
Motion Session Types for Robotic Interactions1

Rupak Majumdar2

MPI-SWS, Germany3

rupak@mpi-sws.org4

Marcus Pirron5

MPI-SWS, Germany6

mpirron@mpi-sws.org7

Nobuko Yoshida8

Imperial College London, UK9

n.yoshida@imperial.ac.uk10

Damien Zufferey11

MPI-SWS, Germany12

zufferey@mpi-sws.org13

Abstract14

Robotics applications involve programming concurrent components synchronising through messages15

while simultaneously executing motion primitives that control the state of the physical world. Today,16

these applications are typically programmed in low-level imperative programming languages which17

provide little support for abstraction or reasoning.18

We present a unifying programming model for concurrent message-passing systems that addi-19

tionally control the evolution of physical state variables, together with a compositional reasoning20

framework based on multiparty session types. Our programming model combines message-passing21

concurrent processes with motion primitives. Processes represent autonomous components in a22

robotic assembly, such as a cart or a robotic arm, and they synchronise via discrete messages as well23

as via motion primitives. Continuous evolution of trajectories under the action of controllers is also24

modelled by motion primitives, which operate in global, physical time.25

We use multiparty session types as specifications to orchestrate discrete message-passing concur-26

rency and continuous flow of trajectories. A global session type specifies the communication protocol27

among the components with joint motion primitives. A projection from a global type ensures that28

jointly executed actions at end-points are communication safe and deadlock-free, i.e., session-typed29

components do not get stuck. Together, these checks provide a compositional verification methodo-30

logy for assemblies of robotic components with respect to concurrency invariants such as a progress31

property of communications as well as dynamic invariants such as absence of collision.32

We have implemented our core language and, through initial experiments, have shown how mul-33

tiparty session types can be used to specify and compositionally verify robotic systems implemented34

on top of off-the-shelf and custom hardware using standard robotics application libraries.35

2012 ACM Subject Classification Computer systems organization → Robotics; Software and its36

engineering → Concurrent programming languages; Theory of computation → Process calculi;37

Theory of computation → Type theory38

Keywords and phrases Session Types, Robotics, Concurrent Programming, Motions, Communica-39

tions, Multiparty Session Types, Deadlock Freedom40

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.1241

Category Brave New Idea Paper42

Funding Rupak Majumdar : DFG 389792660 TRR 248, ERC Synergy Grant 61015043

Marcus Pirron: DFG 389792660 TRR 248, ERC Synergy Grant 61015044

Nobuko Yoshida: EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1 and45

EP/N028201/146

Damien Zufferey: DFG 389792660 TRR 248, ERC Synergy Grant 61015047

© Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 12; pp. 12:1–12:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rupak@mpi-sws.org
mailto:mpirron@mpi-sws.org
https://orcid.org/0000-0002-3925-8557
mailto:n.yoshida@imperial.ac.uk
https://orcid.org/0000-0002-3197-8736
mailto:zufferey@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Motion Session Types for Robotic Interactions

1 Introduction48

Many cyber-physical systems today involve an interaction among communication-centric49

components which together control trajectories of physical variables. For example, consider50

an autonomous robotic system executing in an assembly line. The components in such an51

example would be robotic manipulators or arms as well as robotic carts onto which one52

or more arms may be mounted. A global task may involve communication between the53

carts and the arms—for example, to jointly decide the position of the arms and to jointly54

plan trajectories—as well as the execution of motion primitives—for example, to follow55

a trajectory or to grip an object. Today, a programmer developing such an application56

must manually orchestrate the messaging and the dynamics: errors in either can lead57

to potentially catastrophic system failures. Typically, programs are written in (untyped)58

imperative programming language using messaging libraries. Arguments about correctness59

are informal at best, with no support from the language.60

In this paper, we take the first steps towards a uniform programming model for autonomous61

robotic systems. Our model combines message-based communication with physical dynamics62

(“motion primitives”) over time. Our starting point is the notion of multiparty session63

types [25, 26, 10], a principled, type-based, discipline to specify and reason about global64

communication protocols in a concurrent system. We enrich a process-based core language65

for communication with the ability to execute dynamic motion primitives over time. Motion66

primitives encapsulate the actions of dynamic controllers on the physical world and define67

the continuous evolution of the trajectories of the system. At the same time, we enrich a68

type system for multiparty session-based communication with motion primitives.69

The interaction of communication and dynamics is non-trivial. Since time is global to a70

physical system, every independently running process must be ready to execute their motion71

primitives simultaneously. Thus, for example, programs in which one component is blocked72

waiting for a message while another moves along a trajectory must be ruled out as ill-typed.73

To keep the complexity of the problem manageable, our semantics keeps, as much as possible,74

the message exchanges separate from the continuous trajectories. In particular, in our model,75

message exchanges occur instantaneously and at discrete time steps, à la synchronous reactive76

programming, while motion primitives execute in global time. System evolution is then77

organised into rounds; each round consists of a logical time for communication followed by78

physical time for motion. This assumption is realistic for systems where the speed of the79

trajectories is comparatively slow compared to the message transmission delay.80

Our reasoning principles closely follow the usual type-checking approach of multiparty81

session types. Specifications are described through global types, which constrain both message82

sequences and motion sequences. Global types are projected to local types, which specify the83

actions in a session from the perspective of a single end-point process. Finally, a verification84

step checks that each process satisfies its local type. The soundness theorem ensures that in85

this last case, the composition of the processes satisfy a protocol compliance.86

Our type system ensures communication safety and deadlock-freedom for messages,87

ensuring, for example, that communication is not stuck or time cannot progress. In addition,88

we verify safety properties of physical trajectories such as non-collision by constraint-based89

verification of simultaneously executed motion primitives specified in the global type.90

Existing session type formalisms such as [9] fall short to model a combination of individual91

interactions and global synchronisations by motions. To demonstrate our initial step and92

to observe an effect of new primitives specific to robotics interactions, we start from the93

simplest multiparty session type system in [15, 18]. The programming model and type94

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:3

system introduced in this paper provides the foundations for PGCD programs, a practical95

programming system to develop concurrent robotics applications [4]. We have used our96

calculus and type system to verify correctness properties of (abstract versions of) multi-robot97

co-ordination programs written in PGCD, which then execute on real robotics hardware.98

Our evaluation shows that multiparty session types and choreographies for multi-robot99

co-ordination and manipulation can lead to statically verified implementations that run on100

off-the-shelf and custom robotics hardware platforms.101

Outline We first give a gentle introduction to motion session types to those who are102

interested in concurrent robotics programming, but not familiar with session types. Section 3103

discusses a core abstract calculus of processes where motions are abstracted by just the104

passage of time; Section 4 defines a typing system with motion primitives; Section 5 extends105

our theory to deal with continuous trajectories; Section 6 discusses our implementation;106

Section 7 gives related work and Section 8 concludes.107

2 A Gentle Introduction to Motion Session Types108

The aim of this section is to give a gentle introduction of motion session types for readers109

who are interested in robotics programming but who are not familiar with session types nor110

process calculi.111

A key difficulty in robotics programming is that the programmer has to reason about112

concurrent processes communicating through messages as well as about dynamics evolving113

in time. The idea of motion session types is to provide a typing framework to only allow114

programs that follow structured sequences of interactions and motion. A session will be a115

natural unit of structured communication and motion. Motion session types abstract the116

structure of a session. and provide a syntax-driven approach to restricting programs to a117

well-behaved subclass—for this subclass, one can check processes compositionally and derive118

properties of the composition.119

Motion session types extend session types, introduced in a series of papers during the120

1990s [23, 43, 24], in the context of pure concurrent programming. Session types have since121

been studied in many contexts over the last decade—see the surveys of the field [27, 17].122

We begin by an overview of the key technical ideas of multiparty session types. Then123

we introduce motion primitives to multiparty session types for specifying actions over time.124

Finally, we refine the motion primitives to physical motion executed by the robots.125

2.1 Communication: Multiparty Session Types126

We begin with a review of multiparty session types, a methodology to enable compositional127

reasoning about communication.128

As a simple example, consider a scenario in which a cart and arm assembly has to fetch129

objects. We associate a process with each physical component; thus, we model the scenario130

using a cart (Cart) and an arm (Arm) attached to the cart. The task involves synchronisation131

between the cart and the arm as well as co-ordinated motion. Synchronization is obtained132

through the exchange of messages. We defer the discussion on motion to Section 2.2.133

Specifically, the protocol works as follows.134

1. The cart sends the arm a fold command fold. On receiving the command, the arm folds135

itself. When the arm is completely folded, it sends back a message ok to the cart. On136

receipt of this message, the cart moves.137

ECOOP 2019

12:4 Motion Session Types for Robotic Interactions

2. When the cart reaches the object, it stops and sends a grab message to the arm to grab138

the object. While the cart waits, the arm executes the grabbing operation, followed by139

a folding operation. Then the arm sends a message ok to the cart. This sequence may140

need to be repeated.141

3. When all tasks are finished, the cart sends a message done to the arm, and the protocol142

terminates.143

The multiparty session types methodology is as follows. First, define a global type that144

gives a shared contract of the allowed pattern of message exchanges in the system. Second,145

project the global type to each end-point participant to get a local type: an obligation on146

the message sends and receipts for each process that together ensure that the pattern of147

messages are allowed by the global type. Finally, check that the implementation of each148

process conforms to its local type.149

In our protocol, from a global perspective, we expect to see the following pattern of150

message exchanges, encoded as a global type for the communication:151

µt.Cart→ Arm : {fold.Arm→ Cart : ok.Cart→ Arm : grab.Arm→ Cart : ok.t, done.end} (1)152

The type describes the global pattern of communication between Cart and Arm using message153

exchanges, sequencing, choice, and repetition. The basic pattern Cart→ Arm :m indicates a154

message m sent from the Cart to the Arm. The communication starts with the cart sending155

either a fold or a done command to the arm. In case of done, the protocol ends (type156

end); otherwise, the communication continues with the sequence ok. grab. ok followed by a157

repetition of the entire pattern. The operator “.” denotes sequencing, and the type µt.T158

denotes recursion of T .159

The global type states what are the valid message sequences allowed in the system.160

When we implement Cart and Arm separately, we would like to check that their composition161

conforms to the global type. We can perform this check compositionally as follows.162

Since there are only two participants, projecting to each participant is simple. From the163

perspective of the Cart, the communication can be described by the type:164

µt. ((!fold. ?ok. !grab. ?ok.t) ⊕ (!done. end)) (2)165

where !m denotes a message m sent (to the Arm) and ?m denotes a message m received from166

the Arm. and ⊕ denotes an (internal) choice. Thus, the type states that Cart repeats actions167

!fold. ?ok. !grab. ?ok until at some point it sends done and exits.168

Dually, from the viewpoint of the Arm, the same global session is described by the dual169

type170

µt. ((?fold. !ok. ?grab. !ok.t) & (?done. end)) (3)171

in which & means that a choice is offered externally.172

We can now individually check that the implementations of the cart and the arm conform173

to these local types.174

The global type seems overkill if there are only two participants; indeed, the global type175

is uniquely determined given the local type (2) or its dual (3). However, for applications176

involving multiple parties, the global type and its projection to each participant are essential177

to provide a shared contract among all participants.178

For example, consider a simple ring protocol, where the Arm process above is divided into179

two parts, Lower and Upper. Now, Cart sends a message fold to the lower arm Lower, which180

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:5

forwards the message to Upper. After receiving the message, Upper sends an acknowledgement181

ok to Cart. We start by specifying the global type as:182

Cart→ Lower : fold.Lower→ Upper : fold.Upper→ Cart : ok.end (4)183

As before, we want to check each process locally against a local type such that if each process184

conforms to its local type then the composition satisfies the global type.185

The global type in (4) is projected into the three endpoint session types:186

Cart’s endpoint type: Lower!fold.Upper?ok.end

Lower’s endpoint type: Cart?fold.Upper!fold.end

Upper’s endpoint type: Lower?fold.Cart!ok.end

187

where Lower!fold means “send to Lower a fold message,” and Upper?ok means “receive from188

Upper an ok message.” Then each process is type-checked against its own endpoint type.189

When the three processes are executed, their interactions automatically follow the stipulated190

scenario.191

If instead of a global type, we only used three separate binary session types to describe192

the message exchanges between Cart and Lower, between Lower and Upper, and between193

Upper and Cart, respectively, without using a global type, then we lose essential sequencing194

information in this interaction scenario. Consequently, we can no longer guarantee deadlock-195

freedom among these three parties. Since the three separate binary sessions can be interleaved196

freely, an implementation of the Cart that conforms to Upper?ok.Lower!fold.end becomes197

typable. This causes the situation that each of the three parties blocks indefinitely while198

waiting for a message to be delivered. Thus, we shall use the power of multiparty session199

types to ensure correct communication patterns.200

2.2 Motion: Motion Primitives and Trajectories201

So far, we focused on the communication pattern and ignored the physical actions of the202

robots. Our framework of motion session types extends multiparty session types to also203

reason about motion primitives, which model change of state in the physical world effected204

by the robots. We add motion in two steps: first we treat motion primitives as abstract205

actions that have associated durations, and second as dynamic trajectories.206

Abstractly, we model motion primitives as actions that take physical time. Accordingly,207

we extend session types with motion primitive dt〈pi : ai〉, which indicates that the participants208

pi jointly execute motion primitives ai for the same duration of time.209

Let us add the motion primitives to the cart and arm example. Recall that on receiving the210

command fold, the arm folds itself; meanwhile, the cart waits. When the arm is completely211

folded, it sends back a message to the cart, then the cart moves, following a trajectory to the212

object. This means the time the arm folds and the time the cart is idle (waiting for the arm)213

should be the same. Similarly, the time cart is moving and the idle time the arm waits for214

the cart should be synchronised. This explicit synchronisation is represented by the following215

global type:216

Cart→ Arm : fold.dt〈Cart : idle,Arm : fold〉.217

Arm→ Cart : ok.dt〈Cart : move,Arm : idle〉.G218
219

where “dt〈Cart : idle,Arm : fold〉” specifies the joint motion primitives idle executed by the220

Cart and fold executed by the Arm are synchronised. We extend local types with motion221

ECOOP 2019

12:6 Motion Session Types for Robotic Interactions

primitives as well. The conformance check ensures that, if each process conforms to its222

local types, then the composition of the system conforms to the global type—which now223

includes both message-based synchronization as well as synchronization over time using224

motion primitives.225

Finally, we expand the abstract motion primitives with the underlying dynamic controllers226

and ensure that the joint execution of motion primitives is possible in the system. This227

requires refining each motion primitive to its underlying dynamical system and checking that228

whenever the global type specifies a joint execution of motion primitives, there is in fact a229

joint trajectory of the system that can be executed.230

3 Motion Session Calculus231

We now introduce the syntax and semantics of a synchronous multiparty motion session232

calculus. Our starting point is to associate a process with the physical component it controls.233

This can be either a “complete” robot or parts of a robot (like the cart or arm in the previous234

section). This makes it possible to model modular robots where parts may be swapped for235

different tasks. In the following, we simply say “robot” to describe a physical component236

(which may be a complete robot or part of a larger robot). Our programming model will237

associate a process with each such robot.238

We build our motion session calculus based on a session calculus studied in [15, 18], which239

simplifies the synchronous multiparty session calculus in [29] by eliminating both shared240

channels for session initiations and session channels for communications inside sessions.241

B Notation 3.1 (Base sets). We use the following base sets: values, ranged over by v, v′, . . .;242

expressions, ranged over by e, e′, . . .; expression variables, ranged over by x, y, z . . . ; labels,243

ranged over by `, `′, . . . ; session participants, ranged over by p, q, . . .; motion primitives,244

ranged over by a, b, . . .; process variables, ranged over by X,Y, . . . ; processes, ranged over245

by P,Q, . . . ; and multiparty sessions, ranged over by M,M ′,246

Motion Primitives247

When reasoning about communication and synchronisation, the actual trajectory of the248

system is not important and only the time taken by a motion is important. Therefore, we249

first abstract away trajectories by just keeping the name of the motion primitive (a, b, . . .)250

and, for each motion, we assume we know up front how long the action takes. We use the251

notation dt〈a〉 to represent that a motion primitive executes and time elapses. Every motion252

can have a different, a priori known, duration denoted duration(a). We write the tuple253

dt〈(pi : ai)〉 to denote a group of processes executing their respective motion primitives at254

the same time. For the sake of simplicity, we sometimes use a for both single or grouped255

motions (pi : ai). In Section 5, we look in more details into the trajectories defined by the256

joint execution of motion primitives.257

Syntax of Motion Session Calculus258

A value v can be a natural number n, an integer i, a Boolean true / false, or a real number.259

An expression e can be a variable, a value, or a term built from expressions by applying260

(type-correct) computable operators. The processes of the synchronous multiparty session261

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:7

calculus are defined by:262

P ::= p!`〈e〉.P ||
∑
i∈I

p?`i(xi).Pi ||
∑
i∈I

p?`i(xi).Pi + dt〈a〉.P || dt〈a〉.P

|| if e then P else P || µX.P || X || 0
263

The output process p!`〈e〉.Q sends the value of expression e with label ` to participant p.264

The sum of input processes (external choice)
∑
i∈I p?`i(xi).Pi is a process that can accept a265

value with label `i from participant p for any i ∈ I;
∑
i∈I p?`i(xi).Pi + dt〈a〉.P is an external266

choice with a default branch with a motion action dt〈a〉.P which can always proceed when267

there is no message to receive. According to the label `i of the received value, the variable268

xi is instantiated with the value in the continuation process Pi. We assume that the set I269

is always finite and non-empty. The conditional process if e then P else Q represents the270

internal choice between processes P and Q. Which branch of the conditional process will be271

taken depends on the evaluation of the expression e. The process µX.P is a recursive process.272

We assume that the recursive processes are guarded. For example, µX.p?`(x).X is a valid273

process, while µX.X is not. We often omit 0 from the tail of processes.274

We define a multiparty session as a parallel composition of pairs (denoted by p / P) of275

participants and processes:276

M ::= p / P || M | M277

with the intuition that process P plays the role of participant p, and can interact with other278

processes playing other roles in M . The participants correspond to the physical components279

in the system and the processes correspond to the code run by that physical component.280

A multiparty session is well formed if all its participants are different. We consider only281

well-formed multiparty sessions.282

Operational Semantics of Motion Session Calculus283

The value v of expression e (notation e ↓ v) is computed as expected. We assume that e ↓ v284

is effectively computable and takes logical “zero time.”285

We adopt some standard conventions regarding the syntax of processes and sessions.286

Namely, we will use
∏
i∈I pi / Pi as short for p1 / P1 | . . . | pn / Pn, where I = {1, . . . , n}.287

We will sometimes use infix notation for external choice process. For example, instead of288 ∑
i∈{1,2} p?`i(x).Pi, we will write p?`1(x).P1 + p?`2(x).P2.289

The computational rules of multiparty sessions are given in Table 1. They are closed290

with respect to structural congruence. The structural congruence includes a recursion rule291

µX.P ≡ P{µX.P/X}, as well as expected rules for multiparty sessions such as P ≡ Q ⇒292

p / P | M ≡ p / Q | M . Other rules are standard from [15, 18]. However, unlike the usual293

treatment of π-calculi, our structural congruence does not have a rule to simplify inactive294

processes (p / 0). The reason is that even when a program might be logically terminated,295

the physical robot continues to exist and may still collide with another robot. Therefore, in296

our model, all processes need to terminate at the same time, and so we need to keep p / 0.297

In rule [comm], the participant q sends the value v choosing the label `j to participant p,298

who offers inputs on all labels `i with i ∈ I. In rules [t-conditional] and [f-conditional],299

the participant p chooses to continue as P if the condition e evaluates to true and as Q if e300

evaluates to false. Rule [r-struct] states that the reduction relation is closed with respect to301

structural congruence. We use −→∗ for the reflexive transitive closure of −→.302

The motion primitives are handled with [motion] and [m-par]. Here, we need to label303

transitions with the time taken by the action and propagate these labels with the parallel304

ECOOP 2019

12:8 Motion Session Types for Robotic Interactions

Table 1 Reduction rules. The communication between an output and an external choice (without
the default motion action) is formalised similarly to [comm].

[comm]
j ∈ I e ↓ v

p /
∑
i∈I

q?`i(x).Pi + dt〈a〉.P | q / p!`j〈e〉.Q −→ p / Pj{v/x} | q / Q

[default]

p /
∑
i∈I

q?`i(x).Pi + dt〈a〉.P dt〈a〉−→ p / P
[motion]

p / dt〈a〉.P dt〈a〉−→ p / P

[t-conditional]
e ↓ true

p / if e then P else Q −→ p / P

[f-conditional]
e ↓ false

p / if e then P else Q −→ p / Q

[r-par]
p / Q −→ p / Q′

p / Q | M −→ p / Q′ | M

[m-par]

pi / Pi
dt〈ai〉−→ pi / P ′i ∀i, j. duration(ai) = duration(aj)

Πipi / Pi
dt〈(pi:ai)〉−→ Πipi / P ′i

[r-struct]
M ′1 ≡M1 M1 −→M2 M2 ≡M ′2

M ′1 −→M ′2

[m-struct]

M ′1 ≡M1 M1
dt〈a〉−→ M2 M2 ≡M ′2

M ′1
dt〈a〉−→ M ′2

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:9

Cart/
Arm!fold〈〉.
wait (dt〈idle〉){

Arm?ok().
dt〈move〉.
Arm!grab.
wait (dt〈idle〉){

Arm?ok().
dt〈move〉.
Arm!done().0

}
}

Arm/
µX.wait (dt〈idle〉){

Cart?fold().dt〈fold〉.Cart!ok〈〉.X
+ Cart?grab().

dt〈grip〉.
Cart!ok〈〉.X

+ Cart?done().0
}

Figure 1 A cart and arm example

composition. This ensures that when (physical) time elapses for one process, it elapses305

equally for all processes; every process has to spend the same amount of time. This style of306

synchronisation is reminiscent of broadcast calculi [39]. Instead of broadcast messages, we307

broadcast time.308

In order to state that communications can always make progress, we formalise when a309

multiparty session contains communications or motion actions that will never be executed.310

I Definition 3.2. A multiparty motion session M is stuck if M 6≡
∏
i∈I pi / 0 and there is311

no multiparty session M ′ such that M −→M ′. A multiparty session M gets stuck, notation312

stuck(M) , if it reduces to a stuck motion multiparty session.313

We finish this section with some examples of multi-party sessions.314

I Example 3.3 (A Simple Fetch Scenario). Recall the scenario from Section 2 in which a cart315

and arm assembly has to fetch an object. There are two processes: a cart and an arm; the316

arm is attached to the cart. The task involves synchronization between the cart and the arm.317

Specifically, the protocol works as follows. Initially, the cart sends the arm a command to318

fold. On receiving the command, the arm folds itself. Meanwhile, the cart waits. When the319

arm is completely folded, it sends back a message to the cart. On receipt of this message,320

the cart moves, following a trajectory to the object. When it reaches the object, it stops and321

sends a message back to the arm to grab the object. While the cart waits, the arm executes322

the grabbing operation, followed by a folding operation. When the arm is done, it again323

synchronises with the cart. At this point, the cart moves back to its original position. (We324

simplify the example from Section 2 so that the sequence is not repeated.)325

Figure 1 shows how the cart and arm processes can be encoded in our core language.326

We introduce some syntactic sugar for readability. We write wait (dt〈a〉) {
∑
i∈I

p?`i(xi).Pi}327

as shorthand for the process µX.
∑
i∈I

p?`i(xi).Pi + dt〈a〉.X, which keeps running the default328

motion a until it receives a message.329

The motion primitive idle keeps the cart or the arm stationary. The primitive move moves330

the cart, the primitives grip and fold respectively move the arm to grab an object or to fold331

ECOOP 2019

12:10 Motion Session Types for Robotic Interactions

PGCD: pseudo code for the Arm
1 while true do
2 receive (idle)
3 fold ⇒
4 fold();
5 send(Cart, ok)
6 grab ⇒
7 grip();
8 send(Cart, ok)
9 done ⇒

10 break

Arm/
µX.wait (dt〈idle〉){

Cart?fold().
dt〈fold〉.
Cart!ok〈〉.X

+ Cart?grab().
dt〈grip〉.
Cart!ok〈〉.X

+ Cart?done().
0

}

Figure 2 Comparison of a PGCD code and the corresponding motion session calculus process

the arm. At this point, we focus on the communication pattern and therefore abstract away332

the actual trajectories traced by the motion primitives. We come back to the trajectories in333

Section 5.334

Finally, the multiparty session is the parallel composition of the participants Cart and335

Arm with the corresponding processes.336

The processes in our calculus closely follow the syntax of PGCD programs [4]. In Figure 2,337

we show a side by side comparison of a PGCD program and the corresponding process338

expressed in the motion session calculus.339

I Example 3.4 (Multi-party Co-ordination: Handover). We describe a more complex handover340

example in which a cart and arm assembly transfers an object to a second cart, called the341

carrier. The process for the arm is identical to Figure 1, but the cart now co-ordinates with342

the carrier as well. Figure 3 shows all the processes. Note that the cart now synchronises343

both with the arm and with the carrier.344

The protocol is as follows. As before, the cart moves to a target position, having ensured345

that the arm is folded, and then waits for the carrier to be ready. When the carrier is ready,346

the arm is instructed to grab an object on the carrier. Once the object is grabbed, the arm347

synchronises with the cart, which then informs the carrier that the handover is complete.348

The cart and the carrier move back to their locations and the protocol is complete. The349

multiparty session is the parallel composition of the participants Cart, Arm, and Carrier, with350

the corresponding processes.351

4 Multiparty Motion Session Types352

This section introduces motion session types for the calculus presented in Section 3. The353

formulation is based on [29, 30, 14], with adaptations to account for our motion calculus.354

4.1 Motion Session Types and Projections355

Global types act as specifications for the message exchanges among robotic components.356

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:11

Cart/
Arm!fold〈〉.
wait (dt〈idle〉){

Arm?ok().Carrier!ok〈〉.
dt〈move〉.
wait (dt〈idle〉){

Carrier?ok().Arm!grab〈〉.
wait (dt〈idle〉){

Arm?ok().Carrier!ok〈〉.
dt〈move〉.
Arm!done〈〉.Carrier!done〈〉.0

}
}

}

Carrier/
wait (dt〈idle〉){

Cart?ok().dt〈move〉.
Cart!ok〈〉.
wait (dt〈idle〉){

Cart?ok().
dt〈move〉.
wait (dt〈idle〉){Cart?done().0}

}}
Arm/

µX.wait (dt〈idle〉){
Cart?fold().dt〈fold〉.Cart!ok〈〉.X

+ Cart?grab().dt〈grip〉.Cart!ok〈〉.X
+ Cart?done().0

}

Figure 3 A multi-party handover example.

I Definition 4.1 (Sorts and global motion session types). Sorts, ranged over by S, are used to357

define base types:358

S ::= unit || nat || int || bool || real359

Global types, ranged over by G, are terms generated by the following grammar:360

G ::= dt〈(pi : ai)〉.G || p→ q : {`i(Si).Gi}i∈I || t || µt.G || end361

We require that p 6= q, I 6= ∅, `i 6= `j, and duration(ai) = duration(aj) whenever i 6= j, for362

all i, j ∈ I. We postulate that recursion is guarded and recursive types with the same regular363

tree are considered equal [37, Chapter 20, Section 2].364

In Definition 4.1, the type dt〈(pi : ai)〉.G is a motion global type which explicitly declares365

a synchronisation by a motion action among all the participants pi. The rest is the standard366

definition of global types in multiparty session types [29, 30, 14]. The branching type367

p→ q : {`i(Si).Gi}i∈I formalises a protocol where participant p must send to q one message368

with label `i and a value of type Si as payload, for some i ∈ I; then, depending on which `i369

was sent by p, the protocol continues as Gi. Value types are restricted to sorts. The type end370

represents a terminated protocol. A recursive protocol is modelled as µt.G, where recursion371

variable t is bound and guarded in G, e.g., µt.t is not a valid type. The notation pt{G}372

denotes a set of participants of a global type G.373

I Example 4.2 (Global session types). The global session type for the fetch example (Ex-374

ECOOP 2019

12:12 Motion Session Types for Robotic Interactions

ample 3.3) is:375

Cart→ Arm : fold(unit).dt〈Cart : idle,Arm : fold〉.376

Arm→ Cart : ok(unit).dt〈Cart : move,Arm : idle〉.377

Cart→ Arm : grab(unit).dt〈Cart : idle,Arm : grip〉.378

Arm→ Cart : ok(unit).dt〈Cart : move,Arm : idle〉.379

Cart→ Arm : done(unit).end380
381

and the global session type for the handover example (Example 3.4) is:382

Cart→ Arm : fold(unit).dt〈Cart : idle,Carrier : idle,Arm : fold〉.383

Arm→ Cart : ok(unit).Cart→ Carrier : ok(unit).384

dt〈Cart : move,Carrier : move,Arm : idle〉.385

Carrier→ Cart : ok(unit).Cart→ Arm : grab(unit).386

dt〈Cart : idle,Carrier : idle,Arm : grip〉.387

Arm→ Cart : ok(unit).Cart→ Carrier : ok(unit).388

dt〈Cart : move,Carrier : move,Arm : idle〉.389

Cart→ Arm : done(unit).Cart→ Carrier : done(unit).end390
391

A (local) motion session type describes the behaviour of a single participant in a multiparty392

motion session.393

I Definition 4.3 (Local motion session types). The grammar of local types, ranged over by T ,394

is:395

T ::= dt〈a〉.T || &{p?`i(Si).Ti}i∈I || &{p?`i(Si).Ti}i∈I & dt〈a〉.T || ⊕{q!`i(Si).Ti}i∈I

|| t || µt.T || end
396

We require that `i 6= `j whenever i 6= j, for all i, j ∈ I. We postulate that recursion is always397

guarded. Unless otherwise noted, session types are closed.398

Labels in a type need to be pairwise different, e.g., p?`(int).end&p?`(nat).end is not a399

type. The motion local type dt〈a〉.T represents a motion action followed by the type T ; the400

external choice or branching type &{p?`i(Si).Ti}i∈I requires to wait to receive a value of401

sort Si (for some i ∈ I) from the participant p, via a message with label `i; if the received402

message has label `i, the protocol will continue as prescribed by Ti. The motion branching403

choice is equipped with a default motion type dt〈a〉.T . The internal choice or selection type404

⊕{q!`i(Si).Ti}i∈I says that the participant implementing the type must choose a labelled405

message to send to q; if the participant chooses the message `i, for some i ∈ I, it must406

include in the message to q a payload value of sort Si, and continue as prescribed by Ti.407

Recursion is modelled by the session type µt.T . The session type end says that no further408

communication is possible and the protocol is completed. We adopt the following conventions:409

we do not write branch/selection symbols in case of a singleton choice, we do not write410

unnecessary parentheses, and we often omit trailing ends. The notation pt{T} denotes a set411

of participants of a session type T .412

In Definition 4.4 below, we define the global type projection as a relation G �r T between413

global and local types. Our definition extends the one originally proposed by [25, 26], along414

the lines of [12] and [13] with motion types: i.e., it uses a merging operator
d

to combine415

multiple session types into a single type.416

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:13

I Definition 4.4. The projection of a global type onto a participant r is the largest relation417

�r between global and session types such that, whenever G �r T :418

• G = end implies T = end; [proj-end]

• G = dt〈(pi : ai)〉.G′ implies T = dt〈aj〉.T ′ with r = pj and G′ �r T ′; [proj-motion]

• G = p→ r : {`i(Si).Gi}i∈I implies T = &{p?`i(Si).Ti}i∈I with Gi �r Ti; [proj-in]

• G = r→ q : {`i(Si).Gi}i∈I implies T = ⊕{q!`i(Si).Ti}i∈I and Gi �r Ti, ∀i∈I; [proj-out]

• G = p→ q : {`i(Si).Gi}i∈I and r 6∈{p, q} implies that there are Ti, i ∈ I s.t. [proj-cont]
T =

d
i∈ITi, and Gi �rTi, for every i ∈ I.

• G = µt.G implies T = µt.T ′ with G �r T ′ if r occurs in G, otherwise T = end. [proj-rec]

419

Above,
d

is the merging operator, that is a partial operation over session types defined as:420

T1
d
T2 =

T1 if T1 = T2 [mrg-id]

T3 if ∃I, J :

 T1 = &{p′?`i(Si).Ti}i∈I and
T2 = &{p′?`j(Sj).Tj}j∈J and
T3 = &{p′?`k(Sk).Tk}k∈I∪J

[mrg-bra1]

T3 if ∃I, J :

 T1 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′ and
T2 = &{p′?`j(Sj).Tj}j∈J & dt〈a〉.T ′ and
T3 = &{p′?`k(Sk).Tk}k∈I∪J & dt〈a〉.T ′

[mrg-bra2]

T3 if ∃I, J :

 T1 = &{p′?`i(Si).Ti}i∈I and
T2 = &{p′?`j(Sj).Tj}j∈J & dt〈a〉.T ′ and
T3 = &{p′?`k(Sk).Tk}k∈I∪J & dt〈a〉.T ′

[mrg-bra3]

T3 if ∃I, J :

 T1 = dt〈a〉.T ′ and
T2 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′ and
T3 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′

[mrg-bra4]

T3 if ∃I, J :

 T1 = dt〈a〉.T ′ and
T2 = &{p′?`j(Sj).Tj}i∈I and
T3 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′

[mrg-bra5]

T2
d
T1 if T2

d
T1 is defined,

undefined otherwise.

421

We omit the cases for recursions and selections (defined as [42, S 3]).422

Note that our definition is slightly simplified w.r.t. the one of [12] and [13]. Instead of this423

mergeability operator, one might use more general approach from [42]. This definition is424

sufficient for our purposes (i.e., to demonstrate an application of session types to robotics425

communications).426

I Example 4.5. The projection of the global session type for the fetch example on the cart427

gives the following local session type:428

Arm!fold〈unit〉.dt〈idle〉.Arm?ok(unit).dt〈move〉.Arm!grab〈unit〉.429

dt〈idle〉.Arm?ok(unit).dt〈move〉.Arm!done〈unit〉.end430
431

The local motion session type for the arm is:432

Cart?fold(unit).dt〈fold〉.Cart!ok〈unit〉.dt〈idle〉.Cart?grab(unit).433

dt〈grip〉.Cart!ok〈unit〉.dt〈idle〉.Cart?done(unit).end434
435

ECOOP 2019

12:14 Motion Session Types for Robotic Interactions

On Progress of Time. Our model assumes that the computation and message transmission436

time is much faster than the dynamics of the system and, therefore, the messages can be437

seen as instantaneous. This assumption depends on parameters of the system, like the speed438

of the network and the dynamics of the physical system, and also on the program being439

executed. While we cannot directly change the physical system, we can at least check the440

program is well behaved w.r.t. to time.441

If a program can send an unbounded number of messages without executing a motion442

then this assumption, obviously, does not hold. From the perspective of using the motion443

calculus to verify a system, this may lead to situation where an unsafe program is deemed444

safe because time does not progress. For instance, a robot driving straight into a wall could445

“avoid” crashing into the wall by sending messages in a loop and, therefore, stopping the446

progress of time.447

This problem is not unique to our system but a more general problem in defining the448

semantics of hybrid systems [20, 21]. In general, one needs to assume that time always449

diverges for infinite executions. In this work, we take a pragmatic solution and simply disallow450

0-time recursion. When recursion is used, all the paths between a µt and the corresponding t451

must contain at least one motion primitive. This is a simple check which can be done at the452

syntactic level of global types and it is a sufficient condition for forcing the progress of time.453

4.2 Motion Session Typing454

We now introduce a type system for the multiparty session calculus presented in Section 3.455

We distinguish three kinds of typing judgments:456

Γ ` e : S Γ ` P : T `M : G457

where Γ is the typing environment defined as: Γ ::= ∅ || Γ, x : S || Γ, X : T , i.e., a mapping458

that associates expression variables with sorts, and process variables with session types.459

We use the subtyping relation 6 to augment the flexibility of the type system by460

determining when a type T is “smaller” than T ′, it allows to use a process typed by the461

former whenever a process typed by the latter is required.462

I Definition 4.6 (Subsorting and subtyping). Subsorting ≤: is the least reflexive binary463

relation such that nat ≤: int ≤: real. Subtyping 6 is the largest relation between session464

types coinductively defined by the following rules:465

[sub-end]
end 6 end

[sub-in1]
∀i ∈ I : S′i ≤: Si Ti 6 T

′
i T 6 T ′

&{p?`i(Si).Ti}i∈I∪J & dt〈a〉.T 6 &{p?`i(S′i).T ′i}i∈I & dt〈a〉.T ′
===

[sub-motion]
T 6 T ′

dt〈a〉.T 6 dt〈a〉.T ′
=================

[sub-in2]
∀i ∈ I : S′i ≤: Si Ti 6 T

′
i

&{p?`i(Si).Ti}i∈I∪J & dt〈a〉.T 6 &{p?`i(S′i).T ′i}i∈I
==

[sub-in3]
T 6 T ′

&{p?`i(Si).Ti}i∈I & dt〈a〉.T 6 dt〈a〉.T ′
======================================

[sub-out]
∀i ∈ I : Si ≤: S′i Ti 6 T

′
i

⊕{p!`i(Si).Ti}i∈I ≤: ⊕{p!`i(S′i).T ′i}i∈I∪J
=======================================

466

The double line in the subtyping rules indicates that the rules are interpreted coinductively [37,467

Chapter 21].468

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:15

The typing rules for expressions are given as expected and omitted. The typing rules for469

processes and multiparty sessions are the content of Table 2:470

[t-sub] is the subsumption rule: a process with type T is also typed by the supertype T ′;471

[t-0] says that a terminated process implements the terminated session type;472

[t-rec] types a recursive process µX.P with T if P can be typed as T , too, by extending473

the typing environment with the assumption that X has type T ;474

[t-var] uses the typing environment assumption that process X has type T ;475

[t-motion] types a motion process as a motion local type;476

[t-input-choice] types a summation of input prefixes as a branching type and a default477

branch as a motion type. It requires that each input prefix targets the same participant478

q, and that, for all i ∈ I, each continuation process Pi is typed by the continuation type479

Ti, having the bound variable xi in the typing environment with sort Si. Note that the480

rule implicitly requires the process labels `i to be pairwise distinct (as per Definition 4.3);481

[t-out] types an output prefix with a singleton selection type, provided that the expression482

in the message payload has the correct sort S, and the process continuation matches the483

type continuation;484

[t-choice] types a conditional process by matching the branches of the types to branches485

of the sub-processes;486

[t-sess] types multiparty sessions, by associating typed processes to participants. It487

requires that the processes being composed in parallel can play as participants of a488

global communication protocol: hence, their types must be projections of a single global489

type G. As the temporal evolution (motion) synchronises all the processes condition490

pt{G} = {pi | i ∈ I} guarantees that motions are defined for every participant.491

I Example 4.7. We sketch the main steps to show that the Arm process is typed by the492

local type from Example 4.5. The type derivation uses the subtyping rules. This is because493

the process for the arm makes an external choice between the messages fold, grab, done, and494

the default motion primitive idle, and the type fixes a specific sequence of messages. The495

usual subtyping rules [sub-in1] and [sub-in2] allow typing the process against the local type,496

by “expanding” the local type with the other possible choices. The interesting subtyping497

rule is [sub-in3], which states that an external choice with a default motion type refines only498

the default motion type. This is needed to type the process against the local type499

dt〈idle〉.Cart?grab(unit).T500

This subtyping rule is sound, because the local type ensures that the other message choices501

cannot arise.502

The proposed motion session type system satisfies two fundamental properties: typed503

sessions only reduce to typed sessions (subject reduction), and typed sessions never get stuck.504

In order to state subject reduction, we need to formalise how global types are reduced505

when local session types reduce and evolve. Note that since the same motion actions always506

synchronise among all participants, they always make progress (hence they are always507

consumed).508

I Definition 4.8 (Global types consumption and reduction). The consumption of the commu-509

nication p `−→ q and motion dt〈a〉 for the global type G (notation G \ p `−→ q and G \ dt〈a〉) is510

ECOOP 2019

12:16 Motion Session Types for Robotic Interactions

Table 2 Typing rules for motion processes.

[t-0]
Γ ` 0 : end

[t-rec]
Γ, X : T ` P : T

Γ ` µX.P : T

[t-var]
Γ, X : T ` X : T

[t-motion]
Γ ` Q : T

Γ ` dt〈a〉.Q : dt〈a〉.T

[t-out]
Γ ` e : S Γ ` P : T

Γ ` q!`(e).P : q!`(S).T

[t-input-choice1]
∀i ∈ I Γ, xi : Si ` Pi : Ti

Γ `
∑
i∈I

q?`i(xi).Pi : &{q?`i(Si).Ti}i∈I

[t-input-choice2]
∀i ∈ I Γ, xi : Si ` Pi : Ti Γ ` dt〈a〉.Q : T

Γ `
∑
i∈I

q?`i(xi).Pi + dt〈a〉.Q : &{q?`i(Si).Ti}i∈I & T

[t-choice]
Γ ` e : bool ∃k ∈ I Γ ` P1 : Tk Γ ` P2 : ⊕{Ti}i∈I\{k}

Γ ` if e then P1 else P2 : ⊕{Ti}i∈I

[t-sub]
Γ ` P : T T 6 T ′

Γ ` P : T ′

[t-sess]
∀i ∈ I ` Pi : G�pi pt{G} = {pi | i ∈ I}

`
∏
i∈I

pi / Pi : G

the global type defined (up to unfolding of recursive types) as follows:511

dt〈a〉.G \ dt〈a〉 = G(
p→ q : {`i(Si).Gi}i∈I

)
\ p `−→ q = Gk if ∃k ∈ I : ` = `k(

r→ s : {`i(Si).Gi}i∈I
)
\ p `−→ q = r→ s : {`i(Si).Gi \ p `−→ q}i∈I

if {r, s} ∩ {p, q} = ∅ ∧ ∀i∈I : {p, q}⊆Gi

512

The reduction of global types is the smallest pre-order relation closed under the rule: G =⇒513

G \ p `−→ q and G =⇒ G \ dt〈a〉.514

We can now state the main results.515

I Theorem 4.9 (Subject Reduction). Let `M : G.516

1. For all M ′, if M −→M ′, then `M ′ : G′ for some G′ such that G =⇒ G′.517

2. For all M ′, if M dt〈a〉−→ M ′, then `M ′ : G′ for some G′ such that G =⇒ G′.518

I Corollary 4.10. Let ` M : G. If M −→∗ M ′, then ` M ′ : G′ for some G′ such that519

G =⇒ G′. Simiarly for the case of dt〈a〉−→.520

I Theorem 4.11 (Progress). If `M : G, then either M ≡
∏
i∈I pi / 0 or there is M ′ such521

that M −→M ′ or M dt〈a〉−→ M ′.522

As a consequence of subject reduction and progress, we get the safety property stating523

that a typed multiparty session will never get stuck.524

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:17

I Theorem 4.12 (Type Safety). If `M : G, then it does not hold stuck(M) .525

Proof. Direct consequence of Corollary 4.10, Theorem 4.11, and Definition 3.2. J526

5 Motion Primitives: Trajectories and Resources527

So far, our motion calculus abstracted the trajectories of the robots and only considered the528

time it takes to execute motion primitives. This is sufficient to show that the synchronisation529

and communication protocol between the robots executes correctly. However, it is too530

abstract to prove more complex properties about executions of the system. In particular,531

for an execution to proceed correctly we need to check the existence of trajectories for all532

the robots. A joint trajectory may not exist, for example, if the motion primitives cause a533

collision in the physical world.534

In this section, we explain how to make our model more detailed and how to look inside535

the motion primitives for the continuous evolution of trajectories. To accomplish this, first,536

we give a semantics that includes trajectories. Then, we refine our calculus to replace internal537

choice with guarded choice. Finally, we explain how to use session types to prove properties538

over the trajectories.539

5.1 Model for the Robots and Motion Primitives540

We proceed following the formalisation of trajectories in the PGCD language for robotics [4].541

Robots. Each participant (p, q, . . .) maintains a state in the physical world. This state is542

updated when its own motion primitives execute as well as on potential physical interactions543

with other processes.544

We model the physical state of a process as a tuple (Var , ρ, rsrc) where Var is a set of545

variables, with two distinguished disjoint subsets X and W of physical state and external546

input variables, ρ : Var → R is a store mapping variables to values, and rsrc is a resource547

function mapping a store to a subset of R3. The resource function represents the geometric548

footprint in space occupied by the robot. We shall use this function to check the absence of549

collisions between robots.550

When two robots p1 and p2 are in the same environment, we may connect some state551

variables of one process to the external inputs of the other. This represents physical coupling552

between these robots. A connection θ between p1 and p2 is a finite set of pairs of variables,553

θ = {(xi, wi) | i = 1, . . . ,m}, such that: (1) for each (x,w) ∈ θ, we have x ∈ p1.X and554

w ∈ p2.W or x ∈ p2.X and w ∈ p1.W , and (2) there does not exist (x,w), (x′, w) ∈ θ such555

that x and x′ are distinct. Two connections θ1 and θ2 are compatible if θ1∪ θ2 is a connection.556

We assume that all the participants in a session are connected by compatible connections.557

For example, consider a cart and an arm. The physical variables can provide the position558

and velocities of the center of mass of the cart and of the arm. Note that if the arm is559

attached to the cart, then its position changes when the cart moves. Thus, the position and560

velocity of the cart are external inputs to the arm, and play a role in determining its own561

position. However, the arm can also move relative to the cart and the position of its end562

effector is determined both by the external inputs as well as its relative position and velocity.563

Furthermore, the mass and the position of the center of mass of the arm are external inputs564

to the cart, because these variables affect the dynamics of the cart.565

ECOOP 2019

12:18 Motion Session Types for Robotic Interactions

Motion Primitives. Let X and W be two sets of real-valued variables, representing internal566

state and external input variables of a robotic system, respectively. A motion primitive567

updates the values of the variables in X over time, while respecting the values of variables568

in W set by the external world. This dynamic process results in a pair of state and input569

trajectories (ξ, ν), i.e., a valuation over time to variables in X and W .570

Formally, a motion primitive m is a tuple (T,Pre, Inv,Post) consisting of a duration T , a571

pre-condition Pre ⊆ R|X|×R|W |, an invariant Inv ⊆
(
[0, T]→ R|X|

)
×
(
[0, T]→ R|W |

)
, and572

a post-condition Post ⊆ R|X| × R|W |. A trajectory of duration T of the motion primitive573

m is a pair of continuous functions (ξ, ν) mapping the real interval [0, T] to R|X| and R|W |,574

respectively, such that (ξ, ν) ∈ Inv, (ξ(0), ν(0)) ∈ Pre, and (ξ(T), ν(T)) ∈ Post.575

Correspondingly, we need to update the semantics of our motion calculus:576

The participant executing a program p / P now also carries a store containing a valuation577

for the physical state of the robot: p, ρ / P .578

The motion transitions dt〈a〉−→ get labelled with trajectories: dt〈(ξ,ν)〉−→ .579

The semantics rule for choice can use values from the store:580

[t-conditional]
ρ(e) ↓ true

p, ρ / if e then P else Q −→ p, ρ / P

[f-conditional]
ρ(e) ↓ false

p, ρ / if e then P else Q −→ p, ρ / Q
581

where ρ(e) replaces the variables from Var in e with their value according to ρ.582

The semantics of a motion checks the trajectories against the motion primitive specification583

and the store:584

[motion]
a = (T,Pre, Inv,Post) range(ξ) = [0, T] ρ = ξ(0) ρ′ = ξ(T)

(ξ(0), ν(0)) ∈ Pre (ξ(T), ν(T)) ∈ Post ∀t ∈ [0, T]. (ξ(t), ν(t)) ∈ Inv

p, ρ / dt〈a〉.P dt〈(ξ,ν)〉−→ p, ρ′ / P
585

The rule checks that the trajectory is valid w.r.t. a: the duration of the trajectory must586

match the duration of the motion primitive, the start and end of the trajectory match587

the state of ρ and ρ′ respectively. Furthermore, the pre-condition, post-condition, and588

invariant must be respected.589

The parallel composition of motions connects the external inputs of each process according590

to the connections. For the notations, we use subscript to denote that an element belongs591

to a particular process p, e.g., Xp for the internal variables of p. We denote the restriction592

of a trajectory ξ over a subset X of the dimensions by ξ|X .593

[m-par]

∀i ξi = ξ|Xpi
νi = θpi(ξ)|Wpi

pi, ρi / Pi
dt〈(ξi,νi)〉−→ pi, ρ′i / P ′i

∀i, j, t. i 6= j ⇒ rsrcpi
(ξ|Xpi

(t), θpi
(ξ)|Wpi

(t)) ∩ rsrcpj
(ξ|Xpj

(t), θpj
(ξ)|Wpj

(t)) = ∅

Πipi, ρi / Pi
dt〈(ξ,ν)〉−→ Πipi, ρ′i / P ′i

594

Even at the top level, there is a ν as there can be elements which are under the control595

of the environment. Then, for each process we create the appropriate trajectory (ξ, ν)596

by applying the appropriate connection θ. Also, the resources used by each participants597

during the motion needs to disjoint from each other. This last check ensures the absence598

of collision between robots. We use this check to avoid the complexity of modelling599

collisions.600

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:19

I Example 5.1. Let us look at the cart from Example 3.3. The cart is moving on the ground,601

a 2D plane and, therefore, we model its physical state (XCart) by its position pCart ∈ R2,602

orientation rCart ∈ [−π;π), and speed sCart ∈ R.603

A trivial motion primitive idle(p0, r0) keeps the cart at its current position p0 and604

orientation r0; the pre-condition is sCart = 0 (i.e., it is at rest), the post-condition is605

sCart = 0∧pCart = p0 ∧ rCart = r0, and the invariant is pCart(t) = p0 ∧ rCart(t) = r0 ∧ sCart = 0606

for all t ∈ [0, T].607

A slightly more interesting motion primitive is move(p0,pt), which moves the cart608

from position p0 to pt. The pre-condition is sCart = 0 ∧ pCart = p0. The post-condition is609

sCart = 0∧pCart = pt. The invariant can specify a bound on the velocity, e.g., 0 ≤ sCart ≤ vmax,610

that the cart moves in straight line between p0 and pt, etc.611

We can also include external input. For instance, we may add an external variable wobj612

to represent the weight of any carried object, e.g., the arm attached on top. Then, the613

pre-condition of move may include an extra constraint 0 ≤ wobj ≤ wmax to say that the cart614

can only move if the weight of the payload is smaller than a given bound.615

5.2 Motion Calculus with Guarded Choice616

Before executing some motion, a process may need to test the state of the physical world617

and, according to the current state, decide what to do. Therefore, we extend the calculus618

with the ability for a process to test predicates over its Var as part of the if · then · else ·.619

On the specification side, we also add predicates to the internal choice.620

Let P range over predicates. The global and local motion session types are modified as621

follows:622

The branching type for global session types becomes p→ q : {[Pi]`i(Si).Gi}i∈I .623

The branching type for local session types becomes ⊕{[Pi]q!`i(Si).Ti}i∈I .624

To make sure the modified types can be projected and then used for typing they need to625

respect the following constraints. Assume that Varp are the variables associated with the robot626

executing the role of p. (1) The choices are local, i.e., for p→ q : {[Pi]`i(Si).Gi}i∈I we have627

that fv(Pi) ⊆ Varp for all i in I. (2) The choices are total, i.e., for p→ q : {[Pi]`i(Si).Gi}i∈I628

we have that
∨
i∈I Pi is valid. The local types have similar constraints.629

The subtyping and typing relation are updated as follows:630

[sub-out]
∀i ∈ I : Si ≤: S′i Ti 6 T

′
i Pi ⇒ P ′i

⊕{[Pi]p!`i(Si).Ti}i∈I 6 ⊕{[P ′i]p!`i(S′i).T ′i}i∈I∪J
==631

The change in this rule is the addition of checking the implication Pi ⇒ P ′i to make sure632

that if the pre-condition of a motion primitive relies on P ′i, it still holds with Pi. Notice that633

⊕{[Pi]p!`i(Si).Ti}i∈I which can have more restricted predicates needs to be a valid local634

type and the guards still need to be total.635

[t-choice]
Γ ` e : bool ∃k ∈ I e⇒ Pk Γ ` P1 : Tk Γ ` P2 : ⊕{[e ∨ Pi]Ti}i∈I\{k}

Γ ` if e then P1 else P2 : ⊕{[Pi]Ti}i∈I
636

Type checking the rules propagates the expression from if then else and matches it into a637

branch of the type. To deal with the else branch we modify the predicate in the remaining638

ECOOP 2019

12:20 Motion Session Types for Robotic Interactions

branches of the type. For the last else branch of a, possibly nested, if then else we need639

the following extra rule:640

[t-choice-final]
Γ ` P : T

Γ ` P : ⊕{[true]T}
641

I Example 5.2. Usually, for the propagation of tested expressions through the branches we642

modify the type. Let us make an example of how this works. Consider we have the following643

process if e1 then P1 else P2 which has the type ⊕{[e1]T1, [¬e1]T2}. Assuming that Pi : Ti644

for i ∈ {1, 2} we can build the following derivation:645

e1 ⇒ e1 Γ ` P1 : T1
Γ ` P2 : T2

Γ ` P2 : ⊕{[e1 ∨ ¬e1]T2}
Γ ` if e1 then P1 else P2 : ⊕{[e1]T1, [¬e1]T2}

646

With a bit of boolean algebra, we can show that e1 ∨ ¬e1 ⇔ true.647

5.3 Existence of Joint Trajectories and Verification648

The goal of the compatibility check is to make sure that abstract motion primitives specified in649

a global type can execute concurrently. This requires two checks. First, for motion primitives650

of different processes executed in parallel, we need to make sure that there exists a trajectory651

satisfying all the constraints of the motion primitives. Second, for motion primitives executed652

sequentially by the same process, we need to make sure that the post-condition of the first653

implies the pre-condition of the second motion primitive, taking into account the guards of654

choices in the middle.655

To check that motion primitives executing in parallel have a joint trajectory, we use an656

assume-guarantee style of reasoning. When two processes are attached, one process relies657

on the invariants of the other’s output (which can be an external input) to satisfy its own658

invariant and vice versa. We refer to standard methods [35, 4] for the details.659

For the allowed trajectories, we need to also check the absence of collision. This means660

that once we have the constrains defining a joint trajectory ξ to check that for any two661

distinct processes p and q the property rsrcp(ξp) ∩ rsrcq(ξq) = ∅.662

I Example 5.3. In Example 3.4, the cart and the carrier are moving toward each other.663

They need to be close enough for the arm to grab the object but far enough to avoid colliding.664

We model the resources of the cart by a cylinder around the cart’s position: rsrcCart =665

{(x, y, z)||(x, y)− pCart| ≤ r ∧ 0 ≤ z ≤ h} where r is the “radius” of the cart and h its height.666

The carrier’s resources are similar but with the appropriate radius and height r′, h′. The cart667

and carrier does not collide if we can prove that ∀t. | ξCart|pCart(t)− ξCarrier|pCarrier (t) | > r + r′.668

6 Evaluation669

6.1 Implementation670

We have implemented the system we describe on top of PGCD [4]1, a system for programming671

and verification of robotic systems. PGCD is build on top of the Robotic Operating System672

1 PGCD repository is https://github.com/MPI-SWS/pgcd. The code for this work is located in the
pgcd/nodes/verification/choreography folder.

https://github.com/MPI-SWS/pgcd

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:21

(ROS) [40], a software ecosystem for robots. The core of ROS is a publish-subscribe messaging673

system. PGCD uses ROS’s messaging to implement its synchronous message-passing layer.674

On the verification side, PGCD uses a mix of model-checking (using Spin [22]) to deal with675

the message-passing structure, and symbolic reasoning (using SymPy [33]) and constraint676

solving (using dReal [16]) to reason about motion primitives.677

We replace the global model-checking algorithm of PGCD with motion session calculus678

specifications but reuse PGCD’s infrastructure to reason about the trajectories of motion679

primitives. Currently, our implementation uses a syntax for specifications closer to the680

state-machine form of session types [11] but without the parallel composition operator. This681

representation allows for more general guarded choice. if · then · else · implicitly forces disjoint682

guards for the two branches. Our implementation allows overlapping guards. Algorithmically,683

since the types are represented in a form close to an automaton, the projection and merge684

operations are implemented using automata theoretic operation: morphism, minimisation,685

and checking determinism of the result.686

The typing, including subtyping, is implemented by computing an alternating simulation687

[2] between programs and their respective local type. Intuitively, an alternative refinement688

relation check that a process implements its specification (subset of the behaviours) without689

restricting the other processes. For synchronous message passing programs, the subtyping690

relation for session type matches alternating refinement. We use this view on subtyping as691

the theory of alternating simulation [2] gives us an algorithm to compute this relation and,692

therefore, check subtyping.693

6.2 Experiments694

For the evaluation, we take two existing PGCD programs and write global types in motion695

session calculus that describe the co-ordination in the program.696

First, we describe our experimental setup, both for the hardware and for the software.697

Then, we explain the experiments. Finally, we report on the size of the specifications, and698

time to check the programs satisfy the specification.699

Setup700

We use three robots: a robotic arm and two carts, shown in Figure 4. The robots are built701

with a mix of off-the-self parts and 3D printed parts.702

Arm The arm is a modified BCN3D MOVEO,2 where the upper arm section is shortened to703

make it lighter and easier to mount on the cart. The arm with its control electronics is704

mounted on top of the cart.705

Cart The cart is shown on Figure 4a. The control electronics and motors are situated below706

the wooden board. The cart is an omnidirectional driving platform. It uses omniwheels to707

get three degrees of freedom (two in translation, one in rotation) and can move between708

any two positions on a flat ground. The advantage of using such wheels is that all709

the three degrees of freedom are controllable and movement does not require complex710

planning. Due to the large power consumption of the arm mounted on top, this cart is711

powered by a tether.712

Carrier We call the second cart the carrier (Figure 4b) as we use it to carry the block that713

is grabbed by the arm. As the first cart, it is also omnidirectional (mecanum wheels).714

2 https://github.com/BCN3D/BCN3D-Moveo

ECOOP 2019

https://github.com/BCN3D/BCN3D-Moveo

12:22 Motion Session Types for Robotic Interactions

(a) The cart and arm robots attached together

(b) The carrier robot

Figure 4 Robots used in our experiments

All the three robots use stepper motors to move precisely. The robots do not have715

feedback on their position and keep track of their state using dead reckoning, i.e., they know716

their initial state and then they update their virtual state by counting the number of steps717

the motors turns. If we control slippage and do not exceed the maximum torque of the718

motors, there is little accumulation of error as long as the initial state is known accurately.719

In our experiments, we use markings on the ground to fix the initial state as can be seen in720

Figure 5. Furthermore, using stepper motors allows us to know the time it takes to execute721

a given motion primitive by fixing the rate of steps.722

Each robot has a RaspberryPi 3 model B to run the program. The ROS master node,723

providing core messaging services, runs on a separate laptop to which all the robots connect.724

The RaspberryPi runs Raspbian OS (based on Debian Jessie) and the laptop runs Ubuntu725

16.04. The ROS version is Kinetic Kame.726

Experiments727

We describe two experiments:728

Handover. This experiment corresponds to our earlier example. The two carts meet before729

the arm takes an object placed on top of the carrier and, then, they go back to their730

initial position (see Figure 5a).731

Underpass. First, the carrier cart brings an object to the arm which is then taken by the732

arm. Then, the carrier cart goes around the arm passing under an obstacle which is high733

enough for just the carrier alone. Finally, the arm puts the object back on the carrier on734

the other side of the obstacle. This can be seen in Figure 5b.735

Composite images (combination of multiple frame of the video) are shown in Figure 5. The736

carts implement motion explicitly using the motion primitives (move straight, strafe, rotate).737

For instance, when going around the cart in the second experiment, the carrier executes738

rotate, move straight, rotate, strafe. In the model of the resources, we exclude the gripper739

from the footprint and we do not model the objects gripped (gripping is a collision). For the740

environment, we model obstacles as regions of R3 and also test for collision against these741

regions.742

Table 3 shows the size of the programs in the language of PGCD (sum for all the robots)743

and the size of the global specifications. As part of the program we include a description of744

the environment which specifies the initial states of the robots and the obstacles used for745

additional collision checks. Finally, we show the number of verification conditions (#VCs)746

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:23

(a) Handover (b) Underpass

Figure 5 Composite images of the experiments. (a) For handover, a cart containing an object
moves close to the cart with the attached arm. The arm picks up the object. (b) For underpass, the
carrier containing an object moves near the underpass. The arm picks up the object. The carrier
moves under the underpass and moves close to the arm. The arm places the object on the carrier.

Table 3 Programs, Specification, and Checks

Experiment Program Specification #VCs Time
(LoC) (LoC) (sec.)

Handover 22 12 141 38
Underpass 29 22 302 56

generated during the subtyping and the checks for joint trajectories. The total running time747

includes all the steps, i.e., checking the global specification, projection, typing, the existence748

of joint trajectories, and the absence of collision. The running time is dominated by the check749

on trajectories and collisions. The motion primitives (implementation and specification) are750

taken from PGCD without any change and represent around 1K lines of codes for all three751

robots.752

Compared to the verification results presented with PGCD [4, Section 5], we have roughly753

a 2× speed-up. The reason is that PGCD is used model-checking instead of global/local754

types. The motion session calculus makes it possible to have an abstract global specification755

which is easier to check.756

In conclusion, our evaluation demonstrates that session types allow the specification of757

non-trivial co-ordination tasks between multiple robots with reasonable effort, while allowing758

automated and compositional verification.759

7 Related Work760

There is considerable interest in the robotics community on designing modular robotic761

components from higher-level specifications [32, 19]. However, most of this work has focused762

on descriptions for the physical and electronic design of components or on generating plans763

from higher level specifications rather than on language abstractions and types to reason764

about concurrency and motion. The interaction between concurrency and dynamics, and765

the use of automated verification techniques were considered in PGCD [4]. Our work takes766

PGCD as a starting point and formalises a compositional verification methodology through767

session types.768

ECOOP 2019

12:24 Motion Session Types for Robotic Interactions

At the specification level, hybrid process algebras and other models of hybrid systems769

[1, 41, 7, 38] can model concurrent hybrid systems. However, these papers do not provide a770

direct path to implementation. Hybrid extensions to synchronous reactive languages [6, 5]771

describe programs which interact through events and control physical variables. Most existing772

verification methodologies for these programs rely on global model checking rather than on773

types. Our choice of session types is inspired by efficient type checking but also as the basis774

for describing interface specifications for components.775

Extensions and applications of multiparty session types have been proposed in many776

different settings. See, e.g. [27, 3, 17]. We discuss only most related work. The work [9]777

extends multiparty session types with time, to enable the verification of realtime distributed778

systems. This extension with time allows specifications to express properties on the causalities779

of interactions, on the carried data types, and on the times in which interactions occur. The780

projected local types correspond to Communicating Timed Automata (CTA). To ensure the781

progress and liveness properties for projected local types, the framework requires several782

additional constraints on the shape of global protocols, such as feasibility condition (at783

any point of the protocol the current time constraint should be satisfiable for any possible784

past) and a limitation to the recursion where in the loop, the clock should be always reset.785

The approach is implemented in Python in [34] for runtime monitoring for the distributed786

system. Later, the work in [8] develops more relaxed conditions in CTAs, and applies them to787

synthesise timed global protocols. Unlike our work, no type checking for processes is studied788

in [8]. The main difference from [9, 34, 8] is that our approach does not rely on CTAs and is789

more specific to robotics applications where the verification is divided into the two layers; (1)790

a simple type check for processes with motion primitives to ensure communication deadlock-791

freedom with global synchronisations; and (2) additional more refined checks for trajectories792

and resources. This two layered approach considerably simplifies our core calculus and typing793

system in Section 4, allowing to verify more complex scenarios for robotics interactions.794

8 Conclusion795

We have outlined a unifying programming model and typing discipline for communication-796

centric systems that sense and actuate the physical world. We work in the framework of797

multiparty session types [25, 26], which have proved their worth in many different scenarios798

relating to “pure” concurrent software systems. We show how to integrate motion primitives799

into a core calculus and into session types. We demonstrate how multiparty session types are800

used to specify correct synchronisation among multiple participants: we first provide a basic801

progress guarantee for communications and synchronisation by motion primitives, which is802

useful to extend richer verification related to trajectories.803

At this point, our language is a starting point and not a panacea for robotics programming.804

Decoupling specifications into parallel and/or sequential tasks and using distributed controllers805

assumes “loosely coupled dynamics.” In some examples, such as a multiple cart/arm co-806

ordination control, it may not be easy to assume a purely distributed control strategy based on807

independent motion primitives. We are thus exploring simultaneous concurrent programming808

and distributed controller and co-ordinator synthesis. As an example, assume that we have809

two cart/arm compositions which should lift one object together. In particular we can assume810

that lifting the object with only one arm would cause the cart/arm compositions to tilt over,811

which generates a strong coupling between all components during the coordinated lift of the812

object. Our framework allows to easily synchronise all the components. However, in any813

realistic scenario a robust controller would need (almost) continuous feedback between all814

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:25

components to fulfill the coordinated lift task. Thus, our model of loosely coupled motion815

primitives, one per component, may be too weak or incur too much communication and816

bandwidth overhead for a real implementation.817

Going in this direction, we need a better way to integrate specifications of controllers818

(motion primitives) and their robustness. This would also enable a more realistic non-819

synchronous model for the communication [31] and, after checking some robustness condition820

on the controller, rigorously show that the synchronous idealised model is equivalent to the821

more realistic model, i.e., considering delay in the communication as disturbances for the822

motion primitives. We also plan to tackle channel passing. The challenge is that the physical823

world (time and space) is hard to isolate: for instance, time is an implicit synchronisation824

which occurs at the same time across all sessions.825

Finally, robotics applications manipulate physical state and time as resources. An826

interesting open question is how resource-based reasoning techniques such as separation827

logics for concurrency [36, 28] can be repurposed to reason about separation of components828

in space and time.829

References830

1 R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CONCUR ’97:831

Concurrency Theory, volume 1243 of LNCS, pages 74–88. Springer, 1997.832

2 R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.833

In CONCUR’98 Concurrency Theory, pages 163–178. Springer, 1998.834

3 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-835

Malo Denielou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch836

Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-837

olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types in838

Programming Languages. FTPL, 3(2-3):95–230, 2016.839

4 Gregor B. Banusic, Rupak Majumdar, Marcus Pirron, Anne-Kathrin Schmuck, and Damien840

Zufferey. PGCD: robot programming and verification with geometry, concurrency, and841

dynamics. In Xue Liu, Paulo Tabuada, Miroslav Pajic, and Linda Bushnell, editors, Proceedings842

of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2019,843

Montreal, QC, Canada, April 16-18, 2019, pages 57–66. ACM, 2019. doi:10.1145/3302509.844

3311052.845

5 Kerstin Bauer and Klaus Schneider. From synchronous programs to symbolic representations of846

hybrid systems. In Proceedings of the 13th ACM International Conference on Hybrid Systems:847

Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 41–50.848

ACM, 2010. doi:10.1145/1755952.1755960.849

6 Albert Benveniste, Timothy Bourke, Benoît Caillaud, Jean-Louis Colaço, Cédric Pasteur,850

and Marc Pouzet. Building a hybrid systems modeler on synchronous languages principles.851

Proceedings of the IEEE, 106(9):1568–1592, 2018. doi:10.1109/JPROC.2018.2858016.852

7 J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Theoretical Computer853

Science, 335(2):215 – 280, 2005. Process Algebra. doi:https://doi.org/10.1016/j.tcs.854

2004.04.019.855

8 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together. In 26th856

International Conference on Concurrency Theory, volume 42 of LIPIcs, pages 283–296. Schloss857

Dagstuhl, 2015.858

9 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed Multiparty Session Types. In859

25th International Conference on Concurrency Theory, volume 8704 of LNCS, pages 419–434.860

Springer, 2014.861

ECOOP 2019

http://dx.doi.org/10.1145/3302509.3311052
http://dx.doi.org/10.1145/3302509.3311052
http://dx.doi.org/10.1145/3302509.3311052
http://dx.doi.org/10.1145/1755952.1755960
http://dx.doi.org/10.1109/JPROC.2018.2858016
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.04.019
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.04.019
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.04.019

12:26 Motion Session Types for Robotic Interactions

10 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A gentle862

introduction to multiparty asynchronous session types. In SFM, volume 9104 of LNCS, pages863

146–178. Springer, 2015.864

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating865

automata. In ESOP 2012 - European Symposium on Programming. Springer, 2012. doi:866

10.1007/978-3-642-28869-2_10.867

12 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised868

multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/869

LMCS-8(4:6)2012.870

13 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised871

multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/872

LMCS-8(4:6)2012.873

14 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and874

Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. In PLACES, volume875

203 of EPTCS, pages 29–43, 2015. doi:10.4204/EPTCS.203.3.876

15 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and877

Nobuko Yoshida. Denotational and operational preciseness of subtyping: A roadmap. In878

Theory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on the Occasion879

of His 60th Birthday, volume 9660 of LNCS, pages 155–172. Springer, 2016.880

16 Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear881

theories over the reals. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 -882

24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,883

2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 208–214. Springer,884

2013. doi:10.1007/978-3-642-38574-2_14.885

17 Simon Gay and Antonio Ravera, editors. Behavioural Types: from Theory to Tools. River886

Publishers, 2017.887

18 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.888

Precise subtyping for synchronous multiparty sessions. J. Log. Algebr. Meth. Program.,889

104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.890

19 Sehoon Ha, Stelian Coros, Alexander Alspach, James M. Bern, Joohyung Kim, and Katsu891

Yamane. Computational design of robotic devices from high-level motion specifications. IEEE892

Trans. Robotics, 34(5):1240–1251, 2018. doi:10.1109/TRO.2018.2830419.893

20 Thomas A. Henzinger. Sooner is safer than later. Inf. Process. Lett., 43(3):135–141, 1992.894

doi:10.1016/0020-0190(92)90005-G.895

21 Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE896

Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30,897

1996, pages 278–292. IEEE Computer Society, 1996. doi:10.1109/LICS.1996.561342.898

22 G.J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–295, 1997.899

doi:10.1109/32.588521.900

23 Kohei Honda. Types for dyadic interaction. In CONCUR’93, pages 509–523, 1993.901

24 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type902

disciplines for structured communication-based programming. In ESOP, volume 1381 of LNCS,903

pages 22–138. Springer, 1998. doi:10.1007/BFb0053567.904

25 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.905

In POPL, pages 273–284. ACM Press, 2008. doi:10.1145/1328438.1328472.906

26 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.907

Journal of ACM, 63:1–67, 2016.908

27 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo909

Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres910

Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM911

Comput. Surv., 49(1), 2016. doi:10.1145/2873052.912

http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1016/j.jlamp.2018.12.002
http://dx.doi.org/10.1109/TRO.2018.2830419
http://dx.doi.org/10.1016/0020-0190(92)90005-G
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2873052

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 12:27

28 R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris:913

Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL 15, pages914

637–650. ACM, 2015.915

29 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. In Pedro R.916

D’Argenio and Hernán C. Melgratti, editors, CONCUR, volume 8052 of LNCS, pages 395–409.917

Springer, 2013. doi:10.1145/1328438.1328472.918

30 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. Logical919

Methods in Computer Science, 10(4), 2015.920

31 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical921

choreographies. In 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming922

Languages, pages 221–232. ACM, 2015.923

32 A.M. Mehta, N. Bezzo, P. Gebhard, B. An, V. Kumar, I. Lee, and D. Rus. A design environment924

for the rapid specification and fabrication of printable robots. Experimental Robotics, pages925

435–449, 2015.926

33 Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev,927

Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina928

Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,929

Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán930

Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony931

Scopatz. SymPy: symbolic computing in Python. PeerJ Computer Science, 3:e103, January932

2017. doi:10.7717/peerj-cs.103.933

34 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for934

multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017.935

35 Pierluigi Nuzzo. Compositional Design of Cyber-Physical Systems Using Contracts. PhD thesis,936

EECS Department, University of California, Berkeley, Aug 2015. URL: http://www2.eecs.937

berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html.938

36 P.W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-939

3):271–307, 2007. doi:10.1016/j.tcs.2006.12.035.940

37 Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.941

38 A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics.942

Springer, 2010.943

39 K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program., 25(2-3):285–327,944

1995. doi:10.1016/0167-6423(95)00017-8.945

40 Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob946

Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop947

on open source software, 2009.948

41 W.C. Rounds and H. Song. The phi-calculus: A language for distributed control of reconfigur-949

able embedded systems. In HSCC, pages 435–449. Springer, 2003.950

42 Alceste Scalas and Nobuko Yoshida. Less is more: Multiparty session types revisited. Proc.951

ACM Program. Lang., 3(POPL):30:1–30:29, January 2019. doi:10.1145/3290343.952

43 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language and its953

Typing System. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994. doi:10.1007/954

3-540-58184-7_118.955

ECOOP 2019

http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.7717/peerj-cs.103
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1016/0167-6423(95)00017-8
http://dx.doi.org/10.1145/3290343
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118

	Introduction
	A Gentle Introduction to Motion Session Types
	Communication: Multiparty Session Types
	Motion: Motion Primitives and Trajectories

	Motion Session Calculus
	Multiparty Motion Session Types
	Motion Session Types and Projections
	Motion Session Typing

	Motion Primitives: Trajectories and Resources
	Model for the Robots and Motion Primitives
	Motion Calculus with Guarded Choice
	Existence of Joint Trajectories and Verification

	Evaluation
	Implementation
	Experiments

	Related Work
	Conclusion

