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Interconnectability of Session-based Logical Processes
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In multiparty session types, interconnection networks identify which roles in a session engage in communica-

tion (i.e. two roles are connected if they exchange a message). In session-based interpretations of linear logic

the analogue notion corresponds to determining which processes are composed, or cut, using compatible

channels typed by linear propositions. In this work we show that well-formed interactions represented in

a session-based interpretation of classical linear logic (CLL) form strictly less expressive interconnection

networks than those of a multiparty session calculus. To achieve this result we introduce a new compositional

synthesis property dubbed partial multiparty compatibility (PMC), enabling us to build a global type denoting

the interactions obtained by iterated composition of well-typed CLL threads. We then show that CLL compo-

sition induces PMC global types without circular interconnections between three (or more) participants. PMC

is then used to define a new CLL composition rule which can form circular interconnections but preserves the

deadlock-freedom of CLL.

CCS Concepts: • Theory of computation → Distributed computing models; Process calculi; Linear
logic; • Software and its engineering → Message passing; Concurrent programming languages; Concurrent
programming structures;
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1 INTRODUCTION
The discovery of linear logic [28] and the early studies of its connections with concurrent processes

[1, 2, 4] can be seen as the origin of a Curry-Howard correspondence for linear logic with typed

interactive behaviours, which have led to the developments connecting linear logic and (binary)

session types [8]. The understanding of linear logic propositions as session types [29], proofs

as concurrent processes and proof simplification as communication not only has produced new

logically-motivated techniques for reasoning about concurrent processes [51], but is also usable

to articulate idioms of interaction with strong communication safety guarantees such as protocol
fidelity and deadlock freedom [58]. The logical foundation of session types has also sparked a

renewed interest on the theory and practice of session types [11, 14, 35, 39, 40].
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Fig. 1. Interconnection Networks of (1)

The term “interconnection networks” in this article originates from [2], denoting the connections

between parallel threads (processes) by means of linear ports or channels. In standard linear logic-

based session frameworks, processes communicate through a session channel that connects exactly

two distinct subsystems typed by dual propositions: when one party sends, the other receives;

when one party offers a selection, the other chooses. Sessions may be dynamically exchanged via

a session name or created by invocation of replicated servers. A combination of these features

enables the modelling of complex behaviours between an arbitrary number of concurrent threads.

However, the linear typing discipline induced by linear logic enforces very strong separation

properties on the interconnections of processes: composition identifies a process by a single of its

used linear channels, requiring all other linear channels in the composed processes to be disjoint

and implemented by strictly separate processes. It is from this property that deadlock-freedom

arises in a simple typing discipline, at the cost of disallowing more interesting interconnection

networks.

This article provides a fresh look at session-based logical processes, based on concepts originating

in multiparty session types. Motivated by an industry need [55] to specify protocols with more than

two interconnected, interacting parties, the multiparty session types framework [31] develops a

methodology where types implicitly describe connections betweenmany communicating processes.

The key idea of the framework consists of taking a global type (i.e. a global description of the

multiparty interaction), from which we generate (or project) local types for each communicating

party (specifying its interactions with all others parties) and check that each process adheres to its

local type. Once all processes are typechecked, their composition can interact without deadlock,

following the given global type. Recent work develops the connections of multiparty session

types and communicating automata [6, 22, 37, 38], denotational semantics [21], Petri Nets [24],

applications to, e.g. secure information flow analysis [10, 16], dynamic monitoring [5] and reversible

computing [15]. Multiparty session types have also been integrated into mainstream programming

languages such as MPI [41, 47], Java [32, 33, 42, 56], Python [20, 43, 46], C [49], Go [48], Erlang

[25, 45, 57], Scala [54] and F# [44].

In multiparty sessions, interconnection networks identify which roles in a session engage in

direct communication. Participant p is connected to another participant q iff p may exchange a

message with q (or vice-versa). Consider the following 3-party interaction specified as a global

type G:

G = p→ q:(nat).p→ r:(bool).r→ q:(str).end (1)

The type G specifies an interaction where role p sends to roles q and r a natural number and a

boolean, respectively, followed by r sending to q a string, inducing the interconnection network

depicted in Fig. 1a, realisable in a system where each role is implemented by a separate process.

However, the network of Fig. 1a is not realisable in linear logic-based session frameworks, while

those of Fig. 1b are.
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Interconnectability of Session-based Logical Processes :3

We posit three processes with the behaviour ascribed by G, each implementing one role in the

multiparty session:

P ⊢ pq:A, pr:B Q ⊢ pq:A⊥, qr:C R ⊢ pr:B⊥, qr:C⊥

where P is the implementation of p with channel pq for communication between p and q, and pr
for communication between p and r; Q implements role q using channel pq (dually to P , identified
by the use of A⊥) and qr for communication with r, and so on. While each process is individually

typable, no 3-way composition is typable: composition in logic-based systems requires that the

two processes share a single common channel name, which is then hidden under restriction. When

we compose P and Q (hiding channel pq) we obtain a process that shares names pr and qr with
R and so cannot be composed with it. We note that such an issue arises regardless of the order

in which we choose to compose the processes. In essence, multiparty session types lead to richer

connection topologies (e.g. circular connections) than those resulting from the identification of

processes with channels during composition, at the cost of requiring global types and projection to

ensure deadlock-freedom.

In this work we make precise the informal argument sketched above by developing a framework

based on the theory of multiparty session types (MP) that enables us to reason about connection

topologies induced by the session-based interpretation of Classical Linear Logic (CLL).
Our framework is based on the observation that, since multiparty sessions subsume the binary

sessions that are primitive in logical formulations of session types, it is possible to interpret typable

processes in CLL asMP processes via a structure- and typability-preserving translation that maps CLL
channels to MP channels that are indexed by a role and a destination (i.e. a consistent assignment

of action prefixes in CLL to action prefixes in MP, identifying threads or cut-free CLL processes as
individual MP session participants). Indeed, our mapping turns out to be canonical up-to bijective

renaming.

In order to reason about the induced connection topologies, we build on the synthesis approaches
to multiparty sessions [36, 37] which invert the projection-based proposals: instead of starting from

a global type and then producing the certifiably deadlock-free local communication specifications,

the works based on synthesis take a collection of local specifications (i.e. types) and study the

conditions, dubbed multiparty compatibility, under which the local views form a deadlock-free

global interaction. Our work extends these approaches by introducing a compositional, or partial,
notion of multiparty compatibility (PMC) which allows us to synthesise a global type that represents

the interactions obtained by iterated composition of CLL processes, providing the necessary tools

to precisely study CLL connection topologies.

As argued above, we establish that process composition in CLL induces PMC global types

without circular interconnections between three or more session participants (thus excluding the

network of Fig. 1a). This result extends to other linear logic-based calculi (e.g. ILL [8]) since the

fundamental structures induced by composition are the same as that of Fig. 1b, making precise the

observation that well-formed interactions in linear logic-based calculi form strictly less expressive

interconnections between participants than those of MP.
At a logical level, our observation is justified by the fact that allowing richer links or interconnec-

tions between proofs (i.e. processes) generally results in a failure of the cut elimination property,

which reflects on the resulting processes as a failure of (global) progress. However, it is not the

case that all such interconnection topologies result in deadlocked communication. Thus, given

that PMC establishes sufficient conditions to ensure deadlock-freedom, even in the presence of

circular interconnection topologies, we consider an extension to the CLL calculus in the form of a

composition rule that can result in circular interconnection topologies, but that by being restricted

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2018.
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:4 Bernardo Toninho and Nobuko Yoshida

to those of PMC global types, ensures deadlock-freedom (and, consequently, cut elimination) even

in the presence of such richer links between proof objects.

Crucially, in contrast with other works on multiparty sessions and logic [11, 14], our PMC-based

extension does not require modifications to the syntax of propositions or CLL processes. Also,

previous work [11] gives an encoding (introduced earlier [7]) of their multiparty calculus into

(binary) classical logic by using an additional orchestrator that centralises control of all interactions.
Our canonical structure-preserving mapping requires no such processes and admits more typed
representatives of given interconnection networks than existing works [11, 14] (see Example 6.9

and Example 4.13) even without the extended composition rule.

We note that as a consequence of our translation, we may use CLL to guarantee deadlock-

freedom and termination of a class ofMP processes with interleaved sessions, which is not normally

guaranteed by MP typing systems [30] where only deadlock-freedom on a single session is ensured.

Contributions and outline:

• We introduce a structure- and typability-preserving translation of typed interactions in a

session-based interpretation of CLL, restricted to processes without replication and higher-

order channel passing, showing that the translation is unique insofar as there exists no other

typability preserving encoding (up to bijective renaming) which maps an individual thread

to a single participant (§ 3);
• We develop a compositional synthesis property, partial multiparty compatibility (PMC) (§ 4),
which we use to show that the interconnectability of CLL is strictly less expressive than that

of a single multiparty session in MP (§ 5);
• We systematically extend our results to the more intricate settings of higher-order channel

passing (§ 6) and replication (§ 7), showing that neither feature enriches the interconnectabil-
ity of CLL;
• We use PMC to develop an extension of CLL process composition dubbed multicut (§ 8)
which enables richer interconnection topologies while preserving deadlock-freedom without

modifying the types or syntax of CLL. We also show that our extended calculus is able to

type a range of known examples from MP.

Our work does not assume a deep familiarity with the session-based interpretations of linear logic,

multiparty session types or multiparty compatibility, providing introductions to the session calculi

in § 2 and to global types and multiparty compatibility in § 4. An extended discussion of related

work is given in § 9. The appendix lists additional proofs and definitions.

2 PROCESSES, TYPES AND TYPING SYSTEMS
This section introduces the two calculi used in our work: the binary session calculus CLL typed
using the session type interpretation of classical linear logic [9, 60]; and the multiparty session

calculusMP [18, 31]. In both settings, the notion of a session consists of a (predetermined) sequence

of interactions on a given communication channel.

2.1 Classical Linear Logic (CLL) as Binary Session Types
We give a brief summary of the interpretation of classical linear logic as sessions, consisting of

a variant of that of Wadler’s CP [60], introduced in [9], using two context regions and without

explicit contraction or weakening rules, which are admissible judgmental principles.

Syntax. The syntax of CLL processes (P ,Q, ...) is given below. Channels are ranged over by

x ,y, z,u,v,w , where we typically use x ,y, z for linear channels and u,v,w for shared or replicated

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2018.
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Interconnectability of Session-based Logical Processes :5

channels.

P ,Q ::= x⟨y⟩.P | x (y).P Send and receive

| x .l ; P | x .case{li : P }i ∈I Selection and branching

| 0 | (P | Q ) Inaction and parallel

| (νx )P | !u (y).P Hiding and replication

We consider a synchronous calculus with fresh (or bound) channel input and output – i.e., all

sent channels are fresh by construction as in all works on logical session types (e.g. [8, 9, 40, 60]),

following the internal mobility π -calculus [53]. The calculus also includes branching, selection

and replication constructs, with the latter allowing us to represent servers as replicated input-

guarded processes, where the corresponding matching output processes act as their clients. We

write fn(P )/bn(P ) for the free/bound channels of P : in x⟨y⟩.P and (νy)P , y is a binding occurrence.

We write bv (P ) for the bound variables of P , noting that in x (y).P and !x (y).P , y is bound in P . We

often omit 0.
Below we define the structural congruence for CLL, which is used in the typing system and the

reduction semantics.

Definition 2.1 (Structural Congruence for CLL). Structural congruence of CLL processes, written
P ≡ Q , is the least congruence defined by the following rules:

P ≡α Q ⇒ P ≡ Q P | 0 ≡ P P | Q ≡ Q | P (P | Q ) | R ≡ P | (Q | R)

(νx ) (P | Q ) ≡ (νx )P | Q x < fn(Q ) (νx ) (!x (y).P ) ≡ 0

Reduction. The reduction semantics for CLL, written P −→ Q and defined up to structural

congruence ≡, is given below:

x⟨y⟩.P | x (y).Q −→ (νy) (P | Q )

x .lj ; P | x .case{li :Qi }i ∈I −→ P | Q j (j ∈ I )

x⟨y⟩.P | !x (y).Q −→ (νy) (P | Q ) | !x (y).Q

P −→ P ′ ⇒ P | Q −→ P ′ | Q

P −→ P ′ ⇒ (νx )P −→ (νx )P ′

P ≡ P ′ ∧ P ′ −→ Q ′ ∧Q ′ ≡ Q ⇒ P −→ Q

Definition 2.2 (Live Process). A process P is live, written live (P ) iff P ≡ (ν x̃ ) (π .Q | R) or
P ≡ (ν x̃ ) (π ;Q | R) for some R, sequences of names x̃ and a non-replicated guarded process π .Q or

π ;Q , where π is any non-replicated process prefix.

Note how the definition of live process excludes a process of the form !u (y).P , which corresponds

to a replicated server that has no remaining users.

Types. The syntax of (logical) binary session types A,B is:

A,B ::= A ⊗ B | A` B | 1 | ⊥ | ⊕{li : Ai }i ∈I | &{li : Ai }i ∈I |?A | !A

Following [9, 60], ⊗ corresponds to output of a session of type A followed by behaviour B; ` to

input of A followed by B; ⊕ and & to selection and branching; !A to replicated channels of type A
(i.e. persistent servers) and ?A to clients of such servers. The dual of A, written A⊥, is defined as

(we omit the involutive cases):

1⊥ ≜ ⊥, (A ⊗ B)⊥ ≜ A⊥ ` B⊥, (⊕{li :Ai }i ∈I )
⊥ ≜ &{li :A

⊥
i }i ∈I , (!A)

⊥ ≜?A⊥.
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:6 Bernardo Toninho and Nobuko Yoshida

Typing system. We define the typing system CLL in Fig. 2, assigning the usage of channels

in P processes to types A,B. The typing judgement is written P ⊢CL Ξ;∆, defined up to structural
congruence ≡ (i.e. we implicitly have that if P ⊢CL Ξ;∆ and P ≡ Q then Q ⊢CL Ξ;∆), where ∆ is a

set of hypotheses of the form x :A (not subject to weakening or contraction), where x stands for a

free session channel in P and A is a binary session type; and Ξ is a set of hypotheses of the form

u:A, subject to weakening and contraction, standing for the channels used in P in an unrestricted

(or shared) manner. The typing judgement states that process P uses channels according to the

session discipline ascribed by ∆ and Ξ. We assume all channel names in ∆ and Ξ are distinct. We

write · for the empty typing environment and ∆,∆′ for the union of ∆ and ∆′, only defined when

channels in ∆ and ∆′ are distinct.
Rule (⊗) accounts for the session output behaviour, typing a channel x with A ⊗ B if the process

outputs along x a name y that is used in P1 with behaviour A and, disjointly, P2 uses x according

to B (this strict separation is crucial for deadlock-freedom); dually, rule (`) types a channel x
with A` B if the process performs an input on x of a session channel y such that y is used in the

continuation as A, and x as B; rule (1) types the inactive process with an arbitrary session channel

assigned type 1; rule (⊥) types the dual behaviour, which just discards the no longer used name;

rule (⊕) types channel x with ⊕{li :Ai }i ∈I by having the process emit a label lj with j ∈ I , and then

using the channel x according to the type Aj in the corresponding branch; dually, rule (&) types

processes that wait for a choice on channel x , with type &{li :Ai }i ∈I , if the process can account for

all of the possible choice labels and corresponding behaviours in the type. Thus, the case construct
must contain one process Pi using x according to behaviour Ai for each label in the type. Note the

additive nature of the rule, where the context ∆ is the same in all premises. This enforces that all

possible alternative behaviours make use of the same session behaviours.

Rule (cut) composes in parallel two processes P and Q , that use channel x with dual types A and

A⊥, by hiding x in the composed process in the conclusion of the rule (since no other process may

use x ). We note that ∆ and ∆′ are disjoint, so the only common channel between P and Q is x .
The remaining rules define the typing for the replication constructs. Rule (!) types a replicated

input channel u as !A if the continuation P uses the input as A without using any other linear

channels, which ensures that the replicas of P do not invalidate the linear typing discipline. Rule

(?) moves a session channel of type ?A to the appropriate shared context Ξ as A, renaming it to u.
Rule (copy) types a usage of a shared channel u by sending a fresh channel x along u, which is then

used (linearly) as A in the continuation P . Rule (cut!) allows for composition of shared sessions,

provided the processes use no linear channels. Such a rule is needed to ensure that cut elimination

holds structurally (i.e. a linear cut between a session channel of type !A and its dual ?A⊥ reduces to

a cut!, which will eventually reduce back to a cut). We note that at the level of typable processes,

cut! can be represented as a cut between rules ! and ?.

Proposition 2.3 (Deadlock-freedom in CLL [9, 60]). Suppose P ⊢CL ·;∆, with live (P ) where ∆
is either empty or only contains 1 or ⊥. We have that P −→ P ′.

2.2 Multiparty Session (MP) Calculus
Syntax. We introduce theMP calculus of multiparty sessions, where processes P ,Q use channels

indexed by roles of the multiparty sessions in which they are used. The syntax of processes and

channels is given below:

P ,Q ::= c[p]⟨c ′⟩; P | c[p](x ); P Send and receive

| c[p] ⊕ l ; P | c[p] & {li :Pi }i ∈I Selection and branching

| 0 | (P | Q ) | (νs )P Inaction, parallel, hiding

c ::= x | s[p] variable, role-indexed channel

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2018.
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Interconnectability of Session-based Logical Processes :7

(⊗)
P1 ⊢CL Ξ;∆,y:A P2 ⊢CL Ξ;∆

′,x :B

x⟨y⟩.(P1 | P2) ⊢CL Ξ;∆,∆
′,x :A ⊗ B

(`)
P ⊢CL Ξ;∆,y:A,x :B

x (y).P ⊢CL Ξ;∆,x :A` B

(1)
0 ⊢CL Ξ;x :1

(⊥)
P ⊢CL Ξ;∆

P ⊢CL Ξ;∆,x :⊥

(⊕)
P ⊢CL Ξ;∆,x :Aj j ∈ I

x .lj ; P ⊢CL Ξ;∆,x : ⊕ {li : Ai }i ∈I
(&)

P1 ⊢CL Ξ;∆,x :A1 . . . Pn ⊢CL Ξ;∆,x :An

x .case{li : Pi }i ∈I ⊢CL Ξ;∆,x : & {li : Ai }i ∈I

(cut)
P ⊢CL Ξ;∆,x :A Q ⊢CL Ξ;∆

′,x :A⊥

(νx ) (P | Q ) ⊢CL Ξ;∆,∆
′

(!)
P ⊢CL Ξ;y:A

!u (y).P ⊢CL Ξ;u:!A
(?)

P ⊢CL Ξ,u:A;∆

P {x/u} ⊢CL Ξ;∆,x :?A

(copy)
P ⊢CL Ξ,u:A;∆,x :A

u⟨x⟩.P ⊢CL Ξ,u:A;∆
(cut!)

P ⊢CL Ξ;x :A Q ⊢CL Ξ,u:A
⊥
;∆

(νu) (!u (x ).P | Q ) ⊢CL Ξ;∆

Fig. 2. CLL Typing Rules

Role names are identified by p, q, r; channels are ranged over by s, t ; c denotes channels with role

s[p] or variables x .

Local types. Role indexed channels s[p] in MP are assigned local types, ranged over by S,T ,
denoting the behaviour of each role per channel. Local types are defined as follows:

S,T ::= p↑(T ); S | p↓(T ); S | ⊕p{li :Ti }i ∈I | &p{li :Ti }i ∈I | end

The local types p↑(T ); S and p↓(T ); S , which type the send and receive constructs above, denote

output to and input from role p of a session channel of typeT , followed by behaviour S , respectively.
Types ⊕p{li :Ti }i ∈I and &p{li :Ti }i ∈I , which type the selection and branching constructs, denote the

emission (resp. reception) of a label li to (resp. from) role p, followed by behaviour Ti . Type end
denotes no further behaviour. We define the set of roles of local type T , denoted by roles(T ), as the
set of all roles occurring in type T .

Partial projection and coherence. To define the typing system for MP, we introduce partial
projection and coherence. Partial projection takes a local type (which specifies all interactions for a

given role) and a role to produce the binary session type [29] that corresponds to the interactions

between the role whose behaviour is denoted by the local type and the given role, from the point of

view of the former (e.g. if p is the role behaving according toTp, the projection ofTp for q produces

a binary session type describing the interactions between p and q from the perspective of p). Binary
session types S,T are given by (by abuse of notation we re-use the same symbols S,T as for local

types):

↑(T ); S ↓(T ); S ⊕ {li :Ti }i ∈I & {li :Ti }i ∈I end

and their notion of duality T is given by: ↑(T ); S ≜ ↓(T ); S , ⊕{li :Ti }i ∈I ≜ &{li :Ti }i ∈I , end≜ end;
and the involutive rules for ↓ and &.
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:8 Bernardo Toninho and Nobuko Yoshida

Definition 2.4 (Partial Projection). Given a local type T , we define its partial projection onto a

participant p, written T ↾p, by induction on the structure of T by:

(r↑(S );T ) ↾ p =



↑(S ); (T ↾ p) if p = r
T ↾ p otherwise

(⊕r{li :Ti }i ∈I ) ↾ p =



⊕{li :(Ti ↾ p)}i ∈I if p = r
⊔i ∈I (Ti ↾ p) otherwise

(r↓(S );T ) ↾ p =



↓(S ); (T ↾ p) if p = r
T ↾ p otherwise

(&r{li :Ti }i ∈I ) ↾ p =



&{li :(Ti ↾ p)}i ∈I if p = r
⊔i ∈I (Ti ↾ p) otherwise

end ↾ p = end

where the merge T ⊔ T ′ of T and T ′ is defined by T ⊔ T ≜ T ; and with T = ⊕{li : Ti }i ∈I and
T ′ = ⊕{l′j : T

′
j }j ∈J ,

T ⊔T ′ ≜ ⊕({lh : Th }h∈I \J ∪ {l′h : T ′h }h∈J \I ∪ {lh : Th ⊔T
′
h }h∈I∩J )

if lh = l′h for each h ∈ I ∩ J ; and homomorphic for other types (i.e. T [T1] ⊔ T [T2] = T [T1 ⊔T2]
where T is a context of local types). T ⊔T ′ is undefined otherwise. Partial projection is undefined

if merging is undefined.

Merging is needed for two purposes: (1) to check global types well-formedness (i.e. if merge is

undefined then the global type is not well-formed); and (2) to allow for more typable protocols.

Examples of merging can be found in § 4.1. Coherence ensures that the local types of interacting

roles contain the necessary compatible actions (e.g. if the local type for p specifies an emission to q,
the local type for q specifies a reception from p [18, 31]) and all the necessary roles are ascribed

a type in the context. To define coherence, we introduce session subtyping. We note that the

subtyping relation is inverted w.r.t. the “process-oriented” subtyping [26] because, for convenience,

we adopt the “channel-oriented” ordering [17]; an analysis of the two subtyping relations is given

in [27].

Definition 2.5 (Session Subtyping). We define the subtyping relation between binary session types,

T ≤ S , as the least relation given by the following rules:

end ≤ end

∀i ∈ I Ti ≤ T
′
i

⊕{li : Ti }i ∈I ≤ ⊕{li : T
′
i }i ∈I∪J

∀i ∈ I Ti ≤ T
′
i

&{li : Ti }i ∈I∪J ≤ &{li : T
′
i }i ∈I

T ≤ T ′ S ≤ S ′

↑ (T ); S ≤ ↑ (T ′); S ′
T ′ ≤ T S ≤ S ′

↓ (T ); S ≤ ↓ (T ′); S ′

Definition 2.6 (Coherence). Γ is coherent (denoted by co(Γ)) iff s[p]:T1 ∈ Γ and s[q]:T2 ∈ Γ with

p , q imply that T1 ↾ q ≤ T2 ↾ p; and for all s[p]:T ∈ Γ and q ∈ roles(T ), s[q]:T ′ ∈ Γ, for some T ′.

Typing rules. We define the typing system MP in Fig. 3, assigning the usage of role-indexed

channels to local types. The judgement P ⊢MP Γ, where Γ is a set of hypotheses of the form c:T ,
denotes that P uses its channels according to Γ. We assume the same notations and conditions for

Γ and Γ, Γ′ as for CLL, where · denotes the empty context and Γ, Γ′ denotes the disjoint union of Γ
and Γ′, defined only when their domains are disjoint.

Rule (end) types the inactive process in a session context containing only terminated sessions (i.e.

the context Γ is a collection of assumptions of the form ci :end). Rule (send) types the emission of a

channel endpoint of type T to role q, assigning c the local type q↑(T ); S , provided the continuation

P uses c according to type S . Dually, rule (recv) types the reception of a value of type T , bound
to x in the continuation P , sent by q, with type q↓(T ); S , provided P uses c according to S . Rules
(sel) and (bra) are the MP counterparts of rules (⊕) and (&) from CLL (Fig. 2), respectively, with the

former typing the emission of a label to q and the latter typing the reception of a label from q. Rule
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(end)
Γ end only

0 ⊢MP Γ
(send)

P ⊢MP Γ, c:S

c[q]⟨c ′⟩; P ⊢MP Γ, c:q↑(T ); S, c ′:T
(recv)

P ⊢MP Γ, c:S,x :T

c[q](x ); P ⊢MP Γ, c:q↓(T ); S

(sel)
P ⊢MP Γ, c:Tj j ∈ I

c[q] ⊕ lj ; P ⊢MP Γ, c: ⊕ q{li : Ti }i ∈I
(bra)

P1 ⊢MP Γ, c:T1 . . . Pn ⊢MP Γ, c:Tn

c[q] & {li :Pi }i ∈I ⊢MP Γ, c: & q{li : Ti }i ∈I

(comp)
P ⊢MP Γ Q ⊢MP Γ′

P | Q ⊢MP Γ, Γ′
(close)

P ⊢MP Γ, s[p1] : T1, .., s[pn] : Tn co(s[p1]:T1, .., s[pn]:Tn )

(νs )P ⊢MP Γ

Fig. 3. MP Typing Rules

(comp) types parallel composition of processes with disjoint session contexts Γ and Γ′. Rule (close)
types a coherent multiparty session s by hiding the session channel, provided that process P uses

s[p1]:T1, . . . , s[pn]:Tn and the corresponding role indices and local types form a coherent typing

context.

Reduction. The reduction semantics for MP processes is given below (omitting closure under

structural congruence). They are fundamentally identical to the reduction rules of CLL, but require
not just the session channel to match but also the role assignment to be consistent:

s[p][q]⟨s ′[p′]⟩; P | s[q][p](x );Q −→ P | Q {s ′[p′]/x }

s[p][q] ⊕ lj ; P | s[q][p] & {li :Qi }i ∈I −→ P | Q j (j ∈ I )

P −→ P ′ ⇒ P | Q −→ P ′ | Q

P −→ P ′ ⇒ (νs )P −→ P ′

We highlight that, in contrast to CLL, the typing systemMP alone does not ensure deadlock-freedom,

where deadlock-freedom means that all communication actions always eventually fire for processes

typed in an empty context. We assume basic value passing, noting that value passing can be encoded

with terminated sessions and that henceforth it will be used freely in the rest of the paper.

Proposition 2.7 (Deadlock in MP). There exists a deadlocked process P that is typable in MP, i.e.
P ⊢MP ∅ does not imply that P is deadlock-free.

Proof. Take P = s[p][r](x ); s[p][q]⟨7⟩,Q = s[q][p](x ); s[q][r]⟨tt⟩ andR = s[r][q](x ); s[r][p]⟨”a”⟩.
(νs ) (P | Q | R) ⊢MP ∅, but P | Q | R is deadlocked. □

3 RELATING THE CLL AND MP SYSTEMS
In this section we develop one of our main contributions: the connection between the CLL and MP
systems. For presentation purposes, we first consider a restriction of CLL without name passing

and replication, which are addressed in § 6 and § 7, respectively. In the following sections we

tacitly make use of value passing, which can be included straightforwardly in the systems of § 2.

To explicate our approach, consider the following CLL typable processes:

P ≜ x⟨7⟩.y (z).x⟨”hello”⟩.0 ⊢CL x :nat ⊗ str ⊗ 1,y:nat` ⊥
P ′ ≜ y (z).x⟨7⟩.x⟨”hello”⟩.0 ⊢CL x :nat ⊗ str ⊗ 1,y:nat` ⊥

Both P and P ′ are typable in the same context, however P first outputs on x , then inputs on y and

then outputs on x again, whereas P ′ flips the order of the first two actions. By the nature of process

composition in CLL, both processes can be safely composed with any typable R1 ⊢CL x :nat` str`⊥
and R2 ⊢CL y:nat ⊗ 1. We also observe that, since both P and P ′ are typable in the same context, CLL
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typing cannot capture cross-channel sequential dependencies (i.e. it cannot distinguish orderings of

actions on different channels).

We now consider a mapping from CLL toMP. The following processesQ andQ ′ are hypothetical
translations of P and P ′. The notation s[p][q] represents a channel in session s with role p and

destination q:

Q ≜ s[q][p]⟨7⟩; s[q][r](z); s[q][p]⟨”hello”⟩ Q ′ ≜ s[q][r](z); s[q][p]⟨7⟩; s[q][p]⟨”hello”⟩

The processes P and Q above are similar, insofar as both send 7 to a destination (resp. x and role

p), followed by an input (resp. on y and from r), followed by an output of “hello” to the initial

destination. A similar argument can be made for P ′ andQ ′. Despite P and P ′ having the same types,

we have:

Q ⊢MP s[q]:p↑(nat); r↓(nat); p↑(str); end Q ′ ⊢MP s[q]:r↓(nat); p↑(nat); p↑(str); end

By refining channels with role annotations, MP distinguishes orderings of actions on different

session sub-channels (i.e. the communication links between the several role pairs). More precisely,

by grouping the actions of role q along its two session sub-channels s[q][p] and s[q][r] at the
type level, we can precisely track the ordering and causal dependencies on the message exchanges

between q and p and those with r. Thus, our goal is to find a precise way to systematically map

process P to processQ (and P ′ toQ ′), and also generate the corresponding local typing in a typability
preserving way.

To relate CLL with MP processes and preserve typability, we proceed as follows:

Mapping 1: P ⊢σCL ∆ We define a mapping σ from session channels in CLL to channels indexed
with role and destination in a single MP session, such that given a single-threaded process in CLL
(i.e, a cut-free process), we map its channels to role and destination-annotated channels in MP
forming a single multiparty session, capturing the cross-channel causal dependencies that are not

codified at the level of CLL types.

Mapping 2: JPKσ We generate local type T from a single thread P wrt. σ such that P ⊢σCL ∆ so

that we can translate P in CLL to σ (P ) typable in MP.

Mapping 3: P ⊩σ
ρ ∆; Γ We translate the cut (i.e. parallel composition) between two processes

in CLL into MP generating a mapping from channels to session types Γ with renaming of free and

bound names (σ and ρ). This automatically provides a type- and thread-preserving translation

ρ (σ (P )) into MP, which is unique up to bijective renaming.

Mapping 1: Preservation of threads and typability. Definition 3.1 provides the mapping

from session channels in CLL to those in MP. For now, we consider only CLL processes without
replication (i.e. typed without uses of rules !, ?, copy and cut! – and thus omit Ξ from the CLL
typing judgment) and where A⊗ B and A`B are restricted to 1 ⊗ B and ⊥`B, respectively (i.e. no

higher-order channel passing, where 1 ⊗ B can be seen as sending an abstract value of ground

type). Moreover, we assume that uses of rule (⊗) are such that P1 ≡ 0. We lift the restriction on

higher-order channel passing in § 6.

Definition 3.1 (Channel to Role-Indexed Channel Mapping). Let P ⊢CL ∆ such that the typing

derivation does not use the cut rule. We define a channel to (role-)indexed channel mapping σ such

that for all x ,y ∈ fn(P ), if x , y, then σ (x ) = s[p][q] and σ (y) = s[p][q′], for some q, q′ such that

q , q′, and unique s and p (i.e. s and p are the same MP session channel and principal role across

the entire mapping σ ). We reject reflexive role assignments of the form s[p][p].
We write P ⊢σCL ∆ to denote such a mapping and cσ (x ), pσ (x ) and dσ (x ) to denote the channel,

first (principal) and second (destination) roles in the image of x in σ .
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(thread)
P ⊢σCL ∆

P ⊩σ
∅
∆; s[pσ ]:JPKσ

(comp)
P ⊢σCL ∆,x :A Q ⊩σ ′

ρ ∆′,x :A⊥; Γ (⋆)

(νx ) (P | Q ) ⊩(σ ′∪σ )\{x }
ρ′ ∆,∆′; Γ, s[pσ ]:JPKσ

(⋆) (a) bound channels: ρ ′ = ρ ∪ (x , s[pσ ][dσ (x )])
(b) role/destination match: pσ (x ) = dσ ′ (x ) ∧ dσ (x ) = pσ ′ (x )
(c) unique destinations: ∀z ∈ ∆,y ∈ ∆′.dσ (z) , dσ ′ (y) ∧ dσ (z), dσ ′ (y) < ρ

Fig. 4. Parallel Composition Mapping

A mapping according to Definition 3.1 identifies a single-threaded process of CLL with a single

role implementation in MP, such that all its channels are mapped to the same multiparty session

channel s and same principal role p, but to different destination roles.

Convention 3.1. In the remainder of this section and § 5, given P ⊢σCL ∆, we assume ∀x ,y ∈
fn(P ), cσ (x ) = cσ (y) = s and pσ (x ) = pσ (y) = pσ . This convention is allowed due to the session and
principal role for all channels in a given mapping σ being constant. This assumption is lifted in § 6.

Let P ⊢σCL ∆. We write σ (P ) for the process obtained by renaming each free name x in P with

σ (x ), where actions in P are mapped to their corresponding actions in MP:

σ (x (y).P ) ≜ s[pσ ][dσ (x )](y);σ (P ) σ (x⟨y⟩.P ) ≜ s[pσ ][dσ (x )]⟨y⟩;σ (P )

σ (x .lj ; P ) ≜ s[pσ ][dσ (x )] ⊕ lj ;σ (P ) σ (x .case{li :Qi }i ∈I ) ≜ s[pσ ][dσ (x )] & {li :σ (Qi )}i ∈I

Mapping 2: Generating local types. Having constructed a syntactic mapping from CLL toMP
processes, we now present a way to generate the appropriate local typings for processes in the

image of the translation.

Definition 3.2 (Local Type Generation). Let P ⊢σCL ∆. We generate a local typeT such that σ (P ) ⊢MP

s[pσ ]:T by induction on the structure of P , written JPKσ (assume dσ (x ) = q and S = end, noting
that value passing is encoded by the communication of sessions of type end):

J0Kσ ≜ end Jx⟨y⟩.PKσ ≜ q↑(S ); JPKσ Jx (y).PKσ ≜ q↓(S ); JPKσ
Jx .lj ; PKσ ≜ ⊕q{lj :JPKσ } Jx .case{li :Pi }i ∈I Kσ ≜ &q{li :JPiKσ }i ∈I

Hence, given a cut-free P ⊢CL ∆, we have an automatic way of generating a renaming σ such

that P ⊢σCL ∆ and σ (P ) ⊢MP s[pσ ]:T with T = JPKσ .

Mapping 3: Parallel composition. Fig. 4 defines the judgement P ⊩σ
ρ ∆; Γ such that P is an

n-ary composition of processes, Γ is an MP session typing context, ∆ is a CLL linear context, σ
(resp. ρ) is a mapping from free (resp. bound) names to indexed channels. Recall that s stands
for the (unique) channel in the mappings σ and σ ′. Rule (comp) defines the composition of a

single-thread CLL process with an n-ary composition of CLL processes which can be mapped to MP
typed processes. The rule ensures that the resulting process is well-formed in both CLL and MP:
clause (a – bound channel) constructs the mapping ρ ′ for bound channels, as they are hidden

by CLL composition; (b – role/destination match) ensures that σ and σ ′ map x to the same

multiparty session channel, where the destination role in σ (x ) matches the principal role in σ ′(x ),
and vice-versa; (c – unique destinations) asserts that channels in ∆ and ∆′ cannot have the same

destination role, ensuring uniqueness of common channels, and that free name assignments do not

capture those of bound names.
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:12 Bernardo Toninho and Nobuko Yoshida

We write ρ (P ) for the renaming of bound names in P generated by:

ρ ((νx ) (P | Q )) = ρ ′(P {ρ (x )/x }) | ρ ′(Q {ρ (x )/x })

where ρ ′ = ρ \ {x } and ρ (x ) denotes s[q][p] if ρ (x ) = s[p][q] (with the congruence cases).

Examples of the translation. We give three examples of the translation from CLL to MP.

Example 3.3 (Conditions of comp). We explain the conditions of comp via a small example.

Consider the following processes:

P ≜ x⟨7⟩.z⟨”hello”⟩.0 Q1 ≜ z (u).y (w ).0 Q2 ≜ z (v ).0 | y (w ).0

P ⊢CL z:str ⊗ 1,x :nat ⊗ 1 Qi ⊢CL z:str` ⊥,y:nat` ⊥
We define σ , σ1 and σ2 such that:

σ (P ) = s[p][r]⟨7⟩; s[p][q]⟨”hello”⟩
σ1 (Q1) = s[q][p](u); s[r1][r2](w )
σ2 (Q2) = s[q][p](v ) | s[r1][r2](w )

Then, assuming ρ = {}, the mappings σ and σi above satisfy (b) (z, s[p][q]) ∈ σ and (z, s[q][p]) ∈
σi by p = pσ (z) = dσi (z) and q = dσ (z) = pσi (z); (c) (x , s[p][r]) ∈ σ and (y, s[r1][r2]) ∈ σi with
r1 = q in σ1 and r1 , q in σ2; and dσ (x ) = r , r2 = dσi (y); and r, r2 < ρ.

Example 3.4 (Four Threads). We show how to translate and compose the CLL process P from the

beginning of this section:

P ≜ x⟨7⟩.y (z).x⟨”hello”⟩.0 ⊢CL x :nat ⊗ str ⊗ 1,y:nat` ⊥
Q1 ≜ x (x1).w⟨93⟩.x (x2).0 ⊢CL x :nat` str` ⊥,w :nat ⊗ 1

Q2 ≜ y⟨2⟩.0 ⊢CL y:nat ⊗ 1 Q3 ≜ w (x3).0 ⊢CL w :nat` ⊥
We define σ , σ1,σ2,σ3 such that:

σ (P ) = s[p][q]⟨7⟩; s[p][r](z); s[p][q]⟨”hello”⟩; 0
σ1 (Q1) = s[q][p](x1); s[q][s]⟨93⟩; s[q][p](x2); 0
σ2 (Q2) = s[r][p]⟨2⟩; 0
σ3 (Q3) = s[s][q](x3); 0

JPKσ = q↑(nat); r↓(nat); q↑(str); end
JQ1Kσ1 = p↓(nat); s↑(nat); p↓(str); end
JQ2Kσ2 = p↑(nat); end
JQ3Kσ3 = q↓(nat); end

Let Γ = s[p]:JPKσ , s[q]:JQ1Kσ1 , s[r]:JQ2Kσ2 , s[s]:JQ3Kσ3 . Then we have: (νx ,y,w ) (P | Q1 | Q2 |

Q3) ⊩∅ρ ·; Γ.

Example 3.5 (Choice and Branching). As we discuss in § 4, this CLL typable branching behaviour

is not typable in the previous work on multiparty logic [11, 14] using the same local types:

P ≜ x .case{l1:y.l2; 0, l3:y.l4; 0} Q1 ≜ x .l1; 0
R ≜ y.case{l2:0, l4:0} Q2 ≜ x .l3; 0
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with: P ⊢CL x : & {l1:⊥, l3:⊥},y: ⊕ {l2:1, l4:1}, R ⊢CL y: & {l2:⊥, l4:⊥} and Qi ⊢CL x : ⊕ {l1:1, l3:1}. We

define mappings σ , σ1 and σ2 such that:

σ (P ) = s[p][q] & {l1:s[p][r] ⊕ l2; 0, l3:s[p][r] ⊕ l4; 0}
σ1 (Q1) = s[q][p] ⊕ l1; 0
σ1 (Q2) = s[q][p] ⊕ l3; 0
σ2 (R) = s[r][p] & {l2:0, l4:0}
JPKσ = &q{l1: ⊕ r{l2:end}, l3: ⊕ r{l4:end}}
JQ1Kσ1 = ⊕p{l1:end}
JQ2Kσ1 = ⊕p{l3:end}
JRKσ2 = &p{l2:end, l4:end}

Let Γ = s[p]:JPKσ , s[q]:JQiKσ1 , s[r]:JRKσ2 . Thus we have: (νx ,y) (P | Qi | R) ⊩∅ρ ·; Γ.

Type-preservation and uniqueness. Below we study properties of the encoding. We first

show that the type preserving translation of CLL to MP for cut-free processes combined with our

composition rule preserves typing in MP.

Proposition 3.6 (Type Preservation). If P ⊩σ
ρ ∆; Γ, then ρ (σ (P )) ⊢MP Γ.

Proof. The prefix case is straightforward by Definition 3.1 and (thread); the parallel composition

uses (comp). Both cases are mechanical by induction on P . □

Since the mapping from CLL into MP is just renaming, reduction of CLL strongly corresponds to

that of MP.

Proposition 3.7 (Operational Correspondence). Suppose P ⊩σ
ρ ∆; Γ and P −→ P ′. Then

ρ (σ (P )) −→ Q s.t. P ′ ⊩σ ′
ρ′ ∆

′
; Γ′ and Q = ρ ′(σ ′(P ′)) with σ ′ ⊆ σ , ρ ′ ⊆ ρ.

Proof. See Appendix A.1.1. □

We call a mapping thread-preserving if it assigns to a cut-free CLL process a single participant in
MP. We thus have:

Proposition 3.8 (Thread Preservation). If P ⊩σ
ρ ∆; Γ, then ρ (σ (P )) is thread-preserving.

Proof. See Appendix A.1.1. □

Theorem 3.9 states that the mapping is closed under any bijective renaming φ on sessions, roles

and channels. As an example, let P = s[p][r](x ); s[p][q]⟨v⟩ and φ = {s 7→ s ′,x 7→ y, p 7→ p′}; then
φ (P ) = s ′[p′][r](y); s ′[p′][q]⟨v⟩.

More precisely, Theorem 3.9 shows that any thread-preserving mapping from CLL processes into
a single MP session always conforms to our mapping. This means that no other way to encode CLL
into MP (modulo bijective renaming which maps different names to distinct destinations) exists if

it is thread-preserving into a single multiparty session.

Theorem 3.9 (Uniqeness). Assume P ⊢CL ∆. Suppose φ (P ) is thread-preserving and φ (P ) is
typable by a single MP session, i.e. if φ (P ) ⊢MP Γ then (1) dom(Γ) contains a single session channel; or
(2) Γ = ∅ and P ≡ 0. Then there exist ρ and σ such that φ = σ ◦ ρ and P ⊩σ

ρ ∆; Γ.

Proof. See Appendix A.1. □
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4 PARTIAL MULTIPARTY COMPATIBILITY
This section studies a compositional synthesis property, dubbed partial multiparty compatibility
(PMC). As illustrated in Proposition 2.7, multiparty session type theories [31] cannot ensure

deadlock-freedom if we do not rely on (1) a projection from a global type; or (2) a global synthesis

property called multiparty compatibility [22, 37], which given local types for a complete MP session

produces a global type if the endpoints do not deadlock. For example, the previous counterexample

can be avoided if we start from the global type (again, we assume basic value passing, encodable

with terminated sessions):

G = p→ q:(nat).q→ r:(bool).r→ p:(str).end (2)

and type each process with the projected local types:

Tp = q↑(nat); r↓(str); end, Tq = p↓(nat); r↑(bool); end, Tr = q↓(bool); p↑(str); end (3)

or we may build (synthesise) G in (2) from {Tp,Tq,Tr} in (3). If we start from a projectable global

type or can synthesise a global type, the example in Proposition 2.7 is no longer typable.

Given that CLL employs a binary form of composition, we move from a global synthesis condition

to a binary (partial) relation to achieve our main results. Specifically, we take the following steps:

Step 1: We introduce partial global types p { q representing global interaction which has

not yet been composed with another party (e.g. it denotes the emission from p to q, not yet
composed with the reception by q), and give formal semantics to both global and local types

(§ 4.1) as labelled transition systems. Crucially, the semantics of global types is given up to a

swapping relation ∼sw, which enables the permutation of independent actions.

Step 2: We define synchronous multiparty compatibility (SMC – Definition 4.7), showing the

equivalence of SMC, deadlock-freedom and the existence of a global type that corresponds to

the appropriate local behaviours.

Step 3: We introduce a notion of fusion (Definition 4.10), which enables us to compose compat-

ible partial specifications and define partial multiparty compatibility. When a p { q arrow

denoting a send action is fused with the corresponding arrow denoting the receive action, it

is transformed into a complete arrow p → q, preserving the ordering of communications.

When we compose all participants in a session (reconstructing a complete global type – one

without partial arrows), deadlock-freedom is guaranteed (Theorem 4.15).

4.1 Partial Global Types and Semantics
We define partial global typesG , consisting of a combination of complete global types and endpoint

interactions.

Definition 4.1 (Partial Global Types). The grammar of partial global types G, G ′ is:

G ::= end | p→ q:(T ).G | p→ q:{lj :G j }j ∈J
| p { q: ↑ (T ).G | p { q: ↓ (T ).G | p { q:⊕{lj :G j }j ∈J | p { q: & {lj :G j }j ∈J

The first three of the above grammar constructs are the standard global types [31]. Global type

p→ q:(T ).G means that participant p sends a session endpoint of type T to participant q, followed
by G. Global type p → q:{lj :G j }j ∈J means that participant p selects label li , then q’s i-th branch

will be chosen, becoming Gi . The partial global types in the second line denote half of a complete

global interaction. The modes (↑,↓, ⊕,&) in partial global types indicate which component of the

interaction is being satisfied: e.g. p { q: ↑ (T ) denotes the contribution of the emission component

of the interaction from principal p to destination q, whereas p { q: ↓ (T ) denotes the reception.
We write mode † for either ↑,↓, ⊕,& or ∅ (empty) and often omit † from partial global types

when unnecessary. We write _ for either→ or{; and p ] q for either p _ q or q _ p.
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The set of principal roles is defined as: pr(p → q : ∅) = {p, q} and pr(p { q :↑) = pr(q { p :↓

) = pr(p { q : ⊕) = pr(q { p : &) = {p}. We write roles(G )/pr(G ) for the set of roles/principal
roles occurring in G; and p ] q ∈ G if p ] q occurs in G.

We use standard projection rules from global to local types, defined in terms of a merge operation

for branchings [22], written T ⊔T ′, ensuring that if the locally observable behaviour of the local

type is not independent of the chosen branch then it is identifiable via a unique label (the operator

is otherwise undefined).

Definition 4.2 (Local Type Merge). The merge T ⊔T ′ of T and T ′ is defined by T ⊔T ≜ T ; and
with T = &r{li : Ti }i ∈I and T ′ = &r{l′j : T

′
j }j ∈J ,

T ⊔T ′ ≜ &r({lh : Th }h∈I \J ∪ {l
′
h : T ′h }h∈J \I ∪ {lh : Th ⊔T

′
h }h∈I∩J )

if lh = l′h for each h ∈ I ∩ J ; and homomorphic for other types (i.e. T [T1] ⊔ T [T2] = T [T1 ⊔T2]
where T is a context of local types). T ⊔T ′ is undefined otherwise. ⋄

Definition 4.3 (Projection and Well-formedness). Let G be a global type. The projection of G for a

role p, written G ↾ p, is defined below.

end ↾ p = end

s→ r:(T ).G ′ ↾ p =




r↑(T ); (G ′ ↾ p) if p = s
s↓(T ); (G ′ ↾ p) if p = r
G ′ ↾ p otherwise

s→ r:{lj :G j }j ∈J ↾ p =




⊕r{lj :G j ↾ p}j ∈J if p = s
&s{lj :G j ↾ p}j ∈J if p = r
⊔j ∈JG j ↾ p otherwise

If no side conditions hold (i.e. the merge operator is undefined) then projection is undefined. We

say that G is well-formed iff for all distinct p ∈ roles(G ), (G↾p) is defined.

As an illustration of merge and projection, consider

G = q→ p:{l1:p→ r:{l2:end}, l3:p→ r:{l4:end}}

which will be built from CLL processes in Example 3.5. Then:

G↾p = &q{l1: ⊕ r{l2 : end}, l3: ⊕ r{l4 : end}},

G↾q = ⊕p{l1 : end, l3 : end} and G↾r = &p{l2:end, l4:end}. (4)

The syntax of global types can impose unnecessary orderings of actions among independent

roles. For example, p _ q:(str).r _ s: : (bool).end should be regarded as identical to r _
s:(bool).p _ q:(str).end if p and q do not coincide with either r or s, since there is no reasonably

enforceable ordering between the two interactions. Thus, we allow for the swapping of independent

communication actions in global types as defined below (a similar swapping relation is used [14] to

define coherence of logical global types and in the context of semantics for choreographies [12]).

Definition 4.4 (Swapping). We define the swapping relation, written ∼sw, as the smallest congru-

ence on global types satisfying (with pr(p _ q : †) ∩ pr(p′ _ q′ : †′) = ∅):

(ss) p _ q: † (T ).p′ _ q′: †′ (T ′).G ∼sw p′ _ q′: †′ (T ′).p _ q: † (T ).G

(sb) p _ q: † (T ).p′ _ q′: †′ {li : Gi }i ∈I ∼sw p′ _ q′: †′ {li : p _ q: † (T ).Gi }i ∈I

(bb) p _ q: † {li : p′ _ q′: †′ {l ′j : G j }j ∈J }i ∈I ∼sw p′ _ q′: †′ {l ′j : p _ q: † {li : G j }i ∈I }j ∈J
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Local Type (at role p)

q ↑ (S );T
pq↑(S )
−→ T q ↓ (S );T

pq↓(S )
−→ T ⊕ q{li :Ti }i ∈I

pq◁lk
−→ Tk (k ∈ I ) &q{li :Ti }i ∈I

pq▷lk
−→ Tk (k ∈ I )

Global Type

p→ q:(T ).G
pq↑(T ) ·qp↓(T )
−→ G p→ q:{li : Gi }i ∈I

pq◁lk ·qp▷lk
−→ Gk (k ∈ I )

G1 ∼sw G ′
1
∧G ′

1

ℓ ·ℓ′

−→ G ′
2
∧G ′

2
∼sw G2 ⇒ G1

ℓ ·ℓ′

−→ G2

Configuration

(Tp
ℓ
−→ T ′p) ∧ (Tq

ℓ
−→ T ′q) ∧ (∀r ∈ P \ {p, q}.Tr = T ′r ) ⇒ (Tp)p∈P

ℓ ·ℓ
−→ (T ′p)p∈P (ℓ output or selection)

Fig. 5. Labelled Transition Systems

The operational semantics for local, global types and configurations are given by labelled transition

systems (LTS). We define the syntax of labels as:

ℓ ::= pq↑(T ) | pq↓(T ) | pq ◁ l | pq ▷ l

where pq↑(T ) (resp. pq↓(T )) is the output (resp. input) at p to q (resp. from q) and pq ◁ l (resp. pq ▷ l )
is the selection (resp. branching).

We define ℓ as pq↑(τ ) = qp↓(τ ) and pq ◁ l = qp ▷ l and vice-versa. Given a set of roles P, we

define a configuration as C = (Tp)p∈P . Configurations consist of a set of local types projected from

a single global type which are used to define and show properties of local types in § 4.2.

Definition 4.5 (Labelled Transition Relations). Transitions between local types, written T
ℓ
−→ T ′,

for role p; global types, writtenG
ℓ ·ℓ′

−→ G ′; and configurations are given in Fig. 5. We writeG
ℓ⃗
−→ Gn

if G
ℓ1 ·ℓ2
−→ G1 · · ·

ℓ2n−1 ·ℓ2n
−−−−−−−→ Gn and ℓ⃗ = ℓ1 · · · ℓ2n (n ≥ 0); and Tr (G0) = {ℓ⃗ | G0

ℓ⃗
−→ Gn n ≥ 0} for

traces of type G0. Similarly for T and C .

Proposition 4.6 (Trace Eqivalence). Suppose G well-formed and the set of participants in G is
P. Assume C = (G↾p)p∈P . Then Tr (C ) = Tr (G ).

Proof. By definition of the projection and the LTSs. □

4.2 Partial Multiparty Compatibility (PMC)
To introduce PMC, we first define multiparty compatibility (MC) for a synchronous semantics,

adapting the development ofMC for asynchrony [22, 37].We then introduce PMC as a compositional

binary synthesis property on types. We note that while asynchronous formulations of the linear

logic-based session calculi exist [23], the predominant formulation is synchronous, and so we focus

on a synchronous theory.

Definition 4.7 (Synchronous Multiparty Compatibility). Configuration C0 = (T0p)p∈P is synchro-

nous multiparty compatible (SMC) if for all C0

ℓ⃗
−→ C = (Tp)p∈P and Tp

ℓ
−→ T ′p:

(1) if ℓ = pq↑(S ) or pq ◁ l , there exists C
ℓ⃗′

−→ C ′
ℓ ·ℓ
−→ C ′′;

(2) if ℓ = pq↓(S ), there exists C
ℓ⃗′

−→ C ′
ℓ ·ℓ
−→ C ′′; or

(3) if ℓ = pq ▷ l , there exists ℓ1 = pq ▷ l ′, C
ℓ⃗′

−→ C ′
ℓ1 ·ℓ1
−→ C ′′
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where ℓ⃗′ does not include actions from or to p.

Since our semantics is synchronous, it is technically simpler than one for an asynchronous semantics

[22, 37]. One can check that the local types in Equation 3 and the projected local types of (4.1)

satisfy SMC.

Definition 4.8 (Deadlock-freedom). C = (Tp)p∈P is deadlock-free if for allC
ℓ⃗
−→ C1, ∃C

′ = (T ′p )p∈P

such that C1

ℓ′

−→ C ′ or T ′p = end for all p ∈ P.

Theorem 4.9 (Deadlock-freedom, MC and existence of a global type). The following are
equivalent: (MC) A configuration C is SMC; (DF) C is deadlock-free; (WF) There exists well-formedG
such that Tr (G ) = Tr (C ).

Proof. See Appendix A.2.1. □

Multiparty compatibility is a global property defined using the set of all participants [22, 37]. To

define a compositional (i.e. local) multiparty compatibility, we introduce the composition of two

partial global types, dubbed as fusion.

Definition 4.10 (Fusion). We define the fusion of two well-formed partial global typesG1,G2 such

that pr(G1) ∩ pr(G2) = ∅, written fuse(G1,G2), inductively on the structure ofG1 andG2, up to the

swapping relation ∼sw:

fuse(p { q: ↑ (T1).G ′1, p { q: ↓ (T2).G ′2) = p→ q:(T2).fuse(G ′1,G
′
2
) (with T1 ≥ T2)

fuse(p { q:⊕{l : G ′
1
}, p { q: & {l : G ′

2
, {lj : G j }j ∈J }) = p→ q:{l : fuse(G ′

1
,G ′

2
)}

fuse(p { q: † (T ).G1,G2) = p { q: † (T ).fuse(G1,G2)

if ∄G ′
2
.(p { q:†(T ′).G ′

2
∼sw G2) ∧ p ] q < G2

fuse(p { q: † {lj : G j }j ∈J ,G2) = p { q: † {lj : fuse(G j ,G2)}j ∈J
if ∄G ′j .(p { q:†{lj : G ′j }j ∈J ∼sw G2 ∧ i ∈ J ) ∧ p ] q < G2

fuse(p→ q : (T ).G1,G2) = p→ q : (T ).fuse(G1,G2) if p ] q < G2

fuse(p→ q : {lj : G j }j ∈J ,G2) = p→ q : {lj : fuse(G j ,G2)}j ∈J if p ] q < G2

fuse(end, end) = end

with the symmetric cases.

The first rule uses the subtyping relation T ≤ S given in Definition 2.5. The second rule selects

one branch with the same label. For simplicity, we allow only for one-way selections since in the

context of our work, partial types are extracted from processes where the selections are always

determined. We note that multi-way branchings can be realised straightforwardly via subtyping.

The third and forth rules (which do not overlap with the first two) push through actions that are

unmatched in the fused types. The rule is extended similarly to input, branching and selection with

other global type constructors. fuse(G1,G2) is undefined if none of the above rules are applicable.

We define (1) |end| = 1; (2) |p _ q : †(T ).G | = 4 + |G |; and (3) |p _ q : †{lj :G j }j ∈J | =

3 + Σj ∈J (1 + |G j |). We have:

Proposition 4.11. Computing fuse(G1,G2) is O ( |G1 |! × |G2 |!) time in the worst case, where |G | is
the size of G.

Proof. The time complexity is dominated by the computation of the swapping relation between

G1 and G2. The equivalence class up to the swapping relation consists of |G |! elements. Since we

apply each fuse rule to the equivalence class of G1 and the equivalence class of G2 (in the worst

case), the time complexity is O ( |G1 |! × |G2 |!). □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2018.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

:18 Bernardo Toninho and Nobuko Yoshida

Definition 4.12 (Partial Multiparty Compatibility). Suppose G1 and G2 are partial global types. G1

and G2 are partial multiparty compatible iff fuse(G1,G2) is defined.

Example 4.13. Consider the following partial global types for Example 3.5 (as mentioned before,

the corresponding local types are not coherent in [11, 14]):

G1 = q { p: & {l1:p { r:⊕{l2:end}, l3:p { r:⊕{l4:end}}
G2 = q { p:⊕{l1:end}
G3 = p { r: & {l2:end, l4:end}
G4 = q { p:⊕{l3:end}

Then we have:

fuse(G1,G2) = q→ p:{l1:p { r:⊕{l2:end}}
fuse(G2,G3) = q { p:⊕{l1:G3}

fuse(fuse(G1,G2),G3) = fuse(G1, fuse(G2,G3)) = q→ p:{l1:p→ r:{l2:end}}
fuse(G1,G4) = q→ p:{l3:p { r:⊕{l4:end}}
fuse(G4,G3) = q { p:⊕{l3:G3}

fuse(fuse(G1,G4),G3) = fuse(G1, fuse(G4,G3)) = q→ p:{l3:p→ r:{l4:end}}

Lemma 4.14. Suppose fuse(fuse(Gi ,G j ),Gk ) with {i, j,k } = {1, 2, 3} is well-formed. Then we have
fuse(fuse(Gi ,G j ),Gk ) ∼sw fuse(Gi , fuse(G j ,Gk )).

Proof. See Appendix A.2.2. □

By the above lemma, we have:

Theorem 4.15 (Compositionality). Suppose G1, ...,Gn are partial global types. Assume ∀i, j such
that 1 ≤ i , j ≤ n, Gi and G j are PMC and G = fuse(G1, fuse(G2 , fuse(. . . ,Gn ))) is a complete
global type. Then G is well-formed.

Proof. See Appendix A.2.3. □

5 ENCODING CLL AS A SINGLE MULTIPARTY SESSION
Having defined in § 3 how to translate CLL processes toMP, we study the interconnection networks

induced by CLL by generating their partial global types (§ 4). We note that such types are well-

formed by construction. We prove a strict inclusion of the networks of CLL into those of single MP,
by fusing the partial global types into a complete global type.

Definition 5.1 (Generating Partial Global Types). Given P with P ⊢σCL ∆ we generate its partial

global type, written LPMσ as follows (let dσ (x ) = q):

L0Mσ ≜ end Lx⟨y⟩.PMσ ≜ pσ { q: ↑ (T ).LPMσ Lx (y).PMσ ≜ q { pσ : ↓ (T ).LPMσ
Lx .l ; PMσ ≜ pσ { q:⊕{l :LPMσ } Lx .case{li : Pi }i ∈I Mσ ≜ q { pσ : & {li :LPi Mσ }i ∈I

We generate a set G of partial global types for compositions, written P ⊩σ
ρ ∆;G, by (we omit the

obvious (thread) rule):

(comp-G)

P ⊢σCL ∆,x :A Q ⊩σ ′
ρ ∆′,x :A⊥;G (⋆) in (comp)

(νx ) (P | Q ) ⊩(σ ′∪σ )\{a }
ρ′ ∆,∆′;G ∪ LPMσ
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Example 5.2 (Four Threads). We present the generated partial global types for Example 3.4:

LPMσ = p { q: ↑ (nat).r { p: ↓ (nat).p { q: ↑ (str).end
LQMσ2 = p { q: ↓ (nat).q { s: ↑ (nat).p { q: ↓ (str).end
LRMσ1 = r { p: ↑ (nat).end LSMσ3 = q { s: ↓ (nat).end

Where applying fuse to the partial global types above produces the global type: p→ q:(nat).q→
s:(nat).r→ p:(nat).p→ q:(str).end. We note that, for instance, adding a message from r to smakes

the example untypable in CLL since it introduces a 3-way cycle in the interconnection network.

Example 5.3 (Choice and Branching). The partial global types generated for Example 3.5 are

G1 = LPMσ ,G2 = LQ1Mσ1 ,G3 = LRMσ2 andG4 = LQ2Mσ1 in Example 4.13. They fuse into: q→ p:{l1:p→
r:{l2:end}} or q→ p:{l3:p→ r:{l4:end}}. Notably, the global type produced by our example cannot

be captured in the work of [11, 14], requiring the two selections in branches l1 and l3 to be the

same.

We make precise the claims of § 1, that is the network interconnections of global types induced

by CLL are strictly less expressive than those of MP, by formalising the notion of interconnection

network as an undirected graph.

Definition 5.4 (Interconnection Network). Given a partial global type G we generate its Intercon-
nection Network Graph (ING) where the nodes are the roles of G and two nodes p, q share an edge

iff p↔ q in G. ⋄

We establish the main properties of our framework. The following proposition states that we can

always fuse the partial global types of a well-formed composition.

Proposition 5.5. Let P ⊩σ
ρ ∆; Γ;G and ∆ = ∅ or ∆ contains only 1 or ⊥. There exists a single

well-formed global type G such that G = fuse(G) where fuse(G) denotes fusion of all partial global
types in G.

Proof. Since ∆ is empty or contains only 1 or ⊥ we have that P is an n-ary composition of

(cut-free) processes. Ifn = 1 then P = 0 and its corresponding global type is just end. The interesting
case is when n > 1.

Since the context is either empty or contains only 1 or ⊥, we have that P is of the form (νã) (P1 |
· · · | Pn ) where all free names aj :Aj of each of the Pi processes are cut with some other Pi′

using aj :A
⊥
j . Thus, by construction of ⊩ we have that for each bound name a of P we have

cρ (a)[pρ (a)]:T ∈ Γ and cρ (a)[dρ (a)]:T ′ ∈ Γ with T ↾ dρ (a) ≤ T ′ ↾ pρ (a) and thus for each action

between two roles in a partial global type in G, we can always find a matching action in another

partial global type in G, therefore we can fuse all partial global types in G into a single global

type. □

The following main theorem shows that any two such partial types overlap in at most 2 roles;

from which the acyclicity of CLL processes follows, establishing a separation between MP global

types and those induced by CLL. Notice that Theorem 3.9 ensures that, in general, there exists no

type- and thread-preserving translation from CLL to a single MP session where CLL has the same

or more interconnectability than MP.

Theorem 5.6. Let P ⊩σ
ρ ∆;G. For any distinct G1,G2 ∈ G we have that roles(G1) ∩ roles(G2)

contains at most 2 elements.

Proof. We proceed by induction on the derivation P ⊩σ
ρ ∆;G, showing that each case preserves

the specified invariant of at most 2 elements in the intersection of roles(G1) ∩ roles(G2), for any
G1,G2 ∈ G.
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The only interesting case is when the last rule in the derivation is (comp-G):
(comp-G)

P ⊢σCL ∆,x :A Q ⊩σ ′
ρ ∆′,x :A⊥;G (⋆) in (comp)

(νx ) (P | Q ) ⊩(σ ′∪σ )\{x }
ρ′ ∆,∆′;G ∪ {LPMσ }

By the inductive hypothesis. we have that for any G ′
1
,G ′

2
∈ G, roles(G ′

1
) ∩ roles(G ′

2
) contains at

most 2 elements.

By construction we know that roles in G must either appear in σ ′ (corresponding to role

assignments to channels in ∆′ and a) or ρ (corresponding to role assignments to bound names).

By inversion we know that ∀z ∈ ∆,y ∈ ∆′.dσ (z) , dσ ′ (y), thus there are no common dσ role

assignments between σ and σ ′ to free names of the two processes beyond those for x . We also

know that pσ (x ) = dσ ′ (x ) and dσ (x ) = pσ ′ (x ).
By the definition of LPMσ there are at least two common role names with each endpoint interaction

in G coming from σ and σ ′ (i.e. role assignments to free names), which are pσ and pσ ′ . Since pσ
is invariant and ∀z ∈ ∆,y ∈ ∆′.dσ (z) , dσ ′ (y), we have that free names in ∆ cannot share any

additional roles.

We need now only consider ρ. By construction, we know that ∀z ∈ ∆,y ∈ ∆′.dσ (z) < ρ∧dσ ′ (y) <
ρ, thus dσ (z) cannot appear in G due to ρ. The only remaining possibilities are pσ (x ) and dσ (x )
which are already accounted for from the argument above. Thus we preserve the invariant and

conclude the proof. □

We can then establish a main result of our work: The connection network graphs generated by

CLL-typable processes are acyclic.

Theorem 5.7. Let P ⊩σ
ρ ∆;G. LetG = fuse(G). The interconnection network graph forG is acyclic.

Proof. Each endpoint interaction sequence in G denotes the contribution of a single endpoint

role in the global conversation. By Theorem 5.6 we have that any distinct pair of partial global

types in G shares at most 2 role names. This means that for any distinct roles p, q, r, if p ] q ∈ G
and p ] r ∈ G then neither q→ r nor r→ q or q { r nor r { q in G. Hence, in the connection

graph of G we know that we cannot have triangles of the form (p, q), (p, r), (r, q) as edges.
We can then see that no cycles can be formed through a “diamond” – a sequence of edges

of the form (p, q), (p, r), (q, t1), . . . , (tn , s), (r, v1), . . . , (vm , s) – in the graph by the fact that at

each composition step, processes can only share one free name (the one that is the focus of the

composition rule since ∆ ∪ ∆′ = ∅) and role assignments (∀z ∈ ∆,y ∈ ∆′.dσ (z) , dσ ′ (y), similarly

for ρ, by (⋆) (c) in rule (comp) and Definition 3.1). If we could form a “diamond” cycle in the graph,

then we have to be able to eventually compose processes sharing more than one name or with

different roles mapping to the same channel name in order to connect both (vm , s) and (tn , s).
That is, after composing vm we cannot compose the implementation of tn (or vice-versa), since it

would violate the role assignment restriction of composition – (⋆) (c) in (comp) – which disallows

identical destination roles. Moreover, in order to compose tn and s it would have to be the case

that s shares a channel with both tn and vm (which is untypable) or the process composition of

implementations of vm and tn would have to map both roles to the same channel shared with the

implementation of s – itself also a contradiction. □

Deadlock-freedom inMP. Theorem 5.10 states that our encoding produces a single multiparty

session, that is, the fusing of all partial global types in a complete session is deadlock-free. To prove

the theorem, we require the following lemmas.

Lemma 5.8. Let P ⊩σ
ρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆ contains only 1 or ⊥ and σ = ∅.
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Proof. See Appendix A.3.1. □

Lemma 5.9. Let P ⊩∅ρ ∆; Γ;G with ∆ = ∅ or ∆ containing only 1 or ⊥. We have that co(Γ).

Proof. See Appendix A.3.2. □

Theorem 5.10. Let P ⊩∅ρ ∆;G and ∆ = ∅ or ∆ contains only 1 or ⊥. Then we have: (1) P →∗ 0;
and (2) fuse(G) is well-formed.

Proof. By Propositions 2.3 and 5.5 and Theorem 4.9, together with Lemmas 5.8 and 5.9. □

From Proposition 3.6 and Theorem 5.10, it follows that:

Corollary 5.11. If P ⊩∅ρ ∆; Γ and ∆ = ∅ or ∆ contains only 1 or ⊥, then ρ (P ) ⊢MP Γ and ρ (P ) is
deadlock-free.

Recall that Proposition 2.7 states that theMP typing discipline does not guarantee deadlock-freedom.

Theorem 5.10 shows that the translation from CLL automatically identifies a set of deadlock-free

MP processes.

6 HIGHER-ORDER CHANNEL PASSING
In this section we lift the restrictions put in place in § 3 on the ⊗ and ` connectives, enabling CLL
processes to perform full higher-order channel passing which can be mapped to MP processes with

delegation. We follow the lines of § 3 and § 5, extending the framework and earlier results to this

more general setting, emphasising crucial differences.

Channel mappings. Full higher-order channel passing creates interleaved multiple sessions
and instantiations of channels into input bound variables. For these reasons, we revise our mapping

of § 3, allowing for processes that send channels to hold multiple roles in the same multiparty

session. We also account for bound names, where (bound) CLL channels are mapped to distinct MP
session channels.

We present our mapping with two definitions: a mapping for cut-free processes (Definition 6.1)

and a well-formedness condition for delegation (Definition 6.2). In the former, the mapping is

identical to that of § 3 but the MP channel identifier need not be unique among all channels. We

also need to treat consistency of bound names. In the latter, we enforce that when the typing rule

for delegation (i.e. the ⊗ rule) is applied, channels used by the subprocesses must implement a

different principal role.

Definition 6.1 (Channel Mapping). Let P ⊢CL ∆ without using the cut rule. We define a channel

to role-indexed channel mapping of P as a pair of mappings (σ ,η) such that: (1) for all distinct
x ,y ∈ fn(P ), σ (x ) = s[p][q] and σ (y) = s ′[p′][q′] where if s = s ′ then p = p′ and q , q′; (2) for all
distinct x ,y ∈ bn(P ), η(x ) = s[p][q] and η(y) = s ′[p′][q′] where s , s ′ and s, s ′ < σ ; and (3) for all
distinct x ,y ∈ bv (P ), η(x ) = x[p] and η(y) = y[p′].

The restrictions in Definition 6.1 allow for different CLL channels to be mapped to different MP ses-

sion channels. However, within a given MP session we enforce that the principal role implemented

by the cut-free process must be the same (which identifies a single participant with a cut-free

process). We also ensure that different channels mapped to the same MP session do not have the

same destination role as in the previous mapping (Definition 3.1).

Crucially, the η component of Definition 6.1 tracks all instances of channel output (2) and input

(3), where sent channels are mapped to fresh (binary) MP session channels for which one of the

endpoints is delegated. Dually, received channels are mapped to variables with a role assignment.
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φP (x⟨y⟩.(P1 | P2)) ≜



(νcη (y))cσ (x )[pσ (x )][dσ (x )]⟨cη (y)[dη (y)]⟩.(φP (P1) | φP (Q2)) if x ∈ fn(P )
(νcη (y))x[dη (x )]⟨cη (y)[dη (y)]⟩.(φ (P1) | φ (Q2)) if x ∈ bv (P )

φP (x (y).Q ) ≜



cσ (x )[pσ (x )][dσ (x )](y).φP (Q ) if x ∈ fn(P )
x[dη (x )](y).φP (Q ) if x ∈ bv (P )

Fig. 6. Process Mapping

Definition 6.2 (Delegation). Let P ⊢CL ∆ without using the cut rule, and (σ ,η) be a mapping viz.

Definition 6.1. We say that (σ ,η) is well-formed if the number of distinct MP channels in the image

of σ is minimal and for each use of ⊗ in typing P we have:

P1 ⊢CL ∆1,y:A P2 ⊢CL ∆2,x :B

x⟨y⟩.(P1 | P2) ⊢CL ∆1,∆2,x :A ⊗ B

(Role Disjointness) ∀z ∈ ∆1, z
′ ∈ ∆2,x : cσ (z)=cσ (z ′) implies pσ (z) , pσ (z ′);

(Role/Destination Disjointness) ∀z ∈ ∆1, z
′ ∈ ∆, z , z ′ and cσ (z)=cσ (z ′) imply dσ (z) ,

pσ (z ′).

P ⊢
(σ ,η)
CL ∆ denotes (σ ,η) is well-formed for delegation wrt P ⊢CL ∆.

The conditions of Definition 6.2 ensure that channels that are used within parallel compositions

(due to delegation in CLL) are assigned different principal roles within the same MP session (the

condition (Role Disjointness)). This ensures typability in MP. Moreover, the (Role/Destination
Disjointness) condition forbids all principal roles used in the process from being used as destination

roles within the same process (i.e. disallowing two endpoints of a communication within the same

thread).

Now we define a main mapping from CLL to MP.

Definition 6.3 (Process Mapping). Given P ⊢CL ∆ without using the cut rule and a mapping (σ ,η)
according to Definition 6.1, we define the mapping from P to theMP process φP (P ), where φ = σ ◦η
according to the rules of Fig. 6. We often omit the subscript P when clear from context.

The following example illustrates how our mapping for higher-order channel passing transforms

CLL into MP processes and the conditions imposed on the mapping.

Example 6.4. Let P ≜ x⟨y⟩.(P1 | P2) with P1 ≜ w1⟨1⟩ | y⟨2⟩ and P2 ≜ w2⟨3⟩ | x⟨5⟩. Then assume

(we write φ for σ ◦ η):

φ (P ) = (νs ′)s[p][q]⟨s ′[q′]⟩.(s1[p1][q1]⟨1⟩ | s ′[r][q′]⟨2⟩ | s2[p2][q2]⟨3⟩ | s[p][q]⟨5⟩)

for some well-formed η and σ . Then s2 , s and by Definition 6.2:

• if s = s1, p , p1 (by (1)) and q , p1 and p , q1 (by (2)); and
• if s1 = s2, p1 , p2 (by (1)) and q1 , p2 and q2 , p1 (by (2)).

Note that a valid mapping does not exclude the cases where two destination roles can be same,

i.e. q = q1 and q1 = q2 are allowed when s = s1 and s1 = s2. However, composition with such

mappings will be subsequently excluded by the parallel composition rule in Fig. 7.

Local type generation. Since cut-free processes may denote multiple roles, we generate a local

typing context from each process, assigning local types to each role indexed channel. To generate

the local type for a session output of the form x⟨y⟩.(P | Q ), where y occurs free in P but not in Q
(and symmetrically for x ), we produce the delegated session type from the usage of y in P . The two
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continuation processes are then inspected inductively. Since local type generation produces a local

typing context instead of a single local type, we provide a combination operation s[p]:T ⋄ Γ that

acts as a simple union, but for type assignments for s[p] : T ′ in Γ results in an assignment in which

T precedes T ′. Note that, since P and Q use disjoint sets of channels (which are mapped to disjoint

roles), applying ⋄ to the corresponding generated local types amounts to a simple set union.

The operation s[p]:T ⋄ Γ, that essentially appends a local type assignment s[p]:T to those in Γ
that match the session channel and role, is defined as follows (recall † denotes either {↑,↓, ⊕,&}):

s[p]:q†(T ) ⋄ (Γ′, s[p]:T ′) ≜ Γ′, s[p]:q†(T );T ′

s[p]:q†(T ) ⋄ Γ′ ≜ s[p]:q†(T ); end, Γ′ with s[p] < Γ′

s[p]: † q{lj : Tj }j ∈J ⋄ (Γ′, s[p]:T ′) ≜ Γ′, s[p]: † q{lj : Tj }j ∈J
s[p]: † q{lj : Tj } ⋄ Γ′ ≜ s[p]: † q{lj : Tj }, Γ′ with s[p] < Γ′

Intuitively, s[p]:T ⋄ Γ is Γ, s[p]:T if s[p] < Γ. Otherwise, we have that Γ = Γ′, s[p] : T ′ and thus we

modifyT ′ toT ;T ′ ifT is an input our output; or, changeT ′ toT ifT is a selection or branching (since

T will already contain all actions of role p by construction of the local type generation procedure).

Definition 6.5 (Local Type Generation). Let P ⊢(σ ,η)CL ∆ where all free and bound names are distinct.

We generate a local typing context Γ such that η(σ (P )) ⊢MP Γ by induction on the structure of

P , written JPKησ . Below we write cφ (x ), pφ (x ) and dφ (x ), where φ stands for σ if x ∈ fn(P ) and η
otherwise; and c for cφ (x )[pφ (x )] if x ∈ fn(P ) and for x otherwise; q for dφ (x ); JPKησ (y) denotes
the binding for y in the generated context):

J0Kησ ≜ ∅

Jx⟨y⟩.(P | Q )Kησ ≜ c:q↑(JPKησ (y)) ⋄ (JPKησ ⋄ JQKησ )
Jx (y).PKησ ≜ c:q↓(JPKησ (y)) ⋄ (JPKησ \ η(y))
Jx .lj ; PKησ ≜ c: ⊕ q{lj :JPKησ (c )} ⋄ JPKησ
Jx .case{li : Pi }i ∈I K

η
σ ≜ c: & q{li :JPiK

η
σ (c )}i ∈I ⋄ JPKησ

where T denotes a dual type of T in a session with two roles p, q as follows:

p↑(T ); S ≜ q↓(T ); S p↓(T ); S ≜ q↑(T ); S

&p{li : Ti }i ∈I ≜ ⊕q{li : Ti }i ∈I ⊕p{li : Ti }i ∈I ≜ &q{li : Ti }i ∈I end ≜ end

We note that the carried type in outputs is dualised in order to match with session type duality.

Example 6.6. Consider:

P ≜ x⟨y⟩.(y (n).y (m).z⟨n⟩.0 | 0) Q ≜ x (y).y⟨0⟩.y⟨1⟩.0

with the following typings:

P ⊢CL x :(nat` nat` ⊥) ⊗ 1, z:nat ⊗ 1 Q ⊢CL x :(nat ⊗ nat ⊗ 1) ` ⊥
We can produce mappings σ1,η1 and σ2,η2 such that (we write φi for σi ◦ ηi ):

φ1 (P ) = (νs ′)s[p][q]⟨s ′[q′]⟩; (s ′[p′][q′](n); s ′[p′][q′](m); s[t][v]⟨n⟩; 0 | 0)
φ2 (Q ) = s[q][p](y);y[p′]⟨0⟩;y[p′]⟨1⟩; 0

and we have that:

(νx ) (P | Q ) ⊨σ3,η z:nat ⊗ 1; s[p]:T1, s[q]:T2, s[t]:T3
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(compd )
P ⊢

σ ,η
CL ∆,x :A Q ⊨σ

′,η′
ρ ∆′,x :A⊥; Γ;G (†)

(νx ) (P | Q ) ⊨(σ ′∪σ )\{x },η∪η′

ρ′ ∆,∆′; Γ, JPKησ ;G ∪ LPMησ

(†) (a) bound channel: ρ ′ = ρ ∪ (x , cσ (x )[pσ (x )][dσ (x )])
(b) role/destination match: cσ (x ) = cσ ′ (x ) ∧ pσ (x ) = dσ ′ (x ) ∧ dσ (x ) = pσ ′ (x )
∀z ∈ ∆,y ∈ ∆′.cσ (z) = cσ ′ (y) ⇒

(c) unique destination: (dσ (z) , dσ ′ (y) ∧ dσ (z), dσ ′ (y) < ρ∧
(d) role/destination disjointness: pσ (z) , dσ ′ (y)∧dσ (z) , pσ ′ (y) ∧ pσ (z) , pσ ′ (y))

(e) bound role/destination match: ∀x ∈ η.∀y ∈ η′.x = y ⇒ dη (x ) = pη′ (y) ∨ pη (x ) = dη′ (y)
(f) bound channel disjointness: ∀x ∈ η.∀y ∈ φ = {σ ′,η′, ρ}.cη (x ) , cφ (y)

Fig. 7. Parallel Composition Mapping with Channel Passing

with

T = p′↑(nat); p′↑(nat); end
T1 = q↑(T ); end
T2 = p↓(p′↑(nat); p′↑(nat); end); end
T3 = v↑(nat); end

Note that mapping z to s[p][t], for instance, would not allow for a valid composition of the two

processes since we would have the role p of session s spread across two threads. Likewise, mapping

z to s[t][q] would disallow the composition of P and Q since it would require the two processes to

share two distinct channel names.

Composition and interconnection networks. We define composition in tandem with the

partial global types for delegation as other constructs are identical to Definition 5.1 (with a single

session). We introduce the judgement P ⊨σ ,ησ ∆; Γ;G, where (σ ,η) is a well-formed mapping

according to Definition 6.2, following a similar pattern to the composition judgement of § 3 and § 5.

Definition 6.7 (Partial Global Types). Given P ⊢
(σ ,η)
CL ∆ we generate its partial global type wrt s ,

written LPMησ (s ) by induction on the structure of P (♯ denotes x ∈ σ ∧ cσ (x ) = s):

Lx⟨y⟩.(Q1 | Q2)M
η
σ (s ) ≜




pσ (x ) { dσ (x ) :↑ (JQ1K
η
σ (y)).fuse(LQ1M

η
σ (s ), LQ2M

η
σ (s )) (♯)

fuse(LQ1M
η
σ (s ), LQ2M

η
σ (s )) otherwise

Lx (y).QMησ (s ) ≜



dσ (x ) { pσ (x ) :↓ (JQKησ (y)).LQMησ (s ) (♯)

LQMησ (s ) otherwise

Let C be the set of session channels in the image of σ . We denote by LPMησ the set

⋃
(LPMησ (s ))s ∈C .

We define P ⊨σ ,ησ ∆; Γ;G, where (σ ,η) is a well-formed mapping, with the rule (changes wrt (⋆)
appear in red) in Fig. 7. Following the Barendregt convention, we assume that if x ∈ bn(P ) ∩ bv (Q )
or x ∈ bv (P )∩bn(Q ), then P andQ eventually exchange x . Conditions (a)-(c) are identical to (comp)
in Fig. 4, but where we refer explicitly to the mapping of CLL channels to MP session channels.

Condition (d) ensures that P and Q are only connected via the channel x , as required by CLL, and
that no roles are split across the two processes. Conditions (e)-(f) ensure that channels that are to
be exchanged are mapped to fresh channels and with consistent role assignments in MP.
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Example 6.8. The following processes are untypable in the global progress type system of [18].

P ≜ x⟨y⟩.y (n).0 ⊢CL x :(int` ⊥) ⊗ 1
Q ≜ z⟨w⟩.w⟨1⟩.0 ⊢CL z:(int ⊗ 1) ⊗ 1
R ≜ x (y).z (w ).w (n).y⟨n⟩.0 ⊢CL x :(int ⊗ 1) ` ⊥, z:(int` ⊥) ` ⊥

Given mappings σ1,σ2,σ3, η1,η2,η3 we obtain the following (with φi = σi ◦ ηi ):

φ1 (P ) = (νt )s[p][r]⟨t[t]⟩; t[s][t](n); 0
φ2 (Q ) = (νt ′)s ′[q][b]⟨t ′[s]⟩; t ′[r][s]⟨1⟩; 0
φ3 (R) = s[r][p](y); s ′[b][q](w );w[s](n);y[t]⟨n⟩; 0

JPKσ1η1 = s[p]:r↑(s↑(int)) JQKσ2η2 = s
′
[q]:b↑(r↓(int)) and JRKσ3η3 = s[r]:p↓(s↑(int)), s

′
[b]:q↓(r↓(int))

We showcase a form of systems that cannot be directly represented in the MCP system of [11] as

a single session.

Example 6.9 (Comparison with [11, 14]). Consider the following CLL processes, where P1 employs

channel passing to send a session of type int ⊗ 1 (we write φi for σi ◦ ηi ):

P1 ≜ a⟨y⟩.(b (x ).y⟨x⟩ | a⟨⟩) ⊢CL a:(int ⊗ 1) ⊗ unit ⊗ 1,b:int` ⊥
P2 ≜ a(y).y (x ).a() ⊢CL a:(int` ⊥) ` unit` ⊥, c:1
P3 ≜ b⟨33⟩ ⊢CL b:int ⊗ 1

We can define mappings σ1,σ2,σ3, η1,η2,η3 such that:

φ1 (P1) = (νs ′)s[p][q]⟨s ′[q2]⟩; (s[t][r](x ); s ′[p2][q2]⟨x⟩ | s[p][q]⟨⟩)
φ2 (P2) = s[q][p](y);y[p2](x ); s[q][p]()
φ3 (P3) = s[r][t]⟨33⟩

We can compose the three processes using our (compd ) rule such that the corresponding global

type G is p → q : (T ).r → t : (int).p → q : (unit). Note that MCP of [11] cannot type this

composition usingG , since P1 has actions of both p and t of s . To type a composition of this form in

MCP, we have two options: (1) we force the actions on CLL channel b correspond to a separate MP
session, thus requiring two global types (G1 = p→ q : (T ).p→ q : (unit) and G2 = r→ t : (int))
to type the corresponding processes; or (2), we separate role t into an independent fourth process

P4 = s[t][r](x ), removing the communication from P1 and requiring an additional thread at the

start of the session (note the dependency between the input from r and the output on s ′ is lost).

Consistency and acyclicity. Given that a cut-free process might contain many sessions and

roles per session (i.e. multiple threads), we extend the notion of a thread and thread-preservation.

Informally we can regard a cut-free process P as a thread if (1) each sequential subterm of P
contains only one role per session; and (2) in each delegation subterm of P of the form x⟨y⟩.(Q | R),
the delegated channel y is allocated to a different session. Condition (1) means that the mapping

builds the longest (i.e. with the most communication steps) possible typable session, and condition

(2) avoids self-delegation. This is consistent with the conditions of Definition 6.1 and Definition 6.2.

In order to state a similar property to Theorem 3.9, we move from a single session to multiple

sessions, where bijective renaming φ ensures that (1) if different channels map to the same session,

their destination roles differ; and, (2) if the same session channel appears in two parallel prefixes,

their principal and destination roles are pairwise distinct. Since judgement P ⊨σ ,ηρ ∆; Γ;G relies on

the channel mappings in Definitions 6.1 and 6.2, we prove the following property which corresponds

to Theorem 3.9 in this channel-passing setting, under the assumption that ρ, σ and η conform the

channel mappings.
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Theorem 6.10 (Consistency). Assume P ⊢CL ∆. If φ (P ) is typable by Γ, i.e. φ (P ) ⊢MP Γ and ρ, σ
and η satisfy the conditions in Definitions 6.1 and 6.2 and φ = σ ◦ η ◦ ρ, then P ⊨σ ,ηρ ∆; Γ;G.

Proof. See Appendix A.4.1. □

The property above, while weaker than the uniqueness property of Theorem 3.9, provides a form

of consistency between the channel mappings and the (compd ) rule in Fig. 7.

Proposition 6.11. Let P ⊨σ ,ηρ ∆; Γ;G and ∆ = ∅ or ∆ contains only 1 or ⊥. There exists a single
well-formed global typeG , such thatG = fuses (G) where fuses (G) denotes fusion of all partial global
types for session s in G.

Proof. Identical to Proposition 5.5 due to the fact that instances of session delegation that are

composed in P are mapped to independent and complete global types. □

We prove that delegation does not add to the connection graph since delegation denotes a distinct

multiparty session (i.e. the analogue of Theorem 6.12).

Theorem 6.12. Let P ⊨σ ,ηρ ∆; Γ;G and ∆ = ∅ or ∆ containing only 1 or ⊥. The interconnection
network graph for fuses (G) for each session s is acyclic.

Proof. Assume to the contrary that the connection graph for G has a cycle. We have two kinds

of cycles: a sequence of edges of the form either:

(1) Triangle: (p, q), (p, r), (q, r); or
(2) Diamond: (p, q), (p, r), (q, t1), . . . , (tn , s), (r, v1), . . . (vm , s).

We show that ∆ cannot be empty or contain only 1 or ⊥ in either case, deriving a contradiction. The

proof follows the general lines of that of Theorem 5.7, but with a more involved case analysis since

a cut-free process may now implement multiple roles (which by the restrictions of Definitions 6.1

and 6.2 will not be connected), and thus we need to account for all possibilities of roles being

implemented by the same process. In particular, the case for “diamond” shaped connections (Case
(2) below) of the form (p, q), (p, r), (q, t1), . . . , (tn , s), (r, v1), . . . (vm , s) requires us to also account

for the fact that r and q might be implemented by the same cut-free process, and similarly for q
and v1, r and t1, and so on.

Case (1): Assume the connection graph for G contains a triangle. Since (p, q) is in the connection

graph, we know that roles p and q cannot be implemented in the same process thread. Similarly for

p and r and q and r. Thus, we must have at least three process threads (P1, P2 and P3), one for each
role. Without loss of generality, assume P1 ⊢

σ0
CL x :A,y:B with σ0 (x ) = s[p][q] and σ (y) = s[p][r].

P2 ⊢
σ1
CL x : A⊥, z:C with σ1 (x ) = s[q][p] and σ1 (z) = s[q][r]. It is then immediate that we cannot

find any P3 implementing r (to fully empty the context) since it would have to share two channel

names with the composition of P1 and P2, which is not a well-formed composition according to (†)
in rule (compd ).

Case (2):Assume the connection graph forG contains a diamond. We already know by Theorem 5.7

that when all roles are implemented by separate process threads that we cannot form a diamond.

Hence, by Definitions 6.1 and 6.2, it must be the case that unconnected roles in the graph are

implemented in the same process.

We note that if q and r are implemented by the same process thread, then we cannot find a

closing instance of p (since we would need to compose two processes sharing two channel names,

which is disallowed by rule (compd ), or with ill-formed mappings according to (†) in the same

rule).

We proceed by case analysis on (n,m).
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Case (2-1) n = 0 andm = 0: we cannot find a closed instance of the network since either it is

the case that each role is assigned to each thread (and so Theorem 5.7 applies) or p and s are
implemented by the same thread. If this were the case, we must have P1 ⊢

σ0
CL x :A,y:B, z:C,w :D such

that σ0 (x ) = s[p][q], σ0 (y) = s[p][r], σ0 (z) = s[s][r] and σ0 (w ) = s[s][q]. This is not possible by
Definitions 6.1 and 6.2.

Case (2-2) n = 0 andm =m′ + 1: we have established that (p and q), (p and r) and (q and r) cannot
be implemented by the same thread. If q and v1 were implemented by the same thread, we cannot

find a closed instance of this network since we need to compose with the (distinct) implementations

of p and r which themselves are connected (by the assumption of the existence of a diamond

connection). Thus we need to compose a process mapped to (s[q][p], s[v1][r] and s[v1][v2]) with a

process mapped to (s[p][q] and s[p][r]) and another mapped to (s[r][p] and s[r][v1]). If we compose

the first with the second, we cannot compose with the third since two channel/role assignment pairs

(s[r][p] and s[r][v1]) are shared, which is forbidden by (†) in rule (compd ). A similar reasoning

applies to the other ways of composing the processes. The same reasoning applies if q and vi were
implemented by the same thread.

Case (2-3)n = n′+1 andm =m′+1:we begin with the case where q and v1 are implemented by the

same thread and r and t1 are implemented by the same thread, which are obviously uncomposable

according to rule (compd ), as two distinct channels are shared. The same reasoning applies as we

increase n andm. If ti and vi are implemented by the same thread we must have processes sharing

two distinct channels, which is impossible. If tn and vm are mapped to the same process, then

the implementation of s must share two channels with this process, which is also a contradiction.

Finally, if p and s are the same process, the same reasoning described in Case (2-1) case applies. □

Lemma 6.13. Let P ⊨∅,ηρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆ containing only 1 or ⊥.

Proof. We note that the renamings ensure that the two endpoints of an interaction cannot

be implemented by the same single-thread process and that bound-names involved in delegation

denote linear interactions along different session channels. Hence a similar argument using the

contradiction is applicable (with a case analysis for delegations) as the proof of Lemma 5.8. See

Appendix A.4.2 for the details. □

Lemma 6.14. Let P ⊨∅,ηρ ∆; Γ;G with ∆ = ∅ or ∆ containing only 1 or ⊥. We have that co(Γ).

Proof. We account for the additional case of delegation by noting that the sent channel has

a dual behaviour to the received channel (and we generate compatible endpoint types in Γ). The
result then follows using a similar argument as the proof of Lemma 5.9. □

Theorem 6.15. Let P ⊨σ ,ηρ ∆; Γ;G and ∆ = ∅ or ∆ containing only 1 or ⊥. Then we have: (1)
P →∗ 0; and (2) fuses (G) at each session s is well-formed and deadlock-free.

Proof. (1) follows from [9, 60] and (2) follows from Proposition 6.11. □

Corollary 6.16. If P ⊨∅,ηρ ∆; Γ;G and ∆ = ∅ or ∆ contains only 1 or ⊥, then η(ρ (P )) is deadlock-
free.

7 REPLICATION
We account for CLL replication within our framework of MP types. Typically, MP processes (and

types) do not explicitly account for replication, thus instead of extending the MP process calculus

with a non-standard form of MP replication that corresponds to the binary sessions of CLL, we
reason at the level of types. From the point of view of interconnectability within a linear session,
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the replication construct consists of the ability to “repeat” existing interconnections in fresh,
independent sessions. While a replicated session may be used by many processes (due to the (cut!)
rule which allows for many threads to use a replicated name, akin to a multicut for non-linear

sessions), each session replica is necessarily independent since rule (!) does not allow a replicated

session to rely on other linear sessions. Hence the addition of replication does not change the nature

of interconnectability of linear sessions in CLL – each client of a replicated session is connected to a

distinct, isolated instance. Given that we focus on the interconnectability of CLL (hence generation
of global and local types), we establish our main results by extending global and local types (but
not the MP process syntax) with a form of replication.

Channel mapping. We define our mapping as in Definition 6.1, but we allow for different

session names in the same thread and multiple destination roles for replicated channel names

(otherwise the mapping of replicated inputs would be degenerate). Given P ⊢CL Ξ;∆ we enforce

that the channels in Ξ and ∆ be mapped to distinct MP session channels. Moreover, we require that

all linear channels which deal with replicated sessions be mapped to distinct MP sessions. We write

posBang(A) iff !/? occurs to the right of ⊗ or `, or in a selection or branching in A. This predicate
ensures that the behaviour specified by A aims to offer or use a replicated session but not delegate

such a session. For the case of replicated inputs, pσ denotes a single role and dσ denotes a set of

roles. The rest is unchanged.

Definition 7.1 (Channel Mapping – Replication). Let P ⊢CL Ξ;∆ without using the cut rule. We

define a channel to role-indexed channel mapping of P as a pair of mappings (σ ,η) such that: (1)
for all distinct x ,y ∈ fn(P ), then if x ∈ Ξ and y ∈ ∆ or x ,y ∈ Ξ then cσ (x ) , cσ (y). If x ,y ∈ ∆ then

σ (x ) = s[p][q] and σ (y) = s ′[p′][q′] where if s = s ′ then p = p′ and q , q′; (2) for all distinct
x ,y ∈ bn(P ), η(x ) = s[p][q] and η(y) = s ′[p′][q′] where s , s ′ and s, s ′ < σ ; (3) for all distinct
x ,y ∈ bv (P ), η(x ) = x[p] and η(y) = y[p′]; and (4) ∀x :A,y:B ∈ ∆ with x , y if posBang(A) then
cσ (x ) , cσ (y).

Clause (1) above, beyond the identical condition from Definition 6.1, ensures that replicated

CLL session channels are mapped to distinct MP sessions that do not clash with those for linear

CLL channels; clauses (2) and (3) deal with the treatment of bound channel names and variables,

as in Definition 6.1; finally, clause (4) ensures that different CLL channels that aim to offer or use

replicated session behaviours (i.e. whose types have occurrences of ! or ? that are not delegated)

are not mapped to clashing MP session channels.

Global types and type generation. We extend the syntax of global types with the constructs

for replication. Partial global types with a dedicated replication construct are p̃ { q : !(T ).G, with
the corresponding dual p { q : ?(T ).G which fuse to the corresponding p̃ → q : ∗(T ).G global

type, denoting that role q hosts the replicated behaviour T , to be used by roles p̃ an arbitrary (but

finite) number of times.

We then extend the partial global type generation to account for replication as follows.

Definition 7.2 (Type Generation). Let P ⊢(σ ,η)CL Ξ;∆, with all free and bound names distinct. We

generate a set of role-indexed channels and types and partial global types wrt a multiparty session

channel s , JPKησ and LPMησ (s ), respectively, by induction on the structure of P , as follows (we assume
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the same notations of Definition 6.5 and 6.7):

J!x (y).PKησ ≜ c:dφ (x )!(JPKησ (y))
⊎

(JPKησ \ η(y))

Jx⟨y⟩.PKησ ≜ c:dφ (x )?(JPKησ (y))
⊎

(JPKησ \ η(y))

L!x (y).QMησ (s ) ≜



dσ (x ) { pσ (x ) : !(JQKησ (y)).LQMησ (s ) (x ∈ σ ∧ cσ (x ) = s )
LQMησ (s ) otherwise

Lx⟨y⟩.QMησ (s ) ≜



pσ (x ) { dσ (x ) :?(JQKησ (y)).LQMησ (s ) (x ∈ σ ∧ cσ (x ) = s )
LQMησ (s ) otherwise

We can then define composition⊪σ ,η
ρ Ξ;∆; Γ;G as in Fig. 7 extending the conditions (a-f) consid-

ering dσ and dη as sets (and the appropriate checks for set membership and non-membership).

Lemma 7.3 (Partial Global Types). A grammar of partial global types generated under Definitions
7.1 and 7.2 for each session is given as:

G ::= end | p̃ { q :!(T ).end | p1 { q :?(T ).p2 { q :?(T )....pn { q :?(T ).end
| p { q: ↑ (T ).G | p { q: ↓ (T ).G | p { q:⊕{lj :G j }j ∈J | p { q: & {lj :G j }j ∈J

Proof. By Definition 7.1(1,3,4), if x in !x (z).P is assigned to s , P does not contain any channels

mapped to s . Hence if typable Q contains both C1[!x (z).P] (with type of x is !) and C2[x⟨y⟩.R]
(with type of x is ?) as its subterms, (1) Ci does not contain replication mapped to s; (2) C1 does

not contain channels of ? type mapped to s; and (3) we can set C2 so that it not contain channels

of ? type mapped to s . Thus at MP session s , p̃ { q :!(T ).end is generated from !x (z).P , and
p1 { q :?(T ).p2 { q :?(T )....pn { q :?(T ).end with pj ∈ p̃ is generated from x⟨y⟩.R where the

condition pj ∈ p̃ is ensured by the conditions of ⊪σ ,η
ρ . □

Fusing and complete global types. We can now define fuse over partial global types given in

Lemma 7.3. The definition is extended as follows (with T1 ≤ T2, p ∈ p̃ and omitting the congruence

cases where the the fuse operation pushes under both the partial and complete replication prefixes):

fuse(p̃ { q :!(T ).end, end) = p̃→ q : ∗(T ).end
fuse(p̃→ q : ∗(T ).end, end) = p̃→ q : ∗(T ).end

fuse(p̃ { q :!(T1).G1, p { q :?(T2).G2) = fuse(p̃ { q :!(T1).G1,G2) p ∈ p̃

Lemma 7.4 (Complete Global Types). A grammar of complete global types generated under
Definitions 7.1 and 7.2 with fuse for each session is given as:

G ::= end | p̃→ q : ∗(T ).end | p→ q:(T ).G | p→ q:{lj :G j }j ∈J

Proof. We only need to check that the three rules for replication defined above produce a global

type of the form p̃→ q : ∗(T ).end. By Lemma 7.3, the third rule is replaced by

fuse(p̃ { q :!(T1).end, p { q :?(T2).G2) = fuse(p̃ { q :!(T1).end,G2) p ∈ p̃

where G2 is either end or p1 { q :?(T2)....pn { q :?(T2).end where pi ∈ p̃. IfG2 = end, then the

next matched rule is the first rule, which produces p̃→ q : ∗(T ).end. We repeat the third rule until

we reach pn { q :?(T2).end to then produce p̃→ q : ∗(T ).end. □

Note that the second rule of fuse(G ) would be used when the generated global type is in the

form of the second line of the grammar in Lemma 7.3.
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Example 7.5 (Racing on a replicated session). We illustrate the concepts pertaining to replication

by considering the following processes (as in earlier examples, we assume basic value passing):

P ≜ !x (y).y (z1).y (z2).y⟨z1 + z2⟩

Q ≜ x⟨y⟩.y⟨1⟩.y⟨2⟩.y (z3)

R ≜ x⟨y⟩.y⟨2⟩.y⟨1⟩.y (z4)

where P ⊢CL ·;x :!(Int` Int` Int ⊗ 1),Q ⊢CL ·;x :?(Int ⊗ Int ⊗ ⊥) and R ⊢CL ·;x :?(Int ⊗ Int ⊗ ⊥). We

define mappings σ , σ1, σ2 and η, η1, η2 such that:

JPKησ = s[p]:{q, r}!(p0↑(Int); p0↑(Int); p0↓(Int))
JQKη1σ1 = s[q]:p?(p0↑(Int); p0↑(Int); p0↓(Int))
JRKη2σ2 = s[r]:p?(p0↑(Int); p0↑(Int); p0↓(Int))

Generating the following global types:

LPMησ = {q, r} { q : !(p0↑(Int); p0↑(Int); p0↓(Int)).end
LQMη1σ1 = {q, r} { q :?(p0↑(Int); p0↑(Int); p0↓(Int)).end
LRMη2σ2 = {q, r} { q :?(p0↑(Int); p0↑(Int); p0↓(Int)).end

It is then straightforward that

fuse(LPMησ , fuse(LQMη1σ1 , LRMη1σ1 ) = {q, r} → p : ∗(p0↑(Int); p0↑(Int); p0↓(Int)).end

Local types and liveness. To prove the main results, we now extend the syntax of local types

with the constructs p̃!(T ) and p?(T ), denoting the type of a participant that expects to input from

p̃, afterwards spawning a replica of type T , and the type of a participant that will use a replicated

session offered by p (by sending it a fresh session) of type T .
Similarly, the syntax of binary typesT extends with !(T ) and ?(T ) and the duality of binary types

is extended to !(T ) =?(T ) and ?(T ) =!(T ). Then the partial projection is defined as an input and an

output of Definition 2.4, respectively.

The projection of G = s̃→ r : ∗(T ).end is defined as follows:

G↾p = r?(T ) if p ∈ s̃; G↾p = s̃!(T ) if p = r; G↾p = end otherwise.

The labels for LTSs are extended with pq̃!(T ) and pq?(T ), and the LTS rules of the local types

are defined as:

q?(T )
pq?(T )
−→ end q̃!(T )

pq̃!(T )
−→ q̃!(T )

We extend the duality of labels as pq̃!(T ) = qip?(T ) and qip?(T ) = pq̃!(T ) with qi ∈ q̃. Then the

transitions of the configurations do not change. The semantics of G is defined as

(expo) p̃→ q : ∗(T ).end
pq?(T ) ·qp̃!(T )
−→ p̃→ q : ∗(T ).end with p ∈ p̃

We extend Definition 4.7 by adding the following cases.

4. if ℓ = pq?(T ) there exists C
ℓ⃗′

−→ C ′
ℓ
−→

ℓ
−→ C ′′;

5. if ℓ = pq̃!(T ) for all C
ℓ⃗′

−→ C ′′ such that C ′′ = (T ′p )p∈P , T
′
p

ℓ
−→ T ′′p .

Theorem 4.9 is updated replacing (DF) by the following liveness property, which allows for

leftover replicated types (akin to Definition 2.2). Note that a difference from Theorem 4.9 is that

?-output is treated as an output and a selection since the replication is always available.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2018.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Interconnectability of Session-based Logical Processes :31

Definition 7.6 (Live). C = (T0p)p∈P is live if for all C
ℓ⃗
−→ C1 = (Tp)p∈P , if Tp

ℓ
−→ T ′p and ℓ is not !,

there exists C ′ = (T ′′p )p∈P such that C1

ℓ⃗′

−→ C ′ and (1) C ′
ℓ ·ℓ
−→ C ′′ if ℓ is an output or a selection or

?-output; (2) C ′
ℓ ·ℓ
−→ C ′′ if ℓ is an input; or (3) C ′

ℓ
′
·ℓ′

−→ C ′′ if ℓ = pq ▷ l with some ℓ′ = pq ▷ l ′. ⋄

For the main theorem, we replace Definition 4.8 by Definition 7.6 to account for replication by

mirroring the notion of live process.

Theorem 7.7. Let P ⊪∅,ηρ ·;∆; Γ;G and ∆ = ∅ or ∆ contains only 1 or ⊥. We have: (1) If live (P )
then P → P ′; (2) at each session s , fuses (G) is well-formed and live; and (3) the ING is acyclic.

Proof. (1) follows from [9, 60]; (2) we first note that replication is mapped to distinct multiparty

sessions. Lemma 7.4 proves well-formedness. By Lemma 7.3 and Lemma 7.4, a complete replicated

global type at each s is the form of p̃→ q : ∗(T ).end. Then by the rules of LTSs defined above, if

ℓ = pq?(T ) (?-output, which is the case of (1) in Definition 7.6), then C ′
ℓ ·ℓ
−→ C ′′ since C contains

pq̃!(T ) by the definition of projection. Hence for each s , fuses (G) is live; and (3) follows the same

argument as Theorem 5.7, noting that each replicated session corresponds to a different session. □

The uniqueness theorem for replication, cf. Theorems 3.9 and 6.10, can be obtained under the

condition where each replicated channel is assigned to a new session.

Example 7.8. The following processes (from an example of [14]) are untypable in the global

progress type system of [18].

P ≜ !x (y).y (n) ⊢CL x :!(int` 1) Q ≜ !z (w ).w⟨1⟩ ⊢CL z:!(int ⊗ 1)
R ≜ x⟨y⟩.z⟨w⟩.w (n).y⟨n⟩.0 ⊢CL ·;x :?(int ⊗ ⊥), z:?(int` ⊥)

We define mappings σ ,σ1,σ2 and η,η1,η2 such that:

LPMησ = s[p]:r!(p0↑(int)) LQMη1σ1 = s
′
[q]:b!(r↓(int)) LRMη2σ2 = s[r]:p?(p0↑(int)), s

′
[b]:q?(r↓(int))

Then (νx , z) (P | Q | R) ⊪ ·; ·; LPMησ , LQMη1σ1 , LRMη2σ2 .

8 MULTICUT IN CLL

The inability to compose processes that interact by sharing more than one channel – often dubbed

multicut – significantly limits the interconnection networks in CLL. Logically, such a form of

unrestricted multicut is unsound, and operationally results in deadlocks. Consider the following

CLL processes:

P ≜ y (x ).z⟨7⟩.0 R ≜ w (x ).y⟨”a”⟩.0 Q1 ≜ z (x ).w⟨tt⟩.0 Q2 ≜ w⟨tt⟩.z (x ).0

We have that P is typed in a context ∆ = y:str ` ⊥, z:int ⊗ 1, R is typed in a context ∆′ =
y:str ⊗ 1,w :bool`⊥ and bothQ1 andQ2 are typed in a context ∆′′ = z:int`⊥,w :bool ⊗ 1. We can

observe that the composition (νy, z,w ) (P |Q1 |R) is clearly deadlocked (viz. § 2.2). However, the

composition (νy, z,w ) (P |Q2 |R) is safe, with the processes reducing in three steps to 0. Intuitively,
despiteQ1 andQ2 both implementing the same sessions, their (identical) typings do not distinguish

the sequential orderings of actions.

As discussed in § 3, the framework of MP can distinguish such orderings. Thus we may appeal

to the higher discriminating power of PMC in order to eliminate these unsafe (i.e. deadlocking)

multicuts. For instance, the following MP processes can be mapped from the CLL processes above:

P ′ ≜ s[p][r](x ); s[p][q]⟨7⟩ R′ ≜ s[r][q](x ); s[r][p]⟨”a”⟩
Q ′
1

≜ s[q][p](x ); s[q][r]⟨tt⟩ Q ′
2

≜ s[q][r]⟨tt⟩; s[q][p](x )
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(MCut)

P ⊩σ
ρ ∆,x1:A1, ...,xn :An ;G1 Q ⊩σ ′

ρ′ ∆
′,x1:A

⊥
1
, ...,xn :A

⊥
n ;G2

G = fuse(G1,G2) defined ρ ′ ∩ ρ = ∅ (‡)

(νx1, ...,xn ) (P | Q ) ⊩(σ ′∪σ )\{x1, ..,xn }
ρ′′ ∆,∆′;G

(‡) (a) bound channels: ρ ′′ = ρ ∪ ρ ′ ∪i (xi , s[pσ (xi )][dσ (xi )])
(b) role/destination match: pσ (xi ) = dσ ′ (xi ) ∧ dσ (xi ) = pσ ′ (xi )

(c) unique destination: ∀y ∈ ∆.z ∈ ∆′.(dσ (y), dσ ′ (z) < ρ, ρ ′∧
(d) role/destination disjointness: pσ (y) , pσ ′ (z) ∧ pσ (y) , dσ ′ (z) ∧ pσ ′ (z) , dσ (y))

Fig. 8. Multicut Rule

Then the (partial) global types generated from P ′, R′ and Q ′
1
are not PMC, whereas those from P ′,

R′ and Q ′
2
are:

LP ′M ≜ r { p: ↓ (str).p { q: ↑ (int).end LQ ′
1
M ≜ p { q: ↓ (int).q { r: ↑ (bool).end

LR′M ≜ q { r: ↓ (bool).r { p: ↑ (str).end LQ ′
2
M ≜ q { r: ↑ (bool).p { q: ↓ (int).end

We thus make use of PMC to develop two deadlock-free multicut rules for CLL. We allow processes

to share multiple channels holding dual types of each other (as the multicut rule in [2]) but restrict

composition by requiring the induced partial global types to be fuseable (or PMC), recovering

deadlock-freedom.

Definition 8.1 (Multicut – No Name Passing or Replication). Using the mapping of § 3, we redefine

the judgement P ⊩σ
ρ ∆;G to produce a multicut rule, defined in Fig. 8 where “fuse(G1,G2) defined”

means that for all Gi ∈ G1 ∪ G2, fuse(· · · (fuse(G1,G2),G3)) · · · ,Gn ) is defined (Definition 4.10).

Rule (MCut) is symmetric, matching a generalised cut rule. We highlight the differences of (MCut)
from (comp) and (compd ) with red letters. Clauses (a) and (b) are fundamentally unchanged from

(comp), requiring the mappings for composed channels to match. We note cσ (x ) = cσ ′ (y) = s for
all free names x and y since we consider a single session. Clauses (c) and (d) are as in (compd ), but
we remove the condition dσ (z) , dσ ′ (y) to enable multicut.

Theorem 8.2. Let P ⊩σ
ρ ∆; Γ;G and ∆ = ∅ or ∆ contains only 1 or ⊥. Then: (1) P →∗ 0; and (2)

fuse(G) is a complete global type.

Proof. (1) By the same proposition as Proposition 3.6, we obtain if P ⊩σ
ρ ∆; Γ, then ρ (σ (P )) ⊢MP Γ.

By the definition, Γ only contains a single multiparty session where each prefix is simple [31,

Definition 5.25 in JACM]. Since ∆ = ∅ or ∆ contains only 1 or ⊥, Γ is coherent. By the result of [31,

§ 5], ρ (σ (P )) →∗ 0. Then by the operational correspondence between MP and CLL, P →∗ 0. (2) By
construction of (MCut). □

Termination (Theorem 8.2(1)) follows by the fact that the calculus preserves a single (recursion-free)

multiparty session [31, § 5]; The fact that multicut of a complete session generates a complete

global type (Theorem 8.2(2)) is by construction. While forms of multicut are in general logically

unsound since they invalidate cut elimination [60, § 6], our (MCut) rule ensures that closed proof

terms that may be composed do indeed have progress (and terminate – implying soundness).

We note that in the presence of general delegation (and thus interleaved multiparty sessions)

multicut would construct a well-typed (and fuseable) composition of processes that deadlock.

However, using the partial type generation in § 6, we can formulate a simple version of multicut
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(MCut)

P ⊨σ ,ηρ ∆,x1:A1, ...,xn :An ;G1 Q ⊨σ
′,η′

ρ′ ∆′,x1:A
⊥
1
, ...,xn :A

⊥
n ;G2

fuse(G1,G2) defined ρ ′ ∩ ρ = ∅ (‡)

(νx1, ...,xn ) (P | Q ) ⊨(σ ′∪σ )\{x1, ..,xn },η∪η′

ρ′′ ∆,∆′; fuse(G1,G2)

(‡) (a) bound channels: ρ ′′ = ρ ∪ ρ ′ ∪i (xi , s[pσ (xi )][dσ (xi )])
(b) role/destination match: cσ (xi ) = cσ ′ (xi ) pσ (xi ) = dσ ′ (xi ) dσ (xi ) = pσ ′ (xi )

(c) unique destination: ∀y ∈ ∆.z ∈ ∆′.(dσ (y), dσ ′ (z) < ρ, ρ ′∧
(d) role/destination disjointness: pσ (y) , pσ ′ (z) ∧ pσ (y) , dσ ′ (z) ∧ pσ ′ (z) , dσ (y))

(e) bound role/destination match: ∀x ∈ η.∀y ∈ η′.x = y ⇒ dη (x ) = pη′ (y) ∨ pη (x ) = dη′ (y)
(f) bound channel disjointness: (1) ∀x ∈ η.∀y ∈ φ = {σ ′,η′, ρ, ρ ′}.cη (x ) , cφ (y)

(2) ∀x ∈ η′.∀y ∈ φ = {σ ′,η, ρ, ρ ′}.cη′ (x ) , cφ (y)

Fig. 9. Multicut with Channel Passing

with channel passing, by restricting partial global type generation (Definition 6.7) to only be defined

when sent channels are consistently assigned within the same MP session, as defined below.

Definition 8.3 (Multicut with Name Passing). Using the mapping of § 6 but where all free names

are mapped to the same session, by restricting partial global type generation (Definition 6.7) to only

be defined when in the clause for channel output, ∀s ∈ σ ,η.LQ1M
η
σ (s ) = LQ1M

η
σ (η(y)), we define a

multicut rule for name passing in Fig. 9.

The above (MCut) extends the rule of Fig. 8 with clauses (e)-(f) from Fig. 7 (red letters highlight

differences), which ensure that channels that are to be exchanged are mapped to fresh channels

with consistent role assignments in MP.
The same deadlock-freedom as in Theorem 8.2 can be obtained given that the (MCut) rule of

Fig. 7 stays within a single session.

We refrain from introducing a multicut for replication since (cut!) already enables us to share

replicated sessions among many clients. Moreover, a cut-free process can only implement a single

replicated session (i.e. P ̸⊢CL Ξ;x :!A,y:!B cut-free).

Example 8.4 (Two Buyer Protocol [31]). The following defines the coordination of two Buyers

seeking to buy from a Seller.

Seller ≜ x (t ).x⟨32⟩.y⟨32⟩.y.case{ok :y (s ).0,nok :0}

Buyer
1
≜ x⟨"xpto"⟩.x (n).z⟨n/2⟩.0

Buyer
2
≜ y (n).z (m).y.ok ;y⟨"foo"⟩.0

The Seller uses channels x and y to interact with Buyer
1
and Buyer

2
. Buyer

1
uses channel z to

interact with Buyer
2
. The Seller waits for Buyer

1
to send it the title of the item that is to be

purchased, replying to both buyers with a price. Buyer
1
then emits to Buyer

2
how much it will

contribute in the purchase. Buyer
2
then chooses to agree and sends to the Seller an ok message

and a string (e.g. the shipping address). Consider σ ,σ1,σ2:

σ (Seller) = s[s][b1](t ); s[s][b1]⟨32⟩; s[s][b2]⟨32⟩; s[s][b2] & {ok :s[s][b2](s ),nok :0}
σ1 (Buyer1) = s[b1][s]⟨"xpto"⟩; s[b1][s](n); s[b1][b2]⟨n/2⟩; 0
σ2 (Buyer2) = s[b2][s](n); s[b2][b1](m); s[b2][s] ⊕ ok ; s[b2][s]⟨"foo"⟩; 0
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In the development of § 5 the processes above would not be composable. We may now compose

them via multicut:

LSellerMσ = b1 { s :↓ (str).s { b1 :↑ (int).s { b2 :↑ (int).
b2 { s : &{ok :b2 { s :↓ (str).end,nok :end}

LBuyer
1
Mσ1 = b1 { s :↑ (str).s { b1 :↓ (int).b1 { b2 :↑ (int).end

LBuyer
2
Mσ2 = s { b2 :↓ (int).b1 { b2 :↓ (int).b2 { s : ⊕{ok : b2 { s :↑ (int).end}

LetG1 = LSellerMσ , G2 = LBuyer
1
Mσ1 and G3 = LBuyer

2
Mσ2 . Then we have that the fuse of the three

global types is:

b1→ s : (str).s→ b1 : (int).s→ b2 : (int).b1→ b2 : (int).b2→ s : {ok : b2→ s : (str).end}

Note that we do not require any modifications to the syntax of CLL processes to represent and

verify this multiparty example.

Example 8.5 (Multicut and channel passing). We illustrate a multicut with channel passing via

the following processes:

P ≜ x⟨y⟩.(y⟨1⟩.y (z1) | z⟨2⟩.x (z2))

Q ≜ x (y).y (z4).x⟨3⟩.y⟨4⟩.w⟨5⟩

R ≜ z (z3).w (z4)

where P ⊢CL x :(Int ⊗ Int` 1) ⊗ (Int`⊥), z:Int ⊗ 1, Q ⊢CL x :(Int` Int ⊗ ⊥) ` (Int ⊗ 1),w :Int ⊗ ⊥
and R ⊢CL z:Int` ⊥,w :int` 1 We define mappings σ ,σ1,σ2,η,η1,η2 such that:

σ (η(P )) = (νs ′)s[p][q]⟨s ′[q1]⟩; (s ′[p1][q1]⟨1⟩; s ′[p1][q1](z1) | s[p][r]⟨2⟩; s[p][q](z2))
σ1 (η1 (Q )) = s[q][p](y);y[p1](z4); s[q][p]⟨3⟩;y[p1]⟨4⟩; s[q][r]⟨5⟩
σ2 (η2 (R)) = s[r][p](z3); s[r][q](z4)

We then have the following global types:

LPMησ = p { q :↑ (q1↓(Int); q1↑(Int)).p { r :↑ (Int).q { p :↓ (Int).end
LQMη1σ1 = p { q ↓ (q1↓(Int); q1↑(Int)).q { p :↑ (Int).q { r :↑ (Int).end
LRMη2σ2 = p { r :↓ (Int).q { r :↓ (Int).end

We have that: fuse(LPMησ , fuse(LQMη1σ1 , LRMη2σ2 )) = p → q : (q1↓(Int); q1↑(Int)).p → r : (Int).q →
p : (Int).q → r : (Int).end, and so the multicut rule can be applied, validating the deadlock-free

composition of P , Q and R.

9 DISCUSSION AND RELATEDWORK
Interconnectability. The work [1] studies acyclicity of proofs in a computational interpretation

of linear logic where names are used exactly once. With session types, channel names can be reused

multiple times in a cyclic way (even in CLL defined in § 2), insofar as two processes may both send

and receive along the same channel. This feature, combined with dynamic name creation in CLL,
makes the study of interconnectability (and deadlock-freedom in general) more challenging. The

work [2] shows that compact-closed categories can interpret cyclic networks typed with multicut

rules, but are unable to ensure deadlock-freedom. A categorical model of deadlock-free multicut

(i.e. finding additional structure to interpret PMC) is interesting future work. The work [3] defines

a multicut rule for a variant of CP [60] where propositions are self-dual. This work focuses on

capturing the full power of the π -calculus and thus is not concerned with either deadlock-freedom

(which their multicut rule does not ensure) or interconnectability.
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Multiparty Sessions and Linear Logic. The works of [11, 14] and [7] are the most related to

our own. The work [14] proposed a typing system for CLL extended to multiparty session primitives.

The methodology follows a coherence-based multiparty session type framework, starting from a

special form of global types which are annotated by linear logic modalities. The global types are

projected to propositions annotated by roles, which type each CLL process. The multicut rule is

applied to a complete set of processes in a multiparty session, directly using information of that

global type. The work [11] develops a variation on the coherence-based approach, based on the

work of [60] and [7], giving an interpretation of ⊗ and ` that is dual to that of [14]. We highlight

that the work of [13] also applies a coherence-based linear logic interpretation to a choreographic

(global) language which differs from multiparty session types.
Our work differs from the above approaches in several respects: (1) the work in [11, 13, 14]

does not (aim to) study interconnectability; (2) the approach of [11, 14] relies on a special form of

global types annotated by modalities, or propositions annotated by participants. Our compositional

PMC-based approach requires no change to the semantics or syntax of processes, types, nor typing

rules (except multicut) of CLL; (3) the multicut rule of [11, 14] is applied to a complete set of

processes in a multiparty session, directly using information of global types, while ours is a cut

between two processes; and (4) the coherence-based cut rule [11, 14] is more limited than our

synthesis-based approach. This is because a complete global type built by PMC characterises all

deadlock-free traces observable from local type configurations (Theorem 4.9). For example, our

system types Example 6.9, which is untypable in [11, 14] with the corresponding global type. Thus,

our framework allows for more typable representatives of individual multiparty sessions.

The work [7] shows that the session interpretation of intuitionistic linear logic can encode the

behaviour of multiparty sessions (up to typed barbed congruence). While the goals of our work are

quite different, focusing on interconnection networks of CLL processes, we note that their work
does not contradict with our results. Their encoding consists of adding another participant (i.e. an
orchestrator) that mediates all interactions between roles (this encoding also appears in [11]). Thus,

a network such as that of Fig. 1a is realised by disconnecting all participants, adding a new (fourth)

participant p′, and connecting each participant only with p′ (i.e. a tree topology). Our encoding
preserves the interconnectability of global types, whereas the encoding in [7, 11] does not.

Degree of Sharing and Distributability. The work [19] identifies classes of deadlock free

processes defined by the number of shared binary sessions between the parallel processes. Our

connectability based onmultiparty differs from their characterisation and is unrelated to the number

of sessions in the process syntax: in our framework, two parallelMP binary processes and CLL have
the same connectability since both calculi allow bidirectional interactions (p↔ q), while in [19],

CLL is strictly less expressive than two binary session processes with two shared channels. Notice

that the work of [19] does not study replication or extensions of CLL with multicut as we have

done in § 7 and § 8. An encoding criterion for synchronisation among parallel processes called

distributability is studied in [52]. Their untyped criterion is not applicable to our setting since

processes with the same interconnection network might not have the same distributability (and

vice-versa). For instance, consider:

R ≜ s[r][p](y); s ′[r0][q](w );w[q0](n);y[p0]⟨n⟩
R′ ≜ s[r][p](y);y[p1]⟨n⟩ | s ′[r0][q](w );w[q1](n)

In R, r ↔ p at s and r0 ↔ q at s ′ are independent, so that R′ has the same interconnection

structure as R. However, R has 1-distributability while R′ has 2-distributability. So, results based on

distributability do not in general imply ours.
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Progress and Multiparty Compatibility. Type systems for progress in concurrent processes

are a vast area of research. See, e.g. [18, 34, 50, 59]. While the main emphasis of this work is not

a typing system for progress, our encodings ensure progress in restricted interleaved multiparty

sessions.

Multiparty Compatibility (MC) properties are studied in [22, 37] where a global type is synthe-

sised from communicating automata, assuming all participants are initially present. These global

synthesis methods are not directly applicable to CLL where composition is binary. To overcome this

issue, we proposed PMC together with fusing (partial) global types generated from CLL processes.
Investigations of partial compatibility for choreographies [37] and timers [6] would allow us to

capture larger classes of connectability (with timing information) in the CLL framework.
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A APPENDIX – PROOFS
A.1 Proofs from § 3 – Relating the CLL and MP systems
A.1.1 Proof of Proposition 3.7.

Proposition 3.7 (Operational Correspondence). Suppose P ⊩σ
ρ ∆; Γ and P −→ P ′. Then

ρ (σ (P )) −→ Q s.t. P ′ ⊩σ ′
ρ′ ∆

′
; Γ′ and Q = ρ ′(σ ′(P ′)) with σ ′ ⊆ σ , ρ ′ ⊆ ρ.

Proof. By induction on the given derivation. Since ρ (σ (P )) −→ Q , P ⊩σ
ρ ∆; Γ is derived by

applying (comp). Assume the last applied rule is

(comp) P1 ⊢
σ
CL ∆,x :A P2 ⊩

σ ′
ρ ∆′,x :A⊥; Γ (⋆)

(νx ) (P1 | P2) ⊩
(σ ′∪σ )\{x }
ρ′ ∆,∆′; Γ, cσ [pσ ]:JP1Kσ

and (νx ) (P1 | P2) −→ R. Consider the case where −→ occurs due to a synchronisation on channel

x , hence R ≡ (νx ) (P ′
1
| P ′

2
) with P ′

1
⊢
σ1
CL ∆,x :A′ and P ′

2
⊩σ2
ρ2 ∆′,x :A′⊥; Γ′ where σ1 ⊆ σ , σ2 ⊆ σ ′,

Γ′ ⊆ Γ and ρ2 ⊆ ρ ⊆ ρ ′. Hence by weakening the renamings appropriately and applying structural

congruence, we have

P ′
1
| P ′

2
⊩(σ1∪σ2 )
ρ2 ∆,∆′; Γ′, cσ1[pσ1]:JP

′
1
Kσ1

with ρ (σ ((νx ) (P1 | P2))) −→ ρ (σ ((νx ) (P ′
1
| P ′

2
))) as required. The cases where either P1 or P2 reduce

follow by i.h. □

Proposition A.1 (Renaming). Suppose P ⊩σ
ρ ∆; Γ. Then:

(1) for all bijective renamings φ on roles and channels, we have P ⊩σ◦φ
ρ◦φ ∆;φ (Γ).

(2) Assume P ⊩σ ′
ρ′ ∆; Γ

′. Then there exists a bijective renaming φ on roles and channels such that
σ ′ = σ ◦ φ and ρ ′ = ρ ◦ φ.

Proof. By the definition of the mapping. □
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Proof of Proposition 3.8.

Proposition 3.8 (Thread Preservation). If P ⊩σ
ρ ∆; Γ, then ρ (σ (P )) is thread-preserving.

Proof. By induction on P ⊩σ
ρ ∆; Γ. The case (thread) is by Definition 3.1. For the case (comp),

by assumption Q ⊩σ ′
ρ ∆′,x :A⊥; Γ, ρ (σ ′(Q )) is thread-preserving. By the definition of (comp), we

note that P is cut-free. Then by (a) in (⋆) in (comp), P ’s principal participant is pσ . By Definition

3.1 and (b,c) in (⋆) in (comp), pσ is disjoint with any principal participant in ρ (σ ′(Q )). Hence the
resulting process ρ ′((σ ∪ σ \ {x }) ((νx ) (P | Q ))) is thread-preserving. □

Proof of Theorem 3.9.

Theorem 3.9 (Uniqeness). Assume P ⊢CL ∆. Suppose φ (P ) is thread-preserving and φ (P ) is
typable by a single MP session, i.e. if φ (P ) ⊢MP Γ then (1) dom(Γ) contains a single session channel; or
(2) Γ = ∅ and P ≡ 0. Then there exist ρ and σ such that φ = σ ◦ ρ and P ⊩σ

ρ ∆; Γ.

Proof. By induction on P ⊢CL ∆. The case P = 0 and the case where P is a cut-free process are

matched with (thread). By the assumption that a mapping is thread-preserving and Proposition

A.1, we have that a cut-free process is mapped by (thread) with fixed σ (since (thread) is the only
possible rule to create cuts). We show that if σ and ρ are fixed and a process is mapped into a single

multiparty session, we must preserve the conditions in (⋆) of rule (comp).
The condition (b) of (⋆) must hold for P andQ can communicate. The condition cσ = cσ ′ ensures

a process is mapped into a single session. The condition dσ (z), dσ ′ (y) < ρ in (c) is required to avoid
a crash of the bound and free names. Finally dσ (z) , dσ ′ (y) in (c) is required to map names in ∆
and ∆′ are mapped to different destinations (participants) to avoid a crash between the originally

distinct names in CLL. Notice that without this condition, a parallel composition is untypable in

MP since the same role indexed name s[p][q] is spread into two parallel processes. □

A.2 Proofs from § 4 – Partial Multiparty Compatibility
A.2.1 Proof of Theorem 4.9.

Theorem 4.9 (Deadlock-freedom, MC and existence of a global type). The following are
equivalent: (MC) A configuration C is SMC; (DF) C is deadlock-free; (WF) There exists well-formedG
such that Tr (G ) = Tr (C ).

Proof. (DF)⇒(MC): (a) Suppose configurationC0 is deadlock-free. Then by DF, for allC0

ℓ⃗
−→ C ,

there exists C
ℓ1 ·ℓ1
−→ C1 · · ·Cn

ℓn ·ℓn
−→ C ′ such that C ′ contains only end.

The base case Cn = C0 = C is obvious. Suppose T1r
ℓ′k
−→ Tk+1r and we are at Ck . In the case ℓ′k is an

output ℓ′k = rq↑(S ) or a selection ℓ′k = rq ◁ l , there are traces such that Ck
ℓ⃗′

−→ C ′k which does not

include the action from/to the participant p. Hence at C ′k , we have T1r
ℓ′k
−→ Tk+1r and C

′
k

ℓ′k ·ℓ
′
k

−→ C ′′k .
This matches with Definition 4.7(1). The case of the input ℓ′k = rq↓(S ) is similar, and matches with

Definition 4.7(2). In the case ℓ′k is a branching such that ℓ′k = rq ▷ l , we can reach C ′ which only

contains end if and only if there exists ℓ′′k = rq ▷ l ′ such that T1r
ℓ′′k
−→ T ′k+1r and Ck

ℓ⃗′

−→ C ′k

ℓ′′k ·ℓ
′′
k

−→ C ′′k .
This matches with Definition 4.7(3).

(MC)⇒(WF) By the synthesis theorem in [22].

(WF)⇒(DF) The trace of well-formed global types is DF by the definition of LTS of the global type

G. Then by Proposition 4.6, C is DF.

□
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A.2.2 Proof of Lemma 4.14.

Lemma 4.14. Suppose fuse(fuse(Gi ,G j ),Gk ) with {i, j,k } = {1, 2, 3} is well-formed. Then we have
fuse(fuse(Gi ,G j ),Gk ) ∼sw fuse(Gi , fuse(G j ,Gk )).

Proof. Suppose fuse(fuse(G1,G2),G3) is defined. We proceed by the induction of the last rule

applied to fuse(G1,G2). The only interesting cases are the first and second rules in Definition 4.10.

Case (1) LetG1 = p { q: ↑ (T1).G ′1 andG2 = p { q: ↓ (T2).G ′2 withT1 ≥ T2. Then by the first fuse

rule, we have

fuse(G1,G2) = p→ q:(T2).fuse(G ′1,G
′
2
) = G ′

3

Since fuse(fuse(G1,G2),G3) is defined, p↔ q < G3. By applying the third rule,

fuse(G ′
3
,G3) = p→ q:(T2).fuse(fuse(G ′1,G

′
2
),G3)

We now calculate fuse(G2,G3). Since p↔ q < G3, by applying the third rule, we have

fuse(G2,G3) = p { q: ↓ (T2).fuse(G ′2,G3) = G
′′
3

Then by applying the first rule, we have

fuse(G1,G
′′
3
) = p→ q:(T2).fuse(G ′1, fuse(G

′
2
,G3))

By induction, fuse(fuse(G ′
1
,G ′

2
),G3) ∼ fuse(G ′

1
, fuse(G ′

2
,G3)). Hencewe have fuse(fuse(G1,G2),G3) ∼

fuse(G1, fuse(G2,G3)).

Case (2) The case G1 = p { q:⊕{l : G ′
1
} and G2 = p { q: & {l : G ′

2
, {lj : G j }j ∈J } is similar to Case

(1). Then by the second fuse rule, we have

fuse(G1,G2) = p→ q:{l : fuse(G ′
1
,G ′

2
)} = G ′

3

Since fuse(fuse(G1,G2),G3) is defined, p↔ q < G3. By applying the forth rule,

fuse(G ′
3
,G3) = p→ q:{l : fuse(fuse(G ′

1
,G ′

2
),G3)} = G

′′
3

We now calculate fuse(G2,G3). Since p↔ q < G3, by applying the forth rule, we have

fuse(G2,G3) = p { q: & {l : fuse(G ′
2
,G3), {lj : fuse(G j ,G3)}j ∈J } = G

′′
3

where the well-formedness guarantees fuse(G2,G3) is defined. Then by applying the second rule,

we have

fuse(G1,G
′′
3
) = p→ q:{l : fuse(G1, fuse(G ′2,G3))}

By induction, fuse(fuse(G ′
1
,G ′

2
),G3) ∼ fuse(G ′

1
, fuse(G ′

2
,G3)). Hencewe have fuse(fuse(G1,G2),G3) ∼

fuse(G1, fuse(G2,G3)).

□

A.2.3 Proof of Theorem 4.15.

Theorem 4.15 (Compositionality). Suppose G1, ...,Gn are partial global types. Assume ∀i, j such
that 1 ≤ i , j ≤ n, Gi and G j are PMC and G = fuse(G1, fuse(G2 , fuse(. . . ,Gn ))) is a complete
global type. Then G is well-formed.

Proof. By Lemma 4.14, we need only show the case where G ′n−1 = fuse(· · · (fuse(G1, G2),G3),
· · · ,Gn−1) and fuse(G ′n−1,Gn ) is complete. We proceed by induction on n.

Case n = 2 Suppose there are two participants p or q and G1 contains p1 { p′
1
· · · pm { p′m .

Then pi = p ∧ p′i = q or pi = q ∧ p′i = p. Note that we cannot apply the swapping relation

between pi { p′i and pj { p′j since all actions have the same principal name (pr(G1) = {p} and
pr(G2) = {q}). Then G2 should contain p1 { p′

1
· · · pm { p′m with dual modes since the last five
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rules are not applicable by the side conditions p↔ q < G2.

Suppose G ′n−1 contains n participants and there are only partial arrows from pn or to pn and

fuse(G ′n−1,Gn ) is complete. Then the partial arrows inG ′n−1 form (possibly more than one) chains

such that p1 { p′
1
· · · pm { p′m where either pi or p′i is pn . To obtain a complete global type, we

must have dual chains p1 { p′
1
· · · pm { p′m in Gn . Assuming the completed n − 1 participants

in G ′n−1 form a well-formed global type, applying fuse rules one by one from the head (note that

the last five rules are not applicable for the partial arrow pi { p′i in G1 by the side condition

pi ↔ p′i < Gn ), we see that fuse(G ′n−1,Gn ) is well-formed. □

A.3 Proofs from § 5 – CLL encoded as a single multiparty session
A.3.1 Proof of Lemma 5.8.

Lemma 5.8. Let P ⊩σ
ρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆ contains only 1 or ⊥ and σ = ∅.

Proof. Assume to the contrary that ∆ , ∅ and does not contain only 1 and ⊥, or σ , ∅. Then it

must be the case that P has some free name x :A ∈ ∆ where σ (x ) = s[p][q], for some s, p, q with

A , 1 or ⊥. By construction it must necessarily be the case that s[p]:T ∈ Γ. Since x is free in P , we

cannot have s[q]:T ′ ∈ Γ with T ↾q ≤ T ′↾p: single thread σ -renamings are invariant on the p role

name, so for s[q] to occur in Γ it must have arose due to composition on x , which is impossible since

x is free, or on some other (now) bound name y that mapped to s[q][r], for some r. However, since
σ (x ) = s[p][q], by construction we know that q < ρ. This is contradictory with the assumption of

coherence and so we conclude the proof. □

A.3.2 Proof of Lemma 5.9.

Lemma 5.9. Let P ⊩∅ρ ∆; Γ;G with ∆ = ∅ or ∆ containing only 1 or ⊥. We have that co(Γ).

Proof. Assume to the contrary that Γ is not coherent. Then (1) there exists s[p]:T , s[q]:T ′ in Γ

such that T ↾q ≰ T ′↾p or (2) s[p] : T ∈ Γ such that q ∈ roles(T ) and s[q] : T ′ < Γ.
For (1) to be the case, either T ↾q contains an action unmatched by T ′↾p or vice-versa. Assume

wlog that T ↾q contains an unmatched action. Since both s[p]:T ∈ Γ and s[q]:T ′ ∈ Γ we know

that there exists (x , s[p][q]) ∈ ρ where some subprocess of P uses x :A for some A and some other

subprocess of P uses x :A⊥. The duality of x :A and x :A⊥ contradicts the existence of an unmatched

action in T ↾q. The argument for an unmatched action in T ′↾p is identical.

For (2) to be the case, since s[p]:T ∈ Γ and s[q]:T ′ < Γ, we know that there exists (x , s[p][r]) ∈ ρ,
with r , q, and that (z, s[q][s]) < ρ. Since q ∈ roles(T ) then it must be the case that P uses a

channel y mapped to s[p][q] that is free, which contradicts our assumptions. □

A.4 Proofs from § 6 – Higher-Order Channel Passing
A.4.1 Proof of Theorem 6.10.

Theorem 6.10 (Consistency). Assume P ⊢CL ∆. If φ (P ) is typable by Γ, i.e. φ (P ) ⊢MP Γ and ρ, σ
and η satisfy the conditions in Definitions 6.1 and 6.2 and φ = σ ◦ η ◦ ρ, then P ⊨σ ,ηρ ∆; Γ;G.

Proof. By induction on P ⊢
σ ,η
CL ∆ (note that G does not affect the proof, hence we omit). Given

bijective renaming φ = σ ◦ η ◦ ρ which satisfies Definition 6.1 and Definition 6.2, we prove

the conditions in (compd ) are ensured by typability of MP under some σ , η and ρ which satisfy

Definition 6.1 andDefinition 6.2. The case for conditions (a,b,c) is proved as Theorem 6.10. Condition

(d) is ensured by the conditions ofφ; and condition (e) is satisfied by the assumption that a delegated

bound name coincides with a input variable in the receiver side; and (d) is ensured by a disjointness
of free names and bound names in typable MP. □
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A.4.2 Proof of Lemma 6.13.

Lemma 6.13. Let P ⊨∅,ηρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆ containing only 1 or ⊥.

Proof. We note that the renamings ensure that the two endpoints of an interaction cannot

be implemented by the same single-thread process and that bound-names involved in delegation

denote linear interactions along different session channels.

Assume to the contrary that ∆ , ∅ and does not contain only 1 and ⊥, or σ , ∅. Then it must be

the case that P has some free name x :A ∈ ∆ where σ (x ) = s[p][q], for some s, p, q with A , 1 or ⊥.

By construction it must necessarily be the case that s[p]:T1 ∈ Γ. However, since x is free in P we

have that if s[q]:T2 ∈ Γ then T1 ↾ q ≰ T2 ↾ p. For T2 to have the corresponding actions with role p
there must exist a free name y in P such that σ (y) = s[q][p]. If both x and y are in the same cut-free

sub-process this contradicts Definition 6.2. If they are in different sub-processes, this contradicts

the premise of the composition rule. The only remaining possibility is for a bound name of P to

have been mapped to s[q][p], which also contradicts the premise of the composition rule. This

arguments contradicts the assumption of coherence and so we conclude the proof. □
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