
30

Less Is More: Multiparty Session Types Revisited

ALCESTE SCALAS, Imperial College London, UK

NOBUKO YOSHIDA, Imperial College London, UK

Multiparty Session Types (MPST) are a typing discipline ensuring that a message-passing process implements

a given multiparty session protocol, without errors. In this paper, we propose a new, generalised MPST theory.

Our contribution is fourfold. (1) We demonstrate that a revision of the theoretical foundations of MPST is

necessary: classic MPST have a limited subject reduction property, with inherent restrictions that are easily

overlooked, and in previous work have led to flawed type safety proofs; our new theory removes such

restrictions and fixes such flaws. (2) We contribute a new MPST theory that is less complicated, and yet more
general, than the classic one: it does not require global multiparty session types nor binary session type duality

— instead, it is grounded on general behavioural type-level properties, and proves type safety of many more

protocols and processes. (3) We produce a detailed analysis of type-level properties, showing how, in our new

theory, they allow to ensure decidability of type checking, and statically guarantee that processes enjoy, e.g.,

deadlock-freedom and liveness at run-time. (4) We show how our new theory can integrate type and model

checking: type-level properties can be expressed in modal µ-calculus, and verified with well-established tools.

CCS Concepts: • Theory of computation → Process calculi; Type structures; Verification by model

checking;

Additional Key Words and Phrases: session types, duality, deadlock-freedom, liveness

ACM Reference Format:

Alceste Scalas and Nobuko Yoshida. 2019. Less Is More: Multiparty Session Types Revisited. Proc. ACM Program.

Lang. 3, POPL, Article 30 (January 2019), 29 pages. https://doi.org/10.1145/3290343

1 INTRODUCTION
Session types are a type-based framework for formalising structured communication protocols,

and verifying them in concurrent message-passing programs. The original binary session types

theory [Honda et al. 1998] addresses protocols with two participants (e.g., client and server), and

is built on a notion of duality in interactions, inspired by linear logic [Girard 1987]; this has led

to several studies on the logical foundations for session types, e.g. [Caires et al. 2016; Wadler

2014]. This approach was later generalised to multiparty sessions [Bettini et al. 2008; Honda et al.

2008], supporting more sophisticated protocols with any number of participants (two or more);

correspondingly, binary duality was generalised as multiparty consistency, leading to studies on its

logical foundations [Caires and Pérez 2016; Carbone et al. 2016, 2015].

Unfortunately, this duality-based framework has intrinsic limitations: the consistency require-

ment is not satisfied by manymultiparty protocols — even surprisingly simple ones. Such limitations

are subtle: in this paper, we show that they have been overlooked or wrongly bypassed in several

previous works, leading to MPST extensions that are no longer correct, and have flawed subject

reduction proofs. Then, we provide a solution: a new, generalised MPST theory that subsumes

classic MPST under a new theoretical foundation, removes its limitations, fixes the aforementioned

flaws, and supports a richer set of multiparty protocols and processes.

Authors’ addresses: Alceste Scalas, Imperial College London, UK, alceste.scalas@imperial.ac.uk; Nobuko Yoshida, Imperial

College London, UK, n.yoshida@imperial.ac.uk.

© 2019 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3290343.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343

30:2 Alceste Scalas and Nobuko Yoshida

The Multiparty Session Types (MPST) framework. Bettini et al. [2008]; Honda et al. [2008] introduce

the seminal notion of global types, which describemultiparty conversations from a global perspective.

MPST verification follows a top-down approach based on endpoint projections:

(1) a multiparty protocol is formalised as a global type G, providing a bird’s eye view on the

interactions between two or more roles;

(2) G is projected onto a set of endpoint (local) session types (one per role); and

(3) session types are assigned to communication channels, used by MPST processes that can be

written and type-checked separately.

E.g., the global typeG below models a protocol (based on OAuth 2.0 [OAuth Working Group 2012])

between service s, client c, and authorisation server a:

G = s→c:

{
login . c→a:passwd(Str) . a→s:auth(Bool) . end ,
cancel . c→a:quit . end

}
(1)

The protocol of G says that the service sends to the client either a request to login, or cancel; in
the first case, c continues by sending passwd (carrying a String) to the authorisation server, who

in turn sends auth to s (with a Boolean, telling whether the client is authorised), and the session

ends; in the second case, c sends quit to a, and the session ends. The projections of G describe the

local I/O actions (i.e., the interfaces) that programs must implement to play the roles in G:

Ss = c⊕

{
login.a&auth(Bool) ,
cancel

}
Sc = s&

{
login.a⊕passwd(Str) ,
cancel.a⊕quit

}
Sa = c&

{
passwd(Str) .s⊕auth(Bool) ,
quit

}
(2)

Here, Ss, Sc, Sa are session types, obtained by projecting G resp. onto s, c, a (for brevity, we omit

final ends). Ss represents the interface of s in G: it must send (⊕) to c either login or cancel; in
the first case, s must then receive (&) message auth(Bool) from a, and the session ends; otherwise,

in the second case, the session just ends. Types Sc and Sa follow the same intuition. The multiparty

session type system assigns the types in (2) to channels, and checks that endpoint programs use

them correctly: e.g., the program implementing the service is checked against Ss, and the programs

implementing c/a against Sc/Sa. Endpoint programs, in turn, are formalised as processes in a π -
calculus extended with multiparty communication primitives. Variations of this framework have

been implemented in numerous programming languages (surveyed in Ancona et al. [2017]; Gay and

Ravara [2017]), allowing to develop distributed applications with guaranteed protocol conformance.

Limitations and Theoretical Issues of MPST. Theories and implementations based on MPST cru-

cially require “correct by construction” protocols that do not cause deadlocks nor communication

errors when endpoint programs interact. This is achieved by imposing well-formedness conditions

to global types, and consistency restrictions when processes are type-checked.

However, such restrictions introduce rather serious problems when proving subject reduction —

i.e., when proving that typed processes only reduce to typed processes, and thus, no (untypable)

error state can be reached (“typed processes never go wrong”). Usually, one expects a statement like:

Γ ⊢ P and P → P ′ implies ∃Γ′ : Γ′ ⊢ P ′ (3)

where Γ ⊢ P is a typing judgement stating that process P abides by the typing context Γ, which
can map, e.g., the communication channels cs, cc, ca to the types Ss, Sc, Sa in (2).

Unfortunately, (3) is wrong. If we take Γ without any constraint as in (3), it might contain types

like c⊕m(Str) .end and s&m(Int) .end, and they could type a parallel process P = P1 | P2, where P1
and P2 interact according to the types, with P1 sending a message m("Hello") (carrying a String),
and P2 receiving m but using its payload as an Integer. In this case, P would reduce to a “wrong”

and untypable P ′ (see also [Coppo et al. 2015a, p. 163], and §3 later on): this means that (3) does

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:3

not hold. For this reason, the MPST theory requires the aforementioned consistency restriction, and

its actual subject reduction statement reads:

Γ ⊢P with Γ consistent and P→P ′ implies ∃Γ′ consistent: Γ→∗ Γ′ and Γ′⊢P ′ (4)

(where Γ→∗ Γ′ denotes typing context reductions). Consistency is a syntactic constraint ensuring

that the potential output messages of each role match the input capabilities of their recipient; as

noted above, this requirement was developed by generalising the notion of binary session duality

[Honda et al. 1998]. However, due to this binary session heritage, multiparty consistency is:

(1) overly restrictive.Consistency does not hold for many protocols: even the simple authorisation

protocol in (1)/(2) above is not consistent. Hence, for such protocols, the MPST framework

cannot prove type safety of any process, because (4) holds vacuously;

(2) inflexible and error-prone. Some MPST works, e.g. [Deniélou et al. 2012; Deniélou and

Yoshida 2012; Yoshida et al. 2010], propose richer global types with flexible well-formedness

conditions — but either overlook the consistency requirement, or fail to realise that their

extensions do not satisfy it. Hence, their subject reduction theorems do not hold (like (3)),

or hold vacuously (as above); and worryingly, such results are reused in later works and

implementations (more details in §8).

These two claims are based on technical arguments, that we develop in §3. They clearly undermine

the expressiveness and applicability of MPST: when the theory cannot ensure type safety for a given

protocol, MPST-based implementations should either reject it (thus being overly restrictive), or

forfeit the guaranteed absence of run-time errors. To solve these problems, we pose the questions:

Can we remove the duality/consistency requirements of MPST?

Can we use, instead, more flexible properties of session types, thus enlarging the subject

reduction property, and the set of provably type-safe processes?

To answer positively, we need a new MPST theory that is not rooted in binary session duality —

but has more general foundations, that still support duality as a special case.

Contributions. We present a new theory of multiparty session types. Its novel theoretical founda-

tions leverage a weak behavioural safety invariant that, for the first time, eschews the limitations

of duality/consistency, and allows to obtain much more general results than classic MPST.

We summarise MPST definitions and typing rules in §2, highlighting where our new theory

diverges from the classic (§2.3): i.e., when establishing the prerequisites for proving type safety.

(1) We explain how classicMPST establish such prerequisites: i.e., by imposing consistency/duality.

We uncover that the resulting severe limitations lead to subtle theoretical issues (§3).

(2) We present our new MPST theory (§4), with a much weaker prerequisite: a safety invariant,

not depending on global types, nor needing projection/duality/consistency from classic MPST.

(3) By removing consistency, we rebuild the theoretical foundations of MPST on a more general

basis. Our rebuilding subsumes classic MPST works, and fixes their theoretical issues, by

producing more general typing rules, with just small visible differences (Remark 5.12).

(4) We design our new type system to be parametric: its safety invariant is abstracted as a

parameter φ. We show that φ can be fine-tuned to ensure decidability of type-checking, and

statically enforce various run-time properties on processes — e.g., liveness (§5.3, §5.4, §5.5).

(5) The parameter φ can be a behavioural property: this allows for a novel integration of

type/model checking techniques for MPST. We show how to express φ as a modal µ-calculus
formula, and verify type-level properties via model checking, using the paper’s companion

artifact (§6). Via point 4 above, the model-checked properties transfer to processes.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:4 Alceste Scalas and Nobuko Yoshida

(6) Our theory extends to asynchronous communication, to handle richer protocols and programs.

Asynchrony makes φ (and type checking) undecidable; still, we present various ways to

achieve decidable type checking, with methods based e.g. on communicating automata (§7).

NOTE: the technical report [Scalas and Yoshida 2018a] contains more technical details, proofs, and

discussion on related work.

2 MULTIPARTY SESSION TYPES
This section describes the multiparty session π -calculus (§2.1), its types, and typing rules (§2.2).

Our streamlined formulation is based on Coppo et al. [2015a] and Scalas et al. [2017a], i.e., the

most common in literature; we include subtyping [Dezani-Ciancaglini et al. 2015], to later study its

crucial influence on the behavioural properties of types and processes (§5).

Crucially, in this section we leave one typing rule under-specified: the rule for session restriction.

The reason is explained in §2.3: the exact form of this rule strictly depends on the theoretical

foundations that allow to prove type safety — and the choice of such foundations is the crossroads

where our new theory (§4) departs from classic MPST (§3).

2.1 The Multiparty Session π -Calculus
The multiparty session π -calculus models processes that interact via multiparty channels. We give

a streamlined definition, sufficient for our developments. Extensions with, e.g., ground values

(booleans, strings,. . .), or conditionals, are standard and orthogonal; we use them in examples.

Definition 2.1. Themultiparty session π -calculus syntax is defined as follows:

c,d F x ��� s[p] (variable, channel with role p)

P ,Q F 0 ��� P | Q ��� (νs) P (inaction, composition, restriction)

c[q]⊕m⟨d⟩.P (selection towards role q)

c[q]
∑

i ∈I mi (xi) .Pi (branching from role q with I , ∅)

def D in P ��� X
〈̃
c
〉 ��� err (process definition, process call, error)

D F X (x̃) = P (declaration of process variable X)

Restriction, branching and declarations act as binders, as expected; fc(P) is the set of free channels
with roles in P , and fv(P) is the set of free variables in P . We adopt a form of Barendregt convention:

bound sessions and process variables are assumed pairwise distinct, and different from free ones.

A channel c can be either a variable or a channel with role s[p], i.e., a multiparty communication

endpoint whose user plays role p in the session s . The inaction 0 represents a terminated process

(and is often omitted). The parallel composition P | Q represents two processes that can execute

concurrently, and potentially communicate. The session restriction (νs) P declares a new session

s with scope limited to process P . Process c[q]⊕m⟨d⟩.P performs a selection (internal choice)

towards role q, using the channel c: the message label m is sent with the payload channel d , and
the execution continues as P . Dually, the branching (external choice) c[q]

∑
i ∈I mi (xi) .Pi uses

channels c to wait for a message from role q: if a message label mk with payload d is received (for

some k ∈ I), then the execution continues as Pk , with xk replaced by d . Note that variable xi is bound
with scope P i . Process definition def X (x̃) = P in Q and process call X

〈̃
c
〉
model recursion: the

call invokes X by expanding it into P , and replacing its formal parameters with the actual ones.

err denotes the error process. Note that our simplified syntax does not have “pure” input/output

prefixes: they can be easily encoded as singleton branch/selection.

Definition 2.2 (Semantics). A reduction context C is: C F C | P ��� (νs) C ��� def D in C ��� []

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:5

[R-Comm] s[p][q]
∑

i ∈I mi (xi) .Pi | s[q][p]⊕mk ⟨s
′
[r]⟩.Q → Pk {s

′
[r]/xk } | Q if k ∈ I

[R-X] def X (x1, . . . ,xn) = P in (X ⟨s1[p1], . . . , sn[pn]⟩ | Q)
→ def X (x1, . . . ,xn) = P in (P {s1[p1]/x1} · · · {sn [pn]/xn } | Q)

[R-Ctx] P → P ′ implies C[P]→ C[P ′]

[R-Err] s[p][q]
∑

i ∈I mi (xi) .Pi | s[q][p]⊕m⟨s
′
[r]⟩.Q → err if ∀i ∈ I : mi ,m

Fig. 1. MPST π -calculus semantics, defined up-to standard structural congruence [Scalas and Yoshida 2018a].

Reduction→ is inductively defined in Fig.1, up-to a standard structural congruence ≡ [Scalas

and Yoshida 2018a] including α-conversion. We say that P has an error iff, for some C, P =C[err].

In Def. 2.2, the reduction context C defines a process with a single hole [], occurring in place

of some subterm P . The communication rule [R-Comm] says that the parallel composition of a

branching and a selection process, both operating on the same session s respectively as roles p
and q, reduces to the corresponding continuations, with the sent channel being substituted on the

receiver side. The process call rule [R-X] allows to invoke the process P in the definition of X by

creating a copy of P , and replacing the formal parameters xi with actual parameters, i.e., channels

with role si [pi]. The standard context rule [R-Ctx] says that reduction can happen under parallel

composition, restriction and process definition (cf. definition of C). Finally, the error rule [R-Err]

says that a parallel composition of mismatching selection and branching processes reduces to err:
intuitively, it models a scenario where a process implementing role q is trying to send m to another

process implementing p — who is indeed waiting for an input, but does not expect to receive m.

Example 2.3. The following process interacts on session s using channels with role s[s], s[c],
s[a], to play resp. roles s, c, a. For brevity, we omit irrelevant message payloads.

(νs) (Ps | Pc | Pa) where:

Ps = s[s][c]⊕cancel

Pc = s[c][s]
∑{

login.s[c][a]⊕passwd⟨"XYZ"⟩ , cancel.s[c][a]⊕quit
}

Pa = s[a][c]
∑{

passwd(y) .s[a][s]⊕auth⟨y = "secret"⟩ , quit
}

Here, (νs) (Ps | Pc | Pa) is the parallel composition of processes Ps, Pc, Pa in the scope of session s .
In Ps, “s[s][c]⊕cancel” means: use s[s] to send cancel to c. Process Pc uses s[c] to receive login
or cancel from s; then, in the first case it uses s[c] to send passwd to a; in the second case, it uses

s[c] to send quit to a. By Def. 2.2, we have the reductions:

(νs) (Ps | Pc | Pa) → (νs) (0 | s[c][a]⊕quit | Pa) → (νs) (0 |0 |0) ≡ 0

2.2 Types, Subtypes, and Typing
Session types (Def. 2.4) describe the intended use of communication channels in theMPST π -calculus
(Def. 2.1); channels are mapped to their respective type by session typing contexts (Def. 2.6).

Definition 2.4. The syntax of multiparty session types is:

S,T F p&i ∈Imi (Si) .S
′
i
��� p⊕i ∈Imi (Si) .S

′
i
��� end

��� µt.S
��� t with I ,∅, and mi pairwise distinct

We require types to be closed, and recursion variables to be guarded.

The branching type (or external choice) p&i ∈Imi (Si) .S
′
i says that a channel must be used to

receive from p one input of the form mi (Si), for any i ∈ I chosen by p, where mi are message labels

and Si are message payload types; then, the channel must be used following the continuation type

S ′i . The selection type (or internal choice) p⊕i ∈Imi (Si) .S ′i , instead, requires to use a channel to

perform one output mi (Si) towards p, for some i ∈ I , and continue using the channel according

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:6 Alceste Scalas and Nobuko Yoshida

to S ′i . Type end describes a terminated channel allowing no further inputs/outputs. Type µt.S
models recursion: µ binds the recursion variable t in S . The guardedness requirement ensures

that recursive types are contractive: i.e., in µt.S we have S , t′ for all t′. For brevity, we often omit

the trailing end in types, and end-typed message payloads: e.g., p⊕m stands for p⊕m(end) .end.
In Def. 2.5 below, we define the multiparty session subtyping relation [Dezani-Ciancaglini et al.

2015].
1
Intuitively, Def. 2.5 says that a type S is smaller than S ′ when S is “less demanding” than S ′

— i.e., when S imposes to support less external choices and allows to perform more internal choices.

Session subtyping is used in the type system to augment its flexibility.

Definition 2.5. The session subtyping ⩽ is coinductively defined:

∀i ∈ I Si ⩽ Ti S ′i ⩽ T ′i

p&i ∈Imi (Si) .S
′
i ⩽ p&i ∈I∪J mi (Ti) .T

′
i

[Sub-&]

∀i ∈ I Ti ⩽ Si S ′i ⩽ T ′i

p⊕i ∈I∪J mi (Si) .S ′i ⩽ p⊕i ∈Imi (Ti) .T ′i
[Sub-⊕]

end ⩽ end
[Sub-end]

S {µt.S/t} ⩽ T

µt.S ⩽ T
[Sub-µL]

S ⩽ T {µt.T/t}

S ⩽ µt.T
[Sub-µR]

In Def. 2.5, rules [Sub-&]/[Sub-⊕] define subtyping on branch/select types: [Sub-&] is covariant in

both the carried types and in the number of branches, whereas [Sub-⊕] is contravariant in both: this

formalises the intuition of a smaller type having less external choices, and more internal choices.

By rule [Sub-end], end is only subtype of itself. The recursion rules [Sub-µL]/[Sub-µR] relate types up-to

their unfoldings, as usual for coinductive subtyping [Pierce 2002, Ch. 21].

Definition 2.6 (Typing Contexts). Θ denotes a partial mapping from process variables to n-tuples
of types, and Γ denotes a partial mapping from channels to types, defined as:

Θ F ∅
��� Θ, X :S1, . . . , Sn Γ F ∅

��� Γ,x :S ��� Γ, s[p]:S

The composition Γ1, Γ2 is defined iff dom(Γ1) ∩ dom(Γ2) = ∅.
We write s <Γ iff ∀p : s[p]<dom(Γ) (i.e., session s does not occur in Γ).
We write dom(Γ)= {s} iff ∀c ∈dom(Γ) there is p such that c=s[p] (i.e., Γ only contains session s).
We write Γ⩽Γ′ iff dom(Γ)=dom(Γ′) and ∀c ∈dom(Γ): Γ(c)⩽Γ′(c).

The type system uses two kinds of typing contexts: Θ to assign an n-tuple of types to each

process variable X (one type per argument), and Γ to map variables and channels with roles to

session types. Together, they are used in judgements of the following form:

Θ · Γ ⊢ P (with Θ omitted when empty) (5)

meaning: “given the process types in Θ, P uses its variables and channels linearly according to Γ.”
The typing judgement (5) is inductively defined by the rules in Fig. 2. For convenience, we

type-annotate channels bound by process definitions and restrictions.

The first three rules in Fig.2 define auxiliary judgements. By [T-X], Θ ⊢ X :S1, ..., Sn holds if Θ
maps X to an n-tuple of types S1, ..., Sn . By [T-Sub], Γ ⊢ c :S ′ holds if Γ only contains one entry c :S
with S⩽S ′: i.e., when typing processes, [T-Sub] allows to use a channel of type S whenever a channel

with a larger type S ′ is needed, as per Liskov and Wing [1994]’s substitution principle; note that

Def. 2.5 relates types up-to unfolding, hence [T-Sub] makes the type system equi-recursive [Pierce

2002, Ch. 21]. Finally, end(Γ) holds if Γ’s entries are end-typed (under [T-Sub]).

The other rules in Fig. 2 define the process typing judgement in (5). The termination rule

[T-0] says that 0 is typed if all channels in Γ are end-typed. By the process definition rule [T-def],

def X (x̃) = P in Q is typed if P uses the arguments x1, ...,xn according to S1, ..., Sn , and the latter

1
Our ⩽ is inverted w.r.t. the “process-oriented” subtyping of Dezani-Ciancaglini et al. [2015] because, for convenience, we

use the “channel-oriented” order of Gay and Hole [2005]; Scalas et al. [2017a]. For a thorough comparison, see [Gay 2016].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:7

Θ(X) = S1, . . . , Sn
Θ ⊢ X :S1, . . . , Sn

[T-X]

S ⩽ S ′

c :S ⊢ c :S ′
[T-Sub]

∀i ∈ 1..n ci :Si ⊢ ci :end
end(c1 :S1, . . . , cn :Sn)

[T-end]

end(Γ)

Θ · Γ ⊢ 0
[T-0]

Θ,X :S1, . . . , Sn · x1 :S1, . . . ,xn :Sn ⊢ P Θ,X :S1, . . . , Sn · Γ ⊢ Q

Θ · Γ ⊢ def X (x1 :S1, . . . ,xn :Sn) = P in Q
[T-def]

Θ ⊢ X :S1, . . . , Sn end(Γ0) ∀i ∈ 1..n Γi ⊢ ci :Si
Θ · Γ0, Γ1, . . . , Γn ⊢ X ⟨c1, . . . , cn⟩

[T-X]

Γ1 ⊢ c :q&i ∈Imi (Si) .S
′
i ∀i ∈ I Θ · Γ,yi :Si , c :S

′
i ⊢ Pi

Θ · Γ, Γ1 ⊢ c[q]
∑

i ∈I mi (yi) .Pi
[T-&]

Γ1 ⊢ c :q⊕m(S) .S ′ Γ2 ⊢ d :S Θ · Γ, c :S ′ ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ c[q]⊕m⟨d⟩.P
[T-⊕]

Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2
Θ · Γ1, Γ2 ⊢ P1 | P2

[T- |]

Γ′ =
{
s[p]:Sp

}
p∈I φ (Γ′) s <Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[T-ν] where φ is a typing context property

Fig. 2. Multiparty session typing rules. Rule [T-ν] for session restriction is discussed in §2.3.

is the type of X when typing both P and Q : this means that P can refer to X , and this allows to

type recursive processes. By the process call rule [T-X], X
〈̃
c
〉
is typed if the types of c̃ match those

of the formal parameters of X , and any unused channel (in Γ0) is end-typed: this preserves linearity
by ensuring that channels requiring more inputs/outputs cannot be forgotten. By the branching

rule [T-&], c[q]
∑

i ∈I mi (yi) .Pi is typed if c has type S , where S is an external choice from q, with the

same branching labels mi . The selection rule [T-⊕] says that c[q]⊕m⟨d⟩.P is typed if c has type S ,
where S is an internal choice towards q with message label m. By the parallel rule [T- |], two parallel

processes are typed by splitting the context in the premises. The session restriction rule [T-ν]

deserves special attention: we discuss it in §2.3.

Example 2.7. Take the processes from Ex.2.3, and the types Ss, Sc, Sa from §1, eq. (2). With the

rules in Fig.2, we have the following typing derivation:

...
s[s]:Ss ⊢ Ps

...
s[c]:Sc ⊢ Pc

s[s]:Ss, s[c]:Sc ⊢ Ps | Pc
[T- |]

...
s[a]:Sa ⊢ Pa

Γ ⊢ Ps | Pc | Pa
[T- |]

where Γ = s[s]:Ss, s[c]:Sc, s[a]:Sa

The process Ps | Pc | Pa is typed by rule [T- |], that splits the typing context linearly ensuring that a

channel is not used by two parallel sub-processes. In the omitted part of the derivation, processes

Ps, Pc, Pa are typed separately, using rules [T-⊕]/[T-&]: each process uses one of the channels with

role s[s], s[c], s[a], according to the type Ss, Sc, Sa, respectively.

We conclude with the transitions/reductions of typing contexts (Def. 2.8): intuitively, they abstract

the message exchanges that might occur over typed channels. We adopt a standard formulation,

with two adaptations: we compare payloads using ⩽ (to cater for subtyping), and we specify

transition labels for inputs, outputs, and communication.

Definition 2.8. Let α have the form s:p&q:m(S), or s:p⊕q:m(S), or s:p,q:m (for any roles p, q, message

label m, and type S). The typing context transition
α
−→ is inductively defined by the rules:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:8 Alceste Scalas and Nobuko Yoshida

k ∈ I

s[p]:q⊕i ∈Imi (Si) .S ′i
s :p⊕q:mk (Sk)
−−−−−−−−−−→ S ′k

[Γ-⊕]
k ∈ I

s[p]:q&i ∈Imi (Si) .S
′
i

s :p&q:mk (Sk)
−−−−−−−−−−→ S ′k

[Γ-&]

Γ1
s :p⊕q:m(S)
−−−−−−−−→ Γ′

1
Γ2

s :q&p:m(T)
−−−−−−−−→ Γ′

2
S⩽T

Γ1, Γ2
s :p,q:m
−−−−−→ Γ′

1
, Γ′

2

[Γ-Comm]
Γ, c :S {µt.S/t}

α
−→ Γ′

Γ, c :µt.S
α
−→ Γ′

[Γ-µ] Γ
α
−→ Γ′

Γ, c :S
α
−→ Γ′, c :S

[Γ-Cong]

We write Γ
α
−→ iff Γ

α
−→Γ′ for some Γ′. The reduction Γ→Γ′ is defined iff Γ

s :p,q:m
−−−−−→ Γ′ for some

s, p, q, m. We write Γ→ iff Γ→Γ′ for some Γ′, and Γ̸→ for its negation (i.e., when there is no Γ′

such that Γ→Γ′). We define →∗ as the reflexive and transitive closure of→.

By [Γ-⊕]/[Γ-&] in Def. 2.8, a typing context entry can transition to one of its continuations by firing

an output label of the form s:p⊕q:m(S) (in case of selection types), or an input label of the form

s:p&q:m(S) (in case of branching types). Rule [Γ-Comm] models type-level communication: e.g., it

allows two entries s[p]:Sp, s[q]:Sq to interact, provided that: (1) Sp is a selection towards q (with
a corresponding output transition); (2) Sq is a branching from p (with a corresponding input

transition); and (3) they are firing a common message label m, and the carried type S sent by Sp is
subtype of the type T expected by Sq. When all such conditions hold, s[p]:Sp, s[q]:Sq transition to

the respective continuations, by firing a communication label s:p,q:m that records the session s , and
the message sender p, recipient q, and label m (the payload types are discarded).

In the rest of the paper, we will mostly use the unlabelled reduction Γ→Γ′, which means that Γ
transitions to Γ′ through some communication. The labelled transitions will be reprised in §5.

2.3 Towards Subject Reduction and Type Safety
In § 1, we mentioned that a process naively typed with an arbitrary Γ can “go wrong.” Indeed,

by themselves, the typing rules in Fig.2 do not guarantee type safety, as shown by the following

(counter-)example:

s[p]:q⊕foo(end), s[q]:p&bar(end), s ′[r]:end ⊢ s[p][q]⊕foo⟨s ′[r]⟩ | s[q][p]
∑
bar(x) → err (6)

Intuitively, the problem of this typing judgement can be seen in its typing context: the type of s[p]
outputs foo to q, but the type of s[q] expects bar. This means that we need a criterion to reject (6).

Importantly, the same criterion must be applied for typing session restriction. Consider rule

[T-ν] in Fig.2: it types a restricted session s with Γ′, provided that (1) Γ′ only contains channels with

roles belonging to s ; (2) the restricted s does not occur in the remaining context Γ (to avoid clashes);

and (3) Γ′ satisfies a (yet unspecified) property φ. How should we define φ? It cannot be always
true, because we would have this counterexample to type-safety, where Γ is the context in (6):

∅ ⊢ (νs :Γ)
(
s[p][q]⊕foo⟨s ′[r]⟩ | s[q][p]

∑
bar(x)

)
→ (νs) err (by (6) and rule [R-Ctx] in Fig.1) (7)

To achieve type safety, we want the process in (7) to be untypable — which means that, when

type-checking (νs :Γ)..., we must ensure that φ in rule [T-ν] does not hold for Γ, in cases like (6).

Moreover, φ must be technically usable to prove subject reduction; this leads to three desiderata:

(D1) φ must make the typing context “safe:” if the type of s[p] sends a message to q, then the type

of s[q] must be able to input such a message;

(D2) φ must be preserved when the typing rule [T- |] splits typing contexts (see derivation in Ex.2.7);

(D3) φ must be preserved when processes, and typing contexts, interact and reduce (Def. 2.2/2.8).

Therefore, the choice of the criterion for handling cases like (6) has a deep impact on the

theoretical foundations of the type system: it determines how subject reduction and type safety

properties are stated and proved, and how general/restrictive they are; it also determines how to

define φ in rule [T-ν], to correctly type session restriction (νs) P , and handle cases like (7).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:9

In §4, we show how our new MPST theory establishes its foundations, and φ in rule [T-ν]. But

first, in §3, we show how such choices are made in classic MPST, and what are the consequences.

3 LIMITATIONS AND THEORETICAL ISSUES OF CLASSIC MPST
This section gives a formal basis to our claims in §1: in §3.1 we use our opening example to show

the technical issues of classic MPST, caused by consistency (also called coherency, e.g., by Deniélou

et al. [2012]); and in §3.2, we provide further examples that are rejected by classic MPST. Our new

MPST system (§4) eschews these problems, by adopting a more general theoretical basis.

Remark 3.1. The issues described in this section do not apply to two recent MPST works, by Dezani-

Ciancaglini et al. [2015] and Scalas and Yoshida [2018b]: they have different, non-classicMPST theories.

However, such works have other limitations, surmounted by this paper: they are detailed in §8.2.

3.1 Consistency and Subject Reduction
To reject cases like (6) (§ 2.3), classic MPST require typing contexts to be consistent: for each

pair of entries

{
s[p]:Sp , s[q]:Sq

}
⊆ Γ, the inputs/outputs of Sp from/to q must be dual w.r.t. the

outputs/inputs of Sq to/from p. This guarantees that two roles p, q can only send/receive compatible

messages in a session s . More precisely, consistency requires to check the duality of the partial

projections Sp↾q and Sq↾p, using Def. 3.5, 3.6, 3.7, and 3.8 (collected in Fig.3): this clearly shows that

MPST were developed by adopting a proof framework based on binary session types.

Correspondingly, to reject cases like (7), classic MPST define rule [T-ν] in Fig.2 by setting φ =
consistent. This yields the classic session restriction typing rule:

Γ′ =
{
s[p]:Sp

}
p∈I s < Γ consistent(Γ′) Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[T-νClassic]

and this is sound (indeed, consistency satisfies the desiderata (D1)–(D3) described in §2.3).

E.g., the typing context in (6) is not consistent; correspondingly, no consistent Γ can be assigned

to (νs) ... in (7): hence, with rule [T-νClassic], the process in (7) is untypable in classic MPST.

Limitations of Consistency. Take the processes from Ex.2.3, and the typing derivation from Ex.2.7.

Using the rules in Fig.2 with [T-νClassic] above, we might try to type our opening example as:

Γ consistent

... (from Ex.2.7)

Γ ⊢ Ps | Pc | Pa
[T- |]

∅ ⊢ (νs :Γ) (Ps | Pc | Pa)
[T-νClassic]

where Γ = s[s]:Ss, s[c]:Sc, s[a]:Sa (8)

As shown in §1(2), the types Ss, Sc, Sa assigned to s[s], s[c], s[a] are respectively G↾s, G↾c, G↾a,
i.e., the projections of G (Def. 3.3). However, the derivation in (8) is wrong, because the consistency

premise of [T-νClassic] does not hold. To see why, we need to check all pairs of types for session s:

• Ss,Sc are consistent: the outputs of Ss to c are dual w.r.t. the inputs of Sc from s;
• Ss,Sa are not consistent, because the partial projections Ss↾a and Sa↾s are undefined (Def. 3.6).

Intuitively, Ss↾a and Sa↾s are undefined because the inputs/outputs of Ss/Sa from/to a/s depend
on previous I/O with c: i.e., if the service s sends login (resp. cancel) to the client c, then s
will (resp. will not) later interact with the authorisation server a. This is not captured by the

syntactic nature of projection/duality checks: i.e., protocols with inter-role dependencies are often

not consistent — even simple ones, like G in (1). Consequently, the process in Ex.2.3 is untypable,

albeit correct (does not reduce to err).

Subject Reduction and Type Safety (or Lack Thereof). As noted in §1, the classic MPST subject

reduction statement is (4). Now, consider (8) again: the conclusion is wrong, but the intermediate

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:10 Alceste Scalas and Nobuko Yoshida

Definition 3.2. The syntax of a global type G is:

G F p→q: {mi (Si) .Gi }i ∈I
��� µt.G

��� t
��� end with p,q, I ,∅, and ∀i ∈ I : fv(Si) = ∅

We write p ∈ roles(G) (or simply p∈G) iff, for some q, either p→q or q→p occurs in G.

Definition 3.3 (Global Type Projection). The projection of G onto p, written G↾p, is:

(q→r: {mi (Si) .Gi }i ∈I)↾p =

r⊕i ∈I mi (Si) . (Gi ↾p) if p = q

q&i ∈I mi (Si) . (Gi ↾p) if p = r�
i ∈I Gi ↾p if q , p , r

(µt.G)↾p =

{
µt.(G↾p) if G↾p , t′ (∀t′)
end otherwise

t↾p = t
end↾p = end

where

�
is the merge operator for session types, that could be either the plain merging defined as

S ⊓ S = S , or the full merging:

p&i ∈I mi (Si) .S
′
i ⊓ p&j ∈J mj (Sj) .T

′
j = p&k ∈I∩J mk (Sk) . (S

′
k⊓T

′
k) & p&i ∈I \J mi (Si) .S

′
i & p&j ∈J \I mj (Sj) .T

′
j

p⊕i ∈I mi (Si) .S
′
i ⊓ p⊕i ∈I mi (Si) .S

′
i = p⊕i ∈I mi (Si) .S

′
i

µt.S ⊓ µt.T = µt.(S ⊓T) t ⊓ t = t end ⊓ end = end

Definition 3.4 (Partial Session Types). Partial session types, ranged over by H , are:

H F &i ∈I mi (Si) .Hi
��� ⊕i ∈I mi (Si) .Hi

��� end
��� µt.H

��� t with I , ∅ and ∀i ∈ I : fv(Si) = ∅

Definition 3.5 (Duality of Partial Session Types). The dual of H , written H , is:

&i ∈I mi (Si) .Hi = ⊕i ∈I mi (Si) .Hi ⊕i ∈I mi (Si) .Hi = &i ∈I mi (Si) .Hi µt.H =µt.H t= t end=end

Definition 3.6 (Partial Projection). The projection of S onto p, written S↾p, is:

(q&i ∈I mi (Si) .S
′
i)↾p =

{
&i ∈I mi (Si) . (S

′
i ↾p) if p=q�

i ∈I S
′
i ↾p if p,q

(q⊕i ∈I mi (Si) .S
′
i)↾p =

{
⊕i ∈I mi (Si) . (S

′
i ↾p) if p=q�

i ∈I S
′
i ↾p if p,q

(µt.S)↾p =
{
µt.(S↾p) if S↾p, t′ (∀t′)
end otherwise

t↾p = t
end↾p = end

where

�
is the merge operator for partial session types, defined as:

&i ∈I mi (Si) .Hi ⊓ &i ∈I mi (Si) .H
′
i = &i ∈I mi (Si) . (Hi ⊓ H

′
i)

⊕i ∈I mi (Si) .Hi ⊓ ⊕j ∈J mj (Sj) .H
′
j = ⊕k ∈I∩J mk (Sk) . (Hk ⊓ H

′
k) ⊕ ⊕i ∈I \J mi (Si) .Hi ⊕ ⊕j ∈J \I mj (Sj) .H

′
j

µt.H ⊓ µt.H ′ = µt.(H ⊓ H ′) t ⊓ t = t end ⊓ end = end

Definition 3.7. Subtyping for partial types is coinductively defined (we omit unfolding rules, cf. Def. 2.5):

∀i ∈ I Si ⩽ Ti H ′i ⩽ H ′′i

&i ∈I mi (Si) .H
′
i ⩽ &i ∈I∪J mi (Ti) .H

′′
i

∀i ∈ I Ti ⩽ Si H ′i ⩽ H ′′i

⊕i ∈I∪J mi (Si) .H
′
i ⩽ ⊕i ∈I mi (Ti) .H

′′
i end ⩽ end

Definition 3.8. Γ is consistent iff, ∀s, p,q, S, T , {s[p]:S, s[q]:T } ⊆ Γ implies S↾q ⩽ T ↾p.

Fig. 3. Classic MPST: global types, projections, consistency, and duality. Note that all these definitions

are not necessary in our new theory of multiparty session types (§4).

judgement Γ ⊢ Ps | Pc | Pa holds. For this judgement, the subject reduction statement (4) is vacuously

true (since Γ is not consistent): hence, we cannot prove that Ps | Pc | Pa “never goes wrong.”

Interplay Between Consistency and Global Type Projection. The consistency requirement constrains

the MPST theory in non-obvious ways, causing subtle issues with global type projections. Several

MPST papers claim that if Γ is obtained by projecting a global type G, then Γ is consistent (see

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:11

e.g.: [Deniélou et al. 2012, p.28], [Coppo et al. 2015a, Prop. 1], [Chen 2015, Prop. 2]). This claim

corresponds to introducing the typing rule [T-νClassicG] below, that seemingly fixes derivation (8):

Γ′ = {s[p]:G↾p}p∈roles(G) s < Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[T-νClassicG]

Unfortunately, our example in §1 shows a global type whose projections are not consistent. This is

because we use the “full merging” projection (Def. 3.3), introduced in Deniélou et al. [2012]; Yoshida

et al. [2010] to type more processes. The intuition is the following. Take the initial choice of the

global type G in §1(1) (reported below), that does not involve role a:

G = s→c: {login.G1, cancel.G2} where

{
G1 = c→a:passwd(Str) . a→s:auth(Bool)
G2 = c→a:quit

To projectG onto a, we must “skip” the first interaction between s and c, andmerge the projections

ofG1 andG2 onto a, rejecting potentially unsafe local types combinations (thus avoiding cases like

(6) above). Consequently, projection works as follows:

G↾a = S1⊓S2 where

{
S1 = G1↾a = c&passwd(Str) .s⊕auth(Bool)
S2 = G2↾a = c&quit

We now have two possibilities, depending on how we choose the merging operator ⊓ (Def. 3.3):

• plain merging: S1 ⊓ S2 = S1 iff S1=S2 (undefined otherwise);

• full merging: S1 ⊓ S2 = Sa (see (2) in §1).

i.e., the restrictive plain merging is undefined for our example G, while full merging yields all

desired projections — but they are not consistent, as shown above. Consequently, the tentative rule

[T-νClassicG] with “full merging” projections breaks subject reduction proofs. E.g., take P typed by

[T-νClassicG], and reducing to P ′, as follows:

∅ · ∅ ⊢ P with P = (νs :Γ) P0 → (νs :Γ′) P1 = P ′ (induced by P0→P1 and rule [R-Ctx] in Fig.1) (9)

To prove subject reduction as stated in (4), we need to invert P ’s typing and apply the induction

hypothesis on Θ · Γ ⊢P0 and P0→P1 (from (9)), to obtain that there is some Γ′ such that Γ→∗ Γ′

and Θ · Γ′⊢P1; however, to apply (4) in the induction hypothesis we need Γ consistent, and we have

shown that this hypothesis might not hold.

We can now revisit our claims in §1, making them precise, and highlighting the resulting impasse:

(C1) overly restrictive: requiring Γ consistent drastically constrains typability: it rejects our

simple example in §1, and many other correct protocols (see §3.2 later on). Correspondingly,

the restrictive “plain merging” projection of [Honda et al. 2008, Def. 4.1] and [Coppo et al.

2015a, Def. 1], guarantees consistency by rejecting many correct protocols;

(C2) inflexible and error-prone: if we use a “full merging” projection as in, e.g., Yoshida et al.

[2010] or Deniélou et al. [2012], then Γ might not be consistent. This means that the proofs of

subject reduction depending on “full merging” (e.g. [Yoshida et al. 2010, Thm 3.5], [Deniélou

et al. 2012, Thm 4.6], and successive papers discussed in §8) do not work; we might fix such

proofs by adding a consistency requirement — but then, we would fall back into (C1) above.

In §4, we completely eschew these issues by developing new theoretical foundations for MPST: we

cut the ties with binary session types, adopting a more general, behavioural safety invariant, that

subsumes consistency and binary session duality.

3.2 More Examples of Correct, yet Non-Consistent Protocols
We conclude this section with Fig.4, that describes various multiparty protocols, formalised as

typing contexts. None of such protocols is consistent, because some of their partial projections are

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:12 Alceste Scalas and Nobuko Yoshida

(1) OAuth2 fragment.

(See global type (1) in §1) (See types (2) in §1, and Γ in Ex.2.7)

(2) Recursive two-buyers protocol. This is a mild variation of a typical example in MPST literature. Alice (a)
queries the store (s) for an item, and the store replies with a price; then, she asks Bob (b) to split the price:

if he says yes, then she buys the item from the store; if he says no, then Alice recursively retries, proposing

another split to Bob; at any point, Alice can cancel her bargaining with Bob, and say no to the store.

N/A

s[a] : s⊕query(Str) .s&price(Int) .µt.b⊕

split(Int) .b&

{
yes.s⊕buy.end,
no.t

}
,

cancel.s⊕no

s[s] :a&query(Str) .a⊕price(Int) .a&
{
buy.end , no.end

}

s[b] : µt.a&
{
split(Int) .a⊕

{
yes.end , no.t

}
, cancel.end

}

(3) Recursive map/reduce. The mapper (m) sends a datum to n workers (w1, . . . , wn , for some given n), and each

one sends a result to the reducer (r); then, the reducer tells the mapper whether to continue with another

iteration, or stop: in the first case, the mapper loops, while in the second case, it stops the workers.
µt.m→w1:datum(Int)
m→wn :datum(Int)
w1→r:result(Int)
wn→r:result(Int) .

r→m:

continue(Int) . t ,
stop . m→w1:stop

m→wn :stop

s[m] : µt.w1⊕datum(Int)wn⊕datum(Int) .r&
{
continue(Int) .t
stop.w1⊕stop.wn⊕stop

}
s[wi] :m&datum(Int) .µt.r⊕result(Int) .m&

{
datum(Int) .t ,
stop.end

}
(∀i ∈1..n)

s[r] : µt.w1&datum(Int)wn&datum(Int) .m⊕
{
continue(Int) .t
stop.end

}
(4) Independentmultiparty workers. The starter process (s) sends a datum ton worker processes (wa1, . . . , wan ,

for some given n), and each one starts exchanging datum/result messages with two other workers (wbi and
wci , for i ∈ 1..n). Each triplet of workers wai , wbi , wci (i ∈ i ..n) keeps interacting until wai sends stop to wbi ,
who forwards stop to wci .

s→wa1:datum(Int) s→wan :datum(Int) .

µt.wai→wbi :

datum(Int) .wbi→wci :datum(Int) .
wci→wai :result(Int) . t ,

stop . wbi→wci :stop

s[s] :wa1⊕datum(Int)wan⊕datum(Int) .end

s[wai] :s&datum(Int) .µt.wbi⊕
{
datum(Int) .wci&result(Int) .t ,
stop.end

}
s[wbi] : µt.wai&

{
datum(Int) .wci⊕datum(Int) .t ,
stop.wci⊕stop.end

}
s[wci] : µt.wbi&

{
datum(Int) .wai⊕result(Int) .t ,
stop.end

}

Fig. 4. A selection of multiparty protocols: each one is expressed as a (non-consistent) typing context (on

the right); for the sake of clarity, we also outline the shape of a global type with corresponding projections

(on the left). The exception is protocol (2), that cannot be projected from any global type: see §3.2. Being

non-consistent, all these protocols are not supported by classic MPST — but they are all supported by our new

general type system (§4); moreover, they have different behavioural properties, analysed in §5.3 (Table 1).

undefined — as a consequence of the issues illustrated in §3.1; moreover, the protocols (2), (3) and

(4) trigger further subtle restrictions in the partial projection/merging of recursive types (Def. 3.6).

Notably, Fig.4 includes an example of multiparty protocol that cannot be projected from any

global type: the recursive two-buyers protocol (2). The key issue is in the type of s[a], when alice
interacts with bob: alice sends a message to the store in one of the branches under recursion µt....
(where bob answers yes), but not in the other branch (where bob says no). This is not supported by
projection and merging (Def. 3.3): they can only generate session types where all branches under

recursion syntactically contain a same set of roles. Consequently, no global type can be projected

and yield the type of s[a] in Fig.4(2). This restriction does not impact our new MPST theory (§4).

4 A NEW, GENERAL MULTIPARTY SESSION TYPE SYSTEM
We now present our new general MPST theory. Its generality comes from the fact that it is based on

a weak typing context safety invariant, that rejects cases like (6)/(7) (§2.3) without the restrictions

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:13

and drawbacks of classic MPST consistency. Moreover, we design the new type system to be

parametric on the safety invariant itself: by fine-tuning the parameter, the type system can accept

or reject MPST processes depending on the properties of the protocols they implement (we will take

advantage of this feature in §5). Hence, different instantiations of the parameter yield different type

system instances — but we just need to prove type safety once, under the weakest safety invariant.

This design is inspired by Igarashi and Kobayashi [2004]’s Generic Type System for the π -calculus.
We first formalise what a “safety invariant” is, in Def. 4.1 below: it is a behavioural property of

typing contexts, that depends on how they reduce (cf. Def. 2.8). The fundamental difference with

classic MPST (§3) is that our safety is not based on binary session types, nor duality.

Definition 4.1. φ is a safety property of typing contexts iff:

[S-⊕&] φ
(
Γ, s[p]:q⊕i ∈Imi (Si) .S ′i , s[q]:p&j ∈J mj (Tj) .T

′
j

)
implies I ⊆ J , and ∀i ∈ I : Si ⩽Ti ;

[S-µ] φ (Γ, s[p]:µt.S) implies φ (Γ, s[p]:S {µt.S/t});
[S-→] φ (Γ) and Γ → Γ′ implies φ (Γ′).

We say Γ is safe, written safe(Γ), if φ (Γ) for some safety property φ.

The rules of Def. 4.1 directly satisfy the desiderata (D1) and (D3) discussed in §2.3 (whereas (D2)

is satisfied by Lemma 4.3, as we will see shortly). Rule [S-⊕&] says that the roles in a safe typing

context can only exchange compatible messages (this is desideratum (D1)): more precisely, if the

typing context contains entries for s[p] and s[q], with p sending to q and q receiving from p, then
p support all q’s messages — and thus, they can reduce, by Def. 2.8. Rule [S-µ] says that φ contains

all recursive type unfoldings: this allows rule [S-⊕&] to check unfolded types, where ⊕/& occur at

the the top-level. By rule [S-→], safety is preserved whenever Γ reduces (this is desideratum (D3)).

Example 4.2. The typing context Γ of (8) in §3 is safe. This can be easily verified by: (1) defining

φ as φ = {Γ′ | Γ→∗ Γ′}, i.e., containing Γ and all its reductions; (2) checking that φ is a safety

property, because all its elements satisfy the clauses of Def. 4.1; and (3) concluding that, since φ (Γ)
holds, Γ is safe. Instead, the typing context in (6) is not safe: any property φ containing such typing

context is not a safety property, as it violates clause [S-⊕&] of Def. 4.1.

Def. 4.1 also has the properties in Lemma 4.3 below, useful for proving subject reduction: typing

context splits preserve safety (item 1, which satisfies the remaining desideratum (D2) in §2.3); if Γ
is safe, then supertyping/reductions commute (item 2); supertyping preserves safety (item 3).

Lemma 4.3. For all typing contexts Γ and Γ′:

(1) if Γ, Γ′ is safe, then Γ is safe;

(2) if Γ safe and Γ ⩽ Γ′ → Γ′′ (for some Γ′′), then there is Γ′′′ such that Γ → Γ′′′ ⩽ Γ′′;
(3) if Γ is safe and Γ ⩽ Γ′, then Γ′ is safe.

We can now define our new multiparty session type system. As explained in §2.3, since we are

adopting safety (Def. 4.1) as the criterion for accepting/rejecting typing contexts, we use the same

criterion to define a typing rule for session restriction.

Definition 4.4 (General Multiparty Session Type System). The general MPST typing judgement is

inductively defined by the rules in Fig.2 — with rule [T-ν] restricted as follows:

Γ′ =
{
s[p]:Sp

}
p∈I φ (Γ′) s <Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[TGen-ν] where φ is a safety property

Given a safety property φ, we write “Θ · Γ ⊢ P with φ” to instantiate φ in [TGen-ν] above; when

“with φ” is omitted, then the instantiation is φ=safe (i.e., the largest safety property, cf. Def. 4.1).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:14 Alceste Scalas and Nobuko Yoshida

Example 4.5. Take the (wrong) typing derivation (8) in §3.1, and replace the (wrong) application

of rule [T-νClassic] with [TGen-ν] from Def. 4.4, instantiating φ with the safety property of Ex.4.2 (that

contains Γ). The resulting typing derivation is correct.

Ex.4.5 above shows that our new type system is not limited by consistency requirements, and types

our opening example. Notably, the only visible difference between our new type system (Def. 4.4) and

the classic one (§3.1) is that [TGen-ν] uses a (parametric) safety property φ, instead of consistency.2As
explained in §2.3, this small visible difference between typing rules is a manifestation of a deeper

underlying change: by removing the crucial consistency/duality assumption of classic MPST, we

are replacing its theoretical underpinnings, and this requires a revision of all MPST soundness

proofs. The payoff is that our new MPST theory enjoys a much more general subject reduction

property (Thm.4.6, based on Lemmas 4.3 to 4.3); from this, we get that typed processes “never go

wrong” (Cor.4.7). And again, unlike classic MPST, these results are not limited by consistency.

Theorem 4.6 (Subject Reduction). Assume Θ · Γ ⊢ P and Γ safe. Then, P → P ′ implies ∃Γ′

safe such that Γ →∗ Γ′ and Θ · Γ′ ⊢ P ′.

Corollary 4.7 (Type safety). If ∅·∅ ⊢P and P→∗P ′, then P ′ has no error.

Proof. We first prove a more general result. Assume Θ · Γ ⊢ P with Γ safe, and P = P1 → · · · →
Pn = P ′. By induction on n, using Thm.4.6, we prove Θ · Γ′ ⊢ P ′, for some safe Γ′ such that Γ →∗ Γ′.
Now, by contradiction, assume that P ′ has an error (Def. 2.2); then, P ′ is untypable, since its err
subterm is untypable: contradiction. Hence, P ′ has no errors. We obtain Cor.4.7 as a special case of

the result above, with Θ=∅ and Γ=Γ′=∅ (that is vacuously safe). □

Example 4.8. Take our opening example in §1, and its typed process from Ex.2.7 and 4.5. Using

our new Thm.4.6 instead of the classic MPST subject reduction (4) in §1, we infer that all process

reductions are well-typed. And by Cor.4.7, we are guaranteed that they do not contain errors.

Finally, note that type checking is decidable, whenever Def. 4.4 is instantiated with a decidable

safety property: this mainly follows because typing rules are syntax-directed, and for any P , at most

one can be applied. Also note that, since we proved Thm.4.6 and Cor.4.7 using the largest (i.e., the

weakest) safety property, we do not need to repeat the proof depending on how φ is instantiated in

Def. 4.4: subject reduction and type safety hold for any safety property φ.

Theorem 4.9. If φ is decidable, then “Θ·Γ ⊢ P with φ” is decidable.

5 VERIFYING RUN-TIME PROPERTIES OF PROCESSES, USING TYPES
In this section, we show that by suitably instantiating φ in our type system (Def. 4.4), we can

statically enforce desired run-time properties on processes — e.g., deadlock freedom and liveness.

In order to achieve this result, we study several typing context properties, and compare themwith

safety (Def. 4.1). The main reason for this study is that safety, albeit guaranteeing error-freedom

(Thm.4.6, Cor.4.7), is otherwise rather weak. E.g., the following typing context is safe but deadlocked

(it cannot reduce, because p is waiting an input from q, who is waiting for r, who is waiting for p):

s[p]:q&m1 .r⊕m2 , s[q]:r&m3 .p⊕m1 , s[r]:p&m2 .q⊕m3
and the context above types deadlocked processes that cannot reduce, either. This is undesirable:

“real-world” programs should be deadlock-free, or even live (i.e., each pending input/output should be

fired, eventually). Therefore, stronger typing context properties are needed — and in our new MPST

theory, we can use the parameter φ of Def. 4.4 to enforce them, without consistency limitations.

2
In §5.4, we show that all typing derivations of classic MPST are valid under Def. 4.4: consistency implies safety, hence in

[TGen-ν] we can let φ =consistent; and in §5.5, we show how φ statically determines the run-time properties on processes.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:15

We first discuss several desirable, although undecidable, run-time properties of processes, such as

deadlock-freedom and liveness (§5.1); next, we prove session fidelity, a crucial result that connects

typing context reductions to processes reductions (§5.2). Then, we present various typing context

properties (§5.3), and compare them (§5.4); finally, we show that they are decidable, and, with our

new type system, they can be used to ensure that processes are, e.g., deadlock-free and live (§5.5).

5.1 Run-Time Properties of Processes
In Def. 5.1 below, we formalise various desirable process properties. All these properties are

undecidable, because the MPST π -calculus is Turing-powerful [Busi et al. 2009]. To surmount this

obstacle, from §5.3 we will reason on analogous properties for types (that are not Turing-powerful).

Definition 5.1 (Process properties). P is deadlock-free iff P→∗P ′ ̸→ implies P ′≡0. P is termin-

ating iff it is deadlock-free, and ∃j finite such that, ∀n≥ j , P =P0→P1→· · ·→Pn implies Pn ≡0. P
is never-terminating iff P→∗P ′ implies P ′→. P is live iff P→∗P ′≡C[Q] implies:

(1) if Q = c[q]⊕m⟨s ′[r]⟩.Q ′ (for some m, s ′, r,Q ′), then ∃C′: P ′→∗C′[Q ′]; and

(2) if Q = c[q]
∑

i ∈I mi (xi) .Q
′
i (for some mi ,xi ,Q

′
i), then ∃C

′,k ∈ I , s ′, r: P ′→∗C′
[
Q ′k {

s ′[r]/xk }
]
.

P is strongly live iff P→∗P ′≡C[Q] implies:

(3) item 1 above, and moreover, there is n finite such that, whenever P ′ = P ′
0
→ P ′

1
→ · · · → P ′n ,

then for some j ≤n we have P ′j→C
′′
[Q ′] (for some C′′);

(4) item 2 above, and moreover, there is n finite such that, whenever P ′ = P ′
0
→ P ′

1
→ · · · → P ′n ,

then for some j ≤n we have P ′j→C
′′
[
Q ′k {

s ′[r]/xk }
]
(for some C′′,k ∈ I , s ′, r).

In Def. 5.1, a process P is deadlock-free when it only stops reducing by becoming 0; P is termin-

ating when it always reaches 0 after a finite number of reductions; P is never-terminating when it

reduces forever; P is live (a.k.a. “lock-free” [Kobayashi and Sangiorgi 2010; Padovani 2014]) when all

its pending inputs/outputs can always eventually communicate with a corresponding output/input;

P is strongly live when all its pending inputs/outputs will always find a corresponding output/input,

enabling communication after a finite number of reductions.

Example 5.2. We now illustrate the differences among the properties in Def. 5.1. Let:

P = P1 | P2 where

{
P1 = s[p][q]

∑
resp.P

P2 = def X (x) = x[r]
∑{

m1 .X ⟨x⟩ , m2 .x[p]⊕resp.0
}

in X ⟨s[q]⟩ | Q

i.e., P1 implements p, and waits a response from q; P2 implements q, and loops every time role r
(whose omitted implementation is in Q) sends m1; if/when r chooses to send m2, then P2 sends the
response to p, triggering the input in P1. Now, consider the following implementation of Q :

Q = def Y (y) = y[q]⊕m1 .Y
〈
y
〉
in Y ⟨s[r]⟩

i.e., r sends m1 to q forever — hence, P reduces forever, which means that P is never-terminating and

deadlock-free. But note that the sub-process P1 never has a chance to receive the desired response
from q: hence, P is not live. To address this, we can instead define Q above as:

Q = s[r][q]⊕m1 .s[r][q]⊕m2 .0 | Q ′ where Q ′ =

def Z (z) = z[r′′]⊕m3 .Z ⟨z⟩ in
def Z ′(z′) = z′[r′]

∑
m3 (x) .Z

′〈z′〉 in
Z
〈
s[r′]

〉
| Z ′

〈
s[r′′]

〉
i.e., r sends m1 and then m2 to q, and this causes q to send resp to p (cf. P2 above); meanwhile, the

sub-process Q ′ loops, with r′ and r′′ exchanging message m3. With this definition of Q , we obtain

that P is live, because P1 can always eventually receive its input while P2 reduces.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:16 Alceste Scalas and Nobuko Yoshida

Still, P is not strongly live, because the input of P1 could be arbitrarily delayed by letting Q ′

reduce forever, without firing the outputs of Q . We can make P strongly live, e.g., by redefining Q ′

as Q ′=0: this guarantees that P1 will receive its input within 3 reductions.
3

5.2 Session Fidelity
We now prove that if a typing context can reduce, then a typed process P simulates the reduction

(Thm.5.4). A related result can be proved for classic MPST — but in our new theory, it is stronger:

we do not assume consistency of the typing context, nor the existence of a global type projecting it.

Session fidelity requires P to be (1) not deadlocked, and (2) productive, i.e., not trapped in a loop like

def X (x) = X ⟨x⟩ in X ⟨s[p]⟩, if s[p] needs to be used for input/output: this is formalised in Def. 5.3.

Definition 5.3. Assume ∅ · Γ ⊢ P . We say that P :

(1) has guarded definitions iff in each subterm of the form def X (x1 :S1, ...,xn :Sn) = Q in P ′,
for all i ∈ 1..n, Si ⩽̸ end implies that a call Y ⟨...,xi , ...⟩ can only occur in Q as subterm of

xi [q]
∑

j ∈J mj (yj) .Pj or xi [q]⊕m⟨c⟩.P ′′ (i.e., after using xi for input/output);
(2) only plays role p in s, by Γ, iff: (i) P has guarded definitions; (ii) fv(P)=∅; (iii) Γ=Γ0, s[p]:S

with S⩽̸end and end(Γ0); (iv) in all subterms (νs ′ :Γ′) P ′ of P , we have end(Γ′).

We say “P only plays role p in s” iff ∃Γ : ∅·Γ ⊢P , and item 2 holds.

We will explain item 1 of Def. 5.3 shortly (after Thm.5.4). Item 2 identifies a process that plays

exactly one role on one session: clearly, an ensemble of such processes cannot deadlock by waiting

for each other on multiple sessions. All our examples (except a few, duly noted) satisfy Def. 5.3(2).

Now, in Thm.5.4 we prove that a set of processes involved in a single session simulates the typing

context, following its types/protocols. This addresses the typical application scenario of MPST: an

ensemble of programs Pp interact on a multiparty session s , each one playing a distinct role p.

Theorem 5.4 (Session Fidelity). Assume ∅·Γ ⊢P , where Γ is safe, P ≡ ���p∈IPp, and each Pp either
is 0 (up-to ≡), or only plays p in s . Then, Γ→ implies ∃Γ′, P ′ such that Γ→Γ′, P→∗P ′ and ∅·Γ′ ⊢ P ′,

where P ′ ≡ ���p∈IP
′
p and each P ′p either is 0 (up-to ≡), or only plays p in s .

Note that in Thm.5.4, P chooses which reduction of Γ to follow: in fact, a selection type in Γ
might allow to choose m1, ..., mn (with different continuations), but P might select only one mk (by

[T-⊕] in Fig. 2, and subtyping). This observation will be a crucial when reasoning about process

liveness (§5.5). Also note that Thm.5.4 relies on item 1 of Def. 5.3. In fact, by rule [T-def] (Fig.2), an

unguarded definition X (x :S) = X ⟨x⟩ can be typed with any S ; therefore, we have e.g.:

∅ · s[p]:q⊕m, s[q]:p&m ⊢ def X (x :q⊕m) = X ⟨x⟩ in X ⟨s[p]⟩ | s[q][p]
∑
m

and the unguarded process above reduces vacuously by calling X infinitely, without matching any

typing context reduction; this explains the need of guarded definitions in Thm.5.4.

5.3 Typing Context Properties
Fig.5 lists several behavioural properties of typing contexts. In §5.5, we will show how they can

statically enforce the run-time process properties discussed in §5.1.

• Γ is deadlock-free iff it stops reducing only when it only contains ends;
• Γ is terminating iff it always reaches a final configuration, in a finite number of steps;

• Γ is never-terminating iff it never stops reducing;

• Γ is live, live
+
or live

++
iff each branching/selection can be eventually fired.

3
As a more laborious alternative, we could formalise and assume a notion of fair scheduling, that eventually fires any action

that is persistently enabled; we adopt a similar intuition for type reductions, in Def. 5.5.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:17

(1) Γ is safe, written safe(Γ), iff:

(see Def. 4.1) Γ |= νZ.
*..
,

∀s, p, q, m, m′, S, S ′ .(
⟨s:p⊕q:m(S)⟩⊤ ∧ ⟨s:p&q:m′(S ′)⟩⊤⇒ ⟨s:p,q:m⟩⊤

)
∧ [s:p,q:m]Z

+//
-

(2) Γ is deadlock-free, written df (Γ), iff:

Γ→∗ Γ′̸→ implies end(Γ′) Γ |= νZ.*.
,

(
(∀s, p, q, m.[s:p,q:m]⊥) ⇒
∀p, q, m, S .[s:p&q:m(S)]⊥ ∧ [s:p⊕q:m(S)]⊥

)
∧ ∀p, q, m.[s:p,q:m]Z

+/
-

(3) Γ is terminating, written term(Γ), iff:
Γ is deadlock-free, and there is j ∈N0

such that for all n ≥ j, Γ = Γ0 → Γ1 →
· · · → Γn implies end(Γn)

Γ |= µZ.*.
,

(
(∀s, p, q, m.[s:p,q:m]⊥) ⇒
∀s, p, q, m, S .[s:p&q:m(S)]⊥ ∧ [s:p⊕q:m(S)]⊥

)
∧ ∀s, p, q, m.[s:p,q:m]Z

+/
-

(4) Γ is never-terminating, written nterm(Γ), iff:

Γ→∗ Γ′ implies Γ′→ Γ |= νZ.
(
∃s, p, q, m.⟨s:p,q:m⟩⊤ ∧ ∀s, p, q, m.[s:p,q:m]Z

)
(5) Γ is live, written live(Γ), iff:

φ (Γ), for some φ such that

[L-&] whenever φ (Γ′, s[p]:S) with S =
q&i ∈Imi (Si) .S

′
i , ∃i ∈ I : ∃Γ′′:

Γ′, s[p]:S→∗ Γ′′, s[p]:S ′i

[L-⊕] whenever φ (Γ′, s[p]:S) with S =
q⊕i ∈Imi (Si) .S ′i , ∀i ∈ I : ∃Γ′′:
Γ′, s[p]:S→∗ Γ′′, s[p]:S ′i

plus clauses [S-µ], [S-→] (Def. 4.1).

Γ |= νZ.

*..............
,

∀s, p, q.(
(∃m, S .⟨s:p&q:m(S)⟩⊤) ⇒
µZ′ .∃m.⟨s:p,q:m⟩⊤ ∨ ∃p′, q′, m′ .⟨s:p′,q′:m′⟩Z′

)
∧

∀m.

(
(∃S .⟨s:p⊕q:m(S)⟩⊤) ⇒
µZ′ .⟨s:p,q:m⟩⊤ ∨ ∃p′, q′, m′ .⟨s:p′,q′:m′⟩Z′

)
∧

∀m.[s:p,q:m]Z

+//////////////
-

(6) Γ is live
+
, written live

+ (Γ), iff:
φ (Γ), for φ such that

[L-&
+
] clause [L-&] above; moreover,

Γ′, s[p]:S belongs to some fair

traversal set X with targets Y
(Def. 5.5) such that, ∀Γt ∈ Y, we
have Γt = Γ′′, s[p]:S ′i (for some

Γ′′, i ∈ I)

[L-⊕+] clause [L-⊕] above, plus the

“moreover. . . ” part of [L-&
+
]

plus clauses [S-µ], [S-→] (Def. 4.1).

Γ |= νZ.

*..................
,

∀s, p, q.

*.
,

(∃m, S .⟨s:p&q:m(S)⟩⊤) ⇒

µZ′ .∃m.⟨s:p,q:m⟩⊤ ∨ ∃p′, q′ .

(
∃m′ .⟨s:p′,q′:m′⟩⊤
∧ ∀m′ .[s:p′,q′:m′]Z′

)+/
-

∧

∀m.*.
,

(∃S .⟨s:p⊕q:m(S)⟩⊤) ⇒

µZ′ .⟨s:p,q:m⟩⊤ ∨ ∃p′, q′ .

(
∃m′ .⟨s:p′,q′:m′⟩⊤
∧ ∀m′ .[s:p′,q′:m′]Z′

)+/
-

∧

∀m.[s:p,q:m]Z

+//////////////////
-

(7) Γ is live
++
, written live

++ (Γ), iff:

φ (Γ), for φ such that

[L-&
++

] clause [L-&] above; moreover,

∃n ∈ N0
such that, whenever

Γ′, s[p]:S = Γ0 → Γ1 → · · · → Γn ,
then ∃j ≤ n, Γ′′ such that Γj →
Γ′′, s[p]:S ′i (for some i ∈ I)

[L-⊕++] clause [L-⊕] above, plus the

“moreover. . . ” part of [L-&
++

]

plus clauses [S-µ], [S-→] (Def. 4.1).

Γ |= νZ.

*..................
,

∀s, p, q.

*.
,

(∃m, S .⟨s:p&q:m(S)⟩⊤) ⇒

µZ′ .∃m.⟨s:p,q:m⟩⊤ ∨

(
∃s ′, p′, q′, m′ .⟨s ′:p′,q′:m′⟩⊤
∧ ∀s ′, p′, q′, m′ .[s ′:p′,q′:m′]Z′

)+/
-

∧

∀m.*.
,

(∃S .⟨s:p⊕q:m(S)⟩⊤) ⇒

µZ′ .⟨s:p,q:m⟩⊤ ∨

(
∃s ′, p′, q′, m′ .⟨s ′:p′,q′:m′⟩⊤
∧ ∀s ′, p′, q′, m′ .[s ′:p′,q′:m′]Z′

)+/
-

∧

∀m.[s:p,q:m]Z

+//////////////////
-

Fig. 5. Properties of typing contexts. Each property is presented in two equivalent formalisations: the left-side

ones are based on the notation and definitions introduced up to §5.4 (excluded); the right-side ones are

µ-calculus formulas (explained in §6), and allow to verify typing contexts via model checking (e.g., with tools

like mCRL2 [Groote and Mousavi 2014]).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:18 Alceste Scalas and Nobuko Yoshida

The intuition behind live/live
+
/live

++
is the following. Take a typing context Γ, s[p]:S . If such a

context is live, then, by clause [L-&] of Fig.5(5), if S is an external choice, then Γ can reduce until

some branch of S is triggered; and by clause [L-⊕], if S is an internal choice, then Γ can reduce

allowing to send each message of S . The clauses of liveness+ are stricter: they ensure that, under

“fair scheduling” (details below) the interaction with S will be enabled in a finite number of steps.

The clauses of liveness
++

are even stricter, and ensure that the interaction with S will be enabled

within a finite number of steps, no matter how other roles are scheduled. We will give examples and

more explanations shortly (Ex.5.10, Ex.5.11, Ex.5.14, Thm.5.15). But first, we explain what “under fair

scheduling” means: roughly, we ensure that there is a set of roles whose interactions always cause

a desired input/output to meet a corresponding output/input. This requires some sophistication,

and the formalisation of the “fair traversal set” mentioned in the definition of liveness
+
(Fig.5(6)).

Definition 5.5 (Fair traversal set). Let X,Y be sets of typing contexts. We say that X is a fair

traversal set with targets Y iff X is closed under the rules:

Γ ∈ Y
Γ ∈ X

[TS-Target]

∃s, p, q : ∃m : Γ
s :p,q:m
−−−−−→ ∀m : Γ

s :p,q:m
−−−−−→ Γ′ implies Γ′ ∈ X

Γ ∈ X
[TS-Comm]

Def. 5.5 says that if a fair traversal set X contains a typing context Γ, then X also contains

(part of) Γ’s reductions (inductive rule [TS-Comm]), reaching one of the target contexts in Y (base

rule [TS-Target]). Notably, by rule [TS-Comm], for each reduction of Γ, it is enough to choose just two

roles p, q who can interact (clause “∃m : Γ
s :p,q:m
−−−−−→”), as long as, for all interactions they can engage

in, the corresponding reductum belongs to X (clause “. . . Γ′∈X”). Consequently, if we prove that X
is a fair traversal set with targets Y, then any Γ ∈X is supported by an inductive derivation D —

that, in turn, shows how we can reach some Γ′∈Y in a finite number of steps, by choosing a set of

participants and following any of their possible interactions (one per instance of [TS-Comm] in D).

Example 5.6. By Def. 5.5, fair traversal sets are inductively defined: this excludes cases where

target elements are reachable, but can be “infinitely delayed” by choices and recursion. E.g., let:

Γ = s[p]:µt.q⊕{m1 .t , m2}, s[q]:µt.p&{m1 .t , m2 .r⊕m3}, s[r]:q&m3
Γ′ = s[p]:end, s[q]:end, s[r]:end and thus, Γ

s :p,q:m2
−−−−−−→

s :q,r:m3
−−−−−−→ Γ′

Note that Γ is live, and Γ′ is reachable — and yet, we cannot define a fair traversal set X containing

Γ, with a target set Y= {Γ′}. This is because p, q can interact infinitely by exchanging m1, yielding

the infinite run Γ
s :p,q:m1
−−−−−−→ Γ

s :p,q:m1
−−−−−−→ · · · ; consequently, to support Γ ∈X we would need an inductive

derivation with an infinite series of instances of rule [TS-Comm] — i.e., the derivation would be invalid.

Example 5.7. Fair traversal sets can be defined when elements of the target set are reachable, but

can be infinitely delayed by “unfair scheduling.” E.g., consider:

Γ = s[p]:q⊕m1 .q′⊕m2, s[q]:p&m1, s[q′]:p&m2, s[r]:µt.r′⊕m2 .t, s[r′]:µt.r&m2 .t
Γ′ = s[p]:end, s[q]:end, s[q′]:end, s[r]:µt.r′⊕m2 .t, s[r′]:µt.r&m2 .t

Note that Γ is live, and Γ′ is reachable from Γ, via the reductions Γ
s :p,q:m1
−−−−−−→

s :p,q′:m2
−−−−−−→ Γ′; however,

Γ′ can be infinitely delayed in the unfair run Γ
s :r,r′:m2
−−−−−−→ Γ

s :r,r′:m2
−−−−−−→ · · · that never fires the

communication between p and q, and thus, never enables the interaction between p and q′. Yet,
unlike Ex.5.6, we can define a fair traversal set X= {Γ, Γ′}, with target Y= {Γ′}: in fact, we can build

a finite derivation that supports Γ ∈X by instantiating rule [TS-Comm] twice — choosing p, q for the
fist reduction, and then p, q′ to reach the axiom [TS-Target], ignoring the interactions between r, r′.

Ex.5.6 and Ex.5.7 clarify why live
+
in Fig.5(6) requires the existence of a certain traversal set:

this ensures that, when Γ has some pending input/output, then under “fair scheduling,” Γ can reach

a target Γt where such input/output has been fired, by interacting with a matching output/input.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:19

Table 1. Verification of the multiparty protocols in Fig.4 against the properties in Fig.5. The results for protocol

(3) hold for n≥ 1, while the results for protocol (4) hold for n≥ 2.

consistent safe
deadlock-

free
live live

+
live

++
never-

terminat.
terminat.

(1) OAuth2 fragment false true true true true true false true

(2) Rec. two-buyers false true true true false false false false

(3) Rec. map/reduce false true true true true true false false

(4) MP workers false true true true true false false false

5.4 Relationships Between Typing Context Properties
We now study how typing context properties are related: this is formalised in Lemma 5.9 below,

that also conveys the expressiveness of our new type system (Remark 5.12).

To cover classic MPST theory, we first define projected typing contexts, in Def. 5.8; note that the

projections with plain and full merging correspond to claims (C1) and (C2) in §3.1, respectively.

Definition 5.8. We say that Γ is the full (resp. plain) projection of G for session s , written

fprojG,s (Γ) (resp. pprojG,s (Γ)), iff Γ= {s[p]:G↾p}p∈roles(G) , where G↾p is the projection with full

merging (resp. plain merging) in Def. 3.3.

Lemma 5.9. For all Γ, the following (non-)implications hold:

(1) consistent(Γ) ⇍= =⇒ safe(Γ);
(2) live(Γ) ⇍= =⇒ safe(Γ);
(3) live(Γ) ⇍= =⇒ df (Γ);
(4) nterm(Γ) ⇍= =⇒ df (Γ);
(5) consistent(Γ) ⇍= ≠⇒ df (Γ);
(6) consistent(Γ) ∧ df (Γ) ⇍= ≠⇒ live(Γ);
(7) live

++ (Γ) ⇍= =⇒ live
+ (Γ) ⇍= =⇒ live(Γ);

(8) term(Γ) ⇍= =⇒ live
++ (Γ);

(9) assume dom(Γ)= {s} (Def. 2.6). Then:
∃G : fprojG,s (Γ) ⇍= =⇒ live

+ (Γ).

consistent

GG-

safe

df livelive+

live++

term

n
te
rm

In the diagram, the “safe” set contains all typing contexts supported by our general type system.

The red subsets are the classic MPST theory: � contains all contexts projected by some global type;

its subset �− only has consistent typing contexts, i.e. the only class of global types for which classic

MPST proves type safety: this class excludes our example in §1, and also all protocols in Fig.4, and

more (see Ex.5.10 and Ex.5.11 below). Notably, in item (9), we prove that all projected contexts are

live
+
: this is discussed in Remark 5.16 later.

Example 5.10. The protocols described in Fig.4 are verified in Table 1. We observe:

• all protocols are safe and live, but none of them is consistent: hence, they are not supported

by the classic MPST theory;

• all protocols are live
+
, except recursive two-buyers (2): this is because it allows alice and bob

to bargain forever by exchanging split/no messages, without ever involving the store (that
will keep waiting for alice to send either buy or no). This violates clause [L-&

+
] of Fig.5(6),

because we cannot find any traversal set whose targets trigger the store’s pending input (the
issue is similar to Ex.5.6);

• two protocols are not live
++
: recursive two-buyers (as expected, by the point above and the

contrapositive of Lemma 5.9(7)), and MP workers (4). The latter is not live
++

because each

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:20 Alceste Scalas and Nobuko Yoshida

triplet of workers wai , wbi , wci (i ∈1..n≥ 2) can loop independently from the others; therefore,

the interaction between, e.g., two workers in triplet 1 might be delayed for an unbounded

number of transitions, while triplet 2 keeps progressing. Note that this scenario arises if the

roles are scheduled unfairly; otherwise, each enabled interaction will be eventually fired, and

this is reflected by the fact that the MP workers protocol is live
+
;

• only the OAuth2 fragment (1) is terminating — while the other protocols are neither termin-

ating, nor never-terminating: i.e., they might loop forever, but depending on the choices of

one or more roles, they can reach a terminated state (where all roles have type end).

Example 5.11. We now provide some more small examples of multiparty protocols and their

properties, complementing those discussed Ex.5.10.

ΓA = s[p]:q&m1 .r⊕m3, s[q]:r&m2 .p⊕m1, s[r]:p&m3 .q⊕m2 is consistent (hence safe), but not live

nor deadlock-free: this is because its inputs/outputs, albeit dual, occur in the wrong order.

ΓB = s[p]:µt.q⊕m1 .t, s[q]:µt.p&m1 .t, s[r]:p&m2 is consistent, deadlock-free and safe, but not

live: in fact, s[p],s[q] reduce infinitely, but s[r] cannot fire its input (violating [L-&] in Fig.5).

ΓC = s[p]:S, s[q]:p&m(S) .end with S = µt.q⊕m(t) . end (from [Bernardi and Hennessy 2016,

Ex. 1.2]) is terminating (hence live
++
, and safe), but not projectable from any global type, nor

consistent: this is because a recursion variable t occurs as payload in S , which is disallowed by

Def. 3.3 and Def. 3.8. Notably, ΓC types the process below (from [Bernardi and Hennessy 2016,

Ex. 1.2]): it creates infinitely many sessions s ′ where p and q exchange one message m (note that
this process, although deadlock-free, does not satisfy Def. 5.3(2)).

∅ · ΓC ⊢ def X (x :S,y :p&m(S)) = P in X ⟨s[p], s[q]⟩

where P =
(
νs ′ :Γ′C

) (
x[q]⊕m⟨s ′[p]⟩.0 | y[p]

∑
m(z) .X

〈
z, s ′[q]

〉)
with Γ′C = s

′
[p]:S, s ′[q]:p&m(S) .end

Remark 5.12. By Lemma 5.9(1,9), our general session type system instantiated with φ= fprojG,s
subsumes the classic MPST theory, and also proves subject reduction and type safety in presence of

“full-merging” global type projections: this is because consistency/projectability are limited syntactic

approximations of safety/liveness. Hence, the typing rule [T-νClassicG] in §3 is valid in our theory, and

we can type our opening example (Ex.4.5), and support complex protocols rejected by classic MPST,

such as all those listed in Fig.4. This retroactively fixes some flawed results in literature, described in

§3.1 (claim (C2)), and impacting the works listed in §8. Further, we support protocols for which no

global type exists: see Ex.5.10 (case “recursive two-buyers”) and Ex.5.11 (case ΓC).

5.5 Static Verification of Run-Time Process Properties
We now show that, by using the type-level properties in Fig.5, we can predict and constrain the

run-time behaviour of processes. Roughly, the intuition is: if we have Γ ⊢ P , and some property

in Fig.5 holds for Γ, then a similar corresponding property from Def. 5.1 holds for P . From this it

follows that, to ensure that a closed process (νs) P has a desired property from Def. 5.1, we can

correspondingly instantiate φ in Def. 4.4, and check if the judgement “∅ ⊢ (νs :Γ) P with φ” holds.
First, we highlight that all typing context properties mentioned thus far are decidable (Thm.5.13

below) — unlike the run-time process properties in Def. 5.1. This is clear for consistency and

projectability, that are syntactic and inductive; others (safety, liveness,. . .) are decidable because,

by Def. 2.8, typing contexts have finite-state transition systems. Consequently, by Thm.4.9, type

checking is decidable, if φ is instantiated with any property listed in Thm.5.13.

Theorem 5.13 (Decidability of φ). φ (Γ) is decidable, for all Γ, and for all φ such that

φ ∈
{
consistent, fprojG,s, pprojG,s , safe, term, nterm, df , live, live

+, live++
}

(for any G)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:21

Now, assume Γ ⊢ P . To predict the run-time behaviour of P from Γ, we need to overcome a

complication: it might seem that if Γ is live (Fig.5(5)), then P should be live, too. But this is not the

case, due to a subtle interaction between the typing rule [T-Sub] in Fig.2, and the fact that supertyping

does not preserve liveness: this issue (that is related to the problem of fair subtyping, studied by

Padovani [2016]), is illustrated in Ex.5.14 below. For this reason, in Thm.5.15 we guarantee process

liveness via the stronger type-level property live
+
: this is the payoff of fair traversal sets (Def. 5.5).

Example 5.14. Take Γ with the rec. two-buyer protocol (Fig.4(2)): it is live (Table 1). Now, let:

Γ′ =

s[a]: s⊕query(Str) .s&price(Int) .µt.b⊕split(Int) .b&
{
yes(Int) .s⊕buy , no.t

}

s[s]: a&query(Str) .a⊕price(Int) .a&
{
buy.end , no.end

}
(as in Fig.4(2))

s[b]: µt.a&
{
split(Int) .a⊕no.t , cancel.end

}

i.e., the types of alice and bob in Γ′ are supertypes (Def. 2.5) of those in Γ: alice never chooses to send
cancel to bob, who in turn always answers no to all split proposals. We have Γ⩽Γ′ (Def. 2.5) and
Γ′ is safe (Lemma 4.3), but not live: after sending the price, the store will wait for either buy or no
from alice, but neither message will ever be sent, while alice and bob loop by exchanging split/no.
Consequently, a process P typed by Γ′ can have two sub-processes implementing alice and bob
that interact forever, while a sub-process implementing the store waits for a buy/no message, but

will never receive it: hence, P is not live, as it does not satisfy Def. 5.1(2). Now, note that such P is

also typed by Γ (via rule [T-Sub] in Fig.2): i.e., a live typing context can type a non-live process.

Theorem 5.15. Assume ∅ · Γ ⊢ P , with Γ safe, P ≡ ���p∈IPp, each Pp having guarded definitions and
either being 0 (up-to ≡), or only playing role p in s . Then, (1) df (Γ) implies that P is deadlock-free;

(2) term(Γ) implies that P is terminating; (3) nterm(Γ) implies that P is never-terminating; (4) live
+ (Γ)

implies that P is live; and (5) live
++ (Γ) implies that P is strongly live.

Proof. The results follow by Thm. 5.4 (session fidelity). For (4) we also use the fact that, if

live
+ (Γ) and Γ⩽Γ′, then live

+ (Γ′). □

Remark 5.16. With Lemma 5.9(9) and Thm. 5.15(4), we uncover that global types / projections

(Fig.3) are ways to produce live
+
typing contexts, and ensure that processes are live. Since Thm.5.15

does not need the technicalities of Fig.3, our theory and results are more general than classic MPST.

And importantly, the premises of all cases of Thm.5.15 are decidable (by Thm.5.13 and Thm.4.9).

6 VERIFYING TYPE-LEVEL PROPERTIES VIA MODEL CHECKING
Our new MPST theory (§ 4) is parametric on a general property φ, that is not constrained by

syntactic duality/consistency. In this section, we leverage this distinguishing feature to integrate

type checking and model checking, in two steps: (1) we show how to express φ as amodal µ-calculus
formula, and (2) we use a model checker (through the paper’s companion artifact) to verify whether

the transitions of Γ satisfy the µ-calculus version of φ. This provides a practical method to verify

whether φ (Γ) holds — e.g., in rule [TGen-ν] (Def. 4.4), and in Thm.5.15.

We focus on a fragment of the µ-calculus with data, adopting a formulation based on [Groote and

Mousavi 2014, §6.5]. Let α range over the labels in Def. 2.8 — i.e., α can have the form s:p&q:m(S)
for input, or s:p⊕q:m(S) for output, or s:p,q:m for communication. Then, µ-calculus formulas are

defined as follows, where d (“data”) ranges over sessions, roles, message labels, and session types:

ϕ F ⊤
��� ⊥

��� [α]ϕ
��� ⟨α⟩ϕ

��� ϕ1 ∧ ϕ2

��� ϕ1 ∨ ϕ2

��� ϕ1⇒ ϕ2

��� µZ.ϕ
��� νZ.ϕ

��� Z
��� ∀d.ϕ

��� ∃d.ϕ
A formula ϕ accepts or rejects a typing context Γ depending on the sequences of actions that Γ
can fire along its transitions. A formula can be either: true/false (⊤/⊥), i.e., accept any/no typing

context; box modality [α]ϕ (“for all transitions with label α , the reached typing context must satisfy

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:22 Alceste Scalas and Nobuko Yoshida

ϕ”); diamond modality ⟨α⟩ϕ (“for some transition with label α , the reached typing context satisfies

ϕ”); implication⇒; least/greatest fixed point µZ.ϕ/νZ.ϕ, allowing to iterate ϕ for a finite/infinite

number of times; a variable Z, for iteration; and universal/existential quantification ∀d.ϕ/∃d.ϕ.
When a typing context Γ satisfies a formula ϕ, we write Γ |= ϕ.

Example 6.1. The µ-calculus formula ϕ = ∃s .∃p.∃q.∃m.∃S .⟨s:p⊕q:m(S)⟩⊤ says: “accept a typ-

ing context if, for some session s , roles p and q, message label m, and type S , it can perform an output

action s:p⊕q:m(S)” — and after such a transition, the reached typing context is always accepted, by

⊤. Therefore, if we take the typing context Γ=s[r]:r′⊕msg(Str) .end, then we have Γ
s :r⊕r′:msg(Str)
−−−−−−−−−−−→

(by Def. 2.8), which means that Γ satisfies ϕ — in symbols, Γ |= ϕ. Moreover, Γ satisfies the formula

∀s .∀p.∀q.∀m.[s:p,q:m]⊥, that holds when no communication is possible, for any role: in fact, the

formula says that any communication would reach a context rejected by ⊥.

Instead, if we take the formula ϕ ′ = ∃s .∃p.∃q.∃m.⟨s:p,q:m⟩⊤, then Γ above does not satisfy

ϕ ′, because it requires a communication transition to be enabled. However, if we extend Γ as

Γ′ = Γ, s[r′]:r&msg(Str) .end, then we have both Γ′ |= ϕ and Γ′ |= ϕ ′ — and thus, Γ′ |= ϕ ∧ ϕ ′.

Example 6.2 (Formulas in Fig.5). We now describe the µ-calculus formulas in Fig.5:

• safety (1) checks that, if an output m and an input m′ are enabled between two roles p and q,
then they can communicate via m (i.e., by Def. 2.8, the output message m must be supported

by the recipient). This must hold for any context reachable via communication transitions:

this is enforced by the greatest fixed point νZ. ... and the clause ... ∧ [s:p,q:m]Z;
• deadlock-freedom (2) checks whether communication is possible; if not (“∀... .[s:p,q:m]⊥”,
that holds only when no roles can interact, cf. Ex.6.1), then (⇒) there must be no input nor

output transitions enabled — i.e., all typing context entries must be end. This must hold for

any context reachable via communications: it is enforced by νZ. ... and ... ∧ ∀... .[s:p,q:m]Z;
• termination (3) is similar to deadlock-freedom, but uses a least fixed point µZ. ...: hence,
the clause ... ∧ ∀... .[s:p,q:m]Z can only iterate for a finite number of times, and then no

communications, nor inputs, nor outputs must be enabled — i.e., all context entries are end;
• never-termination (4) checks that in any context reachable via communication transitions

(νZ. ... and ... ∧ ∀... .[s:p,q:m]Z), some further communication is possible (∃... .⟨s:p,q:m⟩⊤);
• liveness (5) checks that, if an input or output between two roles p and q is enabled, then (⇒) a

corresponding communication can be fired, after a finite sequence of communications among

any role. The sequence is built with a least fixed point µZ′, that can iterate on the clause

... ∨ ∃... .⟨s:p′,q′:m′⟩Z′ for a finite number of times. The top-level greatest fixed point νZ. ...
repeats the check for all contexts reachable via communication (clause ... ∧ ∀... .[s:p,q:m]Z);
• liveness

+
(6) is similar to liveness, but the nested fixed points µZ′ build finite sequences

of communications by picking a pair of roles p′, q′ at each step, and following all their

interactions, until a communication between p, q is enabled. This corresponds to building

the fair traversal set (Def. 5.5) required by the left-side definition of live
+
in Fig.5;

• liveness
++

(7) is also similar to liveness, but the nested fixed points µZ′ build finite

sequences by following any communication between any pair of roles, until a communication

between p, q is enabled. This ensures that, along any execution path, after a finite number of

steps, p and q will be able to interact, as in the left-side definition of live
++

in Fig.5.

Implementation. This paper has a companion artifact: a toolkit, called mpstk (“MultiParty Session

Types toolKit”), that verifies the properties listed Fig.5 (and described in Ex.6.2). It is available at:

https://alcestes.github.io/mpstk

Internally, mpstk uses the mCRL2 model checker [Groote and Mousavi 2014], in combination with

the theory in §2.2 and §4 (e.g., mpstk checks subtyping, as per Def. 2.5). We used mpstk to verify

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

https://alcestes.github.io/mpstk

Less Is More: Multiparty Session Types Revisited 30:23

Table 2. Average time (in seconds ± std. dev.) for the verification of the protocols in Fig.4. Protocols (3) and

(4) are instantiated with n=3. The outcome of the verification is shown in Table 1. (Benchmarking specs: Intel
Core i7-4790 CPU, 3.60GHz, 16 GB RAM, mCRL2 201808.0 invoked 30 times (by mpstk) with: pbes2bool --strategy=2)

states safe
deadlock-

free
live live

+
live

++
never-

terminat.
terminat.

(1) OAuth2 fragment 37 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 0.98 ± 9%

(2) Rec. two-buyers 85 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 0.99 ± 3%

(3) Rec. map/reduce 2561 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 0.99 ± 3%

(4) MP workers 442369 1.01 ± 4% 0.98 ± 8% 0.98 ± 9% 1.03 ± 14% 1.02 ± 7% 0.99 ± 6% 1.00 ± 1%

the protocols in Fig.4: the results are in Table 1. We also measured the time needed to verify each

case: the results are in Table 2. In all instances, the verification takes around one second. Notably,

this also holds for the multiparty workers protocol (4), although it has 12000× more states than

the OAuth2 fragment (1). This state space explosion is due to the interleaving of multiple parallel

components — but still, its impact on verification time is minimal: in fact, the properties in Fig.5

only follow the communication transitions of a typing context Γ, whereas the input and output

transitions of Γ are checked for their presence/absence, but not followed to their destination state.

Hence, mCRL2 can verify our formulas in Fig.5 without exploring the whole state space of Γ.

7 ASYNCHRONOUS MULTIPARTY SESSION π -CALCULUS
In its original formulation [Bettini et al. 2008; Honda et al. 2008], theMPST π -calculus has asynchron-
ous buffered semantics, to model typical “real-world” distributed message-passing programs. Our

new theory extends to asynchrony, overcoming challenges due to queue handling and decidability.

Due to space limits, we summarise the main results from [Scalas and Yoshida 2018a].

Asynchronous MPST. We give an intuition of the asynchronous calculus with an example:

s[p][q]⊕m⟨s ′[r]⟩.P | s[q][p]
∑
m(x) .Q | s▶ϵ

→ P | s[q][p]
∑
m(x) .Q | s▶ (p, q, m⟨s ′[r]⟩) ·ϵ → P | Q {s ′[r]/x } | s▶ϵ

(10)

In the topmost process, s▶ϵ is the (empty) message queue of session s (not present in the calculus

of §2.1). The first reduction enqueues the pending message (p, q, m⟨s ′[r]⟩), meaning that p has sent

to q a message with label m and payload s ′[r]. With the second reduction, the message is received.

The classic async MPST typing judgement has the following form:

Θ · Γ ⊢S P (11)

where S is the set of sessions whose queue occurs in P (e.g., to type (10) above, we let S = {s}).
Types are extended to model pending messages; e.g., the processes in (10) are typed by, respectively:

Γ = s[p]:q⊕m(S ′) .S , s[q]:p&m(S ′) .T , s ′[r]:S ′

Γ′ = s[p]: (q!m(S ′) ·ϵ ; S) , s[q]:p&m(S ′) .T , s ′[r]:S ′

Γ′′ = s[p]:S , s[q]:T , s ′[r]:S ′
(12)

Note that Γ above is a typing context similar to Def. 2.6. Instead, in Γ′ the type of s[p] is a pair
(M ; S), whereM =q!m(S ′) ·ϵ is amessage queue type (abstracting the pending messages sent through

s[p]), followed by the continuation type S . In Γ′, the topmost queued message type matches the

branching type of s[q]: their interaction leads to Γ′′, with a reduction similar to Def. 2.8.

The classic async MPST theory has all the issues described in §3 — but the presence of message

queues makes its subject reduction statement more complicated [Coppo et al. 2015a, Lemma 1]:

If Θ · Γ ⊢S P and ∃Γ0 such that Γ, Γ0 consistent and P → P ′,

then ∃Γ′, Γ′
0
consistent: Γ, Γ0 →

∗ Γ′, Γ′
0
and Θ · Γ′ ⊢S P ′

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:24 Alceste Scalas and Nobuko Yoshida

General Asynchronous MPST. We extend our new theory in §4 to asynchronous MPST, and prove

a simpler and more general subject reduction statement: Thm.7.1. To achieve it, we develop async

typing rules based on an async safety property φ, with a more sophisticated async typing context

reduction→S, where S is a set of sessions, as in (11); e.g., in (12) we have Γ →{s } Γ
′ →{s } Γ

′′
.

Theorem 7.1 (Async Subject Reduction). Assume Θ · Γ ⊢S P with Γ asynchronously safe.

Then, P → P ′ implies ∃Γ′ asynchronously safe such that Γ →S
∗ Γ′ and Θ · Γ′ ⊢S P ′.

We define asynchronous variants of φ, similar to those in Fig.5; and by suitably instantiating φ,
we ensure that typed async processes are deadlock-free/live, similarly to Thm.5.15.

(Un-)Decidability of Type Checking. A result akin to Thm.4.9 holds for async MPST.

Theorem 7.2. If φ is decidable, then “Θ·Γ ⊢SP with φ” is decidable.

However, under asynchrony we do not have a decidability result for φ as general as Thm.5.13.

On the contrary, async safety and most other properties are undecidable: the pairing of a session

type with a message queue (cf. Γ′ in (12)) corresponds to a Communicating Finite-State Machine

(CFSM) [Brand and Zafiropulo 1983], and makes typing contexts Turing-powerful [Bartoletti et al.

2016, Thm. 2.5]. Still, we obtain decidable instances of φ through various sound approximations:

(M1) consistency is decidable, and implies asynchronous safety;

(M2) via the session type / CFSM correspondence established in [Deniélou and Yoshida 2013], we

show that if Γ is synchronously live (Fig.5(5), decidable by Thm.5.13), then Γ is also asynchronously
live; we extend the result to live

+
(Fig.5(6)); and by Lemma 5.9(9), this means that any Γ projected

from a global type is asynchronously live
+
;

(M3) given n ≥ 1, we can decide if Γ enqueues at most n messages; if so, Γ is finite-state, hence

async safety/liveness are decidable. For example, take Γ = s[p]:q⊕m1 .q&m2, s[q]:p⊕m2 .p&m1: it
is deadlocked under synchronous semantics, and not projectable from any global type — but

under asynchrony, the top-level outputs of p and q can be both enqueued, and then received;

hence, we can decide that Γ enqueues at most 2 messages, and is asynchronously live.

Remark 7.3. By instantiating φ in Thm.7.2 with one of the methods above, we obtain an expressive

decidable fragment of our new asynchronous MPST theory: (M1) subsumes classic async MPST; (M2)
covers all live typing contexts, albeit non-consistent: e.g., it covers all cases in Fig.4, and all global types

(by Lemma 5.9(9)); (M3) covers more typing contexts that are not projectable from global types.

8 CONCLUSION, RELATED AND FUTUREWORK
We have presented a new theory of multiparty sessions types, with novel foundations that do not

depend on duality/consistency, nor global types, nor projections. Our new theory subsumes classic

MPST, also fixing subject reduction flaws in previous work (Remark 5.16). Moreover, our new type

system is modular and reusable: by fine-tuning its parameter φ, we ensure that type-checking is
decidable, and that processes are safe, deadlock-free, and live. A summary of the main results:

(R1) our type safety results (Thm.4.6, Cor.4.7) are much more general than classic MPST;

(R2) if we instantiate φ with projection/consistency, or any property in Fig. 5, then the type

checking judgement “Θ · Γ ⊢ P with φ” is decidable. This follows from Thm.4.9 and Thm.5.13;

(R3) by suitably choosing φ in (R2) above, we can statically guarantee that P “inherits” φ, and has
certain desired run-time properties. This is formalised in Thm.5.15;

(R4) we can implement φ in (R2)/(R3) above as a syntactic check (Remark 5.12), or as a µ-calculus
formula (Fig.5). In the latter case, we can verify whether Γ satisfies φ via model checking —

e.g., using mCRL2, through the paper’s companion artifact (mpstk). This is shown in §6;

(R5) our new theory extends to asynchronous communication, as illustrated in §7.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:25

8.1 Classic Multiparty Session Types (MPST)
The classic MPST framework, and its notions of global types and projections, were introduced by

Honda et al. [2008], with linearity conditions to check the well-formedness of global types, and

ensure projectability of local types. Later, Bettini et al. [2008] proposed a simplified MPST system

adopted by most works, including ours.

We now classify some related works w.r.t. their use of projection/consistency:

papers projection consistency subj. red. claim

(a)

Bettini et al. [2008]; Carbone et al. [2016, 2015]; Coppo

et al. [2015a]; Honda et al. [2008, 2016]

≤ plain yes correct (C1)

(b)

Caires and Pérez [2016]; Chen [2015]; Deniélou et al.

[2012]; Deniélou and Yoshida [2012]; Toninho and

Yoshida [2016]

≥ full no flawed (C2)

(c) Scalas et al. [2017a]; Toninho and Yoshida [2017] full yes (required) correct (C1)

Row (a) lists works using plain (or stricter) global type projection (Def. 3.3), guaranteeing

consistency. As shown in §5.4, our theory captures plain projection / consistency by setting its

parameter φ as φ=pprojG,s / φ=consistent; however, this excludes many valid protocols, as per

claim (C1) — e.g., all our examples in Fig.4.

Row (b) lists works using full (or more flexible) global type projection, originally introduced in

Yoshida et al. [2010] to support more protocols. Such works overlook the consistency requirement;

and in §3, we reveal that classic MPST subject reduction proofs relying on full projection (without

consistency) are flawed, as per claim (C2). To “fix” these works within the classic MPST theory, we

must require consistency, as done by works in row (c) — but this restricts typability, thus falling

back into claim (C1). Instead, by Remark 5.12, our new MPST theory supports full projections with

φ= fprojG,s, thus subsuming classic MPST and fixing flaws, without losing expressiveness.

8.2 Non-Classic Multiparty Session Types
To the best of our knowledge, there are two MPST works (mentioned in Remark 3.1) that are not

based on classic projection+consistency (Fig.3) — but have other limitations, that we surmount.

The first work is by Dezani-Ciancaglini et al. [2015]: it presents a single-session type system,

with first-order session types (i.e., without channel-passing); it is rooted on global types and their

projections, but does not require consistency. Such a type system is subsumed by letting φ= fprojG,s
in our Def. 4.4; in addition, our work also supports higher-order types, multiple interleaved sessions,

and protocols for which no global type exists (see Table 1(2), and Ex.5.11, case ΓC).
The second non-classic MPST work is by Scalas and Yoshida [2018b]: it was our first attempt

(and, to the best of our knowledge, the first work in general) to directly address the limitations of

consistency (claim (C1)), and propose a behavioural theory of MPST, not based on global types and

projections. Unfortunately, we could not build upon that work, due to its intrinsic limitations:

(1) a major goal of this paper is subsuming and fixing classic MPST (cf. claim (C2) in §1, and §3).

However, the theory of Scalas and Yoshida [2018b] cannot achieve this goal: it has different

(and more complicated) typing rules that require typing context liveness, and do not support

consistency. Our new theory, instead, supports both consistency and liveness, as instances of

φ (Lemma 5.9, Remark 5.12);

(2) from Scalas and Yoshida [2018b], we reuse the definition of typing context liveness (Fig.5(5))

— but we show that it is insufficient to guarantee process liveness (Def. 5.1, Ex.5.14). Hence,

we develop the stronger properties live
+
/live

++
(Fig.5(6,7)), to obtain the results on run-time

process behaviour in Thm.5.15. Such results are absent in Scalas and Yoshida [2018b];

(3) the branching/selection typing rules of Scalas and Yoshida [2018b] (Fig. 3) directly inspect

typing context reductions. This peculiarity is not problematic under synchronous semantics

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

30:26 Alceste Scalas and Nobuko Yoshida

(where typing contexts have finite-state transition systems), and in some cases, it enables

flexible typing judgements that cannot be obtained in classic MPST [Scalas and Yoshida

2018b, Ex. 5.5]. The drawback is that, when extended to asynchronous semantics, typing

contexts become Turing-powerful (§7), and typing rules that inspect their reductions become

inherently undecidable; consequently, the theory of Scalas and Yoshida [2018b] does not

subsume classic works on asynchronous MPST, and cannot achieve this goal without a major

overhaul. Instead, our typing rules do not inspect typing context reductions, but only check

whether the parametric property φ holds: hence, type checking is decidable whenever φ is

decidable (Thm.7.2), and this allows us to subsume classic asynchronous MPST (Remark 7.3).

By instantiating φ= live in Def. 4.4, this paper largely subsumes Scalas and Yoshida [2018b]’s work

— minus some corner cases based on the inspection of typing context reductions (cf. item (3) above).

8.3 Binary Sessions Without Duality
Our work yields a generalised theory of binary sessions not based on classic duality (Def. 3.5),

subsuming classic papers based on [Honda et al. 1998]. If we take a binary session typing context

Γ=s[p]:S, s[q]:T , our Lemma 5.9 becomes:

∃G: fprojG,s (Γ) ⇍= =⇒ consistent(Γ) ⇍= =⇒ live
++ (Γ) ⇐⇒

(
safe(Γ) and df (Γ)

)
(13)

Here, the leftmost “⇍=” is due to supertyping: e.g., if we take the global type G=p→q: {m, m′}, it

projects the typing context Γ=s[p]:q⊕{m, m′}, s[q]:p&{m, m′}, that is consistent and live
++

(hence

safe); however, if we replace p’s entry with the supertype p⊕m, the resulting context is still live
++

and consistent, but not projectable from any global type. The other “⇍= ” in (13) is due to non-tail-

recursive types like µt.q⊕m(t) .end: they have no dual in classic binary session types (since t is a
forbidden payload): thus, they yield non-consistent typing contexts, and processes like P in Ex.5.11

(case ΓC) cannot be typed. This limitation has been addressed by several authors, extending duality

with various pitfalls (see e.g. [Bernardi and Hennessy 2016, §5.3]): for a survey, and a logic-based

solution, see [Lindley and Morris 2016, §3.2]. By not using duality, our theory eschews these issues.

8.4 Type Systems for the π -Calculus
Many type systems have been proposed for the π -calculus, also influencing MPST: see survey in

[Hüttel et al. 2016]. Our new MPST theory is a case of behavioural type system: it treats types as

simple processes that reduce and evolve along a typed computation; and since types are simpler

than programs, they can be analysed with simpler methods (e.g., finite model checking via our

parameter φ, cf. §6). As stated in §4, the design of our new MPST theory is inspired by Igarashi and

Kobayashi [2004]’s Generic Type System (GTS) for the π -calculus: i.e., we define a type system that

is parametric on a property φ, and we prove type safety under the weakest φ; then, we fine-tune
φ to statically verify stronger properties of processes, like deadlock-freedom and liveness (§5).

Besides this general analogy, our treatment is wholly different: we carefully reuse fundamental

MPST definitions (§2.1) and develop new and more general results (§4, §5) to ensure our new

theory fully subsumes the classic one; moreover, for async MPST we devise a new treatment of

queue types, obtaining a new, more general subject reduction result (Thm.7.1).

As an alternative, we might have tried to encode MPST in the GTS, and develop our new results

from there. However, this appears unfeasible. Gay et al. [2014] tried the approach for binary sessions,

obtaining drawbacks in terms of complication and loss of abstraction (see “Assessment” in Gay et al.

[2014]): such drawbacks would be greatly amplified for multiparty sessions. Moreover, [Igarashi

and Kobayashi 2004, §4.2, §5] study process/type correspondence using a temporal logic without

fixed points, with limited support for recursion: their logic would not allow, e.g., to model our

variants of liveness (Fig.5) and address the interplay between liveness, subtyping, and recursion

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

Less Is More: Multiparty Session Types Revisited 30:27

(Ex.5.14, Thm.5.15). Further, the encoding approach would not work for async MPST: the types of

Igarashi and Kobayashi [2004] lack message queues, and are akin to CCS without restriction, with

decidable reachability [He 2011, p. 374]; hence, they cannot encode the Turing-powerful typing

contexts of async MPST (§7), whose reachability is undecidable.

8.5 Choreographies and Communicating Finite-State Machines (CFSMs)
Various works model and verify multiparty protocols, a.k.a. choreographies, via automata-theoretic

methods, by representing each party as a CFSM [Brand and Zafiropulo 1983]. The safety their

interactions (that is generally undecidable) is verified with two main approaches: (a) assume the

decidability of a synchronisability property [Basu and Bultan 2011, 2016; Basu et al. 2012], and

then check temporal properties of CFSMs via model checking; (b) check decidable synchronous

execution conditions on CFSMs, and prove that they ensure safe asynchronous executions [Bocchi

et al. 2015; Deniélou and Yoshida 2013; Lange et al. 2015]. Both methods can help extending our

new MPST theory: since we essentially treat async typing contexts as systems of CFSMs (§7), new

decidable results on CFSM safety can yield new decidable instances of our type system (Thm.7.2).

Unfortunately, synchronisability has been recently proven undecidable by Finkel and Lozes [2017]:

i.e., method (a) above might be unusable — hence, we adopt method (b) (cf. (M2) in §7). Unlike this

paper, the above CFSM works do not study type systems, nor properties of typed processes.

8.6 Future Work
We kept our typing rules close to classic MPST, to easily combine our results with existing works.

E.g., we plan to integrate our work with Coppo et al. [2015b], that studies MPST deadlock-freedom in

presence ofmultiple interleaved sessions: our generalised typing rules can be a drop-in replacement

for the classic rules used by Coppo et al. [2015b], and this integration would combine their global

deadlock-freedom checks, with our improved type safety results for individual sessions. We also

plan to extend the calculus (e.g., with polymorphism [Caires and Pérez 2016; Goto et al. 2016]),

and expand the properties/formulas studied in Fig.5 and Thm.5.15. We will investigate the logical

foundations of our new MPST theory, aiming at results that generalise those by Carbone et al.

[2016, 2015], which are focused on limited global types, projections, and consistency.

Another interesting research topic is the completeness of safety (Def. 4.1), i.e., studying whether

the inverse implication w.r.t. Thm.4.6/Cor.4.7 holds. This corresponds to the following conjecture:

Take any Γ. If ∀P , P ′: Γ ⊢ P and P →∗ P ′ implies that P ′ has no error, then safe(Γ).

We will investigate whether this conjecture holds — and if not, what other completeness results are

achievable. Since session subtyping is central for defining safety (via clause [S-→] in Def. 4.1, and

[Γ-Comm] in Def. 2.8), we will leverage Chen et al. [2017]’s work on the completeness of subtyping.

We will also study how to implement our new MPST theory. A basis is the work by Scalas

et al. [2017a,b], that embeds classic MPST in Scala, through a linear π -calculus encoding based

on consistency; however, since we do not require consistency, the work by Scalas et al. [2017a,b]

only covers a fragment of our new theory. Using the µ-calculus formulas illustrated in §6, a new

implementation can verify typing context properties by offloading them to a model checker.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful remarks. Thanks to Francisco Ferreira, Sung-

Shik Jongmans, and Julien Lange for their comments, and to Simon Castellan for testing the com-

panion artifact. This work was partially supported by EPSRC (projects EP/K034413/1, EP/K011715/1,

EP/L00058X/1, EP/N027833/1, EP/N028201/1), and by the EU COST Action CA15123 (“EUTypes”).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

https://eutypes.cs.ru.nl/

30:28 Alceste Scalas and Nobuko Yoshida

REFERENCES
Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils

Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2017. Behavioral Types in

Programming Languages. Foundations and Trends in Programming Languages 3(2-3) (2017). https://doi.org/10.1561/

2500000031

Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. 2016. Honesty by Typing. LMCS 12(4) (2016).

https://doi.org/10.2168/LMCS-12(4:7)2016

Samik Basu and Tevfik Bultan. 2011. Choreography conformance via synchronizability. InWWW.

Samik Basu and Tevfik Bultan. 2016. On deciding synchronizability for asynchronously communicating systems. Theor.

Comput. Sci. 656 (2016).

Samik Basu, Tevfik Bultan, andMeriemOuederni. 2012. Synchronizability for Verification of Asynchronously Communicating

Systems. In VMCAI.

Giovanni Bernardi and Matthew Hennessy. 2016. Using higher-order contracts to model session types. LMCS 12(2) (2016).

https://doi.org/10.2168/LMCS-12(2:10)2016

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2008.

Global Progress in Dynamically InterleavedMultiparty Sessions. In CONCUR. https://doi.org/10.1007/978-3-540-85361-9_

33

Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting Deadlines Together. In CONCUR. https://doi.org/10.4230/

LIPIcs.CONCUR.2015.283

Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. JACM 30, 2 (1983). https://doi.org/10.

1145/322374.322380

Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. 2009. On the expressive power of recursion, replication and iteration

in process calculi. Mathematical Structures in Computer Science 19, 6 (2009). https://doi.org/10.1017/S096012950999017X

Luís Caires and Jorge A. Pérez. 2016. Multiparty Session Types Within a Canonical Binary Theory, and Beyond. In FORTE.

https://doi.org/10.1007/978-3-319-39570-8_6

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear logic propositions as session types. MSCS 26, 3 (2016).

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence Generalises Duality:

A Logical Explanation of Multiparty Session Types. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2015. Multiparty Session Types as Coherence

Proofs. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2015.412

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. 2017. On the Preciseness of Subtyping

in Session Types. Logical Methods in Computer Science 13, 2 (2017). https://doi.org/10.23638/LMCS-13(2:12)2017

Tzu-Chun Chen. 2015. Lightening global types. JLAMP 84, 5 (2015). https://doi.org/10.1016/j.jlamp.2015.06.003

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015a. A Gentle Introduction to

Multiparty Asynchronous Session Types. In Formal Methods for Multicore Programming. https://doi.org/10.1007/

978-3-319-18941-3_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2015b. Global Progress for Dynamically

Interleaved Multiparty Sessions. MSCS 760 (2015). https://doi.org/10.1017/S0960129514000188

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Parameterised Multiparty Session Types.

LMCS 8, 4 (2012). https://doi.org/10.2168/LMCS-8(4:6)2012

Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session Types Meet Communicating Automata. In ESOP.

https://doi.org/10.1007/978-3-642-28869-2_10

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characterisation

and Synthesis of Global Session Types. In ICALP. https://doi.org/10.1007/978-3-642-39212-2_18

Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and Nobuko Yoshida. 2015. Precise

subtyping for synchronous multiparty sessions. In PLACES. https://doi.org/10.4204/EPTCS.203.3

Alain Finkel and Etienne Lozes. 2017. Synchronizability of Communicating Finite State Machines is not Decidable. In ICALP.

https://doi.org/10.4230/LIPIcs.ICALP.2017.122

Simon Gay and António Ravara. 2017. Behavioural Types: From Theory to Tools. River Publishers, Series in Automation,

Control and Robotics. https://doi.org/10.13052/rp-9788793519817

Simon J. Gay. 2016. Subtyping Supports Safe Session Substitution. In A List of Successes That Can Change the World:

Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday (LNCS), Vol. 9600. https://doi.org/10.1007/

978-3-319-30936-1_5

Simon J. Gay, Nils Gesbert, and António Ravara. 2014. Session Types as Generic Process Types. In EXPRESS/SOS. https:

//doi.org/10.4204/EPTCS.160.9

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.2168/LMCS-12(4:7)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.412
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1016/j.jlamp.2015.06.003
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.4204/EPTCS.160.9
https://doi.org/10.4204/EPTCS.160.9

Less Is More: Multiparty Session Types Revisited 30:29

Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the π -calculus. Acta Inf. 42, 2-3 (2005). https:

//doi.org/10.1007/s00236-005-0177-z

Jean-Yves Girard. 1987. Linear Logic. TCS 50 (1987), 1–102.

Matthew Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2016. An extensible approach to session

polymorphism. Mathematical Structures in Computer Science 26, 3 (2016). https://doi.org/10.1017/S0960129514000231

Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and Analysis of Communicating Systems. The MIT Press.

Chaodong He. 2011. The Decidability of the Reachability Problem for CCS!. In CONCUR. https://doi.org/10.1007/

978-3-642-23217-6_25

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP. https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. https:

//doi.org/10.1145/1328438.1328472 Full version in [Honda et al. 2016].

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1, Article 9

(2016). https://doi.org/10.1145/2827695

Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca

Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session

Types and Behavioural Contracts. ACM Comput. Surv. 49, 1, Article 3 (2016). https://doi.org/10.1145/2873052

Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type system for the π -calculus. TCS 311, 1 (2004). https:

//doi.org/10.1016/S0304-3975(03)00325-6

Naoki Kobayashi and Davide Sangiorgi. 2010. A hybrid type system for lock-freedom of mobile processes. TOPLAS 32, 5

(2010). https://doi.org/10.1145/1745312.1745313

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From Communicating Machines to Graphical Choreographies. In

POPL. https://doi.org/10.1145/2676726.2676964

Sam Lindley and J. Garrett Morris. 2016. Talking Bananas: Structural Recursion for Session Types. In ICFP. https:

//doi.org/10.1145/2951913.2951921

Barbara H. Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of Subtyping. TOPLAS 16, 6 (1994). https:

//doi.org/10.1145/197320.197383

OAuth Working Group. 2012. RFC 6749: OAuth 2.0 Framework. http://tools.ietf.org/html/rfc6749.

Luca Padovani. 2014. Deadlock and lock freedom in the linear π -calculus. In CSL-LICS. https://doi.org/10.1145/2603088.

2603116

Luca Padovani. 2016. Fair Subtyping for Multi-Party Session Types. Mathematical Structures in Computer Science 26, 3

(2016). https://doi.org/10.1017/S096012951400022X

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017a. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017b. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming (Artifact). Dagstuhl Artifacts Series 3, 1 (2017). https://doi.org/10.4230/DARTS.3.2.3

Alceste Scalas and Nobuko Yoshida. 2018a. Less is More: Multiparty Session Types Revisited. Technical Report 6. Imperial

College London. https://www.doc.ic.ac.uk/research/technicalreports/2018/6

Alceste Scalas and Nobuko Yoshida. 2018b. Multiparty session types, beyond duality. Journal of Logical and Algebraic

Methods in Programming 97. https://doi.org/10.1016/j.jlamp.2018.01.001

Bernardo Toninho and Nobuko Yoshida. 2016. Certifying Data in Multiparty Session Types. In A List of Successes That

Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday (LNCS), Vol. 9600. https:

//doi.org/10.1007/978-3-319-30936-1_23

Bernardo Toninho and Nobuko Yoshida. 2017. Certifying data in multiparty session types. JLAMP 90 (2017). https:

//doi.org/10.1016/j.jlamp.2016.11.005

Philip Wadler. 2014. Propositions as sessions. J. Funct. Program. 24, 2-3 (2014).

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. 2010. Parameterised Multiparty Session Types. In

FOSSACS. https://doi.org/10.1007/978-3-642-12032-9_10

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 30. Publication date: January 2019.

https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1007/978-3-642-23217-6_25
https://doi.org/10.1007/978-3-642-23217-6_25
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
http://tools.ietf.org/html/rfc6749
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S096012951400022X
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://www.doc.ic.ac.uk/research/technicalreports/2018/6
https://doi.org/10.1016/j.jlamp.2018.01.001
https://doi.org/10.1007/978-3-319-30936-1_23
https://doi.org/10.1007/978-3-319-30936-1_23
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1007/978-3-642-12032-9_10

	Abstract
	1 Introduction
	2 Multiparty Session Types
	2.1 The Multiparty Session -Calculus
	2.2 Types, Subtypes, and Typing
	2.3 Towards Subject Reduction and Type Safety

	3 Limitations and Theoretical Issues of Classic MPST
	3.1 Consistency and Subject Reduction
	3.2 More Examples of Correct, yet Non-Consistent Protocols

	4 A New, General Multiparty Session Type System
	5 Verifying Run-Time Properties of Processes, Using Types
	5.1 Run-Time Properties of Processes
	5.2 Session Fidelity
	5.3 Typing Context Properties
	5.4 Relationships Between Typing Context Properties
	5.5 Static Verification of Run-Time Process Properties

	6 Verifying Type-Level Properties via Model Checking
	7 Asynchronous Multiparty Session -Calculus
	8 Conclusion, Related and Future Work
	8.1 Classic Multiparty Session Types (MPST)
	8.2 Non-Classic Multiparty Session Types
	8.3 Binary Sessions Without Duality
	8.4 Type Systems for the -Calculus
	8.5 Choreographies and Communicating Finite-State Machines (CFSMs)
	8.6 Future Work

	Acknowledgments
	References

