours, while the type-based
approach of [1, 17, 33] falls short of identifying such instances of non-blocking behaviours
as Michael-Scott queue, since it enforces some kind of local progress at every operation.
But it does not capture wait-freedom either, since such local progress is ensured by local
causality alone, which may not imply completion of the overall operation. In particular,

32

the property called lock-freedom in [17] is not non-blockingness, as its term may sug-
gest [12], but rather a locally ensured liveness property as in e.g. [33].

The correctness proofs of § 4 were inspired by notions from linearisability, such as
left-mover and right-mover [14, 18]. Linearisability has already been applied to Michael-
Scott’s queue [2, 7, 32]. [11] shows non-blockingness is maintained when composed with
linearisable libraries and [26] exploits modularity in the search for atomicity violations
and reduces the state-explosion by requesting non-commuting operations before and after
the one being tested. [30] also exploits modularity and refinement through the use of
separation logic for verifying safety properties like atomicity.

We share some of the motivations with all of the works mentioned above, i.e. semantic
understanding of non-blockingness, modularity, as well as exposing critical permutations.
However, the formal framework is quite different. Apart from the introduction of a formal
account of intensional and extensional global progress, the use of the π-calculus allows
a uniform behavioural analysis at a very fine granularity level, including the use of local
permutations through LTS for analysing linearisability. [11] does abstractly define lineari-
sation, relying on separate tools for its concrete realisation. Their definition is based on a
begin-end rather than on a commit (more fine-grained). [2] uses commits similar to, but
coarser than, ours: instead of local permutations, they suspend execution of the simulat-
ing process B until the simulated one A commits. Then A is suspended and B starts and
completes the operation. We believe our bisimilarity arguments semantically justify their
automated proof by offering a behavioural characterisation of their transformations.

While the present work is focused on the extensional properties, the intensional for-
malisations can be exploited further, which may give a basis for a comprehensive seman-
tic framework to analyse, specify, validate and classify both intensional and extensional
properties of concurrent data structures, including proof-assistants (cf. [31, 32]), etc. . .

References
1. L. Acciai and M. Boreale. Responsiveness in process calculi. TCS, 409(1): 59–93. Elsevier.

2008.
2. D. Amit, N. Rinetzky, T. Rep, M. Sagiv and E. Yahav. Comparison under abstraction for

verifying linearizability. CAV’07, 477–490. Springer, 2007.
3. S. Brookes. Deconstructing CCS and CSP: asynchronous communication, fairness, and full

abstraction. MFPS 16. 2000.
4. D. Cacciagrano, F. Corradini and C. Palamidessi. Explicit fairness in testing semantics. LMCS,

vol. 5(2:15), 27 pages. 2007.
5. F. Corradini, M. R. Di Berardini and W. Vogler. Liveness of a mutex algorithm in a fair process

algebra. Acta Informatica, 46(3):209–235. Springer. 2009.
6. B. Dongol. Formalising progress properties of non-blocking programs. In ICFEM’06, vol.

4260 of LNCS, 284–303. Springer, 2006.
7. I. Filipovic, P. W. O’Hearn, N. Rinetzky and H. Yang. Abstraction for concurrent objects.

ESOP’09, 252–266. Springer. 2009.
8. N. Francez. Fairness. Springer, 1986.
9. Brian Goetz. Java Concurrency in Practice. Addison-Wesley, 2008.

10. A. Gotsman, B. Cook, M. Parkinson and V. Vafeiadis. Proving that non-blocking algorithms
don’t block. POPL’09, 16–28. ACM. 2009.

11. A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. ICALP’11, 453–465.
Springer. 2011.

12. M. Herlihy, V. Luchangco and M. Moir. Obstruction-free synchronization: double-ended
queues as an example. ICDCS’03, 522–529. IEEE Computer Society. 2003.

33

13. M. Herlihy and B. Sharit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2009.
14. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

TOPLAS, 12(3):463–492. ACM. 1990.
15. K. Honda and N. Yoshida. A uniform type structure for secure information flow. POPL’02.

81–92. ACM. 2002.
16. N. Kobayashi, B.C. Pierce and D.N. Turner. Linearity and the Pi-calculus. TOPLAS,

21(5):914–947. ACM. 1999.
17. N. Kobayashi and D. Sangiorgi. A Hybrid Type System for Lock-Freedom of Mobile Processes.

TOPLAS, 32(5:16). 49 pages. ACM. 2010.
18. E. Koskinen, M. Parkinson and M. Herlihy. Coarse-grained transactions. POPL’10. 19–30.

ACM, 2010.
19. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications

of the ACM, 21(7):558–564. ACM. 1978.
20. H. C. Lauer and R. M. Needham. On the duality of operating system structures. SIGOPS

Operating Systems Review, 13(2):3–19. ACM. 1979.
21. Doug Lea et al. Java Concurrency Package. In http://gee.cs.oswego.edu/dl. 2003.
22. M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concur-

rent queue algorithms. PODC’96. 267–275. ACM. 1996.
23. E. Petrank, M. Musuvathi and B. Steensgaard. Progress guarantee for parallel programs via

bounded lock-freedom. PLDI’09. 144–154. ACM. 2009.
24. D. Sangiorgi. πI: A Symmetric Calculus based on Internal Mobility. In TAPSOFT’95, vol. 915

of LNCS, 172–186. Springer, 1995.
25. D. Sangiorgi. The name discipline of uniform receptiveness. TCS 221(1–2):457–493. Elsevier.

1999.
26. O. Schacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev and E. Yahav. Testing atomicity of

composed concurrent operations. OOPSLA’11. 51–64. ACM. 2011.
27. G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson–Prentice

Hall, 2006.
28. B. Tofan, S. Bäumler, G. Schellhorn, W. Reif. Temporal logic verification of lock-freedom. In

MPC’10, vol. 6120 of LNCS, 377–396. Springer, 2010.
29. M. Tokoro and V. Vasconcelos. A Typing System for a Calculus of Objects. In ISOTAS’93, vol.

742 of LNCS, 460–474. Springer, 1993.
30. A. Turon and M. Wand. A separation logic for refining concurrent objects. POPL’11. 247–258.

ACM. 2011.
31. D. Walker. Automated analysis of mutual exclusion algorithms using CCS. Formal Aspects of

Computing, 1(3):273–292. Springer. 1989.
32. E. Yahav and M. Sagiv. Automatically verifying concurrent queue algorithms. In SoftMC’03,

vol. 89(3) of ENTCS, 450–463. Elsevier. 2010.
33. N. Yoshida, M. Berger and K. Honda. Strong Normalisation in the π-Calculus. Information

and Computation, 191(2):145–202. Elsevier. 2004.

34

[Bra-L]
Γ ?, ~xj :~τj `Pj (∀j∈I)

Γ, u :&Li∈I li(~τi) `u&Li∈I li(~xi).Pi

[Bra-?]
Γ ↑?, u :&?i∈I li(~τi), ~xj :~τj `Pj (∀j∈I)
Γ, u :&?i∈I li(~τi) `u&?i∈I li(~xi).Pi

[Sel]
Γ `~e : ~τj (j ∈ I) Dom(Γ) = names(~e)

∆↑?, Γ, u :⊕i∈I li(~τi) `u⊕ lj〈~e〉

[If-?]
Γ ? ` e : bool Γ ` P Γ ` Q
Γ ` if e then P else Q

[If-L]
Γ ` eL : bool Γ ` P Γ ` Q
Γ ` if

L e then P else Q

[Par]
Γi `Pi(i = 1, 2) Γ1�Γ2

Γ1 � Γ2 ` P1|P2

[Res]
Γ, a :τ⊥,↓? ` P
Γ ` (νa)P

[Inact]
Γ ? ` 0

[Rec]
Γ ?, ~x :~τ,X :~τ ` P Γ ` ~e :~τ

Γ ` (µX(~x).P)〈~e〉
[Var]

Γ ? ` ~e : ~τ
Γ,X : ~τ ` X〈~e〉

Fig. 3. Typing Rules for Processes

A How to Read this Appendix

The Appendices list auxiliary definitions (§ C and § D). Because of recent notational
changes we are omitting the proofs in this version, to avoid notational inconsistencies.

B Auxiliary Definitions for Section 2

B.1 Linear Typing Rules

We summarise the linear type discipline used in the present inquiry. The construction
follows [15, 33] except we do not suppress an L-output by an L-input. This simplifies
the typing rules (e.g. no recording of causality) while ensuring linearity. We also use an
L-annotated conditional (used in §3.2). The purpose of the type discipline is to ensure
the properties of linear reductions (Proposition 2.3), as well as justifying the environment
transitions (§ 2).

In the typing rules and in the following sections we shall follow the notation that a
lack of modality in a type means both modalities apply, while a lack of annotation in a
term may mean either that it is irrelevant (when both modalities apply) or that it is implicit
from the context. Note in particular that the annotations in the terms are inferred from the
modalities in the types. The typing rules are given in Figure 3, where “Γ,∆” indicates
the union of Γ and ∆ as well as demanding their domains to be disjoint. In Γ ? (resp. in
Γ ↑?), Γ can only contain non-linear (output) types and base types, including ⊥. Finally,
eL means that all names appearing in e are L-annotated. We assume that each type is
input/output alternating: in an input type &i∈I li(~τi), each τi is an output type, and dually.

In [Bra-L], an L-input can suppress free channels of all “possibly unavailable” modes,
i.e. ↑? and ↓?. A linear input has receptiveness [25], i.e. availability of input channels,
by not being suppressed by another input. On the other hand, a non-linear input may be
non-receptive. Note also that an ↑L type is never suppressed under any input prefix.

35

In [Sel], the output rule is standard, dualising the carried types ~τj in the premise. Note
that Γ types all and only the names appearing in ~e (denoted in the rules by names(~e)).
Then we use ∆ as a form of weakening for ⊥ and non-linear output types.

The two rules for a conditional are standard except that, in [If-L], the guard must be L-
annotated; while in [If] a conditional can only “suppress” channels of possibly unavailable
modes (since the guard may be ?-annotated).

The rule [Par] for | uses the relation � and operation � from [15]. They are first
defined on types, then extended to typings. Intuitively, on a linear channel, composition is
allowed for at most one input and at most one output; on a non-linear channel, it is allowed
for at most one input and zero or arbitrarily many outputs. Below note ⊥ is undefined.

1. τ � τ always and τ � τ = ⊥ when the modality is linear, otherwise τ � τ = τ if τ
is an input type, and τ � τ = τ if τ is an output type.

2. τ � τ if τ is a non-linear output or int or bool and if so τ � τ = τ .
3. Otherwise for no τ1,2 we have τ1 � τ2.

Then Γ1 � Γ2 if Γ1(u)� Γ2(u) at each common u; if so, Γ1�Γ2 is defined for each
u ∈ dom(Γ1) ∪ dom(Γ2), so that Γ (u)=Γ1(u)� Γ2(u) if u∈dom(Γ1)∩dom(Γ2), and
otherwise types come from Γ1,2.

In [Res], τ may only be⊥ or a non-linear input type. This is because ν -hiding is only
possible for “self-contained” channels: for a linear input/output pair where composition
has already occurred (type ⊥) and for a non-linear input type, which can be associated to
the type of a server. Finally, in [Inact], we allow 0 to be typed by possibly unavailable
types.

The rules for recursion and variable, [Rec] and [Var], are standard.

C Auxiliary Definitions for Section 2
C.1 Linear Typing Rules

We summarise the linear type discipline used in the present inquiry. The construction
follows [15, 33] except we do not suppress an L-output by an L-input. This simplifies
the typing rules (e.g. no recording of causality) while ensuring linearity. We also use an
L-annotated conditional (used in §3.2). The purpose of the type discipline is to ensure
the properties of linear reductions (Proposition 2.3), as well as justifying the environment
transitions (§ 2).

In the typing rules and in the following sections we shall follow the notation that a
lack of modality in a type means both modalities apply, while a lack of annotation in a
term may mean either that it is irrelevant (when both modalities apply) or that it is implicit
from the context. Note in particular that the annotations in the terms are inferred from the
modalities in the types. The typing rules are given in Figure 3, where “Γ,∆” indicates
the union of Γ and ∆ as well as demanding their domains to be disjoint. In Γ ? (resp. in
Γ ↑?), Γ can only contain non-linear (output) types and base types, including ⊥. Finally,
eL means that all names appearing in e are L-annotated. We assume that each type is
input/output alternating: in an input type &i∈I li(~τi), each τi is an output type, and dually.

In [Bra-L], an L-input can suppress free channels of all “possibly unavailable” modes,
i.e. ↑? and ↓?. A linear input has receptiveness [25], i.e. availability of input channels,
by not being suppressed by another input. On the other hand, a non-linear input may be
non-receptive. Note also that an ↑L type is never suppressed under any input prefix.

36

In [Sel], the output rule is standard, dualising the carried types ~τj in the premise. Note
that Γ types all and only the names appearing in ~e (denoted in the rules by names(~e)).
Then we use ∆ as a form of weakening for ⊥ and non-linear output types.

The two rules for a conditional are standard except that, in [If-L], the guard must be L-
annotated; while in [If] a conditional can only “suppress” channels of possibly unavailable
modes (since the guard may be ?-annotated).

The rule [Par] for | uses the relation � and operation � from [15]. They are first
defined on types, then extended to typings. Intuitively, on a linear channel, composition is
allowed for at most one input and at most one output; on a non-linear channel, it is allowed
for at most one input and zero or arbitrarily many outputs. Below note ⊥ is undefined.

1. τ � τ always and τ � τ = ⊥ when the modality is linear, otherwise τ � τ = τ if τ
is an input type, and τ � τ = τ if τ is an output type.

2. τ � τ if τ is a non-linear output or int or bool and if so τ � τ = τ .
3. Otherwise for no τ1,2 we have τ1 � τ2.

Then Γ1 � Γ2 if Γ1(u)� Γ2(u) at each common u; if so, Γ1�Γ2 is defined for each
u ∈ dom(Γ1) ∪ dom(Γ2), so that Γ (u)=Γ1(u)� Γ2(u) if u∈dom(Γ1)∩dom(Γ2), and
otherwise types come from Γ1,2.

In [Res], τ may only be⊥ or a non-linear input type. This is because ν -hiding is only
possible for “self-contained” channels: for a linear input/output pair where composition
has already occurred (type ⊥) and for a non-linear input type, which can be associated to
the type of a server. Finally, in [Inact], we allow 0 to be typed by possibly unavailable
types.

The rules for recursion and variable, [Rec] and [Var], are standard.

D Auxiliary Definitions for Section 4
D.1 Typing Abstract Queues

Below we define the typing for abstract queues (which was briefly illustrated with an
example in § 4.1), and discuss key properties of the induced typed transition. For simplic-
ity we only treat abstract queues which store base type values such as natural numbers
or booleans, though the typing and associated results can be easily extended to the case
of a queue storing channels or composite values. Similarly for lock-based and cas-based
queues.

Definition D.1 (typing for abstract queues). Let p consist of:

1. subject r;
2. set of requests {enq(vi, gi)}i∈I ∪ {deq(gj)}j∈J ;
3. value sequence v1 · · · vn;
4. set of answers {gk〈ε〉}k∈K ∪ {gl〈vl〉}l∈L.

where:

– I , J , K and L are mutually disjoint and ga 6= gb whenever a 6= b, for a, b ∈ I ∪ J ∪
K ∪ L;

– each vi and each value from ~vk is typable with the same base type, α (which we
assume to include a special value ε, returned when the empty queue is dequeued).

37

Then we type p as follows:

r : &?{enq(α ↑? ()), deq(↑? (α)}, {gi :↑? ()}i∈I∪K , {gj :↑? (α)}j∈J∪K ` p

We call Γ ` p given in this way, a typed abstract queue.

Proposition D.2 (typed LTS over abstract queues). Suppose Γ ` p by the typing above
and p `−→ p′ such that the bound names in ` are disjoint from dom(Γ). Then

1. If ` is an output or τ , then Γ `−→ Γ ′ such that Γ ′ ` p′.
2. If ` is an input and Γ `−→ Γ ′ for some Γ ′, then Γ ′ ` p′.

We write Γ ` p `−→ Γ ′ ` p′ in these cases.

Proof. By easy inspection of each possible transition. Input and output are obvious, while
we can immediately check the τ -action does not change the typing environment. 2

Proposition D.2 defines the typed LTS over typed abstract queues. As a result, the same≈
given for concrete processes can be defined over typed abstract queues, quotienting them
in terms of their typed LTS.

Proposition D.3. Suppose Γ ` p `−→ ∆ ` q. Then:

1. Γ ` p and ∆ ` q are not related by ≈.
2. Further p and q are not bisimilar under their untyped LTS.

Proof. We just need to show (2) since it already implies (1). If ` is an input, it introduces
a new request. Then q can do an action which is not possible from p. If ` is an output,
it consumes an answer. Then q is no more able to do the same output. Now let ` = τ .
In this case, before ` occurs we can receive another input, introducing a request for a
new dequeue/enqueue operation. Then if this request is reduced first, the queue would
be affected and ` may not be possible anymore, or it may end up producing a different
answer. 2

D.2 Lock-based Queue: Full Definition
General Structure. We recall from § 4 that the empty lock based queue has the following
form:

LQemp(r)
def
= (νh, t, s, l)(Mtx〈l〉|LQ(r, h, t, l)|LPtr(h, s)|LPtr(t, s)|LENode(s, 0))

where
LQ(r, h, t, l)

def
= ! r&{enq(v, u) : (l(g)g(y).P lckenq(v, t, y, u),

deq(u) : (l(g)g(y).P lckdeq(h, t, y, u)))}
As we add new nodes, each node has the form LNode(r, v, nxt) which is a non-cas
reference of the form Ref〈r, 〈v, nxt〉〉 (in practice we store a pair as a single value through
encoding), where v is the value and nxt the name of the next node. When a node is
inserted in the list, its successor value should always be null. For brevity, we write such
a node with the empty successor, LENode(r, v), standing for Ref〈r, 〈v, null〉〉, as used
in the empty queue above. It also uses head and tail pointers LPtr(r, nd) standing for a
non-cas reference of the form Ref〈r, nd〉, where nd is the name of a node.

The enqueue and dequeue operations are given in the following subsection.

38

Enqueue and Dequeue Operations. The enqueue operation is simple (recall that the
lock has already been acquired):

1 P lckenq(v, t, y, u) = (νnext)(LENode(next, v)|
2 (t / read(tlNd).
3 tlNd / wrNxt〈next〉.
4 t / write〈next〉.
5 (ū|ȳ)))

It creates a new node with reference next and value v (line 1) then reads the name of
the node contained in the tail t (line 2). Then it writes the name of the new node in the
reference field of the last node (line 3) and swings the tail forward (line 4). Finally, it
outputs through u and releases the critical section through y (line 5). The operation of the
form x/read(y).P is syntactic sugar and has already been defined in § 4. x/write〈y〉.P
(on a pointer) is similarly defined and x / wrNxt〈y〉.P (on a node) simply writes the
node’s pointer field, not the value field.

The dequeue is as follows:

1 P lckdeq(h, y, u) = h / read(hdNd).

2 t / read(tlNd).
3 ifL (hdNd = tlNd) then
4 ȳ|u〈null〉
5 else hdNd / read(x, next).
6 h / write〈next〉.
7 ȳ|u〈x〉

It first reads the head and the tail pointers (lines 1 and 2), then compares them (line 3).
If they contain the name of the same node, it releases the lock through y and outputs null
through u (line 4). This ensures that the head never goes beyond the tail in the linked
list. Otherwise, it reads the value of the node referred by the head as well as the name of
its successor (line 5). It writes the name of the successor in the head pointer (line 6) and
outputs the read value (line 7).

Commit Transitions. In § 4.3, we proposed a classification of internal actions in cas
queue processes. In particular, we have identified those semantically state-changing τ -
actions which we called commits and which should correspond to the internal actions that
take place in the executions of abstract queues.

We can identify an analogous action in the execution of a lock-based queue as well.
Below we identify the commit transitions in lock-based queues, denoted com(g) for a
thread g. Note that each operation (enqueue or dequeue) should at some point perform
one (and no more than one) commit transition.

We identify the commit τ -transition as the τ -action which acquires the lock: this ac-
tion does not appear in P lckenq(v, t, y, u), nor in P lckdeq(h, y, u), but appears as the first action
in each branch of LQ(r, h, t). Since it is not followed by any linear reduction, this commit
transition is also a commit molecular action, (i.e. a molecular action, § 4, which starts

with a commit transition), denoted
com(g)7−−−−−→ and also called commit.

E Proofs for Section 2
In this appendix, we prove the main results of Section 2. They include:

39

– the subject transition (Proposition 2.3, page 6).
– properties of linear transitions (Proposition 2.3, page 6) and
– congruence of ≈ (Proposition 2.5, page 6)

After a preliminary in §E.1, we prove the above results in three subsections one by one.

E.1 Basic properties of typed processes

Below in (2) we say a channel is active if it occurs as subject not under an input or con-
ditional. (3) means a sequence of linear reductions do not interfere with other reductions:
they are semantically atomic.

Proposition E.1. Let Γ ` P , where P is closed. Then:

1. (subject reduction) If P −→ P ′ then Γ ` P ′.
2. (activeness) If the mode of Γ (c) is L and c is not an object in P , then P −→∗ Q by

linear reductions s.t. c is active in Q.
3. (partial confluence [16]) If P −→ P1 is linear and P −→ P2 6≡ P1, then P1 −→ Q

and P2 −→ Q, the latter reducing the same redex as P −→ P1.

Following the standard routine, we first prove the Substitution and Weakening lemmas.

Lemma E.2 (substitution). Let Γ, x : τ `P Then:

1. if τ has a linear mode, for any a /∈ Dom(Γ) we have Γ, a : τ `P{a/x}.
2. otherwise, if Γ `e : τ and e ↓ v we have Γ ` P{v/x}.

Proof. The claim is trivially true for P = 0 and X〈~e′〉. It is also true for P = (νb)P1.
Note that in this case x may not be b because we are assuming that x is free. The same
applies to recursion and to both inputs. For inputs, if x is the subject then e must be
a name a (no constant) since it has the same type as x. Moreover, if x is non-linear
the subject maintains the same type it had in the premise: then the substitution applies
because Γ ` a : τ , by assumption. Instead, if x is linear, its typing does not appear in Γ
and neither does a’s (by assumption): then the substitution applies. Same reasoning for
the output, both as subject and as object.

Assume that the claim is true forP1 andP2. Then it is true forP = if e′ thenP1 elseP2,
in both cases of linear and non-linear conditionals. In particular when x is e′, e must have
type bool, because it has the same type as x. Then the substitution applies.

Again, assume that the claim is true for Γ1 ` P1 and for Γ2 ` P2. Let Γ ′1 be the
typing of P1{e/x} and let Γ ′2 be the typing of P2{e/x}. Note that Γ ′1(e) = Γ1(x) and
Γ ′2(e) = Γ2(x). Then Γ ′1(e) � Γ ′2(e) and Γ ′1(e) � Γ ′2(e) = Γ1(x) � Γ2(x). Then the
claim is true for P1 | P2. 2

Lemma E.3 (weakening). Let Γ `P , where P is not a selection. For any name u which
does not appear in P we have Γ, u : ⊥ `P and Γ, u : ⊕?i∈I li(~τi) ` P .

Proof. The claim is true for Γ ` 0. Then for every other typing rule we just assume that it
is true for the premise(s) of the rule and by adding the typing u : ⊥ or u : ⊕?i∈I li(~τi) ` P
to the premises, we also have it in the conclusion. Note in particular that when we impose
constraints on the modalities in the typings of many premises, these do not apply to ⊥

40

as well as to other base types which may not have modalities, nor do they prevent the
non-linear output modality.

There are two specific cases which deserve further comments. First, in the rule for
parallel composition, the weakening is applied only to one premise. Second, in the rule
for output note that the premise may only type the names which appear in ~e. Non-linear
output names, as well as those with type ⊥, can be added to the conclusion. 2

Now we proceed to:

Proof of Proposition E.1 (1) (subject reduction): We consider the two reduction rules,
showing they yield typable processes in all contexts.

Let P ≡ if e then P ′ else P ′′. By the typing rule for the conditional, e is a boolean
expression. Then either e ↓ tt or e ↓ ff. As a result, either P −→ P ′ or P −→ P ′′. In any
case, both Γ ` P ′ and Γ ` P ′′ come as premises of the typing rule for the conditional.

Now let P ≡ u&i∈I{li(~xi).Pi} | u⊕lj〈~e〉. By the typing rule for parallel composition,
the typings on the two sides must assign dual types to u. Let Γ1, u :⊕M

i∈I li(~τi) `u⊕Mlj〈~e〉
and Γ2, u :&M

i∈I li(~τi) `u&M
i∈I li(~xi).Pi, where Γ1�Γ2 and ~τ is the vector of the duals of

the projections of ~τ (in the same order and for any type τ). Assuming that ~e ↓ ~v, we have
P −→ Pj{~v/~xj} and we need to show that:

Γ = (Γ1, u :⊕M
i∈I li(~τi))� (Γ2, u :&M

i∈I li(~τi)) ` Pj{~v/~xj}

We do this by cases of M. First let M be L. The typing rule for linear branching implies
Γ1, ~xj : ~τj `Pj , while the typing rule for selection implies Γ2 `~e : ~τj where the domain
of Γ2 contains all and only the names which appear in ~e. Then by Lemma E.2, Γ1 � Γ2 `
Pj{~v/~xj}. Note that, in addition to Γ1�Γ2, Γ also contains u : ⊕M

i∈I li(~τi)�&M
i∈I li(~τi),

which becomes u : ⊥ since M = L. Since u does not appear anywhere in Pj{~v/~xj}, we
can apply Lemma E.3 and state Γ ` Pj{~v/~xj}.

When the modality is non-linear the case is similar, except that the input type does not
disappear after the composition. And (accordingly) the typing rule for the branching has
the typing for u also in the premise.

Let P be of the form (νa)P ′ and P ′ −→ P ′′. By induction hypothesis, P ′′ can be
typed with the same type as P ′. Then Γ ` (νa)P ′′. Similarly for the case of the parallel
composition. 2

Proposition E.1 (2, 3) (Linear Actions). (2) (Active modes). Linear inputs cannot be
suppressed by any other input, nor by a non-linear conditional, as imposed by the typing
rules. Then they will become active after a sequence of reductions of linear conditionals.
The same also applies to linear outputs, provided that the output name c does not occur as
object in the process P .

(3) (Partial confluence). First let P −→ P1 be the reduction of a linear conditional. Such
a reduction does not exclude any other reduction because it only requires the evaluation
of the expression in its condition and the decision of which branch to take. Then there is
R such that P1 −→ R, which reduces the same redex as P −→ P2. For the same reason,
P −→ P1 may not be excluded by other reductions either. Then P2 −→ R, which reduces
the same redex as P −→ P1.

41

Now let P −→ P1 be the reduction of a synchronisation between a linear branch-
ing and its complementary selection. Note that: 1) a linear branching may only appear
once because its subject name does not appear in the premise of the typing rule which
introduces it; 2) a linear selection may only appear once because it may not be composed
with another selection (by definition of �) and because once it is composed with a com-
plementary branching, the type of its subject becomes ⊥ which may not be composed
anymore. Then the reduction P −→ P1 does not exclude any other reduction and may
not be excluded by any other reduction. Then the claim holds just as it did in the case of
the conditional. 2

E.2 Subject Transition
The following is a basic property of the typed LTS.

Proposition E.4 (subject transition). If Γ ` P , P `−→ Q and Γ `−→ ∆ then ∆ ` Q.

Proof. The case of τ -action is subsumed by Proposition E.1 (1) (subject reduction). Thus
the only cases of interest are the input and output visible transitions.
(L-input). The environment transition reads:

Γ, a : &L{li(~τi)}i∈I
(ν ~c)a&lj〈~v〉−−−−−−−−→ Γ, ~v : ~τj , a : ⊥

Note in particular that the names in ~v are not in the domain of Γ , since they are fresh. Now,
the process transition adds a⊕ lj〈~v〉 as a parallel component (and no change otherwise).
We can infer the type of a⊕ lj〈~v〉 as:

~v : ~τj , a : ⊕L{li(~τi)}i∈I ` a⊕ lj〈~v〉

Then we just need to apply the (Par) rule in § C.1 and we are done.
(?-input). The process transition is the same as above, only the environment transition
changes slightly, as follows:

Γ, a : &?{li(~τi)}i∈I
(ν ~c)a&lj〈~v〉−−−−−−−−→ Γ � ~v : ~τj , a : &?{li(~τi)}i∈I

reflecting the fact that the type composition, �, between non-linear types is defined to
keep the input type, rather than ⊥. The rest follows the same reasoning as above.
(L-output. The environment transition reads:

(Γ � ~v : ~τj)/~c, a : ⊕L{li(~τi)}i∈I
(ν ~c)a⊕lj〈~vj〉−−−−−−−−→ Γ

where ~v ⊆ Dom(Γ) (so that linear names are typed ⊥ in the left-hand environment). At
the term level, this corresponds to:

(ν ~c)(P |a⊕ l〈~v〉) (ν ~c)a⊕l〈~v〉−−−−−−−→ P

Note that ~c must be empty because only non-linear names or names typed ⊥ may be
hidden, but linear inputs may only carry linear output names (which are not typed with
⊥) or constants. Thus we infer:

Γ � ~v : ~τj , a : ⊕L{li(~τi)}i∈I ` P |a⊕ l〈~v〉

42

from which we can infer:
Γ ` P

as required.
(?-output. The process transition is the same as above, while the environment transition
changes slightly, as follows:

(Γ � ~v : ~τj)/~c, a : ⊕?{li(~τi)}i∈I
(ν ~c)a⊕lj〈~v〉−−−−−−−−→ Γ, a : ⊕?{li(~τi)}i∈I

where ~v ⊆ Dom(Γ) still holds. Although ~c may be non-empty, the typing and input/out-
put alternation still allow us to infer:

Γ � ~v : ~τj , a : ⊕?{li(~τi)}i∈I ` P |a⊕ l〈~v〉

from which we can infer that either:

Γ, a : ⊕?{li(~τi)}i∈I ` P

or Γ ` P . But on the latter we can still apply Lemma E.3 and obtain the former again. 2

E.3 Proposition 2.3 (Linear Actions)
Proof of Proposition 2.3 (1) is standard. (2) is from (1) and typing rules. (3) is direct
from the definitions (note that, by construction, a typed transition sequence always obeys
the standard binder convention). 2

E.4 Proposition 2.5 (congruence of≈)
In this section, we use the following notion of context:

C[−] ::= u&i∈I\{j}{li(~xi).Pi}&{lj(~xj).C[−]} | C[−]|P | P |C[−] | (ν u)C[−]

| if e then C[−] else P | if e then P else C[−] | −

The following lemma is used in the congruence proof to deal with recursion.

Lemma E.5. C1[X] ≈ C2[X] ∧ P1 ≈ P2 ⇒ C1[P1] ≈ C2[P2]

Proof. LetR= {(P1, P2) | P1 = C1[Q1]∧P2 = C2[Q2]∧C1[X] ≈ C2[X]∧Q1 ≈ Q2}.
We need to show that R is a bisimulation.

Let P1 = C1[Q1] R C2[Q2] = P2, where C1[X] ≈ C2[X] and Q1 ≈ Q2. Let also
P1

`−→ P ′1. We only show the case where both the context C1 and the sub-process Q1

are reduced, since the other cases are included in this one. Then ` = τ and the transition
P1

τ−→ P ′1 results from a synchronisation between a transition ofC1 and the dual transition

of P1. Let them be C1[X]
`′−→ C ′1[X] and Q1

`′′−→ Q′1 respectively, where `′ is the dual of

`′′ and P ′1 = C ′1[Q′1]. By bisimilarity, we have C2[X]
`′−→ C ′2[X] and Q2

`′′−→ Q′2, where
C ′1[X] ≈ C ′2[X] and Q′1 ≈ Q′2. Then we define P ′2 = C ′2[Q′2] and conclude P ′1 R P ′2. 2

We are now ready to prove congruence. We also recall the definition given in § 3 of Γ
allows `, written Γ ``, that is when Γ `−→ Γ ′ for some Γ ′.

Proof of Proposition 2.5 We prove the two points separately:

43

1. We give the congruence proof for the main two cases: parallel composition and re-
cursion. The other cases are standard.
First let:

R= {(Γ ` P1, Γ ` P2) | P1 ≡ (ν~u)(P ′1 | R) ∧
P2 ≡ (ν~u)(P ′2 | R) ∧ Γ ′ ` P ′1 ≈ P ′2}

We need to show that R is a bisimulation. Then let Γ ` P1
`−→ ∆ ` Q1 and Γ `

P2
`−→ ∆ ` Q2, where Γ ` P1 R P2. If ` is an input label, the two transitions above

add the same output action in parallel to the processes P1 and P2, respectively. Then
(Q1, Q2) ∈R, by the definition of R itself.
Now let ` be an output label and let P1 ≡ (ν~u)(P ′1 | R) and P2 ≡ (ν~u)(P ′2 | R),
where P ′1 ≈ P ′2. Note that the subject of ` may not be in ~u, else the output would
not be allowed by Γ . If the output comes from R, then it removes an output action
from R. Then again (Q1, Q2) ∈R by definition, as in the input case. Otherwise, it
comes from P ′1 and P ′2: P ′1

`−→ Q′1 and P ′2
`−→ Q′2, where Q1 ≡ (ν~u)(Q′1 | R) and

Q2 ≡ (ν~u)(Q′2 | R). Since Q′1 ≈ Q′2, we conclude (Q1, Q2) ∈R.
Let ` = τ . If the transition comes from either side of the parallel composition, the
same reasoning we gave for the output case applies. Then let it be a synchronisation
between the two sides. The argument is again similar: on one side the two transitions
reduce the same action in R, reaching R′ in both cases; on the other side P ′1 and
P ′2 are reduced to Q′1 and Q′2, respectively, such that Q′1 ≈ Q′2. As a whole, we
obtain Q1 ≡ (ν~u)(Q′1 | R′) and Q2 ≡ (ν~u)(Q′2 | R′) and we have (Q1, Q2) ∈R, by
definition.
The other case we consider is recursion. We define (omitting the typings):

R= {(P1, P2) | P1 = C1[(µX(~x).P ′1)〈~e〉] ∧ P2 = C2[(µX(~x).P ′2)〈~e〉] ∧
P ′1{~e/~x} ≈ P ′2{~e/~x} ∧ C1[X] ≈ C2[X]}

Again we need to show that R is a bisimulation. We only do one direction, the other
is symmetric. Then let P1 R P2 and P1

`−→ Q1. First suppose that the transition above
reduces the context of P1, i.e. P1 = C1[(µX(~x).P ′1)〈~e〉] `−→ C ′1[(µX(~x).P ′1)〈~e〉] =

Q1. Since only the context is affected, we also have C1[X]
`−→ C ′1[X]. By defini-

tion of R, P2 = C2[(µX(~x).P ′2)〈~e〉], for some context C2[−] such that C1[X] ≈
C2[X]. Then C2[X]

`−→ C ′2[X] and C ′1[X] ≈ C ′2[X]. Then we also have P2
`−→

C ′2[(µX(~x).P ′2)〈~e〉] = Q2 and Q1 R Q2.

Now let P1 = C1[(µX(~x).P ′1)〈~e〉] ≡ C1[P ′1{~e/~x}{µX(~x).P ′1/X}] and P1
`−→

C1[P ′′1 {~e/~x}{µX(~x).P ′1/X}] = Q1. By definition ofR,P2 = C2[(µX(~x).P ′2)〈~e〉] ≡
C2[P ′2{~e/~x}{µX(~x).P ′2/X}], where P ′1{~e/~x} ≈ P ′2{~e/~x} and C1[X] ≈ C2[X].
Let C ′1[−] = C1[P ′1{~e/~x}{−/X}] and C ′2[−] = C2[P ′2{~e/~x}{−/X}] and note that
C ′1[X] ≈ C ′2[X], by Lemma E.5. Then P2

`−→ C2[P ′′2 {~e/~x}{µX(~x).P ′2/X}] ≡ Q2.
Now let C ′′1 [−] = C1[P ′′1 {~e/~x}{−/X}] and C ′′2 [−] = C2[P ′′2 {~e/~x}{−/X}], which
are such that C ′′1 [X] ≈ C ′′2 [X]. Then Q1 R Q2, by definition of R.
The final case, where both the context and the recursive sub-process inside the context
are reduced uses Lemma E.5 again, and is a combination of the above two cases.

44

2. Let R= {(Γ ` P, Γ ` Q) | P −→L Q ∨ P = Q}. Note that −→L⊂R, then we
need to show that R is a bisimulation. Since the identity is clearly a bisimulation,
let P −→L P

′. If P ′ `−→ Q′ then P −→L
`−→ Q′ and (Q′, Q′) ∈R. If P `−→ Q, this

transition may either coincide with P −→L P
′ or not. In the former case, P ′ = Q

then (P ′, Q) ∈R. In the latter case, note that none of the actions reduced by P −→L

P ′ may be reduced by P `−→ Q, because they are linear actions and may only occur
once. Then P ′ `−→ Q′ and (Q,Q′) ∈R. 2

F Proofs for Section 3
F.1 Proposition 3.14 (relationship among progress properties)
In the proof of Proposition 3.14, the least trivial inclusion to show is that weak non-
blockingness implies reliability. The proof relies on the following lemma.

Lemma F.1. Let Γ `P . Then there exists a non-failing fair sequence of transitions from
Γ `P which does not contain any non-linear input.

Proof. Since we do not have to perform a non-linear input in a fair transition sequence,
we can simply construct, for example by a round-robin scheduling, a fair transition se-
quence from P , so that we perform all transitions one by one except non-linear inputs.
One concrete strategy is given in §I.1. 2

Now we can show that weak non-blockingness implies reliability.

Proposition F.2. Let Γ `P be weakly non-blocking. Then Γ `P is reliable.

Proof. Consider an arbitrary non-failing transition sequence from Γ ` P :

Ψ ′ : Γ `P `1−→ . . .
`n−→ ∆`Q

such that c ∈ allowed(∆). By Lemma F.1, there exists a further non-failing and fair
transition sequence, which does not contain any non-linear input:

Ψ ′′ : ∆`Q `n+1−−−→ . . .

where Ψ ′′ may be either finite or infinite. Let Ψ be the concatenation of Ψ ′ and Ψ ′′.
Since c ∈ allowed(∆) and Ψ is non-failing, we have allowed(∆) \ blocked(Ψ) =
allowed(∆) 6= ∅.

Since Γ ` P is weakly non-blocking, since Ψ is fair (hence also maximal) and since
allowed(∆) \ blocked(Ψ) 6= ∅, some output must occur in Ψ ′′:

Ψ ′′ : ∆`Q `n+1−−−→ . . .
(ν ~a1)c1⊕l〈 ~v1〉−−−−−−−−−→ ∆′`Q′ `

′
1−→ . . .

If c1 = c we can immediately conclude that Γ ` P is reliable. Then we need to consider
the case where c1 6= c. The latter implies that c ∈ allowed(∆′), which in turn implies
that allowed(∆′) \ blocked(Ψ) 6= ∅. Then we can apply the above reasoning again,
stating that some output occurs in Ψ ′′ after ∆′`Q′:

Ψ : ∆`Q `n+1−−−→ . . .
(ν ~a1)c1⊕l〈 ~v1〉−−−−−−−−−→ ∆′`Q′ `

′
1−→ . . .

(ν ~a2)c2⊕l〈 ~v2〉−−−−−−−−−→ ∆′′`Q′′ `
′′
1−→ . . .

45

Note that allowed(∆) is finite. Moreover, since no non-linear input occurs in Ψ ′′, allowed(∆′′)
is strictly contained in allowed(∆′), which is strictly contained in allowed(∆). Then
we are ensured that an output on c will occur in a finite number of steps.

Then Γ `P is reliable. 2

Finally we can prove the inclusions between all the behavioural properties and the
preservation of the two global progress properties by the fair pre-order.

We now move to:

Proof of Proposition 3.14:
1) Trivial.
2) First we show the inclusions.

1. WNB implies RLB. By Lemma F.2, if Γ ` P is weakly non-blocking it is also
reliable.

2. NB implies WNB. If Γ ` P is non-blocking it is also weakly non-blocking because
its requirement holds for all derivatives, which may be obtained by failing or by non-
failing transition sequences.

3. WF implies WWF. Same as the above.
4. WF implies NB. If Γ ` P is wait-free it is also non-blocking, because where wait-

freedom asks for a specific output, non-blockingness asks for any output.
5. WWF implies WNB. Same as the above.

The examples introduced in § 4 are enough for the strictness constraints. Below we give
a few more examples, where the basic properties are distilled from the rest.

1. RLB but not WNB. We can take:

Ref〈r,ff〉 | µX().r / tt〈.〉r / ff〈.〉X〈〉 |
µX().r / read(x).if x then ȳ else X〈〉

where
x / v〈.〉P def

= (νc)(x⊕ write〈v, c〉|c().P)

While one sub-process keeps changing the value of the reference r from ff to tt, the
other keeps checking that this value is tt before it can output. First of all, it is un-
derstood that any typing of this process must allow an output on y. Furthermore, any
derivative admits a transition sequence where the output occurs, then the process is
reliable. However, it also admits a fair sequence where it does not happen (indepen-
dently of failures). Then it is not weakly non-blocking.

2. NB but not WWF. We can take:

Refcas〈r, 0〉 | !u(y).µX.r / read(x).

if cas(r, x, x+ 1) then ȳ else X〈〉

Here, potentially many sub-processes may be spawned from the one to the right of
the parallel sign. Each one of them will try to increment the value contained in the
reference r, and then output. But they can only do it if they were not preceded by
others, else they keep looping. Note also that the failure of one sub-process may not
block the others3. Then as long as there are allowed outputs that are not blocked,

3 The detailed proof follows the same reasoning given for CQemp(r) (§ 4).

46

some output will occur in any fair non-failing sequence. Then the above process is
non-blocking. On the other hand, some allowed output may never happen (associated
sub-process loops forever). Then it is not weakly wait-free.

3. WWF but not WF. We can take:

Mtx〈l〉|!u(y).l̄(g)g(z).z̄ | ȳ

where z̄ may fail because it is non-linear, thus blocking all other sub-processes which
may be waiting to synchronise with l. 2

47

G Proofs for Section 4
G.1 Molecular Actions
We start by restating formally the notion of molecular action which was introduced in § 4.

Definition G.1 (molecular action). A typed process Γ ` P is in linear normal form,
or lin-nf, when P does not admit any linear redex, P 6−→L. If P is in lin-nf, we write
Γ ` P `7−→ ∆ ` Q when, for some R, we have Γ ` P `−→ ∆ ` R and R τ−→

∗
L Q 6−→L. We

call the transition `7−→, a molecular action.

Observe that, by Prop. 2.3 (2), any typed P can reduce to a unique lin-nf up to ≡.

Proposition G.2 (molecular action). If Γ ` P `−→ ∆ ` Q, then Γ ` P `7−→ ∆ ` Q′ such
that Q τ−→

∗
L Q
′.

Proof. Immediate from Prop. 2.3 (1) and (2). 2

Proposition G.3. IfR is a bisimulation over lin-nfs using molecular actions as one-step
transitions, and if PRQ, then P ≈ Q.

Proof. If the condition holds then τ−→
∗
L ◦R ◦ (

τ−→
∗
L)−1 is a bisimulation. 2

The following convention and proposition formalise what we stipulated in § 4.3 that we
only consider molecular action derivatives of CQemp(r), called cas-queue processes.

Convention G.4 (cas-queue process). Henceforth, a cas-queue process always denotes
a derivative of a typed transition sequence from CQemp(r) that is also in lin-nf.

Proposition G.5. A cas-queue process under Convention G.4 can always be reached from
the empty queue by a sequence of zero or more molecular actions.

Proof. By Proposition G.2 and noting CQemp(r) is in lin-nf by construction. 2

G.2 Shape of cas-Queue Processes
We start by better characterising the nature of threads which, as we know, are all in local
molecular form (Definition 4.2).

Proposition G.6. Each LMF contains a unique active output.

Proof. Immediate by inspection. 2

The g-thread in a cas-queue process P is sequential, in the following sense. Below we say
a thread in a cas-queue process is involved in a τ -action when a sub-term of the thread
participates in the reduction (either as an active input, an active output, or a conditional).
Similarly we say a thread is involved in a molecular τ -action if a sub-term of the thread
participates in the first reduction of the molecular action.

Proposition G.7 (single activity). Assume a gi-thread in a cas-queue process P is in-
volved in a molecular τ -action. Then this molecular action is determined uniquely. More-
over it has a molecular τ -action iff the gi-thread is not an answer.

48

Proof. By Lemma G.6, the initial redex is unique. The rest is by inspection of the molec-
ular action associated to the initial redex in each LMF. Note that such a molecular action
is uniquely identified by Proposition G.2. 2

Next, we formalise the classification of molecular actions we gave in § 4.3.

Definition G.8. Hereafter we write P
τττ,g7−−→ Q when, for any cas-queue process P , there

is a molecular τ -action P τ7−→ Q in which the g-thread of P is involved.

Definition G.9 (LMF actions). Let P be a cas-queue process.

1. We write P
com(g)7−−−−−→ Q when P

τττ,g7−−→ Q where the first τ transition is a commit. We
call this action commit action.

2. We write P
sw(g)7−−−−→ Q when P

τττ,g7−−→ Q which is a tail-swinging cas-operation, i.e.
the initial reduction is from one of the following:

(a) EnqSwReccas〈tn, t ctr , t,nd , g〉,
(b) EnqSwFincas〈tn, t ctr , t,nd , g〉 and
(c) DeqSwcas〈nxt, t ctr , tn, h, t, g〉).
We call this action swinging action. Note a swinging action may not affect the state

when the swinging is already done. We may write
sw(g1..gn)7−−−−−−−→ for a series of (suc-

cessful and failing) swinging actions at g1..gn.

3. We write P
nc(g)7−−−−→ Q for any P

τττ,g7−−→ Q that is not a commit action. We call it a
non-commit action.

Note: 1) a swinging action is a non-commit action, but it is worth treating it separately
since it may modify the queue non-trivially; 2) the reduction of a given LMF may be a
commit action in certain contexts and not in others.

Definition G.10 (ready output). An output in P is ready if either it is the output part of
a redex pair in P or it is ready to induce a typed output transition.

The following result was used in the proof of Lemma 4.6.

Proposition G.11. Let Γ ` P be a cas-queue process in general form.

1. Exactly one output in each thread of P is ready in P , and these outputs cover all the
outputs that are ready in P .

2. If Γ ` P `−→ Γ ′ ` P ′ and ` is an input or an output, then P ′ is still in general form.

Proof. (1) is immediate. For (2), for input, the threads ΠPi are combined with R def
=

r ⊕ enq〈v, g〉. By the use of typed transition, g is fresh. The linked list sub-process does
not change. The additional R is ready to interact at r, hence done. The output case is
simpler since we only lose one message (one thread is removed). 2

49

G.3 Normal Form and Normalisation

In this section we prove some partial results which are used in the proof of Lemma 4.11.

Proposition G.12 (commit and swing). Let Φ : CQemp(r)
τ7−→
∗
P . Then Φ contains

at most one commit at g. Moreover, if it does, then Φ contains at most one swinging
molecular action in the g-thread after the commit.

Proof. The proof is done by inspection of the LMFs we may reach after a commit. It may
have one of the following three forms: 1) EnqSwFincas〈tn, t ctr , t,nd , g〉 (after a commit
in an enqueue operation); 2) DeqAnsNullcas〈g〉 (after a commit in a dequeue operation
where the queue was empty); 3) DeqAnscas〈v, g〉 (after a commit in a dequeue operation
where a value has been dequeued). In the latter two cases, we have already an answer
which has no further redex. In the former case, we need a further molecular action and
then we reach an answer. 2

Note also that a swinging action in one thread never disables a commit in another.
The following result provides the base case of the normalisation lemma.

Proposition G.13 (base normalisation). LetP be an initial cas-queue process, {g1, ..., gm}
exhaust the thread names in P , and K1 ·K2 be a non-redundant sequence of these thread

names. Then P
norm(K1·K2)7−−−−−−−−−→ Q such that the local normalisations in the partition K1

are committing and those in K2 are pre-committing.

Proof. We show the local normalisation of an arbitrary g-thread, which may be either
of the form EnqReqcas〈r, v, g〉, or of the form DeqReqcas〈r, g〉, since P is initial. The
following invariant ensures that such normalisations can be applied one after the other:

“After each local normalisation sequence, we reach a general form where the
tail pointer points to the last node in the linked list sub-process.”

EnqReqcas〈r, v, g〉 synchronises with CQ(r, h, t), spawning the thread EnqRdTcas〈t, v, g〉.
The next molecular actions perform read operations on: the tail pointer, the node it refers
to (which is the last node by the invariant) and the pointer to its successor. Since the
successor of the last node is null, we reach EnqComcas〈nxt , tp ctr , tp, tn, t ctr , t, v, g〉
which is a pending local normal form, since the tail pointer points to the last node.

Now, if we need a non-committing normalisation (g is in the K2 partition) we are
done. Otherwise we commit and we move to EnqSwFincas〈tn, t ctr , t,nd , g〉, which
swings the tail forward (preserving the invariant). Then we reach the answer EnqAnscas〈g〉,
which completes the local normalisation.

Similarly, DeqReqcas〈r, g〉 synchronises with CQ(r, h, t), spawning a thread of the
form DeqRdHcas〈h, t, g〉. Again we perform the required read operations and we reach
DeqRdHPcas〈nxt, hp ctr , tn, t ctr , hn, h ctr , h, t, g〉. Now, if h and t point to the same
node, it must be the last node in the linked list, because of the invariant. Then we are
at a pending local normal form, which is enough if g is in the K2 partition. Then let g
be in the K1 partition: the next two conditionals (line 6 and 7 in the definition of the
dequeue operation, § D) evaluate to true, because h and t point to the same node and
because the successor of this node is null, since it is the last. Then we reach the answer
DeqAnsNullcas〈g〉, preserving the invariant and completing the local normalisation.

50

Now assume that in DeqRdHPcas〈nxt, hp ctr , tn, t ctr , hn, h ctr , h, t, g〉, h and t
do not point to the same node. Then the condition at line 6 evaluates to false and we
reach DeqRdNextcas〈h ctr , hn, h, g〉, and then DeqComcas〈x, t, h ctr , hn, h, g〉, which
is a pending local normal form satisfying the invariant. This is enough if g is in the K2

partition. Otherwise, we perform the cas which swings h forward, reaching the answer
DeqAnscas〈v, g〉, and we are done. 2

The proof of the normalisation lemma relies on local permutations, the main permutation
cases were stated but not proved (Proposition 4.10). Here we show them along with further
auxiliary cases.

Lemma G.14 (local permutation (sw-sw)). Let P be a cas-queue process. P
sw(gi)7−−−−→

sw(gj)7−−−−→ R implies P
sw(gj)7−−−−→ sw(gi)7−−−−→ R.

Proof. Note that the transitions P
sw(gi)7−−−−→ sw(gj)7−−−−→ R correspond to two successive cas

operations on the tail pointer. Then i and j must be different. Let 〈ndi, ni〉 and 〈nd′i, n′i〉
be, respectively, the old and the new value parameters of the first cas operation, the one in
the gi-thread. Similarly, let 〈ndj , nj〉 and 〈nd′j , n′j〉 be, respectively, the old and the new
value parameters of the cas operation in the gj-thread. Since they are both tail-swinging
cas operations, we know that: 1) nd′i is the successor of ndi and nd′j is the successor of
ndj in the linked list; 2) n′i = ni + 1 and n′j = nj + 1.

First suppose that 〈ndi, ni〉 6= 〈ndj , nj〉. Note that 〈ndi, ni〉 and 〈ndj , nj〉 are two
previously read values of the tail pointer Then both ndi 6= ndj and ni 6= nj , since each
time the tail pointer is modified, both the node reference and the counter are modified.
Then at least one of 〈ndi, ni〉 and 〈ndj , nj〉 must be outdated, since they are both pre-
viously read values of the tail pointer and they are different. Then at least one of the
two tail-swinging operations would be ineffective at P . Then we can do the permutation
without changing their outcome.

Now suppose that 〈ndi, ni〉 = 〈ndj , nj〉. Then n′i = ni + 1 = nj + 1 = n′j , and also
nd′i = nd′j , since they are both the successor of ndi = ndj in the linked list. Now, surely
the second operation does not affect the contents of the tail pointer. Hence, if the first op-
eration does not modify the tail pointer either, the order is trivially irrelevant. Otherwise,
when the first operation does modify the tail pointer, it sets 〈nd′i, n′i〉 as new value. Since
〈nd′i, n′i〉 = 〈nd′j , n′j〉, we obtain the same transformation after the permutation. 2

Below, we use the LMFs from Definition 4.4 to describe threads, whose reductions
are described in Figures 1 (enqueue) and 2 (dequeue). Moreover, instead of explicitly
writing the actual arguments of an LMF, we use generic substitutions φ, φ′, . . ., as in
EnqReqcas〈φ〉, DeqRdNextcas〈φ′〉, Finally, just as we defined a cas operation, we
say that a read operation is a molecular action in which a thread reads the content of a
node or of a pointer.

The proof of Proposition 4.10 (nc-up) can be divided in two cases, according to
whether the non-commit action to be moved left is a read operation or a tail-swinging
cas. The following lemma deals with the former case.

Lemma G.15. Let P be a queue process such that P
norm(gj)7−−−−−−→ P ′

nc(gi)7−−−−→ R, where

P ′
nc(gi)7−−−−→ R is a read operation and P

nc(gi)7−−−−→ (i.e. the same action is also a non-
commit one at P).

51

Then P
nc(gi)7−−−−→ norm(gj)7−−−−−−→ nc(gi)7−−−−→

∗
R′ and R

nc(gi)7−−−−→
∗
R′.

Proof. We need to show how to permute P ′
nc(gi)7−−−−→ R with any molecular action in

P
norm(gj)7−−−−−−→ P ′. Then assume that after an arbitrary number of permutations, we now

need to permute our read operation with the molecular action Q
`(gj)7−−−→:

Q
`(gj)7−−−→ nc(gi)7−−−−→ norm(gj)7−−−−−−→ Q′

where the final transition sequence is the rest of the normalisation for the gj-thread, such

that Q′
nc(gi)7−−−−→

∗
R′ and R

nc(gi)7−−−−→
∗
R′. Note also that Q

nc(gi)7−−−−→, because the action

P
nc(gi)7−−−−→ could not be disabled by any action in the gj-thread and because a non-commit

action may not become a commit just by moving right (easy case analysis).

The only critical case is when Q
`(gj)7−−−→ is a cas which modifies the contents of the

reference, say x, which we are about to read. Note that in this case x must be a pointer,
because we may not perform cas on a node. Since a read operation does not modify the
linked list in any way, we can permute the read before the cas:

Q
nc(gi)7−−−−→ `(gj)7−−−→ norm(gj)7−−−−−−→ Q′′

where the read operation is a non-commit action atQ as well, because the actionQ
nc(gi)7−−−−→

is unique (Prop. G.7). However, the value of x that is read is outdated in Q′′ and needs
to be read again. We show the claim by cases of x. In each case, the proof consists
in making the gi-thread of Q′′ perform a complete loop to reach a process Q′′′ where
the value of x is up-to-date. In some cases Q′′′ and Q′ may not correspond exactly, be-
cause other references that were read before x may be outdated in Q′. In those cases we
just need to apply the same reasoning described below to Q′: we conclude that either

Q′
nc(gi)7−−−−→

∗
Q′′′

nc(gi)7−−−−→
∗
R′ or Q′

nc(gi)7−−−−→
∗
R′

nc(gi)7−−−−→
∗
Q′′′. In both cases, the invariant

that the final process (resp. R′ or Q′′′) can be reached from R is still satisfied.
Hence, now we only need to show how to reach Q′′′ from Q′′. The possible cases of

x are: tail pointer, head pointer or last pointer in the linked list; since these are the only
pointers which may be modified.

Let x be the tail pointer. Then `(gj) is actually a tail swinging operation:

Q
nc(gi)7−−−−→ sw(gj)7−−−−→ norm(gj)7−−−−−−→ Q′′

Note that in Q′′, the gi-thread is either of the form EnqRdTNcas〈φe〉 or of the form
DeqRdHNcas〈φd〉 (for proper substitutions φe and φd), as these are the only instances
of sub-processes which follow a read on the tail pointer.

If the gi-thread has the form EnqRdTNcas〈φe〉, it reduces to EnqRdTPcas〈φ′e〉. Since
the tail pointer has been swung forward, the gi-thread has an outdated copy which may not
refer to the last node in the linked list: that is, the successor of φ′e(last) may not be null.
Hence, EnqRdTPcas〈φ′e〉 is reduced to EnqSwReccas〈φ′′e 〉, where we try to swing the tail
forward (unsuccessfully because its value has already been updated), then we go back to
the beginning of the loop and read the updated value of the tail pointer, thus reachingQ′′′.

If the gi-thread ofQ′′ has the form DeqRdHNcas〈φd〉, it reduces to DeqRdHPcas〈φ′d〉,
where there are two cases: either φ′d(hn) = φ′d(tn) or not (that is, either head and tail

52

pointed to the same node or not). In the former case, we need to further consider if the
tail points to the last node in the queue. But since it is out of date, it may not point to the
last node. Then DeqRdHPcas〈φ′d〉 reduces to DeqSwcas〈φ′′d〉, goes back to the beginning
of the loop, and eventually we reach Q′′′. Now, in the latter case, DeqRdHPcas〈φ′d〉 is
reduced to DeqRdNextcas〈φ′′′d 〉. Since the following reductions are independent of the
value of the tail pointer, we have reached a process Q′′′ which satisfies the invariant:

Q′
nc(gi)7−−−−→

∗
Q′′′

nc(gi)7−−−−→
∗
R′ or Q′

nc(gi)7−−−−→
∗
R′

nc(gi)7−−−−→
∗
Q′′′.

Let x be the head pointer. Then `(gj) is actually a commit molecular action:

Q
nc(gi)7−−−−→ com(gj)7−−−−−→ norm(gj)7−−−−−−→ Q′′

Note that in Q′′, the gi-thread is of the form DeqRdTcas〈φd〉 (for a proper substitu-
tion φd), as this is the only LMF which follows a read on the head pointer. In two
(molecular) steps, we reach DeqRdHPcas〈φ′d〉. By contradiction assume that φ′d(hn) =
φ′d(tn). Currently, φ′d(hn) is outdated since the gj-thread has swung the head forward,
while φ′d(tn) is up-to-date since the tail has been read after the completion of the gj-
thread. This implies that the head points to a later node than the tail, which contradicts
Prop. 4.6. Then DeqRdHPcas〈φ′d〉 is reduced to DeqRdNextcas〈φ′′d〉, which is reduced
to DeqComcas〈φ′′′d 〉. The next cas operation brings us back to the beginning of the loop,
since the value of the head pointer is outdated. Then eventually we reach Q′′′.

Let x be the last pointer in the linked list. Again, `(gj) is a commit:

Q
nc(gi)7−−−−→ com(gj)7−−−−−→ norm(gj)7−−−−−−→ Q′′

Note that in Q, the gi-thread is either of the form EnqRdTPcas〈φe〉 or of the form
DeqRdHPcas〈φd〉 (for proper substitutions φe and φd), because these are the only LMFs
at which we perform a read on some successor pointer. In the first case, x must be
null because the following cas is a commit. Then in Q′′, the gi-thread is of the form
EnqComcas〈φe〉. However the next cas operation fails to modify the pointer because it
has already been modified. Then we go back to the beginning of the loop and reach Q′′′.

In the case of DeqRdHPcas〈φd〉, we are assuming that φd(h) = φd(t), given that the
gj-thread may perform a commit cas action which adds a successor to φd(hn). However,
as the read action in the gi-thread moves left of the commit cas action, it becomes itself a
commit. But we have already excluded this case. Then we are done. 2

The latter case of Proposition 4.10 (nc-up) requires a simpler statement.

Lemma G.16. Let P be a queue process such that P
norm(gj)7−−−−−−→ P ′

sw(gi)7−−−−→ R. Then

P
sw(gi)7−−−−→ norm(gj)7−−−−−−→R.

Proof. We need to consider each possible local permutation and see if there are critical
cases. First of all, as long as a tail-swinging operation is permuted with transitions where
the tail is not involved, there is no problem. When it follows another occurrence of tail-
swinging operation, we just apply Lemma G.14.

Then let the tail-swinging in the gi-thread follow a read on the tail in the gj-thread:

Q
nc(gj)7−−−−→ sw(gi)7−−−−→Q′

norm(gj)7−−−−−−→Q′′

53

If the cas does not actually modify the tail, the permutation has no effect on the read.
Then we assume that the tail is modified. After the permutation, we obtain:

Q
sw(gi)7−−−−→ nc(gj)7−−−−→Q′′′

where the normalisation sequence is not indicated because in Q′′′ the gj-thread has read
a value of the tail pointer which is up to date, whereas in Q′ the read value was outdated.

Through manipulation of Q′
norm(gj)7−−−−−−→Q′′, we shall show that Q′′′

norm(gj)7−−−−−−→Q′′. Con-
sider the gj-thread in Q′. It may be either of the form EnqRdTNcas〈φe〉 or of the form
DeqRdHNcas〈φd〉 (for proper substitutions φe and φd), as these are the only instances of
sub-processes which follow a read on the tail pointer.

Let it have the form EnqRdTNcas〈φe〉. Then it reduces to EnqRdTPcas〈φ′e〉. Since
φ′e(t) is outdated, φ′e(tn) may not be the last node. Hence we reach EnqSwReccas〈φ′′e 〉,
where we try to swing the tail forward (unsuccessfully because the gi-thread already did
it). Then we go back to the beginning of the loop and read the updated value of the tail.

At this point all the substitutions are as in Q′′′. Therefore Q′′′
norm(gj)7−−−−−−→Q′′.

If the gj-thread ofQ′ has the form DeqRdHNcas〈φd〉, it reduces to DeqRdHPcas〈φ′d〉.
First let φ′d(hn) = φ′d(tn). But just as above, φ′d(tn) may not be the last node. Then
we reach DeqSwcas〈φ′′d〉 and go back to the beginning of the loop, eventually reaching
Q′′′ again (note in particular that the value of the head in Q′′′ is up to date as well). If
φ′d(hn) 6= φ′d(tn), DeqRdHPcas〈φ′d〉 reduces to DeqRdNextcas〈φ′′d〉. Since the following
reductions are independent of the value of the tail pointer, we eventually reach a process

Q′′′′, which would have been reached from Q′′′ anyway. Therefore Q′′′
norm(gj)7−−−−−−→Q′′. 2

The above lemmas lead to the proof of Proposition 4.10 (nc-up).

Proof of Proposition 4.10(1): (nc-up)
Let P

norm(gj)7−−−−−−→ P ′
nc(gi)7−−−−→ R. We show the claim by cases of P ′

nc(gi)7−−−−→ R.

LetP ′
nc(gi)7−−−−→ R be the synchronisation of either EnqReqcas〈r, v, g〉 or DeqReqcas〈r, g〉

with the initial branching in CQ(r, h, t). Note that such synchronisations do not pre-

vent the occurrence of other transitions nor they modify the linked list. Then P
nc(gj)7−−−−→

P ′′
norm(gj)7−−−−−−→ R, where P ′′

norm(gj)7−−−−−−→ R consists of exactly the same transitions as

P
norm(gj)7−−−−−−→ P ′.
The case of P ′

nc(gi)7−−−−→ R being a read operation has been shown in Lemma G.15 and
Lemma G.16 gives the case of a tail-swinging operation. Then we are done. 2

The last critical permutation consists in moving a cas on the tail right of a commit ac-
tion. In the case of an enqueue commit, the proof relies on the observation that if such
transitions occur one after the other, then the cas is ineffective. In the case of a dequeue
commit, we show that the two transitions do not interfere with each other.

Proof of Proposition 4.10(2): (sw-com)

Let P
sw(gi)7−−−−→ P ′

com(gj)7−−−−−→ R. Note that i and j must be different, because there is no
occurrence of commit action which immediately follows a cas on the tail in the same

thread. We show the claim by cases of P ′
com(gj)7−−−−−→ R.

54

Let P ′
com(gj)7−−−−−→ R be an enqueue commit action. Then, at P ′, the gj-thread has the

form EnqComcas〈φe〉 (for a proper substitution φe). In order for P ′
com(gj)7−−−−−→ R to be a

commit, φe(t) must necessarily refer to the last node in the linked list. Then P
sw(gi)7−−−−→P ′

must have been ineffective because the tail was pointing to the last node in P as well. By
permuting the two transitions:

P
com(gj)7−−−−−→R′

sw(gi)7−−−−→ R′′

we have the intermediate process R′, where the tail is not pointing to the last node any-
more. Note however that the value of the tail in the gi-thread is outdated, because it was

read before. Then R′
sw(gi)7−−−−→ R′′ is still ineffective. Then R′′ and R are the same process.

There are two cases of dequeue commit action. First let P ′
com(gj)7−−−−−→ R correspond to

the reduction of DeqRdHPcas〈φd〉 (for a proper substitution φd), reading null as value
of the last pointer in the linked list. Note that φd(t) = φd(h) refers to the last node, since
P ′ is in general form (Proposition 4.6(a)). Then, just as above, the tail swinging operation

P
sw(gi)7−−−−→ P ′ must have been ineffective. Then by permuting we obtain the same final

process:

P
com(gj)7−−−−−→R′

sw(gi)7−−−−→ R

The other case of dequeue commit action corresponds to a cas on the head pointer, where
the gj-thread at P ′ must have the form DeqComcas〈φd〉 (for a proper substitution φd).

Then necessarily we must have φd(h) 6= φd(t). Since P ′
com(gj)7−−−−−→ R is a commit, φd(h)

is up-to-date. Then, both in P and in P ′, the head refers to an earlier node than the tail
(Proposition 4.6(a)). Then the commit action and the tail swinging operation do not inter-
fere with each other and we have:

P
com(gj)7−−−−−→R′

sw(gi)7−−−−→ R

Then we are done. 2

G.4 Weak Bisimulation Rcas

The following result says that if a queue process is related to an abstract queue, then they
share a common history in some (weak) sense. It is required in the proof of Lemma 4.13
(among others)

Lemma G.17. Let QRcasq, then CQemp(r) and AQ(r, 〈∅, ε, ∅〉) admit the following
transition sequences:

CQemp(r)
`17−→ . . .

`n7−−→ Q ⇐⇒ AQ(r, 〈∅, ε, ∅〉)
̂̀̂
1−→ . . .

̂̀̂
n−→ q

Proof. The base case is Q = CQemp(r) and q = AQ(r, 〈∅, ε, ∅〉). In this case, both
CQemp(r) and AQ(r, 〈∅, ε, ∅〉) can reach themselves through the empty sequence.

Otherwise, there have to be P and p such that P Rcasp, P `P7−−→ Q and p
̂̀̂
P−→ q, by

definition of R. Then by iterating this reasoning, we have:

CQemp(r)
`17−→ . . .

`n7−−→ Q ⇐⇒ AQ(r, 〈∅, ε, ∅〉)
̂̀̂
1−→ . . .

̂̀̂
n−→ q

55

which concludes the proof. 2

G.5 Construction and Bisimilarity of R lock

In this subsection we define the relation R lock between lock-based queue processes and
abstract queues, and we show that it is a bisimulation. The proof has the same structure
as the analogous proof we gave for Rcas, although it is much simpler in many parts.

As we have done for cas-queue processes, we use lin-nfs of lock-based queue pro-
cesses, noting that the initial process is in linear formal form.

Convention G.18 (lock-queue process in lin-nf). Henceforth, a “(lock-)queue process”
always denotes a derivative of a typed transition sequence from LQemp(r) which is also
in lin-nf.

Proposition G.19. Any lock-queue process under Convention G.18 can be reached from
the empty queue by a sequence of molecular actions.

Proof. By Proposition G.2 and because, by construction, LQemp(r) is in lin-nf. 2

A lock-queue process has always a specific syntactic form. As we did for operations of
cas-queue processes, we first define the “local molecular forms” for operations of lock-
queue processes. Below, we write Enq(n)

lck 〈v1, . . . , vm〉 to indicate the derivative of the
enqueue process Enqueuecas〈t, v, g〉 which has reached Line n, with v1, . . . ,vm values
instantiated in this order (omitting the substitutions that are not used anymore), similarly
for Deq(n)

lck 〈v1, . . . , vm〉.

Definition G.20 (local molecular form, LMF). A local molecular form, or LMF, for an
enqueue/dequeue operation is a process in one of the forms in Figure 4. In lines (2,3,4), we
fix C[·] def

= (ν nd)([·] |LENode(nd , v)). Also, g in each line is called the continuation
name of the process.

We say that a LMF for an enqueue/dequeue operation is:

– a free request, if it is of either form EnqReqlck〈r, v, g〉 or DeqReqlck〈r, g〉;
– pending, if it is of either form EnqComlck〈t, v, g〉 or DeqComlck〈h, t, g〉;
– an answer if it is of either form EnqAnslck〈g〉, DeqAnsNulllck〈g〉 or DeqAnslck〈v, g〉;
– critical if it is of either of the following forms:
• EnqRdTlck〈y′, t, v, g〉,
• EnqWrNextlck〈tn, y′, t, v, g〉,
• EnqSwTlck〈y′, t,nd , g〉,
• DeqRdHlck〈y′, h, t, g〉,
• DeqRdTlck〈hn, y′, h, t, g〉,
• DeqRdHnlck〈hn, y′, h, g〉 or
• DeqSwHlck〈v, nxtHd, y′, h, g〉.

Intuitively, a critical LMF indicates that the operation is in the critical section.
Using local molecular forms, we define general forms of lock-queue processes in the

expected way:

56

EnqReqlck〈r, v, g〉
def
= r ⊕ enq〈v, g〉

EnqComlck〈t, v, g〉
def
= l(c)c(y).C[Enq(1)

lck 〈t,nd , g〉]

EnqRdTlck〈y
′, t, v, g〉 def

= C[Enq(2)
lck 〈y

′, t,nd , g〉]

EnqWrNextlck〈tn, y
′, t, v, g〉 def

= C[Enq(3)
lck 〈tn, y

′, t,nd , g〉]

EnqSwTlck〈y
′, t,nd , g〉 def

= Enq(4)
lck 〈y

′, t,nd , g〉

EnqAnslck〈g〉
def
= Enq(5)

lck 〈g〉
def
= g

DeqReqlck〈r, g〉
def
= r ⊕ deq〈g〉

DeqComlck〈h, t, g〉
def
= l(c)c(y).Deq(1)

lck 〈h, t, g〉

DeqRdHlck〈y
′, h, t, g〉 def

= Deq(1)
lck 〈y

′, h, t, g〉

DeqRdTlck〈hn, y
′, h, t, g〉 def

= Deq(2)
lck 〈hn, y

′, h, t, g〉

DeqAnsNulllck〈g〉
def
= Deq(4)

lck 〈g〉
def
= g〈null〉

DeqRdHnlck〈hn, y
′, h, g〉 def

= Deq(5)
lck 〈hn, y

′, h, g〉

DeqSwHlck〈v, nxtHd, y
′, h, g〉 def

= Deq(6)
lck 〈v, nxtHd, y

′, h, g〉

DeqAnslck〈v, g〉
def
= Deq(7)

lck 〈v, g〉
def
= g〈v〉

Fig. 4. Local molecular forms for lock-queue processes

Definition G.21 (general form). A queue process P is in general molecular form or in
general form for short, when either:

P ≡ (νh, t, nd0, . . . , ndn, l)(Mtx〈l〉 | LQ(r, h, t, l) |
∏

1≤i≤m Pi | LL)

in which case we say that P is unlocked, or:

P ≡ (νh, t, nd0, . . . , ndn, l, l
′)(l′.Mtx〈l〉 | LQ(r, h, t, l) |

∏
1≤i≤m Pi | LL)

in which case we say that P is locked. In any case P is typed under r : &{enq(α ↑
()), deq(↑ (α)}, {gi :↑ (~α)}1≤i≤n, for some α. Moreover, each Pi is in LMF and con-
tains a single free occurrence of a name gi (we say Pi is a gi-thread, or simply thread, of
P). Finally, LL (“linked list sub-process”) has the following form:

LPtr(h, ndH) | LPtr(t, ndT) |
∏

1≤i≤n LNode(ndi, vi, ndi+1)

where we have ndn+1 = null, 0 ≤ H ≤ T = n.

Again, the two most basic properties of general forms apply also to lock-queues.

Proposition G.22. Let Γ ` P be a lock-queue process in general form.

1. Exactly one output in each thread of P is ready in P and these outputs cover all the
outputs that are ready in P .

2. If Γ ` P `−→ Γ ′ ` P ′ where ` is an input or an output, then P ′ is also in general
form.

57

Proof. Same as the proof of Proposition G.11. 2

By using these properties, we establish the invariants of lock-queue processes.

Proposition G.23 (invariants of lock-queue processes). Let P be a lock-queue process
(hence by Convention G.18 a lin-nf). Then:

(a) P is in general form.
(b) If P is locked then one and only one thread Pi of P is critical.
(c) If P is unlocked then no thread of P is critical.

Proof. Suppose LQemp(r)
`17−→ ..

`n7−−→ P . We establish all three points by a single
induction on n.
(Base Step.) This is when n = 0 and P = LQemp(r).

(a) Immediate since the linked list has only the dummy node and there are no threads.
(b,c) Vacuous since no thread exists.

(Inductive Step.) We assume the result holds for n = m, and show the same holds for
n = m+ 1. So suppose:

LQemp(r)
`17−→ ..

`m7−−→ P
`m+17−−−−→ P ′.

By the typing, `m+1 can be either the input of a request, the output of an answer, or a
τ -action. The first two cases are by Proposition G.22 (2). If `m+1 = τττ , then by Propo-
sition G.22 (1), the initial τ -action implies that the prefix of one of the threads, say Pi,
reduces. We reason on the shape of Pi.
Case Pi = EnqReqlck〈r, v, g〉 (free request): Then the involved reduction is:

EnqReqlck〈r, v, g〉|LQ(r, h, t, l) −→ EnqComlck〈t, v, g〉|LQ(r, h, t, l)

reducing to a LMF without changing the contents of h, t and l, nor the linked-list. Hence
(a), (b) and (c) immediately hold.
Note that the same reasoning applies as well to DeqReqlck〈r, g〉, the other case of free
request.
Case Pi = EnqComlck〈t, v, g〉 (pending): the involved reduction is:

EnqComlck〈t, v, g〉|l(x).x(y)y.Mtx〈l〉 τ7−→ (νl′)(EnqRdTlck〈l′, t, v, g〉|l′.Mtx〈l〉)

reducing an unlocked general form to a locked one (then (a) and (c) still hold). Moreover,
by induction hypothesis, no thread of P was critical since P is unlocked. Then (b) also
holds, as exactly one critical thread was added. Moreover, the same reasoning applies as
well to DeqComlck〈h, t, g〉, the other case of pending process.
Case Pi = DeqRdTlck〈hn, y′, h, t, g〉 (critical): The molecular transition `m+1 first
reads the name tn contained in t, then compares it with hn . If hn = tn the involved
reduction is:

(νy′)(DeqRdTlck〈hn, y′, h, t, g〉|y′.Mtx〈l〉) τ7−→ DeqAnsNulllck〈g〉|Mtx〈l〉

58

where P goes from locked to unlocked and, accordingly, the thread is no more critical.
Hence, each of (a), (b) and (c) is satisfied. The same reasoning applies also to the cases
of EnqSwTlck〈y′, t,nd , g〉 and DeqSwHlck〈v, nxtHd, y′, h, g〉, where a critical thread is
transformed into a non-critical one.

On the other hand, if hn 6= tn the involved reduction is:

DeqRdTlck〈hn, y′, h, t, g〉
τ7−→ DeqRdHnlck〈hn, y′, h, g〉

where P stays locked and, accordingly, the thread stays critical. Hence, each of (a),
(b) and (c) is satisfied again. Note that the same reasoning applies to each transition
after which a critical thread stays critical, namely the cases of EnqRdTlck〈y′, t, v, g〉,
EnqWrNextlck〈tn, y′, t, v, g〉, DeqRdHlck〈y′, h, t, g〉 and DeqRdHnlck〈hn, y′, h, g〉.

The only shape of Pi which has not been analysed is that of the answer. However,
answers may not be reduced by τ -transitions, as they may only produce outputs. Then we
are done. 2

As in the analogous definition for cas-queue processes, we say that a LMF Pi in a lock-
based queue process is a local normal form (LNF) when it is either pending or an answer.

The notions of non-commit action (P nc7−−→ Q and P
nc(g)7−−−−→ Q), and of local normali-

sation (P
norm(g1,...,gn)7−−−−−−−−−−→ Q) for lock-queue processes, are defined exactly as those for

cas-queue processes. We also distinguish committing local normalisations (those which
contain a commit action) from non-committing ones. The definition of normal form is
even simplified.

Definition G.24 (normal form). A queue process P in general form is in normal form
when all of its threads are in LNF.

It follows directly from the definition that when P is in normal form, it is unlocked and
none of its threads is critical.

Now we show that a normal form can always be reached.

Lemma G.25. For a lock-queue process P , P nc7−−→
∗
P ′ such that P ′ is in normal form.

Proof. By Proposition G.23, P is in general form and at most one of its threads is critical.
Then each other thread is either a free request, a pending process, or an answer. In the
former case, a single reduction will make it a pending process, while in the latter two
cases, it is already in LNF by definition. Finally, a critical process is reduced to an answer
simply by following the reduction sequence line by line. 2

The definitions of the relation R lock (between lock-queue processes and abstract queues)
is also identical to that of Rcas (between cas-queue processes and abstract queues). As
for the definition of R̂lock, let P be a lock-queue process and p an abstract queue:

P R̂lockp
def⇔ P normal form and p = AQ(r, 〈req(P),val(P),ans(P)〉)

Although this looks just like the definition of R̂cas, there are minor differences in the way
the functions req(−), val(−) and ans(−) are defined. Nonetheless, these differences
simply reflect the different shapes of lock-queue and cas-queue processes, as expected.
Then we omit their definitions.

59

The modular framework allows us to re-use even proofs given for cas-queue pro-
cesses in order to show analogous statements for lock-queue processes. As in the fol-
lowing lemma, where both the statement and the proof are identical (up to exchange of
cas-queue process with lock-queue process) to those of Lemma G.17.

Lemma G.26. Let QR lockq, then LQemp(r) and AQ(r, 〈∅, ε, ∅〉) admit the following
transition sequences:

LQemp(r)
`17−→ . . .

`n7−−→ Q ⇐⇒ AQ(r, 〈∅, ε, ∅〉)
̂̀̂
1−→ . . .

̂̀̂
n−→ q

The following result is analogous to Lemma 4.13.

Lemma G.27. Let P be a lock-based queue process in normal form. Then:

1. P R lock p implies P R̂lockp.

2. If P R̂lock p then P `7−→ iff p `−→, with ` being a commit or visible.

Proof. For the proof of (1), the key part is to show linearisability. Note that the molecular
actions that form the critical section of the gi-thread can only be interleaved with the
following kinds of transitions from some gj-thread (with i 6= j):

– inputs, which can be moved all the way left by Proposition 2.3(3);
– outputs, which can be moved all the way right by Proposition 2.3(3);
– internal reductions of either of the following two forms:

EnqReqlck〈r, v, g〉|LQ(r, h, t, l) −→ EnqComlck〈t, v, g〉|LQ(r, h, t, l)

DeqReqlck〈r, g〉|LQ(r, h, t, l) −→ DeqComlck〈h, t, g〉|LQ(r, h, t, l)

Since both of these only affect the gj-thread, they are independent of any molecular
action on the gi-thread. Hence, they can be moved right until just before the gj-
thread’s critical section.

By applying the moves described above everywhere, we obtain the linearised sequence.
The rest is as in the proof of Lemma 4.13(1).

The proof of (2) is also essentially the same as the proof of Lemma 4.13(2).

The proof that R lock is a bisimulation is also identical to the analogous result shown for
Rcas (Proposition 4.14). Then we state:

Proposition G.28. R lock is a weak bisimulation.

G.6 Theorem 4.16 (Correctness)

Proof of Theorem 4.16 We just compose R lock and the inverse of Rcas, to obtain a
relation associating cas-queue processes to lock-based ones. Projecting on two concrete
queues, we obtain a bisimulation which we write R lock,cas. 2

60

G.7 cas Queue Processes preserve the General Form in the presence of Failures
In the bisimilarity proofs, failures were not considered because the goal was to show al-
gorithmic correctness: assuming that no errors are introduced by the implementation, it
is ensured that, at any point, a computation can be successful. However, progress prop-
erties must be ensured independently of some stalling computation. Then the operational
semantics is augmented with failing reductions.

The following statement extends Prop. 4.6(a), by admitting failures. The only reason
why the statement has to be weakened (considering general forms up to ≡) is that now
we need to do garbage collection for the irrelevant sub-processes left over by previous
failures.

Lemma G.29. Let P ′ be a cas queue process. Then P ′ ≡ P and P is in general form.

Proof. We just need to take the proof of Proposition 4.6 (a) and add the case of a failing
reduction to the inductive step.

Let R′ be a cas queue process such that R′ ≡ R and R is in general form:

R′ ≡ R = (ν h, t, ~nd)(CQ(r, h, t) | LLR |
∏

1≤i≤m

Pi)

R′ ≡ R implies that, for any transition R′ `7−→ P ′, there is a transition R `7−→ P ′′, such
that P ′ ≡ P ′′. Then we shall consider R `7−→ P ′′, rather than the original transition from
R′.

So assume that R `7−→ P ′′ is a failing reduction. Since a failing reduction may not
reduce linear prefixes, it may not have taken place in the linked-list sub-process LLR.
Then it must have taken place inside some thread Pj (for 1 ≤ j ≤ m). By definition, Pj
is in local molecular form. Note that for any case of LMF, a failing reduction is such that:

Pj −→ P ′j ≡ 0

then:

P ′′ ≡ P = (ν h, t, ~nd)(CQ(r, h, t) | LLR |
∏

1≤i≤j−1

Pi |
∏

j+1≤i≤m

Pi)

and P is in general form. By transitivity of ≡, P ′ ≡ P . 2

G.8 Global Progress in Lock-queues
As we have mentioned in § 4, the lock-based queue LQemp(r) is not non-blocking and
the reason is that it is not resilient. However, by allowing non-failing transition sequences
only, we can show that LQemp(r) is weakly wait free, as we do below. We maintain
the assumption (motivated in § G.5) that lock-queue processes are in lin-nf, hence by
Proposition G.23 (a), they are also in general form.

Proposition G.30 (WWF). LQemp(r) is WWF.

Proof. Consider the fair non-failing transition sequence:

Φ : ΓQ ` LQemp(r)−−→ ΓP ` P−−→

61

and let g ∈ allowed(ΓP). Then an input has occurred in the first part of the sequence gen-
erating an enqueue/dequeue request, of either form EnqReqlck〈r, v, g〉 or DeqReqlck〈r, g〉.
Then P must still contain a thread P g in LMF where g appears, since P is in general form.
Note in particular, that g disappears only when an output on g occurs, but when that hap-
pens g is no more allowed. Then an output on g may not have happened before P . We
start by assuming P g is in one of the above two forms and by following the sequence of
reductions, we shall provide a reasoning that encompasses the other cases as well.

Without loss of generality, consider P g = EnqReqlck〈r, v, g〉, the same reasoning ap-
plies also to the dequeue LMFs. P g is waiting for a synchronisation on r with LQemp(r),
which is enabled because r is active in LQemp(r). Then by fairness it shall occur, con-
suming P g and adding the pending processRg = EnqComlck〈t, v, g〉. NowRg is waiting
for a synchronisation with the initial branching on l in the mutex agent sub-process. How-
ever, l may not be active there if some other thread Pj has already taken the lock and not
released it yet. Nonetheless, we can be sure that Pj will eventually release the lock in Φ,
since Φ is fair and non-failing. Then the synchronisation between Rg and the mutex agent
shall be enabled and by fairness it shall occur. All the following reductions are synchro-
nisations with node or pointer agents, whose initial subject is always active. Then this
sequence of reductions eventually leads to the answer EnqAnslck〈g〉, where an output on
g is enabled. Then by fairness it shall occur. 2

H Proofs for Section 5 (Separation Results)
The separation result consists of a few intermediate results, as we have seen in § 4. The
proof of Lemma 5.7 relies on the fact that for any transition sequence there is a sequence
of molecular actions with the same weak trace and set of blocked outputs. Formally:

Lemma H.1. Let Φ : P−−→ be a fair and finitely failing sequence of transitions. Then
there is a fair and finitely failing sequence Ψ of molecular actions from P such that
〈Φ̂, blocked(Φ)〉 = 〈Ψ̂ , blocked(Ψ)〉.

Proof. We do the proof by induction on the length of Φ. Throughout the induction, we
also satisfy the invariant that any transition enabled after Φ either occurs in Ψ or is enabled
after Ψ .

Let Φ be empty. Note that no conditional, output or linear input may be enabled after
Φ, since Φ is fair. Then Ψ is Φ and it satisfies both the claim and the invariant.

Now assume that both the claim and the invariant hold for a transition sequence Φ′ :

P−−→ Q and a sequence of molecular actions Ψ ′ : P
`17−→ . . .

`n7−−→ R, and let Φ consist
of Φ′ followed by Q `−→.

If Q `−→ is an internal transition reducing a redex that has already been reduced in Ψ ′,
we set Ψ = Ψ ′. Since ` is neither visible nor a failing reduction, the claim is still satisfied.
Moreover, any transition which has been enabled by ` was already enabled in Ψ ′. Then
by Proposition 2.3 (1), the invariant is also satisfied.

Otherwise, the invariant ensures that the transition Q `−→ is enabled after Ψ ′ as well.
Note that by performing the transition after Ψ ′, the same syntactic transformation occurs
(which may be the reduction of a redex, the addition of a new redex by input, or the
suppression of an action by failing reduction). Then both the claim and the invariant are
still satisfied. We complete Ψ by reducing any linear redex remaining. 2

62

The proof of Lemma 5.7 is now easy.

Proof of Lemma 5.7 Let 〈s, S〉 ∈ WFT(P), where s = Φ̂ and S = blocked(Φ), for
some fair and finitely failing sequence of transitions Φ. Then by Lemma H.1, there is a fair
and finitely failing sequence Ψ of molecular actions from P such that 〈Ψ̂ , blocked(Ψ)〉 =
〈s, S〉. Then 〈s, S〉 ∈ WFT(Q). The other direction is immediate, by using Lemma H.1
on both sides. 2

This lemma applies directly to a cas-queue process and a lock-queue one related by
R lock,cas, where a failure in the former is mapped to a failure before lock acquisition
in the latter.

Proof of Lemma 5.8 We only need to consider the subset of WFT(CQemp(r)) which
is generated by molecular action sequences (Lemma 5.7). Then we just need to play
the simulation game between the two queues. Note that LQemp(r)R lock,casCQemp(r).
Throughout the simulation, we satisfy the invariant that the cas-queue process is in gen-
eral form (which is ensured by our usage of molecular actions that allow us to derive only
threads in LMF) and that the lock-queue process is in normal form (which we ensure by
normalisation), up to ≡.

Let Φ be a finitely failing and fair sequence of molecular actions from CQemp(r). We
simulate Φ from LQemp(r) as follows. When an internal, non-commit and non-failing
transition occurs in Φ, we do not do anything. Each time a visible or commit molecular
action occurs in Φ, we let the lock-queue process do the same transition (which must be
enabled, by Lemma G.27 (1) and (2)) and then we normalise the thread in which the tran-
sition occurred by applying Lemma G.25. Since in the normalisation we only performed
τ -transitions, the two processes obtained are still related (by definition of R lock). Each
time a failing reduction occurs in some g-thread of Φ, we do a failing reduction in the
g-thread of Ψ . This is possible because the corresponding thread is in LMF: since the
lock-queue process is in normal form, the g-thread is either a pending process (in which
case the commit fails) or an answer (in which case the answer fails). Note also that after
a failing reduction, the thread where it occurred is reduced to some sub-process P ≡ 0.
Then the cas-queue and the lock-queue processes are still in general form and in normal
form up to ≡, respectively.

Let Ψ be the transition sequence obtained by this simulation. Clearly, Φ and Ψ have
the same sequence of visible transitions. Moreover, each failure in some g-thread of Φ
was mapped to a failure in the g-thread of Ψ . By Proposition 5.1, such a failure blocks
only g in Φ. And the same can be said for Ψ , since the failure occurs outside the critical
section (the proof is analogous to that of Proposition 5.1). Then 〈Φ̂, blocked(Φ)〉 =

〈Ψ̂ , blocked(Ψ)〉 ∈WFT(LQemp(r)). 2

As we already mentioned in § 4, we only need to show a weak fair finitely failing trace of
LQemp(r) not belonging to CQemp(r). We give the proof once again, augmented with
all the details:

Proof of Theorem 5.9 By Proposition 4.14 and by Proposition G.28, we have established
the bisimilarity results:

AQ(r, 〈∅, ε, ∅〉) ≈ LQemp(r) ≈ CQemp(r)

By Lemma 5.8, we have established the inclusion:

WFT(CQemp(r)) ⊆WFT(LQemp(r))

63

Then we only need to show its strictness.
Suppose from LQemp(r) we receive a (enqueue or dequeue) request. Then we do

the following reduction and commit action and we perform a failing reduction before
releasing the lock. Then we receive infinitely many other requests, generating threads
which we make progress up to the pending process. Such a sequence is finitely failing
and it is also fair: in particular it is maximal, because no thread can progress further (from
the second thread on, all are stuck before commit).

By contradiction, assume that a fair and finitely failing transition sequence Φ with the
same visible behaviour (reception of infinitely many inputs) and the same set of blocked
outputs (all) is possible from CQemp(r). By Proposition 5.1, for each blocked output,
Φ must contain a failing reduction. Then Φ contains infinitely many failing reductions.
Contradiction. 2

I Supplementary Operational Arguments

I.1 Scheduling Strategy for the Proof of Lemma F.1

We define a deterministic and fair derivation strategy on typed processes, where non-
linear inputs never occur. Then by applying this strategy on Γ ` P and then repeatedly
on its derivatives, we eventually obtain a transition sequence which satisfies all the re-
quirements.

We start from decorating processes with counters, so that, at each step, we perform
the transition which has waited the longest. Non-linear input transitions are associated to
an ω timestamp. Concretely, for all natural numbers k, we define a function timek on
processes as follows:

timek(u&
L
i∈I{li(~xi).Pi}) = 〈u&Li∈I{li(~xi).Pi}, k〉

timek(u&
M
i∈I{li(~xi).Pi}) = 〈u&M

i∈I{li(~xi).Pi}, ω〉
(M 6= L)

timek(u⊕ l〈~e〉) = 〈u⊕ l〈~e〉, k〉
timek(if 〈e, o〉 then P else Q) = 〈if 〈e, o〉 then P else Q, k〉

timek(P |Q) = timek(P)|timek′(Q)

(k′ = max(timek(P)) + 1)

timek((ν u)P) = (ν u)timek(P)

timek((µX(~x).P)〈~e〉) = (µX(~x).timek(P))〈~e〉
timek(X〈~x〉) = X〈~x〉

timek(0) = 0

where the function max(timek(P)) returns the highest finite timestamp which appears
in timek(P). In the above definitions we indicated a modality annotation only for those
processes where the modality would discriminate the function. Elsewhere we avoided
such an annotation, implicitly assuming that the function definition applies to all modali-
ties. We could have avoided modality annotations everywhere, but we would have had to
give the definitions directly on typed processes. Instead, we decided to give a decoration
to typed processes starting from the decoration on untyped ones, through the function
time :

time(Γ ` P) = Gamma ` time0(P)

64

In general we write PT for a process P decorated with unique timestamps (that is, unique
up to ω). Also, given a process with timestamps PT such that Γ ` P , we may write
Γ ` PT to indicate its typed version.

We are now ready to define the derivation strategy on processes with timestamps.
Consider a typed process with timestamps Γ ` PT . In order to decide which transition to
perform, we first spot the branching, selection or conditional with the lowest timestamp
in PT . Then:

– if it is a linear branching with subject c and c has linear input type in Γ , we perform
this linear input transition;

– if it is a linear branching with subject c but c does not have a linear input type in
Γ , it means that the input has already occurred and the branching is waiting to be
synchronised with a complementary selection. Then the input may not be done (Γ
does not allow it). Instead we spot the next lowest timestamp in P and we proceed
with the case analysis on its associated action;

– if it is a selection with subject c such that the corresponding output transition on c is
allowed by Γ , we perform this output transition;

– if it is a selection with subject c whose synchronisation with the complementary
branching on c is enabled in P , then we reduce this synchronisation;

– if it is a selection with subject c, for which none of the above two cases applies, it
means that the complementary branching is not ready for synchronisation, then its
reduction is not enabled. Then we just skip it, we consider the next lowest timestamp
in P and we do the case analysis on its associated action;

– if it is a conditional, we reduce it.

Now assume that we performed the following transition (shown here in the undecorated
setting):

Γ ` P `−→ ∆ ` Q
since we want to keep track of time, we may not decorate ∆ ` Q in the naive way, i.e.
through the function time again. The reason is that the transition may have generated new
redexes, which we want to reduce after the old ones. Then we define QT

′
as follows:

– on any branching, selection or conditional which has not been reduced, we keep the
same timestamp it had in PT ;

– on the sub-process generated by the previous transition, we apply timek, where k =
max(PT) + 1.

Then we apply the same strategy on ∆ ` QT ′ , recursively.
The key property of the above strategy is that timestamps are assigned incrementally,

so that they are unique and the next transition is always selected among those which have
been waiting the most. Note however that the transition that is performed does not always
correspond to the lowest timestamp. But as we have explained, if this does not happen
it means that the transition associated to the lowest timestamp may not be performed.
Moreover, according to the current strategy, the same transition shall be performed as soon
as it may. Then fairness is satisfied, since at any point only a finite number of transitions
may be performed.

Note also that no non-linear input transitions are performed, since non-linear branch-
ings are associated to ω timestamps, so that they are never reduced except in internal
synchronisations (i.e. when the complementary selection is selected).

Finally, maximality is achieved by the recursive application of the strategy.

65

