
0

Multiparty Asynchronous Session Types

KOHEI HONDA, Queen Mary University of London
NOBUKO YOSHIDA, Imperial College London
MARCO CARBONE, IT University of Copenhagen

Communication is becoming one of the central elements in software development. As a potential typed foun-
dation for structured communication-centred programming, session types have been studied over the last
decade for a wide range of process calculi and programming languages, focussing on binary (two-party)
sessions. This work extends the foregoing theories of binary session types to multiparty, asynchronous ses-
sions, which often arise in practical communication-centred applications. Presented as a typed calculus for
mobile processes, the theory introduces a new notion of types in which interactions involving multiple peers
are directly abstracted as a global scenario. Global types retain the friendly type syntax of binary session
types while specifying dependencies and capturing complex causal chains of multiparty asynchronous inter-
actions. A global type plays the role of a shared agreement among communication peers, and is used as a
basis of efficient type checking through its projection onto individual peers. The fundamental properties of
the session type discipline such as communication safety, progress and session fidelity are established for
general n-party asynchronous interactions.

CCS Concepts: rTheory of computation → Distributed computing models; Process calculi; Type
theory; Type structures; Program analysis; Operational semantics; rSoftware and its engineering→ Dis-
tributed programming languages; Concurrent programming structures;

Additional Key Words and Phrases: Session Types, the Pi-Calculus, Projection, Global Types, Global Proto-
cols, Progress

ACM Reference Format:
Multiparty Asynchronous Session Types 0, 0, Article 0 (0), 67 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Background. Communication is becoming one of the central elements in software

development, ranging from web services to parallel scientific computing to multi-core
programming. One of the main application areas of communication-based systems is
business protocols. A business protocol is a series of structured and automated inter-
actions among two or more business entities. During the 1990s, there were many at-
tempts at describing and modelling business protocols in order to achieve, e.g., automa-
tion, scalability and correctness of protocols. As a result, several institutions started
investing heavily in distributed computing technologies, for the purpose of reducing
the risk of centralised controls.

A preliminary version of this article appeared in Proceedings of 35th annual ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages (POPL 2008).
Yoshida was supported by EPSRC EPSRC EP/K011715/1, EP/K034413/1, and EP/L00058X/1, EU project
FP7-612985 UpScale and COST Action IC1201 BETTY. Carbone was supported by the Chords (granted by
the Danish Agency for Science, Technology and Innovation) and COST Action IC1201 BETTY.
Author’s addresses: K. Honda, School of Electronic Engineering and Computer Science, Queen Mary, Uni-
versity of London, Mile End Road, London E1 4NS, United Kingdom; N. Yoshida, Department of Computing,
Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; M. Carbone, IT
University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 0 ACM. /0/-ART0 $15.00
DOI: 0000001.0000001

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 Honda, Yoshida and Carbone

Against this background, the Web Services Choreography Description Language
Working Group (WS-CDL WG) [WS-CDL 2003] was formed by W3C with the goal of
defining a language standard for specifying web service business protocols by means
of distributed interactions among peers (business entities). Recognising the need for a
foundational theory on which the design and infrastructure of the language were to be
built, the working group took a strong interest in the π-calculus, leading to the involve-
ment of Robin Milner and the authors as official invited experts in the standardisation
process. While WS-CDL’s design is informed by the π-calculus in both communication
primitives and structuring constructs, WS-CDL differs from the π-calculus in that it
describes message flows among multiple participants globally.

Engineers have always found it essential to use various notations for describing in-
teraction patterns globally, such as the notations for cryptographic protocols, Message
Sequence Charts [International Telecommunication Union 1996], and UML sequence
diagrams. This is because a global description presents information on the behaviour
of systems which is not immediately available from the corresponding endpoint-based
descriptions: how conversations among multiple participants evolve and interleave,
what are the synchronisation/communication points among participants, and how
they together induce a desired global scenario. More formally, under a certain well-
formedness condition, a global protocol automatically ensures that interactions satisfy
the safety and deadlock-freedom properties.

WS-CDL follows these preceding global notations: an underlying intuition of its term
choreography may be summarised as:

“Dancers dance following a global scenario (choreography) without a single
point of control.”

Once specified, this scenario is to be executed by individual distributed processes with-
out orchestrating nodes. A global description is meant to be executed by distributed in-
teractions among end-point processes. Thus each global description should be projected
onto processes at each end-point, whose mutual communications precisely realise the
original global scenario. This translation from a global description to end-point pro-
cesses is called end-point projection (EPP), in the terminology of the WS-CDL WG.
The theory of multiparty session types introduced in this article was born from the
attempts to formalise the EPP in WS-CDL, applying the idea to types, in order to over-
come a significant technical limitation of binary session types. This is one step beyond
from WS-CDL and gives closer links to recent tools for web services such as BPMN 2.0
Choreography [BPMNC 2012], as explained in the next paragraph.

Session Types. Over the last decade, session types, introduced in the 1990s [Honda
1993; Takeuchi et al. 1994; Honda et al. 1998], have provided a potential typed founda-
tion for the design of communication-based systems. The main intuition behind session
types is that a communication-centred application often exhibits a highly structured
sequence of interactions involving, e.g., sequencing and branching, which as a whole
form a natural unit of conversation called session. The structure of a conversation is
abstracted as a type through an intuitive syntax, which is then used as a basis for
validating programs through associated language primitives and a typing discipline.

As an example, consider a simple business protocol between a buyer (Buyer) and
a seller (Seller) from Buyer’s viewpoint: Buyer sends the title of a book (a string),
Seller sends a quote (an integer). If Buyer is satisfied by the quote, he then sends his
address (a string) and Seller sends back the delivery date (a date); otherwise he quits
the conversation. This can be precisely described by the following session type:

!string; ?int; ⊕{ ok : !string; ?date; end, quit : end } (1)

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:3

The session type above denotes patterns of communication operations (where ; denotes
sequencing and ⊕ choice) describing Buyer’s communication behaviour in the business
protocol. In particular, the term !string denotes an output of a value of type string,
whereas ?int denotes an input of a value of type int. The choice ⊕ features the two op-
tions ok and quit. The term end represents the termination of the session. From Seller’s
viewpoint the same session is described by the dual type

?string; !int; &{ ok : ?string; !date; end, quit : end } (2)

in which & means that a choice is offered.
Such an explicit representation of conversation structures allows us to deal with one

of the most common bugs in communication-based programming, namely, the synchro-
nisation bug. A programmer expects that communicating programs should together
realise a consistent conversation, but, unfortunately, they can easily fail to handle a
specific incoming message or to send a message at the correct timing, with no way to
detect such errors before runtime. An explicit specification as in (1) guides to principled
programming of communication behaviour and enables automatic protocol validation
[WS-CDL 2003]. In addition, a clean separation between abstraction and implemen-
tation given by type-based abstraction and associated primitives leads to intelligible
programs and flexible implementations [Hu et al. 2008; Hu et al. 2010]. Underlying
these merits are the following central properties guaranteed by session types.

(1) Interactions within a session never incur a communication error (communication
safety).

(2) Channels for a session are used linearly (linearity) and are deadlock-free in a single
session (progress).

(3) The communication sequence in a session follows the scenario declared in the ses-
sion type (session fidelity, predictability).

As a consequence of these properties, at each step in a session, a single input and a
single output or a single selection and a single branching can take place via a session
channel, moving to the next step.

Our previous research shows that the session-based programming framework is
applicable to a wide range of calculi, programming languages and computing envi-
ronments, including calculi of mobile processes [Takeuchi et al. 1994; Gay and Hole
2005; Honda et al. 1998; Bonelli and Compagnoni 2007; Mezzina 2008; Yoshida and
Vasconcelos 2007; Gay 2008; Dezani-Ciancaglini et al. 2007; Carbone et al. 2008],
higher-order processes [Mostrous and Yoshida 2007; 2009], Ambients [Garralda et al.
2006], multi-threaded ML [Vasconcelos et al. 2006; Gay and Vasconcelos 2009], mul-
ticore programming [Yoshida et al. 2008], Haskell [Neubauer and Thiemann 2004a;
Pucella and Tov 2008], F# [Bhargavan et al. 2009; Swamy et al. 2011], operating sys-
tems [Fähndrich et al. 2006], Java [Dezani-Ciancaglini et al. 2006; Coppo et al. 2007;
Dezani-Ciancaglini et al. 2009; Hu et al. 2008; Gay et al. 2010; Hu et al. 2010; Ng et al.
2011] and Web Services [Carbone et al. 2006; Carbone et al. 2007; WS-CDL 2003; Car-
bone et al. 2012; Sparkes 2006; Honda et al. 2007].

Multiparty Asynchronous Sessions. The foregoing studies on session types have fo-
cussed on binary (two-party) sessions. While many conversation patterns can be cap-
tured through a composition of binary sessions, there are cases where binary session
types are not powerful enough for describing and validating interactions which involve
more than two parties.

As an example, let us consider a simple refinement of the above Buyer-Seller proto-
col: consider two buyers, Buyer1 and Buyer2, who wish to buy an expensive book from
Seller by combining their money. Buyer1 sends the title of the book to Seller, Seller

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 Honda, Yoshida and Carbone

sends to both Buyer1 and Buyer2 its quote, Buyer1 tells Buyer2 how much she can
pay, and Buyer2 either accepts the quote or rejects the quote by notifying Seller. It is
extremely awkward (if logically possible) to decompose this scenario into three binary
sessions, between Buyer1 and Seller, between Buyer2 and Seller, and between Buyer1
and Buyer2. Abstracting this protocol as three separate session types also means that
our type abstraction loses essential sequencing information in this interaction sce-
nario. For validating this conversation scenario as a whole, therefore, the conversation
structure should be represented as a single session.

Many existing business protocols including financial protocols are written as a
collaboration of several peers. Typical message-passing parallel algorithms also fre-
quently demand distribution of a request to, and collection of the results from, many
peers. All these usecases are most naturally abstracted as single multiparty sessions.

Furthermore, many of these applications are implemented with an asynchronous
transport where the senders send the messages without being blocked (but often pre-
serving their order), to avoid the heavy overhead of synchronisation. The widely used
network transport, such as TCP, provides this mechanism through familiar APIs to
alleviate the latency problem. Asynchronous message passing is also a standard as-
sumption in financial messaging [AMQP 2015], parallel algorithms oand distributed
objects and functions [Coppo et al. 2007; Hu et al. 2010; Hu et al. 2008; Ng et al. 2011;
Neubauer and Thiemann 2004b; Fähndrich et al. 2006]. Thus, we ask:

Can we generalise the foregoing binary session types to multiparty asyn-
chronous sessions preserving clarity and their key formal properties?

Challenges of Multiparty Asynchronous Sessions. To answer this open question, we
face two major technical difficulties. First, the simplicity and tractability of the the-
ory of binary sessions come from a notion of duality in interactions found in Linear
Logic [Girard 1987]. Consider the binary session type specified in (1) for Buyer. Not
only Buyer’s behaviour can be checked against the session type, but also the whole
conversation structure is already represented in this single type, since the interaction
pattern of Seller is fully given as this type’s dual (exchanging input and output and
branching and selection in the original type). When composing two parties, we only
have to check they have mutually dual types. This framework based on duality is no
longer effective in multiparty communication where the whole conversation cannot be
constructed from only single behaviour. We need an effective means to abstract as a
type a global scenario which a programmer wishes to realise through interacting pro-
grams (hence against which she would wish to check their correctness), and establish
an effective method to ensure composability.

Second, linearity analysis of channels, which is the key for ensuring safety and
progress, becomes highly involved under a combination of asynchrony and multiparty
communication since a conflict of actions can arise more easily. A linearity property
holds if a communication via the same channel of a global type does not break the
order of messages as it is specified in the global description. This demands a precise
causal analysis for correct sequencing of interactions distributed among multi-peers.

This Work. This paper presents a generalisation of binary session types to multi-
party sessions for the π-calculus. We propose three major technical contributions in
order to overcome the aforementioned challenges:

(1) A new notion of types which can directly abstract intended conversation structure
among n-parties as global scenarios, retaining an intuitive type syntax.

(2) Consistency criteria for a conversation structure with respect to a protocol specifi-
cation given as a causality analysis of actions in global types, modularly articulat-
ing different kinds of dependency.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:5

(3) A type discipline for individual processes (programs) which uses global types
through their projections onto individual end-point participants: the resulting end-
point types are directly associated with individual processes for type checking.

The idea of type abstraction based on a global view (Point 1) comes from an abstract
version of “choreography” developed in a W3C web services working group [Carbone
et al. 2006; WS-CDL 2003]. Causality structures in asynchronous interactions are pre-
cisely and modularly captured in the abstract setting of global types, offering a foun-
dation for the type discipline (Point 2). Through the use of global types, we propose a
new effective method for designing, type-checking and developing programs based on
multiparty sessions (Point 3).

Let us illustrate Point 3 in detail. First, we design and agree upon a global type G
as an intended conversation scenario. A team of programmers then develops code, one
for each participant, incrementally validating its conformance to (the projections of)
G. When programs are executed, their interactions automatically follow the stipulated
scenario. The projection can also be used as a hint for modelling, designing and debug-
ging local behaviours of participants. After the development, a global type will serve as
a basis of monitoring, maintenance and upgrade. For materialising this design frame-
work, the proposed framework presents a type discipline which can validate whether a
program is typable or not, given G (as a shared agreement) and an individual program
(as its end-point realiser). The resulting type discipline guarantees all the original key
properties of binary session types, such as communication error freedom, progress and
session fidelity in a general n-party session, underpinning its practical use. For further
discussions on this development framework and its applications developed in industry
and academia, see §4.1, §6.1 and §7.

This paper is a full version of [Honda et al. 2008a], with detailed definitions and
full proofs. It is also expanded with more examples and comparisons with recent re-
lated work. In the remainder, Section 2 gives the syntax and semantics of the calculus,
and motivates the key ideas through business and streaming protocol examples and a
usecase from [OOI 2015]. Section 3 explains the global types. Section 4 describes the
typing system. Section 5 establishes the main results. Section 6 discusses extensions
and related works. Section 7 concludes with future issues and a summary of applica-
tions, software and languages developed with the industry collaborators based on the
multiparty session type theory. The appendix contains the proofs of the propositions,
lemmas and theorems stated in the main sections.

2. MULTIPARTY ASYNCHRONOUS SESSIONS
2.1. Syntax for Multiparty Sessions
Several versions of π-calculi with session types have been proposed in the literature.
A detailed survey can be found in [Dezani-Ciancaglini and de’ Liguoro 2010]. In this
work, we use a simple extension of the original language for binary sessions [Honda
et al. 1998; Takeuchi et al. 1994] to multiparty sessions.

Informally, a session is a series of interactions which serve as a unit of conversation.
A session is established among multiple parties via a shared name, which represents a
public interaction point. Then, fresh session channels are generated and shared among
all participants who can use them for communicating with each other.

In the remainder, we use the following base sets:

— shared names or names, ranged over by a, b, x, y, z, . . . ;
— session channels or channels, ranged over by s, t, ...;
— labels, ranged over by l, l′, . . . ; and
— process variables, ranged over by X,Y,

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 Honda, Yoshida and Carbone

P ::= a[2..n] (s̃).P multicast session request
| a[p] (s̃).P session acceptance
| s!〈ẽ〉;P value sending
| s?(x̃);P value reception
| s!〈〈s̃ 〉〉;P session delegation
| s?((s̃));P session reception
| s� l;P label selection
| s� {li : Pi}i∈I label branching
| if e then P else Q conditional branch
| P | Q parallel composition
| 0 inaction
| (ν n)P hiding
| def D in P recursion
| X〈ẽs̃〉 process call

| s :: h̃ message queue
e ::= v | e and e′ | not e ... expressions
v ::= a | true | false values
h ::= l | ṽ | s̃ messages-in-transit
D ::= {Xi(x̃is̃i) = Pi}i∈I declaration for recursion

Fig. 1. Syntax

We use n for either a single shared name or a vector of session channels. The sym-
bol s̃ denotes the vector of session channels s1, . . . , sk for some k. Similarly for other
names, channels and variables. Then, processes, ranged over by P,Q . . . , and expres-
sions, ranged over by e, e′, . . . , are given by the grammar in Figure 1. Except for the
first two primitives for session initiation and the final message queue, all constructs
are from the binary session calculi [Honda et al. 1998]. Session initiation is introduced
to establish a session between multiple processes, while message queues are added to
model asynchronous session communication, as explained later.

Among the primitives for session initiation, the prefix process a[2..n] (s̃).P initiates a
new session through a shared interaction point a, by distributing a vector of freshly
generated session channels s̃ to the remaining n − 1 participants, each of shape
a[p] (s̃).Qp for 2 ≤ p ≤ n. All receive s̃, over which the actual session communications
can now take place among the n parties. p, q,... range over natural numbers called par-
ticipants of a session. As we shall formalise later through operational semantics, these
primitives offer a distilled syntactic presentation of “sharing of a fresh context for a
new session” among multiple parties.

Session communications are performed using the next three pairs of primitives:
sending and receiving, session delegation and reception (the former delegates to the
latter the capability to participate in a session by passing channels associated with
the session), and selection and branching (the former chooses one of the branches of-
fered by the latter). Branching and selection constructs correspond to external and
internal choices.

The next three (the conditional, parallel and inaction) are standard. (νa)P makes a
local to P while (νs̃)P makes s̃ local to P . The recursion and process call primitives

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:7

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(ν n)P | Q ≡ (ν n)(P | Q) if n 6∈ fn(Q)

(ν nn′)P ≡ (ν n′n)P (ν n)0 ≡ 0 (ν s1...sn)(s1 ::∅ | · · · sn ::∅) ≡ 0 def D in 0 ≡ 0

def D in (ν n)P ≡ (ν n)def D in P if n 6∈ fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P) ≡ def D ∪ D′ in P if dpv(D) ∩ dpv(D′) = ∅

Fig. 2. Structural congruence.

realise recursive behaviour. s :: h̃ is a message queue representing ordered messages in
transit h̃ with destination s (which may be considered as a network pipe in a TCP-like
transport). (νs̃)P and s :: h̃ only appear at runtime. We often omit trailing 0 and write
s! and s?.P , omitting the arguments if unnecessary. Informally speaking, if we map our
syntax to TCP, each queue corresponds to the TCP FIFO channel. Then a shared name
correspond to a pair of an IP and a port name to initiate the session, while each session
name is mapped to a pair of freshly generated IP and a port name which connects to
the pair of the other side.

Binders are s̃ in a[2..n] (s̃).P , a[p] (s̃).P and s?((s̃));P , x̃ in s?(x̃);P , x̃s̃ in X(x̃s̃) = P ,
n in (ν n)P and process variables in def D in P . The notions of bound and free iden-
tifiers, channels, alpha equivalence ≡α and substitution are standard. The functions
fpv(P) and fn(P) denote the sets of free process variables and free identifiers, respec-
tively. Function dpv({Xi(x̃is̃i) = Pi}i∈I) denotes the set of process variables {Xi}i∈I
introduced in {Xi(x̃is̃i) = Pi}i∈I . The notation ΠiPi denotes the parallel composition of
zero or more processes Pi.

Structural congruence ≡ over processes is the smallest congruence relation on pro-
cesses that includes the equations given in Figure 2. These are standard except that
we allow a vector of session channels in hiding, which is convenient for some proofs in
the typing system (no substantial difference arises regarding the nature of the calculus
by hiding channels one by one).

DEFINITION 2.1 (PROGRAM PHRASE AND PROGRAM). A process P is a program
phrase if P has no queues and no ν-bound session channels (up to ≡). P is a pro-
gram (up to ≡) if P is a program phrase in which no free session channels and process
variables occur.

In the examples in §2.3, processes such as Buyer1, Buyer2, Seller, Kernel, DataPro-
ducer and Consumer are programs, hence they are also program phrases.

2.2. Operational Semantics
The operational semantics is given by the reduction relation, denoted P → Q, which
is the smallest relation on processes generated by the rules in Figure 3. In the figure,
e ↓ v says that expression e evaluates to values v, but we leave its formal definition
unspecified. We now explain each rule.

Rule [LINK] describes a session initiation among n-parties through n-party synchro-
nisation, generating m fresh session channels and the associated m empty queues (∅
denotes the empty string). Each fresh channel is given a new empty queue. As a result
n participants now share the newly generated m channels, hence their queues. Note
the number of participants (n) can be different from that of session channels (m), giving

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 Honda, Yoshida and Carbone

a[2..n] (s̃).P1 | a[2] (s̃).P2 | · · · | a[n] (s̃).Pn → (ν s̃)(P1 | P2 | ... | Pn | s1 ::∅ | · · · | sm ::∅)
[LINK]

s!〈ẽ〉;P | s :: h̃ → P | s :: h̃ · ṽ (ẽ ↓ ṽ) [SEND]

s!〈〈t̃ 〉〉;P | s :: h̃ → P | s :: h̃ · t̃ [DELEG]

s� l;P | s :: h̃ → P | s :: h̃ · l [LABEL]

s?(x̃);P | s :: ṽ · h̃ → P [ṽ/x̃] | s :: h̃ [RECV]

s?((t̃));P | s :: t̃ · h̃ → P | s :: h̃ [SREC]

s� {li : Pi}i∈I | s :: lj · h̃ → Pj | s :: h̃ (j ∈ I) [BRANCH]

if e then P else Q → P (e ↓ true) [IFT]

if e then P else Q → Q (e ↓ false) [IFF]

def D in (X〈ẽs̃〉 | Q) → def D in (P [ṽ/x̃] | Q) (ẽ ↓ ṽ, X(x̃s̃) = P ∈ D) [DEF]

P → P ′ ⇒ (ν n)P → (ν n)P ′ [SCOP]

P → P ′ ⇒ P | Q → P ′ | Q [PAR]

P → P ′ ⇒ def D in P → def D in P ′ [DEFIN]

P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q ⇒ P → Q [STR]

Fig. 3. Reduction

flexibility and maintaining linearity in channel usage. The use of the n-party synchro-
nisation in this rule captures, albeit abstractly, an n-party handshake which would
be necessary for establishing an n-party link in real-world protocols. For example, we
can create an arbitrary number of queues which can be dequeued and enqueued by all
parties in that session.

Rules [SEND], [DELEG] and [LABEL] respectively enqueue values, channels and a
label at the tail of the queue for s. In rule [SEND], ẽ ↓ ṽ evaluates each expression ei to a
value vi and its definition is left unspecified. Symmetrically, rules [RECV], [SREC] and
[BRANCH] dequeue, from the head of the queue, values, session channels and a label,
respectively. Rules [RECV] further instantiates the received value in the continuation
P , while rule [BRANCH] selects, from its continuation, the branch corresponding to
the received label. The reduction rules [DELEG] and [SREC] are often called (session)
delegation or higher-order session passing.

In these communication rules, sending and receiving are mediated by a queue: only
when a message sent by (say) Alice is received by (say) Bob through a queue, we can
say that an interaction between Alice and Bob has taken place. Since [LINK] generates
a queue for each channel, these rules entail that:

(1) A sending action is never blocked (communication asynchrony); and that
(2) two messages from the same sender to the same channel arrive in the sending

order (message order preservation).

As we discussed in §1, these are among the main features of the well-known transport
mechanisms TCP, and the message queue is introduced for modelling these transports.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:9

All other rules are standard: for reference, we briefly describe them. The two rules
for conditional, [IFT] and [IFF], reduce to one of the branches, depending on the eval-
uation of the guard. Rule [DEF] performs unfolding of recursion. Rules [SCOP], [PAR]
and [DEFIN] close the reduction relation under hiding, parallel composition and defi-
nition, respectively. Finally, rule [STR] says that the reduction relation is defined over
processes up to ≡.

REMARK 2.2. The rule for delegation [SREC], originally introduced in [Honda et al.
1998] for the π-calculus with sessions, uses the same session name t̃ without substitu-
tion for a simpler presentation. However, having [SREC] with substitution as in [RECV]
breaks the subject reduction theorem and requires either two endpoint channels or
bidirectional buffers [Gay and Hole 2005; Gay and Vasconcelos 2009; Yoshida and Vas-
concelos 2007]. The reader can find a more detained explanation in [Yoshida and Vas-
concelos 2007]. Roughly speaking, a substitution creates a self-delegation where the
receiver gets his own session by which the shape of the session type is changed and
the subject reduction is broken. Hence we require additional queues and restrictions
on the form of the communication. The technical development of this work does not
depend on this choice, see also § 6.2.

2.3. Examples
We now report two examples that have been used for discussion within the W3C WS-
CDL working group [WS-CDL 2003]. Further large examples and applications of mul-
tiparty session types are listed in [Honda et al. 2008b].

EXAMPLE 2.3 (TWO BUYER PROTOCOL). We describe the two-buyers-protocol from
the Introduction first by a sequence diagram, then by processes.

Buyer1 Seller Buyer2

[Link] [Link]

title

quotequote

quote div 2

ok

quit

address

date }branch

First Buyer1 sends a book title to Seller; then, Seller sends back a quote to Buyer1 and
Buyer2; Buyer1 tells Buyer2 how much she is willing to contribute; and, finally, Buyer2
notifies Seller whether it accepts the quote or not. We can describe the behaviour of
Buyer1 as with the following process:

Buyer1 def
= a[2, 3] (b1, b2, b

′
2, s). s!〈“War and Peace”〉;

b1?(quote); b′2!〈quote div 2〉;P1

Channel b1 is for Buyer1 to receive messages: b2 and b′2 for Buyer2 and s for Seller (we
discuss soon why Buyer2 needs two receiving channels). Buyer1 above is willing to
contribute to half of the quote. In P1, Buyer1 may perform the remaining transactions

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 Honda, Yoshida and Carbone

with Seller and Buyer2. The remaining participants follow.

Buyer2 def
= a[2] (b1, b2, b

′
2, s). b2?(quote); b′2?(contrib);

if (quote− contrib ≤ 99)

then s� ok; s! 〈address〉; b2?(x);P2

else s� quit;0

Seller def
= a[3] (b1, b2, b

′
2, s). s?(title); b1, b2!〈quote〉;

s� {ok : s?(x); b2! 〈date〉;Q , quit : 0}

Above s1..sm!〈v〉;P stands for s1!〈v〉; ..sm!〈v〉;P , assuming s1..sm are pairwise distinct.1
We can now explain why Buyer2 needs to use two input channels, b2 and b′2. The first
input (for quote) is from Seller, while the second one (for contrib) is from Buyer1.
Hence there is no guarantee that they arrive in a fixed order, as can be easily seen
by analysing reduction paths (this is Lamport’s principle [Lamport 1978]). Thus if we
were to use b2 for both actions, the two messages can be confused, losing linear usage of
a channel. The problem becomes visible after the fifth step of the following reduction.
If b2 and b′2 were the same then the contribution of the Buyer1 could be queued before
the price of the book and therefore received before at Buyer2. In § 4, we use our type
discipline to detect this kind of error.

We now show an example of reductions. Let us define:

P , if (quote− contrib ≤ 99)
then s� ok; s! 〈address〉; b2?(x);P2

else s� quit;0
S , s� {ok : s?(x); b2! 〈date〉;Q , quit : 0}

Below, a tag denotes the name of the rule from Figure 3 we apply. For simplicity, we
omit [PAR] and [SCOP] after the second reduction.

Buyer1 | Buyer2 | Seller

→ [LINK] (ν b1, b2, b
′
2, s)(s!〈“War and Peace”〉; b1?(quote); b′2!〈quote div 2〉;P1

| b2?(quote); b′2?(contrib);P
| s?(title); b1, b2!〈quote〉;S
| b1 ::∅ | b2 ::∅ | b′2 ::∅ | s ::∅)

→ [SEND],[PAR],[SCOP] (ν b1, b2, b
′
2, s)(b′2!〈quote div 2〉;P1

| b2?(quote); b′2?(contrib);P
| s?(title); b1, b2!〈quote〉;S
| b1 ::∅ | b2 ::∅ | b′2 ::∅ | s ::“War and Peace”)

1Due to asynchrony there is in effect no order among the sending actions at s1..sm.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:11

→ [RCV] (ν b1, b2, b
′
2, s)(b1?(quote); b′2!〈quote div 2〉;P1

| b2?(quote); b′2?(contrib);P
| b1, b2!〈quote〉;S
| b1 ::∅ | b2 ::∅ | b′2 ::∅ | s ::∅)

→ [SEND] (ν b1, b2, b
′
2, s)(b1?(quote); b′2!〈quote div 2〉;P1

| b2?(quote); b′2?(contrib);P
| b2!〈quote〉;S
| b1 ::quote | b2 ::∅ | b′2 ::∅ | s ::∅)

→ [RCV] (ν b1, b2, b
′
2, s)(b′2!〈quote div 2〉;P1

| b2?(quote); b′2?(contrib);P
| b2!〈quote〉;S
| b1 ::∅ | b2 ::∅ | b′2 ::∅ | s ::∅)

...

EXAMPLE 2.4 (STREAMING PROTOCOL). We next consider a simple protocol for the
standard stream cipher [Schneier 1993].

kernel consumer

data

key

Data Producer and Key Producer continuously send a data stream and a key stream
respectively to Kernel. Kernel calculates their XOR and sends the result to Consumer.

Assuming streams are sent block by block (say as large arrays), we can realise this
protocol as communicating processes. We focus only on communication behaviour. The
kernel initiates a session:

Kernel def
= def K(d, k, c) = d?(x); k?(y); c!〈x xor y〉; K〈d, k, c〉

in a[2, 3, 4] (d, k, c).K〈d, k, c〉

The channels d and k are used for Kernel to receive data and keys from Data Producer
and Key Producer, respectively, while c is used for Consumer to receive the encrypted
data from Kernel. Data Producer and Consumer can be given as:2

DataProducer def
= def P(d, k, c) = d!〈data〉; P〈d, k, c〉 in a[2] (d, k, c).P〈d, k, c〉

Consumer def
= def C(d, k, c) = c?(data); C〈d, k, c〉 in a[3] (d, k, c).C〈d, k, c〉

Key Producer is identical to Data Producer except it outputs at k instead of d. When
three processes are composed, we can verify that messages are always consumed in
the order they are produced, an essential requirement for correctness of the protocol
(although processes repeatedly send and receive data using the same channel). This is
because each channel is used exactly by one sender. We show how this argument can
be cleanly represented and validated through session types in the next two sections.

2For simplicity our description lets both Data Producer and Consumer repeatedly send the same data:
practically this is not the case but this simplified form is enough for our current concern, i.e. validation
of communication behaviour.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 Honda, Yoshida and Carbone

Global G ::= p→ p′ : k 〈U〉. G′ values
| p→ p′ : k {lj : Gj}j∈J branching
| G | G′ parallel
| µt.G recursive
| t variable
| end end

Value U ::= S̃ sorts
| T@p located session

Sort S ::= bool | nat | ... | 〈G〉

Fig. 4. Syntax of Global Types

3. GLOBAL TYPES AND CAUSAL ANALYSIS
Developing programs for multiparty sessions demands a clear formal design, since
we need to program global interactions where multiple participants communicate and
synchronise with each other. Programming individual participants without such a de-
sign and hope they somehow realise a meaningful and error-free conversation is hardly
practical, especially when the implementation is done by a team of several program-
mers. In binary session types, the type for an endpoint also served as the description
of the whole conversation between two parties, but this is no longer possible for mul-
tiparty sessions. This is why we require the type abstraction to describe global con-
versation scenarios of multiparty sessions: the global types introduced in this section
extend binary session types to be able to directly express dependencies between com-
munications among multiple peers.

3.1. Syntax of Global Types
A global type abstracts global multiparty conversations as a type signature. It takes
a similar form to cryptography protocols where a message exchange from participant
p to participant p′ is specified as p → p′. For example, the protocol “Alice sends a
message with type nat to Bob via channel k, then terminates the interaction” is simply
described as Alice → Bob : k 〈nat〉. end. Unlike the standard types of process calculi,
the syntax no longer describes the input and output types separately: the information
exchange between two parties is directly abstracted as one interaction.

The full syntax of global session types, or global types, denoted by G,G′, . . ., is given
in Figure 4. In a global type, we refer to session channels with a number, denoted by
k, k′, . . ., which corresponds to the index of a vector of session channels: if we want
to refer to the k-th session channel sk of s1..sn (such a vector is created by a session
initiation), we write k in the global type. By writing number k (like de Bruijn notation),
instead of channel sk, we avoid including binding in the syntax of global types. We call
k a session channel index.
U,U ′, ... range over value types, denoting types for message values. Each value type

is either a vector of sorts or a located type. Sorts, written S, S′, . . ., are types for shared
names, where 〈G〉 means communicating a shared name typed by 〈G〉. A located type
T@p denotes the communication (delegation) of a session channel of type T (called
endpoint type) with role p. Both of these types (T and S) are discussed in detail in §4.2.
For understanding this section, it suffices to assume U as a single base type, i.e., only
nat or bool. We often write p→ p′ : k. G′ for p→ p′ : k 〈〉. G′, i.e., U is empty.

We now give a detailed description of each term in Figure 4.
Type p→ p′ : k 〈U〉. G′ says that an interaction between two participants over a ses-

sion channel with index k must take place. In an implementation of such a behaviour,

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:13

given a vector of session channels s̃, participant p would send some message of type
U to participant p′ over sk and then the session would continue according to G′. The
type U is called carried type. Note that the operator “.” captures sequentiality. As an
example, the global type

1→ 3 : k 〈int〉. 3→ 2 : k′ 〈bool〉. end (3)

describes a protocol where, given a vector s̃, participant 1 sends an integer to partic-
ipant 3 over session channel sk and then, 3 sends a boolean to participant 2 over sk′ .
This protocol can be written in the model introduced in the previous section as follows:

sk!〈5〉;0︸ ︷︷ ︸
1

| sk′?(y);0︸ ︷︷ ︸
2

| sk?(x); sk′ !〈x = 5〉;0︸ ︷︷ ︸
3

According to the semantics given in Fig. 3, the processes above (where, for the sake of
clarity, we have labelled each process with a number corresponding to a participant)
will execute according to the specification given by the global type in (3). Obviously,
the same channel can be used several times as in the following type:

1→ 3 : k 〈int〉. 3→ 2 : k′ 〈bool〉. 2→ 1 : k 〈bool〉. (4)

A possible implementation respecting such a protocol is:

sk!〈5〉; sk?(z);0︸ ︷︷ ︸
1

| sk′?(y); sk!〈true〉;0︸ ︷︷ ︸
2

| sk?(x); sk′ !〈x = 5〉;0︸ ︷︷ ︸
3

On the other hand, the following process would not satisfy the specification in (4):

sk!〈5〉; sk?(z);0︸ ︷︷ ︸
1

| sk!〈true〉; sk′?(y);0︸ ︷︷ ︸
2

| sk?(x); sk′ !〈x = 5〉;0︸ ︷︷ ︸
3

Unfortunately, due to asynchrony, it is possible that participant 3 receives a boolean
while participant 1 receives, later on, an integer causing a run-time error.

Type p → p′ : k {lj : Gj}j∈J denotes branching of a session. Intuitively, participant p
must send one of the labels in {lj | j ∈ I} on channel sk to participant p′. When li is
sent, interactions described in Gi will take place. For example, the global type

1→ 3 : k { five : 3→ 2 : k′ 〈bool〉. end, notfive : 3→ 2 : k′ 〈bool〉. end }
could be implemented by the process

if e then sk � five else sk � notfive︸ ︷︷ ︸
1

| sk′?(y)︸ ︷︷ ︸
2

| sk′ �

{
five : sk′ !〈true〉,

notfive : sk′ !〈false〉

}
︸ ︷︷ ︸

3

Type G | G′ specifies the concurrent execution of the interactions in G and G′.
Type µt.G is a recursive type for recurring conversation structures, assuming type

variables (t, t′, . . .) are guarded in the standard way, i.e. type variables only appear un-
der the prefixes (hence contractive). We take an equi-recursive view, not distinguishing
between µt.G and its unfolding G[µt.G/t] [Pierce 2002]. We assume that 〈G〉 in the
grammar of sorts is closed, i.e. without type variables.3

Type end represents the termination of the session and is often omitted. We identify
“G | end” and “end | G” with G.

We conclude this subsection by giving the following definition:

3In the presence of the standard recursive sorts [Honda et al. 1998], which we omit for simpler presentation,
we allow sort variables to occur in 〈G〉.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 Honda, Yoshida and Carbone

DEFINITION 3.1 (ACTION). We say that p → p′ : k in p → p′ : k 〈U〉. G′ or p →
p′ : k {lj : Gj}j∈J is an action from p to p′ at k.

3.2. Operational Semantics for Global Types
This subsection defines semantics of global types, introducing the labelled transition
relation (LTS). The LTS is useful not only to give a clear justification for causal de-
pendencies of global types defined in the next subsection, but also to prove the main
theorems for the typing system later.

DEFINITION 3.2 (GLOBAL TYPE LABELLED TRANSITION RELATION). The syntax
of labels (`, `′, ...) of global types is defined as follows:

` ::= p→ p′ : k 〈U〉 | p→ p′ : k 〈l〉

A label ` denotes a communication over a channel k of some type U or label l. Then the
transition relation G

`→ G′ is defined by the following rules:

[GR1] p→ q : k 〈U〉. G p→q : k 〈U〉→ G [GR2] p→ q : k {li : Gi}i∈I
p→q : k 〈lj〉→ Gj

[GR3]
G1

`→ G2 q 6∈ `

p→ q : k 〈U〉. G1
`→ p→ q : k 〈U〉. G2

[GR4]
∀i ∈ I. Gi

`→ G′i q 6∈ `

p→ q : k {li : Gi}i∈I
`→ p→ q : k {li : G′i}i∈I

[GR5]
G1

`→ G′1

G1 | G2
`→ G′1 | G2

[GR6]
G2

`→ G′2

G1 | G2
`→ G1 | G′2

The rules allow to permute the order of two actions which are causally unrelated. This
is defined by the condition q 6∈ ` in [GR3,4]. Note that in [GR4], we require that each
branch must be able to perform action `.

As a simple example, consider G = 1 → 2 : k 〈int〉. 3→ 4 : k′ 〈bool〉. end and let `1 =
1→ 2 : k 〈int〉 and `2 = 2→ 3 : k′ 〈bool〉. Since the participants are pairwise distinct, we
can perform the second action first. Hence, using [GR1] and [GR3] above, we have two
possible transition relations from G as follows:

G
`1→ 3→ 4 : k′ 〈bool〉. end

`2→ end and G
`2→ 1→ 2 : k 〈int〉. end

`1→ end

Another interesting example is: 1 → 2 : k 〈int〉. 3→ 1 : k′ 〈bool〉. end. This global type
means that the participant 1 is allowed to receive the message from the participant 3
before the message from 1 is received by 2 since they are delivered to the two different
channels (i.e. queues). Thus with `3 = 2→ 1 : k′ 〈bool〉, we have:

G′
`1→ 3→ 1 : k′ 〈bool〉. end

`3→ end and G′
`3→ 1→ 2 : k 〈int〉. end

`1→ end

On the other hand, G′′ = 3→ 1 : k′ 〈bool〉. 1→ 2 : k 〈int〉. end has only one possible tran-
sition since the two inputs at the receiver q are ordered. Hence we only have the fol-
lowing one transition from G′′.

G′′
`3→ 1→ 2 : k′ 〈bool〉. end

`1→ end

This means the message from 1 is surely received at 2 after 1 received the message
from 3 hence two actions are not permutable. The semantics of the permutation will
be clearer when we introduce the causality relation between the actions in §3.5.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:15

3.3. Action Ordering
Henceforth, we refer to the acyclic directed graph of a global type G as a standard
regular tree representation [Pierce 2002]. In order to give a definition, we annotate
the actions in p→ p′ : k 〈U〉. G′ and p→ p′ : k {lj : Gj}j∈J by a node name n.

DEFINITION 3.3 (REGULAR TREE REPRESENTATION). The regular tree representa-
tion tree(G) of a global type G is defined over the annotated unfolding of G such that

tree(n : p→ p′ : k 〈U〉. G′) has root n with an edge to the root of tree(G′)
tree(n : p→ p′ : k {lj : Gj}j∈J) has root n with edges to the roots of each tree(Gj) (j ∈ J)
tree(G1 | G2) has root | with edges to the roots of each tree(Gi) (i = 1, 2)

Each node in tree(G) is labelled by the occurrence of its corresponding action or it has
no label in the case of parallel. These node names are unique in the unfolding.

As an example, the global type

µt. 1→ 2 : k

{
l1 : 2→ 1 : k 〈int〉. end | 2→ 3 : k′ 〈bool〉. end
l2 : 2→ 1 : k 〈nat〉. t

}
has the following (infinite) regular tree representation:

n1 : 1→ 2 : k

| n4 : 2→ 1 : k 〈nat〉

n2 : 2→ 1 : k 〈int〉 n3 : 2→ 3 : k′ 〈bool〉 n5 : 1→ 2 : k

| . . .

n6 : 2→ 1 : k 〈int〉 n7 : 2→ 3 : k′ 〈bool〉

We now define:

DEFINITION 3.4. An action from p to p′ at k is in a global type G, written p → p′ :
k ∈ G, whenever, in the regular tree representation of G, there exists some node n with
label p→ p′ : k. We write n = p→ p′ : k if n has label p→ p′ : k.

DEFINITION 3.5. We denote

— pid(G) for the set of participants occurring in G (but not in any carried types).
— sid(G) for the number of the set of session channel indices in G (but not in any

carried types).

For example, if G = 1 → 3 : k 〈int〉. 3→ 2 : k′ 〈bool〉. end, then pid(G) = {1, 2, 3} and
sid(G)=2.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 Honda, Yoshida and Carbone

CONVENTION 3.6. We assume that in each action from p to p′ we have p 6= p′, i.e.
we prohibit reflexive interaction.

Below, we define the relation n1 ≺ n2 ∈ Gwhich holds whenever n1 directly or indirectly
occurs before n2 in the regular tree representation of G. For instance, in the global type
G = p1 → p′1 : k1 〈U1〉. p2 → p′2 : k2 〈U2〉. G′2 we have that p1 → p′1 : k1 ≺ p2 → p′2 : k2 ∈ G.

DEFINITION 3.7 (ACTION ORDERING). We define ≺ as the least partial order such
that:

(1) n1 ≺ n2 ∈ p→ p′ : k 〈U〉. G′ if n1 = p→ p′ : k and n2∈G′
(2) n1 ≺ n2 ∈ p→ p′ : k {lj : Gj}j∈J if n1 = p→ p′ : k and ∃i∈J. n2∈Gi
(3) n1 ≺ n2 ∈ p→ p′ : k 〈U〉. G′ if n1 ≺ n2 ∈ G′
(4) n1 ≺ n2 ∈ p1 → p′1 : k′ {lj : G′j}j∈J if n1 ≺ n2 ∈ G′i for some i ∈ J
(5) n1 ≺ n2 ∈ G1 | G2 if n1 ≺ n2 ∈ Gi for some i ∈ {1, 2}

Above, (1,2) say that, in values and branching types, any nested action comes always
after the top one for value and branch types. (3,4) say that if two actions are related by
the action ordering in a subterm of some global type G then they are also related in G.
Parallel composition and recursion are dealt with by (5,6).

The action ordering allows us to express intended causal dependencies in global
types, which is subtle under asynchronous semantics. Consider the following simple
global type:

G = A→ B : k 〈U〉. A→ C : k′ 〈U ′〉. end (5)
where A, B and C denote participants. We use this example to show an important dif-
ference between asynchronous communication and synchronous communication. In a
“synchronous” interpretation of (5), the ordering would mean: “only after the first send-
ing and receiving take place, the second sending and receiving take place”. This is a
suitable reading when sending and receiving constitute a single atomic action, as in
synchronous languages, but not with asynchronous communication, where it is hard to
impose such an ordering, since messages to distinct channels may not arrive in order
e.g. C may receive the second output from A before its first message reaches B. This
corresponds to [GR3] and [GR4] in Definition 3.2, where the action ` can be executed
before the action in the prefix.

Thus, the present theory takes a more liberal interpretation of ≺, imposing sequenc-
ing only on the actions of the same participant in ordered actions. For example, in (5),
A’s two sending actions are ordered, but B’s and C’s receiving actions are not. This rela-
tion is explained in the next subsection with several examples.

3.4. Examples of Global Types
EXAMPLE 3.8 (TWO-BUYER PROTOCOL). The following is a global type of the two-

buyer-protocol in §2.3. We write participants and channels with legible symbols though
they are actually numbers (e.g., Bi = i, S = 3, b1 = 1, b2 = 2, b′2 = 3 and s = 4):

1. B1→ S : s〈string〉.
2. S→ B1 : b1〈int〉.
3. S→ B2 : b2〈int〉.
4. B1→ B2 : b′2〈int〉.

5. B2→ S : s

{
ok : B2→ S : s 〈string〉. S→ B2 : b2 〈date〉. end,

quit : end

}
The type gives a clear, abstract view of the whole conversation scenario. The following
are several salient points in the asynchronous interpretation of this type:

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:17

— Consider Lines 3 and 4. Since they have different senders, the sending actions are
unordered in spite of their ≺-ordering. Hence if b2 = b′2 two messages have a conflict
at s (i.e. lose the ordering).

— Next, we consider the following causal chain from Line 1 to Line 3 to Line 5:

B1 → S ≺ S → B2 ≺ B2 → S

Above→ can be interpreted as the ordering given by message delivery (see previous
subsection), while ≺ is the action ordering. Note in particular two sending actions
by B1 (Line 1) and by B2 (Line 5), both done at s, are causally ordered. By focussing
on ≺ from the first S (of Line 1) to the last S (of Line 5), the receiving actions in Line
1 and the first B1→ S in Line 5 are also ordered. Since the interaction in Line 1 will
surely take place before the interaction in Line 5, no conflict occurs between these
two communications in spite of their use of a common channel s.

EXAMPLE 3.9 (STREAMING PROTOCOL). We now present the global type of the
simple streaming protocol in §2.3. Below we unfold its recursion once, and set: d = 1,
k = 2, c = 3, K = 1, DP = 2, C = 3 and KP = 4.

1. µt. DP→ K : d 〈bool〉.
2. KP→ K : k 〈bool〉.
3. K→ C : c 〈bool〉.

4. DP→ K : d 〈bool〉.
5. KP→ K : k 〈bool〉.
6. K→ C : c 〈bool〉.t

The following arguments hold for any n-fold unfoldings.

— Lines 1 and 2 are temporally unordered in sending: but this does not cause conflict
since channels d and k are distinct.

— Line 1 and its unfolding, Line 4, share d. But the two use the same sender and the
same receiver, so each pair of actions are ≺-ordered, hence safe. Similarly for other
unfolded actions.

EXAMPLE 3.10 (INSTRUMENT CONTROLLING). We now present another example
from [OOI 2015] which focuses on the usage of an instrument through repeated com-
mands, together with checking privileges initially and later reporting the status to the
central operator in charge of the instrument. The global type description involves a
user User, an operator Op and the instrument Instr and is given as follows.

User→ Op : 1 〈privilege〉.

Op→ User : 2

ok : µt.

User→ Instr : 3

{
move : t
photo : t

quit : Instr→ Op : 4 〈string〉. end

}

no : end

Note that the protocol description given by the global type above can have several
implementations. In particular, the instrument can be used with any combination of
the operations move and photo. However, any sequence will be terminated by quit.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 Honda, Yoshida and Carbone

(II) Good (II) Bad
A→ B : k
C→ B : k′

sk! | (sk?; sk′?) | sk′ !

A→ B : k
C→ B : k

sk! | (sk?; sk?) | sk!

(IO) Good (IO) Bad
A→ B : k
B→ C : k′

sk! | (sk?; sk′ !) | sk′?

A→ B : k
B→ C : k

sk! | (sk?; sk!) | sk?

(OO, II) Good (OI) Bad
A→ B : k
A→ B : k

(sk!; sk!) | (sk?; sk?)

A→ B : k
C→ A : k

(sk!; sk?) | sk? | sk!

(OO) Bad
A→ B : k
A→ C : k

sk? | (sk!; sk!) | sk?

Fig. 5. Causality Analysis

Below, we give a possible implementation of each participant:

User def
= s1!〈high〉; s2 �

{
ok : s3 � move; s3 � photo; s3 � quit; 0
no : 0

}
Operator def

= s1?(x); if f(x) then s2 � ok; 0 else s2 � no; 0

Instrument def
= µt. s3 �

{
move : t
photo : t

quit : s4!〈report〉;0

}

3.5. A Safety Principle for Global Types: Linearity of Channels
For a conversation in a session to proceed properly, it is desirable that there is no con-
flict (racing) at session channels. The process sk!〈true〉 | sk!〈5〉 | sk?x; if x then P else Q
is a typical example of a race at channel sk: if the second output synchronises with the
first input we have a run-time error when evaluating the guard of the conditional. To
ensure absence of such races, when a common channel is used in two communications,
their sending actions and their receiving actions should (respectively) be ordered tem-
porally (causality), so that no confusion arises at sending or receiving. If a global type
satisfies this principle, then it specifies an ordering of interactions, and can be used as
a basis of guaranteeing process behaviours through type checking. The correspondence
between the linearity property and the LTS of the global types defined in Definition
3.2 will be used for proving the main theorems, Subject Reduction Theorem (Theorem
5.19) and Session Fidelity Theorem (Corollary 5.23).

Causality is induced in several ways in the present asynchronous model. We sum-
marise all essential cases in Figure 5, with concrete process instances for illustration.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:19

In the figure, IO indicates a causal ordering from input (receiving) to output (sending),
similarly for II, OO and OI. In (II)-Bad, we demand A 6= C. We observe:

— The “good” and “bad” cases for II show that II alone is safe only when two channels
differ. Similarly for IO.

— In OO,II, two outputs have the same sender and the same channel, so (by message
order-preservation) outputs are ordered. Inputs are also ordered by ≺ hence they are
safe.

— There is no ordering from output to input (due to asynchrony), so OI gives us no
dependency.

These observations lead to the following causal relations on global types.

DEFINITION 3.11 (DEPENDENCY RELATIONS). Fix G. The relation ≺φ, with φ ∈
{II, IO,OO}, over actions is generated from:

n1 ≺II n2 if n1 ≺ n2 ∈ G and ni = pi → p : ki (i = 1, 2)
n1 ≺IO n2 if n1 ≺ n2 ∈ G, n1 = p1 → p : k1 and n2 = p→ p2 : k2.
n1 ≺OO n2 if n1 ≺ n2 ∈ G, ni = p→ pi : k (i = 1, 2).

— An input dependency from n1 to n2 is a chain of the form n1 ≺φ1
· · · ≺φn

n2 (n ≥ 0)
such that φi ∈ {IO} for 1 ≤ i ≤ n− 1 and φn = II.

— An output dependency from n1 to n2 is a chain n1 ≺φ1
· · · ≺φn

n2 (n ≥ 1) such that
φi ∈ {OO, IO}.

Note that, in the input dependency, the last II-ordering is necessary. In fact, if we allow
the dependency to end with an IO-edge, an input at n2 is not checked. We can further
clarify dependencies with the following graphical examples:

A

OO

→ B : k1

IO

B → C : k2

II

A → C : k1

A

OO

→ B : k1

D → C : k2

II

A → C : k1

(a) (b)

In picture (a), there is an output dependency from the first to the third line which has
been marked as OO, and an input dependency through all lines. However, in (b), we
only have an output dependency. It is clear that, while (a) could be implemented in
an asynchronous setting, the conversation in (b) would cause problems. In fact, the
messages sent by A on k1 could be delivered in the wrong order (first to C and then to
B). The notion of linearity, hereby introduced, precisely captures such inconsistencies
in global types.

DEFINITION 3.12 (LINEARITY). G is linear whenever, for all n1 ≺ n2 ∈ G such that
ni = pi → p′i : k (i = 1, 2), both input and output dependencies from n1 to n2 exist. We
inductively apply this constraint to all global types which G carries.

Observe that we do not require ordering between ni ∈ Gk and nj ∈ Gh in p →
p′ : k {lj : Gj}j∈J (for h, k ∈ J , h 6= k) since only one branch is performed. In fact, they
cannot be related by ≺ according to Definition 3.7. We further clarify the condition on

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 Honda, Yoshida and Carbone

branching with an example:

A→ B : t

{
ok : C→ D : s.end,

quit : C→ D : s.end

}
A→ B : t.

(
C→ D : s.end |
C→ D : s.end

)
(a) branching (b) parallel

The type (a) represents branching: since only one branch is selected, there is no con-
flict between the two actions C → D : s. On the other hand, (b) denotes a concurrent
execution of two independent C→ D : s, so an input conflict at D exists.

Linearity and its violation can be detected algorithmically, without infinite unfold-
ing. First we observe we do need to unfold once.

µt.(A→ B : s.end | B→ A : t.t)

This is linear in its 0-th unfolding (i.e. we replace t with end): but when unfolded once,
it becomes non-linear, as follows:

A→ B : s.end, B→ A : t.µt.(A→ B : s.end | B→ A : t.t)

since the two actions A→ B : s appear in parallel. This is witnessed by:

def X(st) = ((s! | t?.s!.X〈ts〉) | s?.t!) in X〈ts〉
where (s! | t?.s!.X〈ts〉) belongs to A and s?.t! belongs to B. Unfolding once is necessary
also in global types that do not contain parallel global types. The example below shows
a global type which satisfies the linearity condition:

µt.A→ B : s.B→ C : s′.A→ C : s.t (6)

However, when unfolded once, it is no longer linear as:

A→ B : s.B→ C : s′.A→ C : s.µt.A→ B : s.B→ C : s′.A→ C : s.t (7)

since there is no input and output dependencies between A→ C : s and A→ B : s.
But in fact unfolding once turns out to be enough. Taking G as a syntax, let us call

the one-time unfolding of G the result of unfolding once for each recursion in G (but
never in carried types), and replacing the remaining variable with end. For example,
the type in (6) would be first transformed into the type in (7) and finally become:

A→ B : s.B→ C : s′.A→ C : s.µt.A→ B : s.B→ C : s′.A→ C : s.end

PROPOSITION 3.13.
(1) The one-time unfolding of a global type is linear if and only if its n-th unfolding is

linear.
(2) The linearity of a global type is decidable.

PROOF. For (1), the if-direction is obvious. The only if-direction is proved by induc-
tion on n. See Appendix A for the full proofs. (2) is an immediate corollary of (1).

PROPOSITION 3.14. Suppose G is linear and G
`→ G′. Then G′ is linear.

PROOF. By induction on the last LTS rule applied. The cases [GR1,GR2,GR5,GR6]
are obvious. We prove the case [GR3]. The case [GR4] is similar. Suppose G = p1 →
p2 : k 〈U〉. G1

`→ p1 → p2 : k 〈U〉. G2 = G′ is derived by G1
`→ G2 with p2 6∈ `. Assume

` = q1 → q2 : k′ 〈U ′〉. Then we first prove if G satisfies the linearity condition, then
k 6= k′. Suppose by contradiction, k = k′. Then there should be both output and input
causalities from n = p1 → p2 : k to n′ = q1 → q2 : k. If there is the IO-causality from n
to n′ in G, then we cannot apply [GR3]. Hence there is only OO and II causalities from

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:21

Value U ::= S̃ | T@p

Sort S ::= bool | ... | 〈G〉
End-point T ::= k! 〈U〉;T send

| k? 〈U〉;T receive
| k ⊕ {li : Ti}i∈I selection
| k&{li : Ti}i∈I branching
| µt.T | t | end

Fig. 6. Syntax of End-point Session Types

n to n′. In this case, we should have p2 = q2. This contradicts p2 6∈ ` in [GR3]. Thus we
assume k 6= k′. Then there are three cases.
Case (a) If p1, p2, q1, q2 are pairwise-distinct, then p1 → p2 : k 6≺φ q1 → q2 : k′ in G.
Thus no dependency relation from p1 → p2 : k to any action n′ 6= q1 → q2 : k′ in G1 is
changed before and after the transition. Hence obviously p1 → p2 : k ≺φ n′ ∈ G implies
p1 → p2 : k ≺φ n′ ∈ G′ for all n′ such that n′ 6= q1 → q2 : k′. Hence G′ is linear.
Case (b) Suppose p1 = q2 and others are pairwise distinct. Then p1 → p2 : k 6≺φ q1 →
p1 : k′ in G again. Hence by the same reasoning as above, p1 → p2 : k ≺φ n′ ∈ G implies
p1 → p2 : k ≺φ n′ ∈ G′ in n′ 6= q1 → q2 : k′.
Case (c) Suppose p1 = q1 and others are pairwise distinct. Then again we have p1 →
p2 : k 6≺φ q1 → q2 : k′ in G. The rest is the same as the above cases.

4. TYPE DISCIPLINE FOR MULTIPARTY SESSIONS
4.1. Programming Methodology for Multiparty Interactions
Once given global types as a description of global interactions among communicating
processes, we can consider the following development steps for programs with multi-
party sessions.

Step 1. A programmer describes an intended interaction scenario as global type G,
and checks that it is linear.
Step 2. She develops code, one for the local behaviour of each participant, incre-
mentally validating its conformance to the projection of G onto each participant by
efficient type-checking.

The local behaviours might be developed by a team of programmers (who may as well
be distributed geographically), in which case the use of a clear, precise global descrip-
tion is all the more essential. When programs are executed, their interactions are guar-
anteed to follow the stipulated scenario. Further, when transport issues interfere with
communication, the global type gives a basic criteria by which communications are
monitored and (in)validated at runtime. The type specification also serves as a basis
for debugging, maintenance and upgrade.

For all these purposes, we need a type discipline which relates global types to com-
munication behaviour of individual (end-point) programs, and guarantees key proper-
ties such as communication safety. This section introduces such a type discipline.

4.2. End-point Types
Syntax. End-point session types or end-point types, ranged over by T, T ′, .., are types

for the end-point behaviour of processes, acting as a link between the global types
in Section 3, which give intended conversation structures of multiparty sessions, and
processes in Section 2.1. The grammar is given in Figure 6 (the grammars for U and

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 Honda, Yoshida and Carbone

S are repeated from Figure 4). All constructs come from binary session types [Honda
et al. 1998] except for the following major changes for multiparty interactions.

— Since a process uses multiple channels for addressing multiple parties, a session
type records the identity (number) of the session channel it uses at each action type.

— Since a type is used for type-checking each participant, we use a notation T@p (called
located type) representing an end-point type T assigned to participant p. A located
type is also used for delegation.

The rest remains identical to the original session types [Honda et al. 1998]. Type
k? 〈U〉;T represents the behaviour of inputting values of type U at sk (assume s1...sn
is shared at initialisation), then performing the actions represented by T . Similarly
k! 〈U〉;T is for sending.

Type k&{li : Ti}i∈I describes a branching (external choice): it waits with n options at
k, and then behaves as type Ti if the i-th label is selected; type k⊕{li : Ti}i∈I represents
the behaviour which selects one of the labels say li at k then behaves as Ti (internal
choice). These four are action prefixes in end-point types. We call send and selection
types output types and receive and branching input types. The rest is the same as the
global types, demanding type variables occur guarded by a prefix and taking an equi-
recursive approach for recursive types. We often omit end. Note that end-point types
do not contain parallel composition, hence retaining simplicity.

Projection and Coherence. The following defines the projection of a global type to
end-point types at each participant.

DEFINITION 4.1 (PROJECTION). The projection of G onto p, written G � p, is induc-
tively given as:

− (p1 → p2 : k 〈U〉. G′)�p =

k! 〈U〉; (G′ �p) if p = p1 6= p2

k? 〈U〉; (G′ �p) if p = p2 6= p1

(G′ �p) if p 6= p2 and p 6= p1

− (p1 → p2 : k {lj : Gj}j∈J)�p =

k ⊕ {lj : (Gj �p)}j∈J if p = p1 6= p2

k&{lj : (Gj �p)}j∈J if p = p2 6= p1

(G1 �p) if p 6= p2 and p 6= p1

and ∀i, j ∈ J.Gi �p = Gj �p

− (G1 | G2)�p =

{
Gi �p if p ∈ Gi and p 6∈ Gj , i 6= j ∈ {1, 2}
end if p 6∈ G1 and p 6∈ G2

− (µt.G)�p =

{
µt.(G�p) if G�p 6= end
end

t�p = t end�p = end.

When none of the side conditions hold the map is undefined.

We regard the map to act on the syntax of global types. In the branching clause, all
the projections of those participants whose behaviour does not depend on the branch-
ing should generate an identical end-point type (otherwise undefined); and in parallel
composition, p should be contained in at most a single type, ensuring each type is
single-threaded. Note that, for the sake of clarity, we forbid reflexive interactions di-
rectly in the definition of projection, making Convention 3.6 redundant. Below, in (2),
the term Tp@p was introduced at the beginning of §4.2.

DEFINITION 4.2 (COHERENCE).

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:23

(1) We say G is coherent if it is linear and G � p is well-defined for each p ∈ pid(G),
similarly for each carried global type inductively;

(2) {Tp@p}p∈I is coherent if for some coherent G s.t. I = pid(G), we have G � p = Tp for
each p ∈ I.

THEOREM 4.3. Coherence of G is decidable.

PROOF. By Proposition 3.13 (2), noting that the projection is only applied to a given
global type without unfolding. A complexity analysis is given in [Deniélou and Yoshida
2010].

PROPOSITION 4.4. Assume G is coherent and G
`→ G′. Then G′ is coherent.

PROOF. By Proposition 3.14, we only have to prove if G is projectable then G′ is pro-
jectable. This can be done by induction on the last LTS rule applied. Cases [GR1,GR2]
are straightforward by definition of projection, while [GR3,GR4,GR5,GR6] follow im-
mediately by induction hypothesis.

If the projection mapping is undefined, a global type is not coherent. Linearity guar-
antees linear channel usage including message-order preservation. The next examples
demonstrate the need of these conditions.

4.3. Examples of Coherence
The following global type is linear but not coherent because the projection is undefined.

A→ B : k{ok : C→ D : k′〈bool〉, quit : C→ D : k′〈nat〉} (8)
Intuitively, when we project this type onto C or D, regardless of the choice made by
A, they should behave in the same way: participants C and D should be independent
threads. If we change the above nat to bool as:

A→ B : k{ok : C→ D : k′〈bool〉, quit : C→ D : k′〈bool〉} (9)
we can define the coherent projection as follows:

{ k ⊕ {ok : end, quit : end}@A, k&{ok : end, quit : end}@B

k′!〈bool〉@C, k′?〈bool〉@D }
As examples of end-point types which are not coherent, consider processes in the sec-
ond case of Figure 5:

(II) Bad {s!〈〉@A, s?〈〉; s?〈〉@B, s!〈〉@C}
This process is not coherent since the corresponding global type A → B : s.C → B : s is
not linear.

4.4. Typing System
The purpose of the typing system is to efficiently type behaviours which are built by
programmers and hence which do not include runtime elements such as queues.

Environments and Type Algebra. The typing system uses a map from shared names
to their sorts (S, S′, ..). As given in Figure 6, other than atomic types, a sort has the
shape 〈G〉 assuming G is coherent. Using these sorts, we define:

Γ ::= ∅ | Γ, u : S | Γ, X : S̃T̃ ∆ ::= ∅ | ∆, s̃ : {T@p}p∈I
A sorting (Γ,Γ′, ..) is a finite map from names to sorts or from process variables to
sequences of sorts and types. Typing (∆,∆′, ..) records linear usage of session channels.
In binary sessions types, it assigned a type to a single channel; now it assigns a family
of located types to a vector of session channels.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24 Honda, Yoshida and Carbone

Γ, a :S ` a : S Γ ` true, false : bool
Γ ` ei . bool

Γ ` e1or e2 : bool
[NAME], [BOOL], [OR]

Γ ` a : 〈G〉 Γ ` P .∆, s̃ : (G�1)@1 {1, . . . , n} = pid(G) |s̃| = sid(G)

Γ ` a[2..n] (s̃).P .∆
[MCAST]

Γ ` a : 〈G〉 Γ ` P .∆, s̃ : (G�p)@p p ∈ pid(G) |s̃| = sid(G)

Γ ` a[p] (s̃).P .∆
[MACC]

∀j. Γ ` ej :Sj Γ ` P .∆, s̃ :T@p

Γ ` s[k]!〈ẽ〉;P .∆, s̃ : k! 〈S̃〉;T@p
[SEND]

Γ, x : S̃ ` P .∆, s̃ :T@p

Γ ` s[k]?(x̃);P .∆, s̃ : k? 〈S̃〉;T@p
[RCV]

Γ ` P .∆, s̃ :T@p

Γ ` s[k]!〈〈t̃ 〉〉;P .∆, s̃ : k! 〈T ′@p′〉;T@p, t̃ :T ′@p′
[DELEG]

Γ ` P .∆, s̃ :T@p, t̃ :T ′@p′

Γ ` s[k]?((t̃));P .∆, s̃ : k? 〈T ′@p′〉;T@p
[SREC]

Γ ` P .∆, s̃ :Tj@p j ∈ I
Γ ` s[k] � lj ;P .∆, s̃ : k ⊕ {li : Ti}i∈I@p

[SEL]

Γ ` Pi .∆, s̃ :Ti@p ∀i ∈ I
Γ ` s[k] � {li : Pi}i∈I .∆, s̃ : k &{li : Ti}i∈I@p

[BRANCH]

Γ ` P .∆ Γ ` Q .∆′

Γ ` P | Q .∆,∆′
[CONC]

Γ ` e . bool Γ ` P .∆ Γ ` Q .∆

Γ ` if e then P else Q .∆
[IF]

∆ end only
Γ ` 0 .∆

Γ, a : 〈G〉 ` P .∆

Γ ` (ν a)P .∆
[INACT],[NRES]

Γ ` ẽ : S̃ ∆ end only
Γ, X : S̃T̃ ` X〈ẽs̃1..s̃n〉 .∆, s̃1 :T1@p1, .., s̃n :Tn@pn

[VAR]

Γ, X : S̃T̃ , x̃ : S̃ ` P . s̃1 :T1@p1..s̃n :Tn@pn Γ, X : S̃T̃ ` Q .∆

Γ ` def X(x̃s̃1..s̃n) = P in Q .∆
[DEF]

Fig. 7. Typing System for Expressions and Processes

NOTATION 4.5.
— We write ∆,∆′ to denote a typing made from the disjoint union of ∆ and ∆′ always

assuming their domains contain disjoint sets of session channels.
— We write s̃ : T@p for a singleton typing s̃ : {T@p}.
A family of located types is needed to link a set of session types to types of a set of
processes created by the session initialisation.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:25

Typing System. The type assignment system for processes is given in Figure 7. We
use the following judgements for processes and expressions, respectively:

Γ ` P .∆ Γ ` e : S

These read “under the environment Γ, process P has typing ∆” and “under the envi-
ronment Γ, expression e has type S”. If we set |s̃| = 1 and n = 2, and delete p from
located type, the rules are essentially identical with those for the original binary ses-
sion [Yoshida and Vasconcelos 2007]. Below, we explain the key rules.

[NAME],[BOOL],[OR] are the rules for the expressions and identical with [Yoshida
and Vasconcelos 2007].

[MCAST] is the rule for session request. The condition Γ ` a : 〈G〉 says that sessions
established on shared channel a will execute according to global type G. Therefore,
s̃ must be used in the body P as the first projection of G. Note how s̃ are bound in
a[2..n] (s̃).P and therefore disappear from the typing. [MACC] is for the session accept,
taking the p-th projection. The end-point type (G � p)@p means that the participant
p has G � p, which is the projection of G onto p, as its end-point type. In both rules,
condition |s̃| = sid(G) (see Definition 3.5) ensures the number of session channels meets
those in G. The typing s̃ : T@p (stands for s̃ : {T@p}) means that each prefix does not
contain parallel threads which share s̃.

[SEND] and [RCV] are the rules for sending and receiving values. Since the k-th
name s[k] of s̃ is used as the subject, we record k in the type. Hence, vector s̃ has
type k! 〈S̃〉;T@p in [SEND] and type k? 〈S̃〉;T@p in [RCV], under the assumption that it
is used as T@p by the subterm P . Note how the relevant type prefixes (k!〈S̃〉 for the
output and k?〈S̃〉 for the input) are composed. In both rules, “p” in T@p ensures that P
is (being inferred as) the behaviour for participant p, and its domain should be s̃.

[DELEG] and [SREC] are the rules for delegation of a session and its dual. Delega-
tion of a multiparty session passes the whole remaining capability to participate in a
multiparty session: thus operationally we send the whole vector of session channels.
The carried type T ′ is located, making sure that the behaviour by the receiver at the
passed channels takes the role of a specific participant (here p′) in the delegated multi-
party session. The rest follows the standard delegation rule [Yoshida and Vasconcelos
2007], observing [DELEG] says that t̃ : T ′@p′ does not appear in P , symmetrically to
[SREC] which uses the channels in P .

[SEL] and [BRANCH], identical with [Yoshida and Vasconcelos 2007], are the rules
for selection and branching.

[CONC] composes two processes if their end-point types are disjoint.
[IF], [INACT], [VAR], and [DEF] are standard. [NRES] is the restriction rule for

shared name a.
In [INACT] and [VAR], “end only” means ∆ only contains end as session types.
As for binary session types, the type checking problem for programs is decidable.

Below we say Γ is well-formed when global types it uses are all coherent. A program
(or a process) is annotated when each of its ν-bound shared names is annotated by a
well-formed global type.

PROPOSITION 4.6. Let Γ be well-formed and P be an annotated program. Then it
is decidable whether Γ ` P . ∅ is derivable or not.

PROOF. By annotation, in each typing rule in Figure 7, the conclusion uniquely
determines its premise(s). Note also, by well-formedness, projection of global types P
may use is always well-defined.

In this article, we leave open the generalisation of the result to non-annotated pro-
grams, and the corresponding result for type inference.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:26 Honda, Yoshida and Carbone

4.5. Typing Examples
Two Buyer Protocol. Write a[2, 3] (b1, b2, b

′
2, s).Q1 and a[2] (b1, b2, b

′
2, s).Q2 for Buyer1

and Buyer 2 in §2.3. Then Q1 and Q2 have the following typing under Γ = {a : 〈G〉}
where G is given in the corresponding example in § 3.4, letting Bi = i, S = 3, b1 = 1,
b2 = 2, b′2 = 3 and s = 4 and assuming P1, P2, Q are 0:

Γ ` Q1 . s̃ : s! 〈string〉; b1? 〈int〉; b′2! 〈int〉@B1

Γ ` Q2 . s̃ : b2? 〈int〉; b′2? 〈int〉; s⊕ {ok : s! 〈string〉; b2? 〈date〉; end, quit : end}@B2

Similarly for Seller. After prefixing at a, we can compose all three by [CONC].

A Streaming Protocol. Let Γ = {a : 〈G′〉} where G′ is from the streaming example in
§ 3.4. Let d = 1, k = 2, c = 3, K = 1, DP = 2, C = 3 and KP = 4. Write R1, R2, R3 and
R4 for the processes under the initial prefixes of Kernel, DataProducer, Consumer and
KeyProducer, respectively. We can type them as:

Γ ` R1 . dkc : µt.d? 〈bool〉; k? 〈bool〉; c! 〈bool〉; t@K

Γ ` R2 . dkc : µt.d! 〈bool〉; t@DP Γ ` R4 . dkc : µt.c? 〈bool〉; t@C

(R4 is similar as R2). Note these types correspond to the projection of G′ onto respec-
tive participants: thus Kernel, DataProducer, Consumer and KeyProducer are typable
programs under Γ, which can be composed to make the initial configuration.

Delegation. One source of the expressiveness of the session types comes from a facil-
ity of delegation (often called higher-order session passing). We will type the example in
§ 3.4 and see the relationship with global and end-point types. Consider the following
three participants:

Alice def
= a[2] (t1, t2).b[2, 3] (s1, s2).t1!〈〈s1, s2〉〉;0

Bob def
= a[2] (t1, t2).b[1] (s1, s2).t1?((s1, s2)); s1! 〈1〉;0

Carol def
= b[2] (s1, s2).s1?(x);P

where Alice delegates its capability to Bob. Since there are two multicastings, there
are two global specifications, one for a and another for b as follows:

Ga = A→ B : t1 〈s1! 〈int〉@A〉. end
Gb = A→ C : s1 〈int〉. end

where the type s1! 〈int〉@A means the capability to send an integer from participant A
via channel s1. This capability is passed to B so that B behaves as A. However, since
the two specifications are independent, C does not have to know who would pass the
capability.

Let (Alice | Bob | Carol) → (ν t̃s̃)(A | B | C | R) where A,B,C are the processes of
Alice, Bob and Carol after the initial multicasting and R is the generated queues. Let
s1 = 1, t1 = 1, A = 1, B = 2, C = 3. We have the following typings under Γ with P ≡ 0:

Γ ` A . t̃ : t1! 〈s1! 〈int〉@A〉@A, s̃ : s1! 〈int〉@A

Γ ` B . t̃ : t1? 〈s1! 〈int〉@A〉@B

Γ ` C . s̃ : s1? 〈int〉@C

where each end-point type reflects the original global specifications (e.g. Carol does not
know Alice passed the capability to Bob and Bob behaves as Alice). These types give
projections of Ga and Gb.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:27

5. SAFETY AND PROGRESS
This section establishes the fundamental behavioural properties of typed processes.
We follow three technical steps:

(1) We extend the typing rules to include those for runtime processes which involve
message queues.

(2) We define reduction over session typings which eliminates a pair of minimal com-
plementary actions from end-point types.

(3) We then relate the reduction of processes and that of typings: showing the latter
follows the former gives us subject reduction (Theorem 5.19), safety (Theorem 5.22)
and session fidelity (Corollary 5.23), while showing the former follows the latter
under a certain condition gives us progress (Corollary 5.30).

By the correspondence between end-point types and global types, these results guaran-
tee that interactions between typed processes exactly follow the conversation scenario
specified in a global type.

Note that the typing system for runtime processes we shall introduce in this section
is used solely for establishing the behavioural properties of typed processes, tracing
how typability is preserved during reduction. This is in contrast to the simple typing
system in § 4 which is for typing programs and program phrases.

5.1. Typing Runtime
How to Type a Queue. We first illustrate a key idea underlying our runtime typing

using the following example.

s!〈3〉; s!〈true〉;0︸ ︷︷ ︸
1

| s ::∅ | s?(x); s?(y);0︸ ︷︷ ︸
2

(10)

Above, process 1 sends an integer and a boolean to process 2 through queue s ::
∅. Process 1 can be typed with s : 1! 〈nat〉; 1! 〈bool〉; end@p while process 2 by s :
1? 〈nat〉; 1? 〈bool〉; end@q. After a reduction, (10) changes into:

s!〈true〉;0 | s ::3 | s?(x); s?(y);0 (11)

Note that (11) is identical with (10) except that an output prefix in (10) changes its
place to the queue. Thus we can go back from (11) to (10) by placing this message on
the top of the process. A key idea in our runtime typing is to carry out this “rollback of
a message” in typing, using an end-point type with a hole (a type context) for typing a
queue. For example we type the queue in (11) as:

s : { 1! 〈nat〉; []@p, []@q } (12)

where [] indicates a hole (this will be formalised in Definition 5.2). Each of the holes
above should be filled by the remaining end point type of s at p and q. Hence, we cover
the type 1! 〈bool〉; end with the type context for p given above, 1! 〈nat〉; [], obtaining the
type 1! 〈nat〉; 1! 〈bool〉; end for p, restoring the original typing.

Labels in a queue are also typed using a type context. For example k : l1 · true · l2 can
be typed with

k ⊕ l1 : k!〈bool〉; k ⊕ l2 : [], (13)

omitting braces for a singleton selection. Now consider reduction

si � ok;P | si : ∅ → P | si : ok. (14)

Assume we type the left-hand side as

s̃ : k ⊕ {ok : T, quit : T ′}@p. (15)

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:28 Honda, Yoshida and Carbone

After the reduction, we obtain the type for P as

s̃ : T@p. (16)

and the type for the queue as:

s̃ : k ⊕ {ok : []}@p. (17)

By combining (16) and (17) as before, we obtain

s̃ : k ⊕ {ok : T}@p. (18)

We now observe that the located type in (18) is a subtype of the located type in (15) in
the standard session subtyping [Gay and Hole 2005; Carbone et al. 2007; 2012], which
is formally defined as [Pierce and Sangiorgi 1996]:

DEFINITION 5.1. The subtyping over end-point types, denoted ≤sub, is the maximal
fixed point of function F that maps each binary relationR on end-point types as regular
trees to F (R) given as:

— if (T, T ′) ∈ R then (k! 〈U〉;T, k! 〈U〉;T ′) ∈ F(R) and (k? 〈U〉;T, k? 〈U〉;T ′) ∈ F(R)
— if (Ti, T

′
i) ∈ R for each i ∈ I ⊂ J then (⊕{li : Ti}i∈I ,⊕{lj : T ′j}j∈J) ∈ F(R) and

(&{lj : Tj}i∈J ,&{li : T ′i}i∈I) ∈ F(R).

If T ≤sub T
′ then T is a subtype of T ′ whereas T ′ is a supertype of T .

Note that we do not have a subsumption rule for a program in Figure 7. On the other
hand, we require a subtying relation between located types to type runtime processes.

Since k ⊕ {ok : T} ≤sub k ⊕ {ok : T, quit : T ′}, we can type the reductum in (14) using
the located type given in (15), which is a supertype of the located type in (18), through
the standard subsumption, achieving the required rollback.

Type Contexts. Below, we formalise the notion of type context used in the previous
section.

DEFINITION 5.2. The type contexts (T , T ′, ...) and the extended session typing
(∆,∆′, ... as before) are given as:

T ::= [] | k! 〈U〉; T | k ⊕ li : T
H ::= T | T
∆ ::= ∅ | ∆, s̃ : {Hp@p}p∈I

Thus a type context represents a sequence of outputs and singleton selections which
ends with a hole. As before, the notation “∆,∆′” denotes the union assuming the do-
mains should not include a common channel name. The isomorphism≈ on type contexts
is generated from permutations given below:

DEFINITION 5.3 (PERMUTATION). In addition to the folding/unfolding of recursive
types, we consider end-point types up to the following isomorphism (closed under all
type constructors).

k! 〈U〉; k′! 〈U ′〉;T ≈ k′! 〈U ′〉; k! 〈U〉;T (k 6= k′) (19)

k ⊕ {li :k′ ⊕ {l′j :Tij}j∈J}i∈I ≈ k′ ⊕ {l′j :k ⊕ {li :Tij}i∈I}j∈J (k 6= k′) (20)

k ⊕ {li :k′! 〈U〉;Ti}i∈I ≈ k′! 〈U〉; k ⊕ {li :Ti}i∈I (k 6= k′) (21)

The equations permute two consecutive outputs or selections with different subjects,
capturing asynchrony in communication.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:29

Γ ` P .t̃ ∆ ∆ ≤ ∆′

Γ ` P .t̃ ∆′
∆ end only

Γ ` s[k] :∅ .s[k] s̃ :{[]@p}p ◦∆
[SUBS],[QNIL]

Γ ` vi :Si Γ ` s[k] : h̃.s[k]∆, s̃ : ({T @q} ∪R) R={Hp@p}p∈I
Γ ` s[k] : h̃ · ṽ .s[k] ∆, s̃ : ({T [k! 〈S̃〉; []]@q} ∪R)

[QVAL]

Γ ` s[k] : h̃ .s[k] ∆, s̃ :{T @q} ∪R R={Hp@p}p∈I
Γ ` s[k] : h̃ · t̃′ .s[k]∆, s̃ : ({T [k! 〈T ′@p′〉; []]@q} ∪R), t̃′:T ′@p′

[QSESS]

Γ ` s[k] : h̃ .s[k] ∆, s̃ : {T @q} ∪R R = {Hp@p}p∈I
Γ ` s[k] : h̃ · l .s[k] ∆, s̃ : ({T [k ⊕ l : []]@q} ∪R)

[QSEL]

Γ ` P .t̃1 ∆ Γ ` Q .t̃2 ∆′ t̃1 ∩ t̃2 = ∅ ∆ � ∆′

Γ ` P | Q .t̃1·t̃2 ∆ ◦∆′
[CONC]

Γ ` P .t̃ ∆, s̃ : {Tp@p}p∈I s̃ ∈ t̃ {Tp@p}p∈I coherent
Γ ` (ν s̃)P .t̃\s̃ ∆

[CRES]

Fig. 8. Selected Typing Rules for Runtime Processes

Assignments in ∆ may contain both end-point types and type contexts. Below, we
define the partial commutative algebra ◦ where sid(T) are the channel numbers in T .

T ◦ T = T ◦ T = T [T]
T ◦ T ′ = T [T ′] (sid(T) ∩ sid(T ′) = ∅)

In the first rule, we place the output types of message queues on that of a process. In
the second, we compose the type contexts for two sets of messages from the mutually
disjoint sets of queues. Note T ◦ T ′ is defined iff T ′ ◦ T is defined and in which case we
have T [T ′] ≈ T ′[T]. Note also T ◦ T ′ is never defined.

Below we define a simple algebra of environments for runtime processes.

DEFINITION 5.4 (TYPE ALGEBRA). A partial operator ◦ is defined as:

{Hp@p}p∈I ◦ {H ′p′@p′}p′∈J = {(Hp ◦H ′p)@p}p∈I∩J ∪ {Hp@p}p∈I\J ∪ {H ′p′@p′}p′∈J\I
assuming each ◦ on the right-hand side is defined. Otherwise the operation is unde-
fined. Then we say ∆1 and ∆2 are compatible, written ∆1 � ∆2, if for all s̃i ∈ dom(∆i)
such that s̃1 ∩ s̃2 6= ∅, s̃ = s̃1 = s̃2 and ∆1(s̃) ◦ ∆2(s̃) is defined. When ∆1 � ∆2, the
composition of ∆1 and ∆2, written ∆1 ◦∆2, is given as:

∆1 ◦∆2 = {∆1(s̃) ◦∆2(s̃) | s̃ ∈ dom(∆1) ∩ dom(∆2) } ∪∆1 \ dom(∆2) ∪∆2 \ dom(∆1)

The operation ∆ ◦∆′ is undefined if ∆ � ∆′ does not hold.

5.2. Typing Rules for Runtime
To guarantee that there is at most one queue for each channel, we use the typing
judgement refined as:

Γ ` P .s̃ ∆

where s̃ (regarded as a set) records the session channels associated with the message
queues. The typing rules for runtime are given in Figure 8. [SUBS] allows subsumption

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:30 Honda, Yoshida and Carbone

(≤sub is extended pointwise from types). [QNIL] starts from the empty hole for each
participant, recording the session channel in the judgement. [QVAL] says when we
enqueue ṽ, the type for ṽ is added at the tail. [QSESS] and [QSEL] are the corresponding
rules for delegated channels and a label.

[INACT] allows weakening for empty queue types, while [CONC] is refined to pro-
hibit duplicated message queues. The rule does not use coherence (cf. Def.4.2 (2)) since
coherence is meaningful only when all participants and queues are ready.

In [CRES], since we are hiding session channels, we now know no other participants
can be added. Hence we check all message queues are composed and the given config-
uration at s̃ is coherent.

For the rest, we refine the original typing rules in Figure 7 not appearing in Figure
8 as follows (the full typing rules are listed in Appendix B).

— For [MCAST],[MACC],[RCV],[SREC],[BRANCH] and [DEF], we replace Γ ` P .∆ with
Γ ` P .∅ ∆.

— [VAR] is similar to [INACT] (so that a queue can never occur in processes realising
participants).

— For both [DEF] and [NRES], we replace Γ ` P .∆ by Γ ` P .s̃ ∆.

Using these typing rules, we can check that the configurations at the beginning of
this section, (10) and (11), are given an identical typing by “rolling back” the type of
the message in the queues; similarly for the next redex and reductum pair in the same
page, (15) and (16).

The typability in the original system in §4 and the one in this system coincide for
processes without runtime elements.

PROPOSITION 5.5. Let P be a program phrase and ∆ be without a type context.
Then Γ ` P .∆ in the typing system in § 4 iff Γ ` P .∅∆ is derived without using [SUBS]
in the typing system in this section.

PROOF. See Appendix B.

PROPOSITION 5.6. If Γ ` P .s[1..m] ∆ then P has a unique queue at s[i] (1 ≤ i ≤ m),
no other queue at a free channel occurs in P , and no queue in P is under any prefix.

PROOF. It is routine by rule induction, see Appendix B.2.

5.3. Type Reduction
Next we introduce a reduction relation over session typings, which abstractly repre-
sents interaction in processes at session channels. Below we assume well-formedness
of types and typing.

DEFINITION 5.7 (TYPE REDUCTION). The syntax of labels (`, `′, ...) of local types is
defined as follows:

` ::= p→ p′ : k〈U〉 | p→ p′ : k〈l〉 | p→ p′ : s[k]〈U〉 | p→ p′ : s[k]〈l〉

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:31

We generate ∆
`→ ∆′ by the following rule:

k! 〈U〉;H@p, k? 〈U〉;T@q
p→q : k 〈U〉→ H@p, T@q [TR-COM]

k ⊕ {l : H, ...}@p, k&{l : T, ...}@q
p→q : k 〈l〉→ H@p, T@q [TR-BRA]

H1@p1, H2@p2

`→ H ′1@p1, H ′2@p2 p1, p2 ∈ I k ∈ `

s̃ : {H1@p1, H2@p2, ...}i∈I ,∆
`[s[k]/k]→ s̃ : {H ′1@p1, H ′2@p2, ...}i∈I ,∆

[TR-CONTEXT]

∆ ≈ ∆0 ∆0
`→ ∆′0 ∆′0 ≈ ∆′

∆
`→ ∆′

[TR-ISO]

In the sequel, we investigate the relationship between the LTS semantics of global
and local types to prove the key properties for the main theorems.

DEFINITION 5.8 (FULL PROJECTION). Assume G is coherent. Then the full projec-
tion of G, denoted by [[G]] is defined as the set {(G � p)@p | p ∈ pid(G)}. We write

[[G]]
`→ [[G′]] if s̃ : [[G]]

`[s[k]/k]→ s̃ : [[G′]].

DEFINITION 5.9 (COHERENCE AND PARTIAL COHERENCE OF TYPINGS). (1) We
say ∆ is coherent if ∆(s̃) is coherent for each s̃ ∈ dom(∆). (2) ∆ is partially coherent if
for some ∆′ we have ∆ � ∆′ and ∆ ◦∆′ is coherent.

The following lemma states that for any type reduction in the local types projected
from G, its corresponding action pi → pj : k in G is the minimum with respect to ≺φ.

LEMMA 5.10 (PROJECTION AND CAUSALITY). Assume [[G]] = {Ti@pi}i∈I and there
exists i, j ∈ I such that Ti@pi, Tj@pj

`→ T ′i@pi, T
′
j@pj with k ∈ `. Then there is no action

q → q′ : k′ ∈ G such that (q → q′ : k′) ≺φ (pi → pj : k) ∈ G with either (i) φ ∈ {II, IO} or
(ii) φ = OO and k = k′.

PROOF. By the linearity of G, if Ti is the output type at k, then there is no output
type at k except Ti. Similarly if Tj is an input type at k, there is no input type at k
except Tj in [[G]]. Then it is obvious by the definition of ≺.

The key lemma which states the one-to-one correspondence between the semantics
of a global type and the semantics of its projected local types follows.

LEMMA 5.11 (GLOBAL AND LOCAL TYPES). Suppose G is coherent. Then G `→ G′ iff
[[G]]

`→ [[G′]].

PROOF. The only-if direction is straightforward by definition of [[G]]. We prove the if
direction by induction on the derivation of [[G]]

`→ [[G′]].
Let us first analyse the case where either [TR-COM] or [TR-BRA] are in the premise

of [TR-CONTEXT]. If p1 and p2 are toplevel in G then we can straightforwardly use
[GR1] and [GR2] from Definition 3.2. Otherwise, if [TR-BRA] is in the premise, then
it must be the case that both p1 and p2 are not top level in G. This follows by the
definition of projection and applicability of [TR-CONTEXT] with [TR-ISO] not in the
premise. In such a case, by definition of projection, all roles different from p1 and p2
must behave the same on each branch. Hence, the precondition of [GR4] is satisfied
and we can apply such rule. Note that the global type obtained after reduction can be
projected to the reductum of [TR-CONTEXT] as expected. The case where [T-COM] is
used in the premise of [TR-CONTEXT] is similar.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:32 Honda, Yoshida and Carbone

If [TR-ISO] is in the premise of [TR-CONTEXT] then we must have done a permu-
tation of some outputs/selections. We show that such a behaviour can be emulated by
the global type semantics. Suppose that

s̃ : [[G]] = s̃ : {k! 〈U〉; k′! 〈U ′〉;T1@1, k? 〈U〉;T2@2, k′? 〈U ′〉;T3@3}
`0→ s̃ : [[G′]] = s̃ : {k′! 〈U ′〉;T1@1, T2@2, k′? 〈U ′〉;T3@3}

where G = 1→ 2 : k〈U〉.1→ 3 : k′〈U ′〉.G1 and G′ = 1→ 3 : k′〈U ′〉.G1 with `0[s[k]/k] = `.
Now, suppose

s̃ : [[G]] ≈ s̃ : {k′! 〈U ′〉; k! 〈U〉;T1@1, k? 〈U〉;T2@2, k′? 〈U ′〉;T3@3}
`′0→ s̃ : [[G0]] = s̃ : {k! 〈U〉;T1@1, k? 〈U〉;T2@2, T3@3}

by (19) in Definition 5.3 where G0 = 1 → 2 : k〈U〉.G1. By the definition of LTS ([GR3]
in Definition 3.2), we can obtain G1

`′→ G0 with `′0[s[k]/k] = `′, as required. Other cases
are similar.

The following lemma states that the transitions from global types and projected local
types are deterministic.

LEMMA 5.12 (DETERMINACY).

(1) Suppose G is coherent. Then G
`→ G1 and G

`→ G2 imply G1 ≈ G2.
(2) Suppose ∆ is coherent. Then ∆

`→ ∆1 and ∆
`→ ∆2 imply ∆1 ≈ ∆2.

(3) Suppose G is coherent, and G
`1→ G1 and G

`2→ G2 with k ∈ `1, `2. Then `1 = `2

(4) Suppose ∆ is coherent, and ∆
`1→ ∆1 and ∆

`2→ ∆2 with s[k] ∈ `1, `2. Then `1 = `2.

PROOF. (1) is immediate noting that if G1 | G2
`→ G′1 | G2 then G2

`

6→ (since the
participants are disjoint between G1 and G2). (2) is by (1) and Lemma 5.10. (3) and (4)
are similar with (1) and (2), respectively.

The following proposition states that (1) transitions of ∆ is closed under �; (2,3) ∆
is invaliant w.r.t. partial and coherence; and (4) the transition of a global type and its
mapping have exact correspondence.

PROPOSITION 5.13.

(1) ∆1
`→ ∆′1 and ∆1 � ∆2 imply ∆′1 � ∆2 and ∆1 ◦∆2

`→ ∆′1 ◦∆2.
(2) Let ∆ be coherent. Then ∆

`→ ∆′ implies ∆′ is coherent.
(3) Let ∆ be partial coherent. Then ∆

`→ ∆′ implies ∆′ is partial coherent.
(4) Let ∆ be coherent and ∆(s̃) = [[G]]. Then ∆

`→ ∆′ with s[k] ∈ ` iff G
`[k/s[k]]→ G′ with

∆′(s̃) = [[G′]].

PROOF. For (1) suppose ∆1
`→ ∆′1 with s[k] ∈ ` and ∆1 � ∆2. Note by definition

of ∆1 � ∆2, each pair of vectors of channels from ∆1,2 either coincide or are disjoint,
i.e. (a) s[k] ∈ s̃ ∈ dom(∆1) ∩ dom(∆2) or (b) s[k] ∈ s̃ ∈ dom(∆i) and s̃ 6∈ dom(∆j) with
i 6= j. For case (a), since the typed reduction only erases the top input and output
pair in ∆1, we have ∆′1 � ∆2 by the inductive hypothesis and Lemma 5.12 (2). Then
∆1 ◦∆2

`→ ∆′1 ◦∆2 is by definition.
Case (b) is vacuous since the reduction does not relate to the domain of ∆2. Hence

∆′1 � ∆2.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:33

For (2), suppose ∆ is coherent and ∆
`→ ∆′. Suppose the associated redex is in ∆(s̃).

By coherence we can write ∆(s̃) as [[G]] for some coherent G. By Lemma 5.11, there
exists G′ such G

`′→ G′ such that `′[s[k]/k] = ` and [[G′]] = ∆′(s̃). Then by Proposition
4.4, G′ is coherent. Hence [[G′]] and ∆′(s̃) are both coherent.

Implication (3) is immediate from (1) and (2).
Finally the only if-direction of (4) follows directly from Definition 5.8, while the if

direction is immediate by Lemma 5.11.

5.4. Subject Reduction and Communication Safety
For subject reduction we use the following lemmas. In the first lemma below, we say
that two typings, ∆1 and ∆2, share a common target channel in their type contexts
when, for some s̃ and k, we have: (1) T1@p ∈ ∆1(s̃) and T2@p ∈ ∆2(s̃); and (2) k! 〈U〉 or
k ⊕ l occurs in T1 and k! 〈U ′〉 or k ⊕ l′ occurs in T2 (i.e. they have an output/selection
type at a shared channel).4

LEMMA 5.14 (PARTIAL COMMUTATIVITY AND ASSOCIATIVITY OF ◦). ◦ on typings
is partially commutative and associative with identity ∅ under the condition that, when-
ever we compose two typings, they never share a target channel in their type contexts (in
the above sense).

PROOF. See Appendix B.3.

LEMMA 5.15. Assume Γ ` P .s̃∆. Then all free names and free variables in P occur
in Γ and all free channels in P occur in ∆.

Below a derivation of Γ ` P .s̃ ∆ is a derivation tree of the typing rules for runtime
processes (fully listed in Appendix B) whose conclusion is Γ ` P .s̃ ∆.

LEMMA 5.16 (PERMUTATION). (1) Assume given a derivation of Γ ` P .s̃ ∆ which
uses [SUBS] at its last two steps. Then Γ ` P .s̃ ∆ has a derivation identical with the
original one except its last two steps are replaced by a single application of [SUBS]. (2)
Assume given a derivation of Γ ` P .s̃ ∆ which uses [SUBS] as its last rule and another
rule which is not one of [SUBS], [SEL] and [BRANCH]. Then Γ ` P .s̃ ∆ has a derivation
which is identical with the original one except that the last two rules used are permuted.

PROOF. (1) is immediate from the transitivity of [SUBS]. (2) is routine.

LEMMA 5.17 (QUEUE). The following rules are admissible in the typing system for
runtime processes. Below, let s̃ = s[1..k..n] and let us assume that occurrences of ◦ in the
premise of each rule are well-defined.

Γ ` s[k] :: h̃ .s̃′ ∆ ◦ s̃ : {T @p} Γ ` ṽ . S̃
Γ ` s[k] :: h̃ · ṽ .s̃′ ∆ ◦ s̃ : {T [k! 〈S̃〉; []]@p}

[QVAL]

Γ ` s[k] :: h̃ .s̃′ ∆ ◦ s̃ : {T @p} {t̃} fresh
Γ ` s :: h̃ · t̃ .s̃′ ∆ ◦ s̃ : {T [k! 〈T@p′〉; []]@p}, t̃ : {T@p′}

[QSESS]

4 Whenever we compose two processes, their typings never share a common target channel in their type
contexts in this sense because, by the disjointness of mentioned channels for queues, target channels in type
contexts can never coincide.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:34 Honda, Yoshida and Carbone

Γ ` s :: h̃ .s̃′ ∆ ◦ s̃ : {T @p}
Γ ` s :: h̃ · l .s̃′ ∆ ◦ s̃ : {T [k ⊕ {.. , l : [], ..}]@p}

[QSEL]

Γ ` s :: ṽ · h̃ .s̃′ ∆ ◦ s̃ : {k! 〈S̃〉; T @p}@p

Γ ` s :: h̃ .s̃′ ∆ ◦ s̃ : {T @p}
[QVALDQ]

Γ ` s :: t̃ · h̃ .s̃′ ∆ ◦ s̃ : {k! 〈T@p′〉; T @p}, t̃ : {T@p′}@p′

Γ ` s :: h̃ .s̃′ ∆ ◦ s̃ : {T @p}
[QSESSDQ]

Γ ` s :: l · h̃ .s̃′ ∆ ◦ s̃ : {k ⊕ l : T @p}
Γ ` s :: h̃ .s̃′ ∆ ◦ s̃ : {T @p}

[QSELDQ]

PROOF. See Appendix B.2.

Below we do not require the substitution lemmas for session channels and process
variables, cf. [Yoshida and Vasconcelos 2007].

LEMMA 5.18 (SUBSTITUTION AND WEAKENING). (1) (substitution) Γ, x :S ` P .s̃ ∆
and Γ ` v :S imply Γ ` P [v/x] .s̃ ∆. (2) (weakening) Whenever Γ ` P .s̃ ∆ is derivable
then its weakening, Γ ` P .s̃ ∆,∆′ for disjoint ∆′ where ∆′ contains only empty type
contexts and for types end, is also derivable.

PROOF. Standard, see [Yoshida and Vasconcelos 2007].

Among the lemmas above, the lemmas for queues are needed for treating reduction
involving queues in the present asynchronous operational semantics. We can now es-
tablish subject reduction.

Subject Reduction, Communication Safety and Session Fidelity. By the above propo-
sition and the substitution lemma, we obtain:

THEOREM 5.19 (SUBJECT CONGRUENCE AND REDUCTION).

(1) Γ ` P .s̃ ∆ and P ≡ P ′ imply Γ ` P ′ .s̃ ∆.
(2) Γ ` P .s̃ ∆ such that ∆ is coherent and P → P ′ imply Γ ` P ′ .s̃ ∆′ where ∆ = ∆′ or

∆
`→ ∆′ for some `.

(3) Γ ` P .∅ ∅ and P → P ′ imply Γ ` P ′ .∅ ∅.
PROOF. See Appendix B.4.

REMARK 5.20. Theorem 5.19 (3) and the subsequent results (in particular Theo-
rem 5.22 and Corollary 5.30 below) tell us, through Proposition 5.5, that the typing
system in § 4, which is for programs and program phrases, guarantees type safety
and other significant behavioural properties for typable programs, noting typability of
(annotated) programs is decidable by Proposition 4.6.

Theorem 5.19 immediately entails the lack of the standard type errors in expressions
(such as true + 3). The type discipline also satisfies, as in the preceding session type
disciplines [Honda et al. 1998], communication error freedom, including linear usage
of channels. We first introduce the reduction context E as follows:

E ::= E |P | P |E | (νn)E | def D in E
We also say and write:

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:35

— A prefix is at s (resp. at a) if its subject (i.e. its initial channel) is s (resp. a). Further
a prefix is emitting if it is request, output, delegation or selection, otherwise it is
receiving.

— A prefix is active if it is not under a prefix or an if branch, after any unfoldings by
[DEF]. We write P 〈〈s〉〉 if P contains an active subject at s after applying [DEF], and
P 〈〈s!〉〉 (resp. P 〈〈s?〉〉) if P contains an emitting (resp. receiving) active prefix at s.

— P has a redex at s if it has an active prefix at s among its redexes.

Below and henceforth we safely confuse a channel (as a number) in a typing and the
corresponding free session channel of a process.

LEMMA 5.21. Assume Γ ` P .∅ ∆ s.t. ∆ ◦∆0 is coherent for some ∆0.

(1) If P 〈〈s〉〉 then P contains either a unique active prefix at s or a unique active emitting
prefix and a unique active receiving prefix at s.

(2) If P contains an active emitting (resp. receiving) prefix at s then ∆ contains an
emitting (resp. receiving) minimal prefix at s.

PROOF. By easy rule induction, see Appendix B.6.

The following result adapts the standard properties for synchronous session
types [Takeuchi et al. 1994; Honda et al. 1998; Yoshida and Vasconcelos 2007] to
multiparty asynchronous session types. Note that reductions may go wrong for sev-
eral reasons. Traditional problems include non-boolean values in a conditional, as in
if a then P else Q, and arity mismatch for process definitions such as as in def X(yx) =
P in X〈true〉. Here, we are instead interested in communication safety, which ensures
there is no error when participants interact with each other. Since interactions always
happen at session channels, we focus on the linearity property (no races) and the in-
teractions between processes and their corresponding queue. Below we assume the
standard bound name convention.

THEOREM 5.22 (COMMUNICATION SAFETY). Suppose Γ ` P .t̃ ∆ s.t. ∆ is coherent
and P has a redex at free s. Then:

(1) (linearity) P ≡ E [s :: h̃] such that either
(a) P 〈〈s?〉〉, s occurs exactly once in E and h̃ 6= ∅; or
(b) P 〈〈s!〉〉 and s occurs exactly once in E ; or
(c) P 〈〈s?〉〉, P 〈〈s!〉〉, and s occurs exactly twice in E .

(2) (error-freedom) if P ≡ E [R] with R〈〈s?〉〉 being a redex:
(a) If R ≡ s?(ỹ);Q then P ≡ E ′[s : ṽ · h̃] for some E ′ and |ṽ| = |ỹ|.
(b) If R ≡ s?((s̃));Q then P ≡ E ′[s : t̃ · h̃] for some E ′ and |s̃| = |t̃|.
(c) If R≡s� {li : Qi}i∈I then P ≡E ′[s : lj ·h̃] for some E ′andj∈I.

PROOF. For (1), let P ≡ (νñ)(P0|s : h̃|Q) where P0 does not contain a queue and Q
only contains queues (by Proposition 5.6). By Lemma 5.21 we know P0 has either a
single active prefix or a pair of a receiving active prefix and an emitting active prefix.
So we have three cases:

— P0〈〈s?〉〉 and there is no other active prefixes at s: if so because there is a redex in P
the queue cannot be empty.

— P0〈〈s!〉〉 and there is no other active prefixes at s: then this gives us a redex.
— P0〈〈s!〉〉 and P0〈〈s?〉〉. Then at least the former gives a redex but the latter can also

give a redex.

Hence as required.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:36 Honda, Yoshida and Carbone

For (2), if P satisfies the stated condition then we can write P ≡ E ′[s : h̃|R] and
S

def
= s : h̃|R form a redex, with the same typing by Theorem 5.7 (1). Since this should

have a partially coherent typing it in particular means the pair of active prefixes at
s in the tying of S should be complementary. The rest is by the direct correspondence
between the type constructors and the prefixes.

By Theorems 5.19 and 5.22, a typed process “never goes wrong” in the sense that its in-
teraction at a multiparty session channel is always one-to-one and that each delivered
value matches the receiving prefix.

By Lemma 5.21 (2) and by the typing of the associated queue, this delivery precisely
corresponds to a redex in the session typing.

As the corollary of Theorem 5.19(2) and Proposition 5.13(4), we obtain session fi-
delity: the interactions of a typable process exactly follow the specification described
by its global type.

COROLLARY 5.23 (SESSION FIDELITY). Assume Γ ` P .t̃ ∆ such that ∆ is coherent
and ∆(s̃) = [[G]]. If

(1) P 〈〈s[k]?〉〉 → P ′ at the redex of s[k], then Γ ` P ′ .t̃ ∆′ with G
`→ G′ with k ∈ ` and

[[G′]] = ∆′(s̃), or
(2) P 〈〈s[k]!〉〉 → P ′ at the redex of s[k], then Γ ` P ′ .t̃ ∆.

PROOF. In (1), the conclusion Γ ` P ′ .t̃ ∆′ where ∆ = ∆′ or ∆
`→ ∆′ follows directly

from Theorem 5.19(2). The second conclusionG `→ G′ with k ∈ ` and [[G′]] = ∆′(s̃) follow
directly from Lemma 5.12 (3) and Proposition 5.13 (4). If not, a sender puts some value
in the queue. Hence (2) obviously holds.

5.5. Progress
Communication safety says that if a process ever does a reduction, it conforms to the
typing and it is linear. If interactions within a session are not hindered by initialisa-
tion and communication of different sessions, then the converse holds: the reduction
predicted by the typing surely takes place, that is the standard progress property in
binary session types [Dezani-Ciancaglini et al. 2006; Honda et al. 1998]. First we de-
fine:

DEFINITION 5.24. Let Γ ` P .s̃ ∆. Then P is queue-full when {s̃} coincide with the
set of session channels occurring in ∆.

A process is queue-full when it has a queue for each session channel. The follow-
ing precludes interleaving of other sessions (including initialisations and commu-
nications) which can introduce deadlock. For example, two session initialisations
a[2](s).b[2](t).s?; t! and a[2](s).b[2](t).t?; s! cause deadlock. Observe, because we have
multiparty sessions, there is less need to use interleaved sessions.

DEFINITION 5.25 (SIMPLE). A process P is simple when it is typable with a type
derivation where the session typing in the premise and the conclusion of each prefix
rule in Figure 7 is restricted to at most a singleton. I.e. (1) ∆ of [MCAST], [MACC],
[SEND], [RCV], [BRANCH] and [VAR] are empty; (2) Neither [RCV] nor [DELEG] is used;
(3) ∆ of [IF], [INACT], [NRES] and [DEF] contains at most a singleton; and in [CONC],
either ∆,∆′ contains at most a singleton.

Thus each prefixed subterm in a simple process has only a unique session.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:37

PROPOSITION 5.26. Let P0 be simple and P0 →∗ P . Then no delegation prefix (input
or output) occurs in P and for each prefix with a shared name in P , say a[i](s̃).P ′ or
a[2..n](s̃).P ′, there is no free session channels in P ′ except s̃.

PROOF. See Appendix B.7.

Another element which can hinder progress is when interactions at shared names
cannot proceed.

DEFINITION 5.27 (WELL-LINKED). We say P is well-linked when for each P →∗ Q,
whenever Q has an active prefix whose subject is a (free or bound) shared name, then
it is always part of a redex.

Thus, in a simple well-linked P , each session is never hindered by other sessions nor by
a name prefixing. The key lemma for simple processes follows. Below we safely confuse
a channel in a typing and the corresponding free session channel of a process.

LEMMA 5.28. Let Γ ` P .s̃ ∆ and P is simple. If there is an active receiving (resp.
active emitting) prefix in ∆ at s and none of prefixes at s in P is under a prefix at a
shared name or under an if-branch, then P 〈〈s?〉〉 (resp. either P 〈〈s!〉〉 or the queue at s is
not empty).

PROOF. By rule induction using Proposition 5.26, see Appendix B.8.

PROPOSITION 5.29. Let Γ ` P .s̃ ∆, ∆ is coherent, P is simple, well-linked and
queue-full. Then:

(1) If P 6≡ 0 then P → P ′ for some P ′.
(2) If ∆(t̃) = [[G]] and G `→ G′ with k ∈ `, then P →+ P ′ at the redex at tk s. t. Γ ` P ′.s̃∆′

with ∆′(t̃) = [[G′]].

PROOF. Let P be simple, queue-full and well-linked, and Γ ` P .s̃ ∆ such that ∆ is
coherent. Without loss of generality we can assume P does not have hidings (we can
just take off and the result is again simple, queue-full, well-linked and coherent). Since
∆ is coherent, if ∆ contains any prefix then, by Proposition 5.26, it should form a redex
(together with another prefix to form the image of a identical set). By Lemma 5.28 and
Theorem 5.22 (1,2) and by the well-linkedness, either there is an if-branch above the
prefix or P has an active prefix (or prefixes) at s in P . For the former, this if-branch
itself cannot be under any prefix since that violates the activeness at s in ∆. So this
if-branch can reduce; hence, we conclude the case.

If not then by Lemma 5.28 there are the following cases:

(a) P ≡ E [Q〈〈s!〉〉|s : h̃|R〈〈s?〉〉], in which case there is at least one redex in P between the
emitting prefix and the queue.

(b) P ≡ E [s : h̃|R〈〈s?〉〉] with h̃ non-empty, in which case there is a redex between the
non-empty queue and the receiving redex.

(c) P ≡ E [Q〈〈s!〉〉|s : h̃], in which case there is a redex as in (a).

In each case there is a reduction hence done.

(2) above gives the converse of Corollary 5.23: if the global type has a reduction, then
the process can always realise it.

COROLLARY 5.30 (PROGRESS). Let P be a simple and well-linked program. Then P
has the progress property in the sense that P →∗ P ′ implies either P ′ ≡ 0 or P ′ → P ′′

for some P ′′.

PROOF. Immediate from Proposition 5.26, Lemma 5.28 and Theorem 5.29.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:38 Honda, Yoshida and Carbone

A simple application of Theorems 5.19 (3) and 5.22 and Corollary 5.30 for processes
from §2.3 follow. Below communication mismatch stands for the violation of the condi-
tions given in Theorem 5.22 (2).

PROPOSITION 5.31 (PROPERTIES OF TWO PROTOCOLS).

(1) Let Buyer1|Buyer2|Seller →∗ P . Then P is well-typed, simple and well-linked, P
has no communication mismatch, and either P ≡ 0 or P → P ′ for some P ′.

(2) Similarly for DataProducer|KeyProducer|Kernel|Consumer.

PROOF. Immediate from Corollary 5.30 because these two configurations are ty-
pable programs each of which loses its shared name in the initial reduction (at which
point all the occurrences of the shared name are used).

The significance of the progress result under these constraints is that, if a typable
program ever gets stuck during reduction, then its causes are other than the structure
of individual typed conversations: thus we are ensured that the causes of deadlock
(if any) in typed interactions do not lie in each conversation structure itself, allowing
their well-articulated analysis.

6. EXTENSIONS AND RELATED WORK
We outline applications and several possible extensions of the presented framework,
then discuss related works. We also sumarise recent results and applications of multi-
party session types after the publication of the extended abstract [Honda et al. 2008a].

6.1. Applications and Extensions
Applications. As we have already discussed (cf. §1 and §4.1), the type discipline we

have explored in the present paper is intended to be used as a typed foundation for
the development of communication-centred software in various ways and at different
development stages. Types will also serve as a core specification upon which other
formal specifications and techniques such as program analyses and assertions may be
built.

A global type serves as an agreement of a protocol following which each end-
point program will execute its communication. An automatic method to check well-
formedness of the global types (linearity, by Proposition 3.13, and coherence, by Propo-
sition 4.3) guarantees the behaviours specified by the global specification. Develop-
ment of individual programs for end-point communications, which materialise a global
conversation, is assisted in several ways: first, the projection of a global type to each
participant (well-defined by coherence) directly suggests the possible shape of end-
point interactional behaviour. Second, during development, a programmer can check
whether her program conforms to the agreed global type through type-checking the
program against an appropriate projection of the global type (Proposition 4.6). The
global type and its projections may also be used as a basis of the debugging/testing
process, including automatic generation of test suites.

Once the development of all programs is complete, their typability ensures, in the
absence of systems errors (such as transport-level failure), that the runtime behaviour
of the deployed programs satisfy the key properties including communication safety,
session fidelity and progress, through the theorems in §5 (cf. Theorems 5.19 and 5.22
and Corollary 5.30). Since global types and their projections specify possible legitimate
interaction sequences of the deployed programs, they can be used for runtime monitor-
ing, flagging those communications which go out of expected conversation sequences
and thus signalling the existence of system-level errors (which is another direct con-
sequence of the theorems in §5), thus helping locating the cause of such errors. These

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:39

static and dynamic validations of programs may add further precision by using re-
fined specifications, such as logical assertions following (global and local) session type
structures as we have recently done in [Bocchi et al. 2010].

The effectiveness of these applications hinges on the exactitude with which global
types and the associated type discipline can assure basic properties of programs, and
thus is underpinned by the formal results discussed in the present paper. At the same
time, in order to put these ideas into practise, the presented framework may need
various extensions as well as engineering experiments. Some possible extensions of
the presented type discipline are discussed in the following.

Existing Extensions of Binary Session Types. In the literature, several extensions of
binary session type disciplines have been proposed, including subtyping [Gay and Hole
2005], bounded polymorphism [Gay 2008], integration with security annotations to
guarantee authentication properties [Bonelli et al. 2005], and integration with higher-
order π-calculus [Mostrous and Yoshida 2007; 2009]. We believe that integrations with
these extensions should be possible and will enrich the expressive power and applica-
bility of the theory.

Multithreaded Participants. Another straightforward extension is to allow a multi-
threaded participant, so that a single participant can perform parallel conversations
with others during a session. For this extension, we need to augment end-point types
with the parallel composition T1 | T2, equipped with the following isomorphism (using
type contexts in §5): T [T1] | T2 ≈ T [T1 | T2] if for no k there is an output at k in
both T and T2 (such a prefix adds false OO-dependency), as well as commutativity and
associativity. Linearity between T1 and T2 in T1, T2 is given by coherence via projec-
tion. This extension has been recently studied with more advanced dynamic roles in
[Deniélou and Yoshida 2011].

Graph-Based Global Types and Type Inference. The syntax of global types uses the
standard abstract syntax tree. We can further generalise this tree-based syntax to
graph structures to obtain a strictly more expressive type language, enlarging typabil-
ity. Consider the two end-point processes P ≡ s!.t? and Q ≡ t!.s?: their parallel com-
position does not introduce conflict hence it is linear and safe. This situation however
cannot be represented in the current global types since two “prefixes” criss-cross each
other. Interestingly, our linearity conditions in §3.5, based on input/output dependen-
cies, can directly capture the safety of this configuration. All we need to do is to take
the graphs of prefixes and II, IO and OO-edges (cf. Figure 5) under the linearity condi-
tion (precisely following §3.5) as global types, augmented with an acyclicity condition
on chains of these causal edges. All other definitions and results stay the same.

Our recent work [Mostrous et al. 2009] studies a generation of graph-based global
types from end-point types, where we also use such graph-based types for solving the
type inference problem for (the generalised version of) the presented type discipline.
This is further extended in [Deniélou and Yoshida 2012; Lange et al. 2015] making a
connection with Communicating Automata. See §6.3.

Synchrony and Asynchrony. Most of the session types currently studied are binary
and synchronous [Honda et al. 1998]. In some computing environments (e.g. tightly
coupled SMP), synchrony would be more suitable. Adding synchrony means we have
more causality: OO-dependency between different names as well as the OI-dependency
(i.e. the dependency from output to input, cf. Figure 5), which in asynchrony never
arises §3.4. Our subsequent work [Bejleri and Yoshida 2009] studies a synchronous
multiparty session type.

A different direction is to consider asynchronous message passing without order-
preservation [Honda and Tokoro 1991] which are also used in some computing envi-

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:40 Honda, Yoshida and Carbone

ronments (though in many environments we have efficient order-preserving transport
such as TCP). Again we can use our modular articulation, by taking off OO-edges to
obtain a consistent theory for pure asynchrony.

Multicast Primitives for Sessions Communication. The two-buyer protocol uses a
multicasting prefix notation s, t! 〈V 〉. The present work treats it as a macro for
s! 〈V 〉; t! 〈W 〉which has an essentially identical abstract semantics. Having proper mul-
ticasting primitives for session communication is however useful especially in the case
of sessions involving a large number of participants, using multicast protocols such as
IP-multicast through APIs. It also enriches the type structures: we extend p→ p′ : k in
the prefix of global types to p → p1, .., pn : {k1, ..., kn} (with a practical adaptation such
as group addressing), representing the multicast of a message to p1, .., pn via chan-
nels k1, ..., kn by participant p, similarly we extend end-point session types to k̃!〈U〉
from k!〈U〉. Causality analysis remains the same by decomposing each multicasting
prefix into its unicasting elements and considering causality for each of them. Our
subsequent work [Bettini et al. 2008; Coppo et al. 2015b; Coppo et al. 2015a] uses
multicasting and proves the progress properties in asynchronous multiparty sessions.

6.2. Related Work
There is a large literature on session types for both process calculi (in particular π-
calculi) and programming languages. Below we discuss some of the most closely related
works.

Asynchronous Session Types. Multiparty session types are based on message-order
preserving asynchronous communication. Operational semantics of binary sessions
based on asynchronous communication was first considered by [Neubauer and Thie-
mann 2004b]. Recently, [Gay and Vasconcelos 2009] studies the asynchronous version
of binary sessions for an ML-like language [Vasconcelos et al. 2006]. In [Gay and Vas-
concelos 2009], message queues are given two endpoint channels and a direction.

[Coppo et al. 2007] study asynchronous binary session types for Java, extending the
previous work [Dezani-Ciancaglini et al. 2006], and prove progress by introducing an
effect system. The resulting system does not allow interleaving sessions so that in-
teractions involving more than two parties such as our examples in §2.3 cannot be
represented. Our theorem establishes the progress property on multiple session chan-
nels, significantly enlarging the framework in [Coppo et al. 2007]. Recently, [Dezani-
Ciancaglini et al. 2007] propose a typing system for progress in binary synchronous
interleaving sessions. There, typable processes obey the partial orders of shared and
session channels inferred during type-checking. Because of the use of global types, pro-
cesses typed by our multiparty session typing do not have to follow such ordering; on
the other hand, the system in [Dezani-Ciancaglini et al. 2007] does not require the sim-
pleness condition (Definition 5.25). In [Dezani-Ciancaglini et al. 2007], a progress prop-
erty is defined as follows: a typable process never reduces to a process which contains
open sessions (this amounts to containing session channels) and which is irreducible
in any inactive context (represented by another inactive process running in parallel). A
combination of this and our multiparty session typing systems will enlarge typability,
guaranteeing progress in many situations. See also §6.3.

The concurrent work done by [Bonelli and Compagnoni 2007], which is indepen-
dently conceived and developed, studies a multiparty session typing for asynchronous
communication. While treating the common topic, the technical direction of their work
is different from that of the present work. Instead of global types, they solely use what
we call (recursion-free) end-point types. In type checking, end-point types are projected
to each binary session, so that type safety can be ensured using duality. Since we lose

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:41

sequencing information in this way, the progress property is not guaranteed. The use
of global types in the present work leads to transparent treatment of type structures
such as recursion, the guarantee of stronger behavioural properties such as progress,
and (arguably) more intelligible description of multiparty interaction structures.

Global Description of Session Types. There are two recent works which studied
global descriptions of sessions in the context of Web services and business protocols,
by the present authors [Carbone et al. 2007; 2012] and by [Bhargavan et al. 2009].
Our work [Carbone et al. 2007; 2012] presented an executable language for directly
describing Web interactions from a global viewpoint and provided the framework for
projecting a description in the language to end-point processes. The use of global de-
scription for types and its associated theories have not been developed in [Carbone
et al. 2007]. The type disciplines for the two (global and end-point) calculi studied
in [Carbone et al. 2007] are based on binary synchronous session types, hence safety
and progress for multiparty interactions are not considered. See also §6.3 for further
extensions of [Carbone et al. 2007; 2012].

The work [Bhargavan et al. 2009] investigates approaches to cryptographically pro-
tecting session execution from both external attackers in networks and malicious ses-
sion principals. Their session specification models an interaction sequence between
two or more constituent roles, an abstraction of network peers. The description is given
as a graph whose node represents a specific state of a role in a session, and whose edge
denotes a dyadic communication and control flow. The purpose of the message flow
graphs in [Bhargavan et al. 2009] is more to serve as a model for systems and pro-
grams than to offer a type discipline for programming languages.

First their work does not (aim to) present compositional typing rules for processes.
Secondly their flow graphs do not (try to) represent such elements as local control flow
(e.g. prefixing), channel-based communication and delegation. Third their operational
structures may not be oriented towards type abstractions: for example their choice
structures are based on transitions of flow graphs than additive structures realisable
by branching and selection.

Integration of their and our approaches is an interesting further topic: for example,
we may consider developing a runtime validation method for multiparty sessions using
flow models induced by our global types.

With a similar intent to address secure implementation of multiparty sessions, the
works in [Carbone and Guttman 2009b; 2009a] provide an abstract semantics for
global types without parallel composition and recursion into the Strand Spaces model
[Thayer et al. 1999]. The semantic function exploits a projection similar to ours.

Semantics of Delegation. For a simpler presentation, we used the operational seman-
tics of delegation from [Honda et al. 1998] which demands that delegated channels do
not occur in the receiver. This prevents a process from acting as two or more partici-
pants in the same session, which usually leads to a deadlock. The duplication check is
easily implementable in a way analogous to the standard mechanism of firewalls. The
more generous rule [Gay and Hole 2005; Yoshida and Vasconcelos 2007] allows substi-
tution of session channels as in [RECV], which also satisfies type safety and progress
through annotations on channels and types. This annotation extends the method in
[Gay and Hole 2005; Yoshida and Vasconcelos 2007]: instead of polarities we use in-
dices by participants to annotate each usage of channels. With this change the whole
theories remain intact with exactly the same operational semantics and typing for
programs. We study this delegation in [Bettini et al. 2008; Bejleri and Yoshida 2009].

Linear and Behavioural Types for Mobile Processes. Among many works on types
for mobile processes, session type disciplines in general and the present work in par-

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:42 Honda, Yoshida and Carbone

ticular are most closely related with linear/IO-typed π-calculi with causality informa-
tion. The session type disciplines are related with linear and IO-typed π-calculi with
causality information. The causality analysis in global types is partly inspired by the
graph-based linear types developed in [Yoshida 1996; Yoshida et al. 2004] where order-
ing among multiple linear names (which correspond to session channels) guarantees
deadlock-freedom of typed processes. Several works [Kobayashi 2006; Igarashi and
Kobayashi 2004] study generalised forms of linear typing for guaranteeing different
kinds of deadlock-freedom, incorporating synchronisations and locking.

A main difference of session type disciplines from these and other preceding works
in this field is a notion of rigorously structured conversations and their direct type
abstraction. See [Acciai and Boreale 2008; Dezani-Ciancaglini et al. 2007] for detailed
discussions, including comparisons between the session-based and the behavioural-
based ones [Yoshida 1996; Yoshida et al. 2004; Kobayashi 2006]; in [Acciai and Boreale
2008; Dezani-Ciancaglini et al. 2007; Bettini et al. 2008], structured session primitives
help to give simpler typing systems for progress for binary sessions.

By raising the level of abstraction through the use of structured primitives such as
separate session initiation, branching and recursion, session types can describe com-
plex interaction structures more intelligibly and enable efficient type checking. These
features would have direct applicability for the design of programming languages with
communication [Hu et al. 2008; Carbone et al. 2007; 2012; Honda et al. 2007; Sackman
and Eisenbach 2008; Pucella and Tov 2008; Scribble 2008].

One of the novelties of the present work is the introduction of global description
as types and a use of their projection for type-checking. They offer a modular and
systematic causality analysis rather than directly working on individual syntax and
operational semantics, with adaptations to asynchronous and synchronous communi-
cations. Composability of multiple programs is transparent through projection of a
common global type while complex syntax of types and typing are required in the tra-
ditional approach. To our knowledge, this method has not been investigated so far in
the types of mobile processes.

Advanced Process Calculi and Types. Several process calculi for broadcasting have
been investigated to model and analyse broadcasting networks including (recently)
mobile ad-hoc networks, starting from Prasad’s thesis [Prasad 2001]. Recent works
focus on behavioural equivalences with lts [Merro 2007; Mezzetti and Sangiorgi 2006;
Prasad 2006] and static analysis [Nanz et al. 2007] to investigate a number of different
broadcasting. None of them studied the typing system and provided a strong progress
guarantee as ensured by our session types. Our session types use a static participant
information in the syntax and types. Recent advanced typing systems for location-
based distributed processes [Hennessy 2007] use the similar notion for types T@p,
allowing dynamically instantiate locations into the capabilities using dependent type
techniques. Since our aim is to prove the simplest extension of the original session
types to multiparty, the static participants are enough even for delegations. It is a
valuable further study to investigate a dynamic change of participant numbers when
session initialisation (without explicitly declaring p in the syntax) by using channel
dependent types [Mostrous and Yoshida 2007] or polymorphism.

Other Recent Service-Oriented Calculi. A vast amount of formal work for Service-
Orientation has been done using process calculi and session types. The reader can
refer two recent surveys [Dezani-Ciancaglini and de’ Liguoro 2010; Castagna et al.
2011] for more comparisons. We focus on the most related recent work. Different ap-
proaches to the description of service-oriented multiparty communications are taken
in [Bravetti and Zavattaro 2007; Bruni et al. 2008]. In [Bravetti and Zavattaro 2007],
the global and local views of protocols are described using a synchronous CCS-based

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:43

calculus as a contract language, and testing-preorders to check subcontract compli-
ance; [Bruni et al. 2008] proposes a distributed calculus which provides communica-
tions either inside sessions or inside locations, modelling merging running sessions.
Contracts [Castagna and Padovani 2009] use a process-based specification of proto-
cols, where conformance means Must-preorder (so that we can ensure liveness). The
system in [Castagna and Padovani 2009] can type more processes than session types,
thanks to the flexibility of process syntax for describing protocols. However, typable
processes themselves in [Castagna and Padovani 2009] may not always satisfy the
properties of session types such as progress: it is proved later by checking whether the
type meets a certain form. Hence proving progress with contracts effectively requires
an exploration of all possible paths (interleavings, choices) of a protocol.

The work [Caires and Vieira 2010] proposes a proof system which builds a well-
founded ordering on events to enforce progress for processes of the Conversation Cal-
culus [Vieira et al. 2008] where dynamic join and leave of participants are treated.
These recent works do not treat a prescription of protocols given by the global types,
with the efficient projection and type-checking, which can ensure strong safety proper-
ties. Our recent work [Deniélou and Yoshida 2011] extends a dynamic join and leaving
mechanism based on the multiparty session types introducing a notion of roles which
represent a unit of local behaviours.

6.3. Recent Works based on Multiparty Session Types
This subsection summarises works based on Multiparty Session Types published after
the extended abstract [Honda et al. 2008a] of this article.

Theoretical Studies on Multiparty Session Types. Extensions of the original multi-
party session types [Honda et al. 2008a] has been proposed, often motivated by use
cases resulting from industry applications. Such extensions include: a subtyping for
asynchronous multiparty session types enhancing efficiency [Mostrous et al. 2009], mo-
tivated by financial protocols and multicore algorithms; parametrised global types for
parallel programming and Web service descriptions [Deniélou et al. 2012]; communica-
tion buffered analysis [Deniélou and Yoshida 2010]; extensions to the sumtype and its
encoding [Nielsen et al. 2010] for describing Healthcare workflows; and exception han-
dling for multiparty conversations [Capecchi et al. 2016] for Web services and finan-
cial protocols; a liveness-preserving refinement for multiparty session types [Padovani
2014b].

Multiparty session types can be extended with logical assertions following the design
by contract framework [Bocchi et al. 2010]. This framework is enriched in [Bocchi
et al. 2012] to handle stateful logical assertions, while [Chen and Honda 2012] offers
more fine-grained property analysis for multiparty session types with these stateful
assertions.

In [Deniélou and Yoshida 2011] roles are inhabited by an arbitrary number of partic-
ipants which can dynamically join and leave a session. The paper [Swamy et al. 2011]
shows that the multirole session types [Deniélou and Yoshida 2011] can be naturally
represented in a dependent-typed language.

To enhance expressivity and flexibility of multiparty session types, the work [De-
mangeon and Honda 2012] proposes nested, higher-order multiparty session types and
the work [Castagna et al. 2012] studies a generalisation of choices and parallelism. The
paper [Carbone and Montesi 2013] directly types a global description language [Car-
bone et al. 2012] by multiparty session types without using local types. This direct
approach can type processes which are untypable in the original multiparty session
typing (i.e. the communication type system in this article). The paper [Montesi and

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:44 Honda, Yoshida and Carbone

Yoshida 2013] extends the work in [Carbone and Montesi 2013] to compositional global
description languages.

As another line of the study, we extend the multiparty session types to express tem-
poral properties [Bocchi et al. 2014b]. In this work, the global times are enriched with
time constraints, in a way similar to timed automata.

A type system enforcing a stronger correspondence between nondeterministic
choices expressed in multiparty session types and the behaviour of processes involved
in multiparty sessions has been investigated in [Bocchi et al. 2014a].

Progress and Session Interleaving. Multiparty session types are a convenient
methodology for ensuring progress of systems of communicating processes. However,
progress is only guaranteed within a single session [Honda et al. 2008a; Dezani-
Ciancaglini and de’ Liguoro 2010; Deniélou and Yoshida 2011], but not when multiple
sessions are interleaved. The first papers considering progress for interleaved sessions
required the nesting of sessions in Java [Dezani-Ciancaglini et al. 2006; Coppo et al.
2007]. These systems can guarantee progress for only one single active binary ses-
sion. The work [Coppo et al. 2015b] develops a static interaction type system for global
progress in dynamically interleaved and interfered multiparty sessions. A type infer-
ence algorithm for this system has been studied in [Coppo et al. 2013], although for
finite types only. The work [Padovani 2014a, technical report] presents a type system
for the linear π-calculus that can ensure progress even in presence of session interleav-
ing, exploiting an encoding similar to that described in [Dardha et al. 2012] of sessions
into the linear π-calculus. However, not all multiparty sessions can be encoded into
well-typed linear π-calculus processes. In this respect, the richer structure of multi-
party session types increases the range of systems for which non-trivial properties
such as progress can be guaranteed.

Security. Enforcement of integrity properties in multiparty sessions, using session
types, has been studied in [Bhargavan et al. 2009; Planul et al. 2009]. These papers
propose a compiler which, given a multiparty session description, implements crypto-
graphic protocols that guarantee session execution integrity.

The work [Capecchi et al. 2010] and in its extended version [Capecchi et al. 2014]
propose a session type system for a calculus of multiparty sessions enriched with se-
curity levels, adding access control and secure information flow requirements in the
typing rules, and show that this type system guarantees preservation of data confi-
dentiality during session execution. In [Capecchi et al. 2015] this calculus is equipped
with a monitored semantics, which blocks the execution of processes as soon as they
attempt to leak information, raising an error.

Behavioural Semantics. Typed behavioural theory has been one of the central top-
ics in the study of the π-calculus throughout its history, for example, reasoning about
various encodings into the typed π-calculi [Pierce and Sangiorgi 1996; Yoshida 1996;
Kouzapas et al. 2016]. In the context of typed bisimulations and reduction-closed the-
ories, the work [Kouzapas and Yoshida 2014] shows that unique behavioural theories
can be constructed based on the multiparty session types. The behavioural theory in
[Kouzapas and Yoshida 2014] treats the mutual effects of multiple choreographic ses-
sions which are shared among distributed participants as their common knowledge or
agreements, reflecting the origin of choreographic frameworks [WS-CDL 2003]. These
features related to multiparty session type discipline make the theory distinct from
any type-based bisimulations in the literature and also applicable to a real chore-
ographic usecase from a large-scale distributed system. This bisimulation is called
globally governed, since it uses global multiparty specifications to regulate the conver-
sational behaviour of distributed processes. It is an interesting future work to extend

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:45

this work towards more scalable session bisimulations for the eventful session types
and the higher-order π-calculus studied in [Kouzapas et al. 2015].

Runtime Monitoring and Adaptations. Multiparty session types were originally de-
veloped to be used for static type checking of communicating processes. Via collab-
orations with Ocean Observatories Initiative [OOI 2015], it was discovered that the
framework of multiparty session types can be naturally extended to runtime type
checking (monitoring). A formulation of the runtime monitoring (dynamic or runtime
type checking) is firstly proposed in [Chen et al. 2012]. Later the work [Bocchi et al.
2013] has formally proved its correctness and properties guaranteed by the runtime
monitoring based on multiparty session types.

Works addressing adaptation for multiparty communications include [Dalla Preda
et al. 2014] and [Coppo et al. 2014]. The paper [Dalla Preda et al. 2014] proposes a
choreographic language for distributed applications. Adaptation follows a rule-based
approach, in which all interactions, under all possible changes produced by the adapta-
tion rules, proceed as prescribed by an abstract model. In [Coppo et al. 2014] a calculus
based on global types, monitors and processes is introduced and adaptation is triggered
after the execution of the communications prescribed by a global type, in reaction to
changes of the global state.

Linkages with Other Frameworks. The work [Deniélou and Yoshida 2012] gives a
linkage between communicating automata [Brand and Zafiropulo 1983] and a general
graphical version of multiparty session types, proving a correspondence between the
safety properties of communicating automata and multiparty session types. This work
[Deniélou and Yoshida 2012] studies more detailed semantics for global and local types,
relating with other frameworks such as model checking and logical verification for
contracts [Villard 2011; Basu et al. 2012] (see [Deniélou and Yoshida 2012, §5] for
detailed comparisons).

The paper [Deniélou and Yoshida 2013] studies the sound and complete charac-
terisation of the multiparty session types in communicating automata (called multi-
party compatibility) and applies the result to the synthesis of the multiparty session
types. The inference of global types from a set of local types is also studied in [Lange
and Tuosto 2012]. The techniques developed in [Deniélou and Yoshida 2013; Lange
and Tuosto 2012] are extended to a synthesis of general graphical multiparty session
types in [Lange et al. 2015]. This connection is extended to timed communicating au-
tomata [Krcál and Yi 2006]: the work [Bocchi et al. 2015] proposes general conditions
of progress and non-zero properties of timed communicating automata at the top of
multiparty compatibility.

The work [Fossati et al. 2014] studies the relationship of multiparty session types
with Petri Nets. It proposes a conformance relation between global session nets and
endpoint programs, and proves its safety.

A recent work [Carbone et al. 2015] studies a relationship with Linear Logic and
multiparty session types along the line of [Wadler 2012; Caires and Pfenning 2010].

Implementations based on Multiparty Session Types. We are currently designing and
implementing a modelling and specification language with multiparty session types
[SAVARA 2010; Scribble 2008] in collaboration with some industrial partners [Honda
et al. 2011; Honda et al. 2014]. This protocol language is called Scribble. An article
[Yoshida et al. 2013] also explains the origin and recent development on Scribble.

Java protocol optimisation [Sivaramakrishnan et al. 2010] based on multiparty ses-
sion types and generation of multiparty cryptographic protocols [Bhargavan et al.
2009] are also studied. The multiparty session type theory is applied to Healthcare

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:46 Honda, Yoshida and Carbone

workflows [Henriksen et al. 2013]. Its prototype implementation (the multiparty ses-
sion π-processes with sumtypes) is available from [Apims 2014].

Based on the runtime type checking theory, we are implementing a runtime monitor-
ing [Demangeon et al. 2015; Hu et al. 2013; Neykova et al. 2013] under collaborations
with Ocean Observatories Initiative [OOI 2015]. The work [Demangeon et al. 2015;
Hu et al. 2013] allows interruptions in Scribble and proves the correctness of this ex-
tension. Further we generalise the Python implementation to the Actor framework
[Neykova and Yoshida 2014]. In order to express temporal properties studied in timed
multiparty session types [Bocchi et al. 2014b], the work [Neykova et al. 2014] extends
Scribble with timed constrains and implements the runtime monitoring in Python.

We also apply the multiparty session types to high-performance parallel program-
ming in C [Ng et al. 2012; Ng et al. 2012] and MPI [Ng and Yoshida 2014]. A
parametrised version of Scribble [Ng and Yoshida 2014; Ng et al. 2013] based on the
theory of parametrised multiparty session types [Deniélou et al. 2012] is developed.
This extension, called Pabble, is used for automatically generating MPI parallel pro-
grams from sequential C code in [Ng et al. 2015].

7. CONCLUSION
One of the main open problems of the session types is whether binary sessions can
be extended to n-party sessions and, if they can, what is their additional expressive-
ness and benefits. This paper answers the question affirmatively. The present theory
can guarantee stronger conformance to stipulated conversation structures than binary
sessions when a protocol involves more than two parties. We proposed a new efficient
type checking system and proved type safety and progress, extended to multiparty in-
teractions. The central technical underpinning of the present work is the introduction
of global types, which offer an intuitive syntax for describing multiparty conversation
structures from a global viewpoint; and the use of their projection for efficient type-
checking, proposing a new effective methodology for programming multiparty interac-
tions in distributed environments. Global types also offer a basis of a clean modular
causal analysis systematically applicable to both synchronous and asynchronous com-
munications, ensuring the progress and session fidelity.

There are several significant future topics on the theory and applications of the pro-
posed theory. We are currently starting to use this generalised session type structure
as one of the formal foundations for the following applications: for the next version of a
web service description language (based on an idea from [WS-CDL 2003]) developed in
Scribble from JBoss Red Hat [Scribble 2008], a message scheme for financial protocols,
for a testable architecture, SAVARA from JBoss Red Hat [SAVARA 2010], for a speci-
fication for message middleware from AMQP [AMQP 2015] for a specification for large
distributed systems from Ocean Observatories Initiative [OOI 2015], for software de-
velopment life cycle from Zero Diviation Life Cycle (ZDLC) [zdl 2015]. In particular,
we are currently designing and implementing a modelling and specification language
with multiparty session types [Scribble 2008] for these standards with our industry
collaborators. This consists of three layers: the first layer is a global type which cor-
responds to a signature of class models in UML; the second one is for conversation
models where signatures and variables for multiple conversations are integrated; and
the third layer includes extensions of the existing languages (such as Java [Hu et al.
2008; Hu et al. 2010; Ng et al. 2011]) which implement conversation models. Other
future topics include tools assistance for the design and elaboration of global types;
incorporation of typed exceptions to sessions; and integration of the type discipline
with diverse specification concerns including security and monitoring for distributed
messages by the assertional methods [Bocchi et al. 2010].

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:47

ACKNOWLEDGMENTS

We would like to thank Andi Bejleri for an early collaboration on this work.

REFERENCES
2015. Zero Deviation Lifecycle. http://www.zdlc.co. (2015).
Lucia Acciai and Michele Boreale. 2008. A Type System for Client Progress in a Service-Oriented Calculus.

In Concurrency, Graphs and Models (LNCS), Vol. 5065. Springer, Pisa, Italy, 642–658.
AMQP 2015. Advanced Message Queuing Protocol. http://www.iona.com/opensource/amqp/. (2015).
Apims 2014. Apims. (2014). http://thelas.dk/index.php?title=Apims.
Samik Basu, Tevfik Bultan, and Meriem Ouederni. 2012. Deciding Choreography Realizability. In Sympo-

sium on Principles of Programming Languages. ACM, Philadelphia, USA, 191–202.
Andi Bejleri and Nobuko Yoshida. 2009. Synchronous Multiparty Session Types. In In Proceedings of Pro-

gramming Languages Approaches to Concurrency and Communication-Centric Software (PLACES’08)
(ENTCS), Vol. 241. Elsevier, Oslo, Norway, 3–33.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko
Yoshida. 2008. Global Progress in Dynamically Interleaved Multiparty Sessions. In International Con-
ference on Concurrency Theory (LNCS), Vol. 5201. Springer, Toronto, Canada, 418–433.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James Leifer. 2009.
Cryptographic Protocol Synthesis and Verification for Multiparty Sessions. In Computer Security Foun-
dations Symposium. IEEE, New York, USA, 124–140.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida. 2013. Monitoring
Networks through Multiparty Session Types. In IFIP Joint International Conference on Formal Tech-
niques for Distributed Systems (LNCS), Vol. 7892. Springer, Florence, Italy, 50–65.

Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. 2012. A Multiparty Multi-Session Logic. In 7th
International Symposium on Trustworthy Global Computing (LNCS), Vol. 8191. Springer, Newcastle
upon Tyne, UK, 111–97.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A theory of design-by-contract for
distributed multiparty interactions. In International Conference on Concurrency Theory (LNCS), Vol.
6269. Springer, Paris, France, 162–176.

Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting Deadlines Together. In International Con-
ference on Concurrency Theory (LIPIcs), Vol. 42. Schloss Dagstuhl, Madrid, Spain, 283–296.

Laura Bocchi, Hernán C. Melgratti, and Emilio Tuosto. 2014a. Resolving Non-determinism in Choreogra-
phies. In European Symposium on Programming (LNCS), Vol. 8410. Springer, Grenoble, France, 493–
512.

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014b. Timed Multiparty Session Types. In International
Conference on Concurrency Theory (LNCS), Vol. 8704. Springer, Rome, Italy, 419–434.

Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. 2005. Correspondence Assertions for Process Syn-
chronization in Concurrent Communications. Journal of Functional Programming 15, 2 (2005), 219–
248.

Eduardo Bonelli and Adriana B. Compagnoni. 2007. Multipoint Session Types for a Distributed Calculus. In
Trustworthy Global Computing (LNCS), Vol. 4912. Springer, Sophia-Antipolis, France, 240–256.

BPMNC 2012. Business Process Model and Notation 2.0 Choreography. (2012). http://en.bpmn-community.
org/tutorials/34/.

Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. Journal of ACM 30
(April 1983), 323–342. Issue 2.

Mario Bravetti and Gianluigi Zavattaro. 2007. Towards a Unifying Theory for Choreography Conformance
and Contract Compliance. In Software Composition (LNCS), Vol. 4829. Springer, Braga, Portugal, 34–
50.

Roberto Bruni, Ivan Lanese, Hernan Melgratti, and Emilio Tuosto. 2008. Multiparty Sessions in SOC. In
Coordination Models and Languages (LNCS), Vol. 5052. Springer, Oslo, Norway, 67–82.

Luı́s Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In International
Conference on Concurrency Theory (LNCS), Vol. 6269. Springer, Paris, France, 222–236.

Luı́s Caires and Hugo Torres Vieira. 2010. Conversation types. Theoretical Computer Science 411, 51-52
(2010), 4399–4440.

Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. 2014. Typing Access Control and
Secure Information Flow in Sessions. Information and Computation 238 (2014), 68–105.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:48 Honda, Yoshida and Carbone

Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. 2015. Information Flow Safety in
Multiparty Sessions. (2015). To appear.

Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. 2010. Session Types
for Access and Information Flow Control. In International Conference on Concurrency Theory (LNCS),
Vol. 6269. Springer, Paris, France, 237–252.

Sara Capecchi, Elena Giachino, and Nobuko Yoshida. 2016. Global Escape in Multiparty Sessions. Mathe-
matical Structures in Computer Science 26, 2 (2016), 156–205.

Marco Carbone and Joshua Guttman. 2009a. Choreographies with Secure Boxes and Compromised Princi-
pals. In Interaction and Concurrency Experience - Structured Interactions (EPTCS), Vol. 12. Bologna,
Italy, 1–16.

Marco Carbone and Joshua Guttman. 2009b. Execution Models for Choreographies and Cryptoprotocols. In
Workshop on Programming Language Approaches to Concurrency and Communication-cEntric Software
(EPTCS), Vol. 17. York, UK, 31–42.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2007. Structured Communication-Centred Program-
ming for Web Services. In European Symposium on Programming (LNCS), Vol. 4421. Springer, Braga,
Portugal, 2–17.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2008. Structured Interactional Exceptions in Ses-
sion Types. In International Conference on Concurrency Theory (LNCS), Vol. 5201. Springer, Toronto,
Canada, 402–417.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2012. Structured Communication-Centered Program-
ming for Web Services. ACM Transactions on Programming Languages and Systems 34, 2 (2012), 8.

Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown, and Steve Ross-Talbot. 2006.
A Theoretical Basis of Communication-Centred Concurrent Programming. http://www.w3.org/2002/ws/
chor/. (2006).

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: Multiparty Asynchronous Global
Programming. In Symposium on Principles of Programming Languages. ACM, Rome, Italy, 263–274.

Marco Carbone, Fabrizio Montesi, Carsten Schrmann, and Nobuko Yoshida. 2015. Multiparty Session Types
as Coherence Proofs. In International Conference on Concurrency Theory (LIPIcs), Vol. 42. Schloss
Dagstuhl, Madrid, Spain, 412–426.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2011. On Global Types and Multi-
party Sessions. In International Conference on Formal Methods for Open Object-based Distributed Sys-
tems (LNCS), Vol. 6722. Springer, Reykjavik, Iceland, 1–28.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2012. On Global Types and Multi-
Party Session. Logical Methods in Computer Science 8, 1 (2012), 24.

Giuseppe Castagna and Luca Padovani. 2009. Contracts for Mobile Processes. In International Conference
on Concurrency Theory (LNCS). Springer, Bologna, Italy, 211–228.

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida. 2012. Asyn-
chronous Distributed Monitoring for Multiparty Session Enforcement. In Trustworthy Global Comput-
ing (LNCS), Vol. 7173. Springer, Newcastle upon Tyne, UK, 25–45.

Tzu-Chun Chen and Kohei Honda. 2012. Specifying Stateful Asynchronous Properties for Distributed Pro-
grams. In International Conference on Concurrency Theory (LNCS), Vol. 7454. Springer, Newcastle upon
Tyne, UK, 209–224.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference of
Global Progress Properties for Dynamically Interleaved Multiparty Sessions. In Coordination Models
and Languages (LNCS), Vol. 7890. Springer, Florence, Italy, 45–59.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015a. A Gentle In-
troduction to Multiparty Asynchronous Session Types. In SFM-15:MP (LNCS), Vol. 9104. Springer,
Bertinoro, Italy, 146–178.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 2014. Self-Adaptive Multiparty Sessions.
Service Oriented Computing and Applications 9, 3-4 (2014), 249–268.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2007. Asynchronous Session Types and
Progress for Object-Oriented Languages. In IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (LNCS), Vol. 4468. Springer, Paphos, Cyprus, 1–31.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2015b. Global Progress
for Dynamically Interleaved Multiparty Sessions. Mathematical Structures in Computer Science 26, 2
(2015), 238–302.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:49

Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio Gabbrielli. 2014. AIOCJ:
A Choreographic Framework for Safe Adaptive Distributed Applications. In International Conference
on Software Language Engineering (LNCS), Vol. 8706. Springer, Västerås, Sweden, 161–170.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session Types Revisited. In International
Symposium on Principles and Practice of Declarative Programming. ACM Press, Leuven, Belgium, 139–
150.

Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In International Conference
on Concurrency Theory (LNCS), Vol. 7454. Springer, Newcastle upon Tyne, UK, 272–286.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2015. Practi-
cal Interruptible Conversations: Distributed Dynamic Verification with Multiparty Session Types and
Python. Formal Methods in System Design 46, 3 (2015), 197–225.

Pierre-Malo Deniélou and Nobuko Yoshida. 2010. Buffered Communication Analysis in Distributed Multi-
party Sessions. In International Conference on Concurrency Theory (LNCS), Vol. 6269. Springer, Paris,
France, 343–357.

Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic Multirole Session Types. In Symposium on Prin-
ciples of Programming Languages. ACM, Austin, USA, 435–446.

Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session Types Meet Communicating Au-
tomata. In European Symposium on Programming (LNCS), Helmut Seidl (Ed.), Vol. 7211. Springer,
Tallin, Estonia, 194–213.

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata:
Characterisation and Synthesis of Global Session Types. In International Colloquium on Automata,
Languages and Programming (LNCS), Vol. 7966. Springer, Riga, Latvia, 174–186.

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Parameterised Multiparty
Session Types. Logical Methods in Computer Science 8, 4 (2012).

Mariangiola Dezani-Ciancaglini and Ugo de’ Liguoro. 2010. Sessions and Session Types: an Overview. In
International Workshop on Web Services and Formal Methods (LNCS), Vol. 6194. Springer, Bologna,
Italy, 1–28.

Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. 2007. On Progress for Structured
Communications. In Trustworthy Global Computing (LNCS), Vol. 4912. Springer, Sophia-Antipolis,
France, 257–275.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko Yoshida. 2009. Ob-
jects and session types. Information and Computation 207, 5 (2009), 595–641.

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou. 2006. Ses-
sion Types for Object-Oriented Languages. In European Conference on Object-Oriented Programming
(LNCS), Vol. 4067. Springer, Nantes, France, 328–352.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R. Larus, , and
Steven Levi. 2006. Language Support for Fast and Reliable Message-based Communication in Singu-
larity OS. In EuroSys2006 (ACM SIGOPS). ACM Press, Leuven, Belgium, 177–190.

Luca Fossati, Raymond Hu, and Nobuko Yoshida. 2014. Multiparty Session Nets. In Trustworthy Global
Computing (LNCS), Vol. 8902. Springer, Rome, Italy, 112–127.

Pablo Garralda, Adriana Compagnoni, and Mariangiola Dezani-Ciancaglini. 2006. BASS: Boxed Ambients
with Safe Sessions. In International Symposium on Principles and Practice of Declarative Programming.
ACM Press, Venice, Italy, 61–72.

Simon Gay. 2008. Bounded Polymorphism in Session Types. MSCS 18 (2008), 895–930.
Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42,

2/3 (2005), 191–225.
Simon Gay and Vasco T. Vasconcelos. 2009. Linear Type Theory for Asynchronous Session Types. Journal of

Functional Programming (2009).
Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira. 2010. Modular

Session Types for Distributed Object-Oriented Programming. In Symposium on Principles of Program-
ming Languages. ACM, Madrid, Spain, 299–312.

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987), 1–102.
Matthew Hennessy. 2007. A Distributed Pi-Calculus. Cambridge University Press.
Anders Henriksen, Lasse Nielsen, Thomas Hildebrandt, Nobuko Yoshida, , and Fritz Henglein. 2013. Trust-

worthy Pervasive Healthcare Services via Multi-party Session Type. In Foundations of Health Informa-
tion Engineering and Systems (LNCS), Vol. 7789. Paris, France, 124–141.

Kohei Honda. 1993. Types for Dyadic Interaction. In International Conference on Concurrency Theory
(LNCS), Eike Best (Ed.), Vol. 715. Springer, Hildesheim, Germany, 509–523.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:50 Honda, Yoshida and Carbone

Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain Demangeon, Pierre-Malo
Deniélou, and Nobuko Yoshida. 2014. Structuring Communication with Session Types. In Concurrent
Objects and Beyond (LNCS), Vol. 8665. Springer, 105–127.

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida. 2011. Scribbling
Interactions with a Formal Foundation. In International Conference on Distributed Computing and In-
ternet Technology (LNCS), Vol. 6536. Springer, Bhubaneswar, India, 55–75.

Kohei Honda and Mario Tokoro. 1991. An Object Calculus for Asynchronous Communication. In European
Conference on Object-Oriented Programming, Vol. 512. Geneva, Switzerland, 133–147.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Disciplines for
Structured Communication-based Programming. In European Symposium on Programming (LNCS),
Vol. 1381. Springer-Verlag, Lisbon, Portugal, 22–138.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2007. Web Services, Mobile Processes and Types. The
Bulletin of the European Association for Theoretical Computer Science February, 91 (2007), 165–185.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008a. Multiparty Asynchronous Session Types. In
Symposium on Principles of Programming Languages. ACM, San Francisco, USA, 273–284.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008b. Multiparty Asynchronous Session Types. (2008).
Web page. http://www.doc.ic.ac.uk/∼yoshida/multiparty.

Raymond Hu, Dimitrious Kouzapas, Oliver Pernet, Nobuko Yoshida, and Kohei Honda. 2010. Type-Safe
Eventful Sessions in Java. In European Conference on Object-Oriented Programming (LNCS), Vol. 6183.
Springer, Maribor, Slovenia, 329–353.

Raymond Hu, Rumyana Neykova, Nobuko Yoshida, and Romain Demangeon. 2013. Practical Interruptible
Conversations: Distributed Dynamic Verification with Session Types and Python. In Runtime Verifica-
tion (LNCS), Vol. 8174. Springer, Rennes, France, 148–130.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-Based Distributed Programming in Java. In
European Conference on Object-Oriented Programming, Vol. 5142. Springer, Paphos, Cyprus, 516–541.

Atsushi Igarashi and Naoki Kobayashi. 2004. A Generic Type System for the Pi-Calculus. Theoretical Com-
puter Science 311, 1-3 (2004), 121–163.

International Telecommunication Union. 1996. Recommendation Z.120: Message Sequence Chart. (1996).
Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In International Conference on

Concurrency Theory (LNCS), Vol. 4137. Bonn, Germany, 233–247.
Dimitrios Kouzapas, Jorge A. Perez, and Nobuko Yoshida. 2015. Characteristic Bisimulations for Higher-

Order Session Processes. In International Conference on Concurrency Theory (LIPIcs), Vol. 42. Schloss
Dagstuhl, Madrid, Spain, 398–411.

Dimitrios Kouzapas and Nobuko Yoshida. 2014. Globally Governed Session Semantics. Logical Methods in
Computer Science 10, 4 (2014).

Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. 2016. On Asynchronous Eventful
Session Semantics. Mathematical Structures in Computer Science 26, 2 (2016), 303–364.

Pavel Krcál and Wang Yi. 2006. Communicating Timed Automata: The More Synchronous, the More Difficult
to Verify. In Computer Aided Verification (LNCS). Springer, Seattle, USA, 249–262.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21,
7 (July 1978), 558–564.

Julien Lange and Emilio Tuosto. 2012. Synthesising Choreographies from Local Session Types. In Inter-
national Conference on Concurrency Theory (LNCS), Vol. 7454. Springer, Newcastle upon Tyne, UK,
225–239.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From Communicating Machines to Graphical
Choreographies. In Symposium on Principles of Programming Languages. ACM Press, Mumbai, India,
221–232.

Massimo Merro. 2007. An Observational Theory for Mobile Ad Hoc Networks. In Electronic Notes in Theo-
retical Computer Science, Vol. 172. Elsevier, 275–293.

Nicola Mezzetti and Davide Sangiorgi. 2006. Towards a Calculus For Wireless Systems. In Electronic Notes
in Theoretical Computer Science, Vol. 158. Elsevier, 331–353.

Leonardo Gaetano Mezzina. 2008. How to Infer Finite Session Types in a Calculus of Services and Sessions.
In Coordination Models and Languages (LNCS), Vol. 5052. Springer, Oslo, Norway, 216–231.

Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional Choreographies. In International Conference on
Concurrency Theory (LNCS), Vol. 8052. Springer, Buenos Aires, Argentina, 439–425.

Dimitris Mostrous and Nobuko Yoshida. 2007. Two Session Typing Systems for Higher-Order Mobile Pro-
cesses. In Typed Lambda Calculi and Applications (LNCS), Vol. 4583. Springer, Paris, France, 321–335.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:51

Dimitris Mostrous and Nobuko Yoshida. 2009. Session-Based Communication Optimisation for Higher-
Order Mobile Processes. In Typed Lambda Calculi and Applications (LNCS), Pierre-Louis Curien (Ed.),
Vol. 5608. Springer, Brasilia, Brazil, 203–218.

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commu-
tative Asynchronous Sessions. In European Symposium on Programming (LNCS), Vol. 5502. Springer,
York, UK, 316–332.

Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson. 2007. Topology-Dependent Abstractions of
Broadcast Networks. In International Conference on Concurrency Theory. Lisbon, Portugal, 226–240.

Matthias Neubauer and Peter Thiemann. 2004a. An Implementation of Session Types. In Practical Aspects
of Declarative Languages (LNCS), Vol. 3057. Springer, Dallas, USA, 56–70.

Matthias Neubauer and Peter Thiemann. 2004b. Session Types for Asynchronous Communication. (2004).
Universität Freiburg.

Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2014. Timed Runtime Monitoring for Multiparty
Conversations. In Workshop on Behavioural Types (EPTCS), Vol. 162. Rome, Italy, 19–26.

Rumyana Neykova and Nobuko Yoshida. 2014. Multiparty Session Actors. In Coordination Models and
Languages (LNCS), Vol. 8459. Springer, Berlin, Germany, 131–146.

Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. 2013. SPY: Local Verification of Global Protocols.
In Runtime Verification (LNCS), Vol. 8174. Springer, Rennes, France, 363–358.

Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. 2015. Protocols by Default: Safe MPI Code Genera-
tion based on Session Types. In Compiler Construction (LNCS). Springer, London, UK, 212–232.

Nicholas Ng and Nobuko Yoshida. 2014. Pabble: Parameterised Scribble. Service Oriented Computing and
Applications 9, 3-4 (2014), 1–16.

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. 2012. Multiparty Session C: Safe Parallel Programming
with Message Optimisation. In TOOLS (LNCS), Vol. 7304. Springer, Prague, Czech Republic, 202–218.

Nicholas Ng, Nobuko Yoshida, and Wayne Luk. 2013. Scalable Session Programming for Heterogeneous
High-Performance Systems. In International Conference on Software Engineering and Formal Methods
(LNCS), Vol. 8368. Springer, Madrid, Spain, 82–98.

Nicholas Ng, Nobuko Yoshida, Xin Yu Niu, Kuen Hung Tsoi, and Wayne Luk. 2012. Session Types: Towards
Safe and Fast Reconfigurable Programming. SIGARCH CAN 40 (2012), 22–27. Issue 5.

Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos Kryftis. 2011. Safe Parallel Pro-
gramming with Session Java. In Coordination Models and Languages (LNCS), Vol. 6721. Springer,
Reykjavik, Iceland, 110–126.

Lasse Nielsen, Nobuko Yoshida, and Kohei Honda. 2010. Multiparty Symmetric Sum Types. In Expressive-
ness in Concurrency (EPTCS), Vol. 41. Paris, France, 121–135.

OOI 2015. Ocean Observatories Initiative. http://www.oceanleadership.org/programs-and-partnerships/
ocean-observing/ooi/. (2015).

Luca Padovani. 2014a. Deadlock and Lock Freedom in the Linear π-Calculus. In Computer Science Logic
and Logic in Computer Science. ACM Press, Vienna, Austria, 72:1–72:10.

Luca Padovani. 2014b. Fair Subtyping for Multi-Party Session Types. Mathematical Structures in Computer
Science (2014), 1–41.

B. Pierce and D. Sangiorgi. 1996. Typing and Subtyping for Mobile Processes. Mathematical Structures in
Computer Science 6, 5 (1996), 409–454.

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
Jérémy Planul, Ricardo Corin, and Cédric Fournet. 2009. Secure Enforcement for Global Process Specifica-

tions. In International Conference on Concurrency Theory (LNCS), Vol. 5710. Springer, Bologna, Italy,
511–526.

K.V.S. Prasad. 2001. Broadcast Calculus Interpreted in CCS upto Bisimulation. In Electronic Notes in The-
oretical Computer Science, Vol. 52. Elsevier, 83–100. Issue 1.

K.V.S. Prasad. 2006. A Prospectus for Mobile Broadcasting Systems. In Electronic Notes in Theoretical Com-
puter Science, Vol. 162. Elsevier, 295–300.

Riccardo Pucella and Jesse Tov. 2008. Haskell Session Types with (Almost) No Class. In Haskell Symposium.
ACM SIGPLAN, Victoria, Canada.

Matthew Sackman and Susan Eisenbach. 2008. Session Types in Haskell. (2008). draft.
SAVARA 2010. SAVARA JBoss Project. http://www.jboss.org/savara. (2010).
Bruce Schneier. 1993. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley &

Sons, Inc.
Scribble. 2008. Scribble Project. (2008). www.scribble.org.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:52 Honda, Yoshida and Carbone

K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick Eugster. 2010. Efficient Session Type
Guided Distributed Interaction. In Coordination Models and Languages (LNCS), Vol. 6116. Springer,
Amsterdam, Holland, 152–167.

Stephen Sparkes. 2006. Conversation with Steve Ross-Talbot. ACM Queue 4, 2 (March 2006).
Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang.

2011. Secure distributed programming with value-dependent types. In International Conference on
Functional programming. IEEE, Tokyo, Japan, 266–278.

Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-based Language and its Typing
System. In Parallel Architectures and Languages Europe (LNCS), Vol. 817. Springer-Verlag, Athens,
Greece, 398–413.

F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. 1999. Strand Spaces: Proving Security
Protocols Correct. Journal of Computer Security 7, 2/3 (1999), 191–230.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. 2006. Typechecking a Multithreaded Functional
Language with Session Types. Theoretical Computer Science 368, 1–2 (2006), 64–87.

Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. 2008. The Conversation Calculus: A Model of Service-
Oriented Computation. In European Symposium on Programming (LNCS), Vol. 4960. Springer, Bu-
dapest, Hungary, 269–283.

Jules Villard. 2011. Heaps and Hops. Ph.D. Dissertation. ENS Cachan.
Phil Wadler. 2012. Proposition as Sessions. In International Conference on Functional Programming. IEEE,

Copenhagen, Denmark, 273–286.
WS-CDL. 2003. Web Services Choreography Working Group. http://www.w3.org/2002/ws/chor/. (2003).
Nobuko Yoshida. 1996. Graph Types for Monadic Mobile Processes.. In Foundations of Software Technology

and Theoretical Computer Science (LNCS), Vol. 1180. Springer, Hyderabad, India, 371–386.
Nobuko Yoshida, Martin Berger, and Kohei Honda. 2004. Strong Normalisation in the π-Calculus. Informa-

tion and Computation 191(2004) (2004), 145–202.
Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The Scribble Protocol Language.

In Trustworthy Global Computing (LNCS), Vol. 8358. Springer, Buenos Aires, Argentina, 22–41.
Nobuko Yoshida and Vasco Thudichum Vasconcelos. 2007. Language Primitives and Type Discipline for

Structured Communication-Based Programming Revisited: Two Systems for Higher-Order Session
Communication. Electronic Notes Theoretical Computer Science 171, 4 (2007), 73–93.

Nobuko Yoshida, Vasco Thudichum Vasconcelos, Hervé Paulino, and Kohei Honda. 2008. Session-Based
Compilation Framework for Multicore Programming. In International Symposium on Formal Methods
for Components and Objects (LNCS), Vol. 5751. Springer, Sophia Antipolis, France, 226–246.

Received January 2009; revised February 2013 and August 2015; accepted September 2015

A. PROOF OF PROPOSITION 3.13
Below the proofs of both (1) and (2) induce concrete algorithms. Global types are gen-
erally treated as regular trees (except e.g. when we consider substitution). We first
introduce the following notation.

NOTATION A.1.

(i) In the following we write G(0), G(1), ..., G(n), ... for the result of n-times unfolding
of each recursion in G. For example if G is µt.G′ and this is the only recursion in G,
then G(0) is given as G′[end/t], G(1) is given as G′[G(0)/t] and, for each n, G(n + 1)
is given as G′[G(n)/t]. If G contains more than one recursion we perform the un-
folding of each of its recursions. For convenience we setG(−1) to be the empty graph.

(ii) Observing each G(n+ 1) is the result of adding zero or more unfoldings to G(n), so
that G(n+ 1) contains the exact copy of G(n), we write G(n+ 1)\G(n) to denote the
newly added (unfolded) part of G(n+ 1).

(iii) Given a node n inG(m+1)\G(m), we can jump back from n once to reach its “original”
in G(m)\G(m − 1) (which is G(0) if m = 0). This exact copy of n which was created
“one unfolding ago”, is called the one-time folding of n, or simply the folding of n. In

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:53

the same way we define the i-th folding of n which is in G(m− i+ 1)\G(m− i) (which
is G(0) if i = m+ 1). Note there are m+ 1 such “foldings” of n in G(m+ 1)\G(m).

Proof of (1). Below we say there are input/output dependencies from n1 to n2 when
there is an input dependency and an output dependency from n1 to n2.

Claim. (A) Suppose n1,2 and their respective i-th foldings n′1,2 are in G(m). Then there
are both input/output dependencies from n1 to n2 iff there are both input/output depen-
dencies from n′1 to n′2. (B) Let n′ be the folding of n. Then there is always both input
and output dependencies from n′ to n.

PROOF OF CLAIM. (A) is immediate since the graph structure of the foldings is
identical to that of the originals (i.e. we can simply “fold” the original two onto their
foldings and all prefix relations coincide). (B) is obvious since there always exist both
II and OO dependencies by the definition of linearity.

We now prove the statement. Fix a global type G and assume G(1) is linear. We show
by induction on n (n ≥ 1) that each G(n) is linear. Henceforth we ignore nodes in
carried types.

Base step. This is linearity of G(1) which is the assumption itself.

Induction Step. Suppose G(n) is linear. Then take two nodes n1 and n2 in G(n + 1)
(but not in carried types) which happen to share a common channel. We show there
are input/output dependencies from n1 to n2, or the same holds in the reverse direction.
We say such n1,2 are conflict-free for brevity. We do case analysis depending on the
position of these nodes in G(m+ 1).
(i) If n1,2 are in G(n) then they already have input/output dependencies by induction
hypothesis.
(ii) If n1 is in G(n)\G(n − 1) and n2 is in G(n + 1)\G(n) then take their two foldings
say n′1 and n′2 respectively. By induction hypothesis they are conflict-free by a pair of
dependency chains. By Claim A we are done.
(iii) If n1 is in G(n− i) (i ≥ 1) and n2 is in G(n+ 1)\G(n) then take the folding of n2 say
n′2 which is in G(n). By induction we know n1 and n′2 are conflict-free.

By Claim B, there are both input and output dependencies from n2 to n′2. Thus we
have both input and output dependencies from n1 to n′2 and n′2 to n2 (hence n1 to n2).
Now we connect these chains and we are done. 2

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:54 Honda, Yoshida and Carbone

B. FULL TYPING RULES FOR RUNTIME PROCESSES
This appendix first presents the full typing rules except those for expressions.

Γ ` a : 〈G〉 Γ `∅ P . ∆, s̃ : (G�1)@1 {1, . . . , n} = pid(G) |s̃| = sid(G)

Γ `∅ a[2..n] (s̃).P . ∆
[MCAST]

Γ ` a : 〈G〉 Γ `∅ P . ∆, s̃ : (G�p)@p p ∈ pid(G) |s̃| = sid(G)

Γ `∅ a[p] (s̃).P . ∆
[MACC]

Γ ` ej :Sj Γ `∅ P . ∆, s̃ :T@p

Γ `∅ s[k]!〈ẽ〉;P . ∆, s̃ : k! 〈S̃〉;T@p

Γ, x̃ : S̃ ` P∅ . ∆, s̃ :T@p

Γ `∅ s[k]?(x̃);P . ∆, s̃ : k? 〈S̃〉;T@p
[SEND], [RCV]

Γ `∅ P . ∆, s̃ :T@p

Γ `∅ s[k]!〈〈t̃ 〉〉;P . ∆, s̃ : k! 〈T ′@p′〉;T@p, t̃ :T ′@p′
Γ `∅ P . ∆, s̃ :T@p, t̃ :T ′@p′

Γ `∅ s[k]?((t̃));P . ∆, s̃ : k? 〈T ′@p′〉;T@p
[DELEG],[SREC]

Γ `∅ P . ∆, s̃ :Tj@p j ∈ I

Γ `∅ s[k] � l;P . ∆, s̃ : k ⊕ {li : Ti}i∈I@p

Γ `∅ Pi . ∆, s̃ :Ti@p ∀i ∈ I

Γ `∅ s[k] � {li : Pi}i∈I . ∆, s̃ : k &{li : Ti}i∈I@p
[SEL],[BRANCH]

Γ `∅ e . bool Γ ` P . ∆ Γ ` Q . ∆

Γ `∅ if e then P else Q . ∆
[IF]

Γ ` P .t̃1 ∆ Γ `t̃2 Q . ∆′ t̃1 ∩ t̃2 = ∅ ∆ � ∆′

Γ `t̃1·t̃2 P | Q .t̃1·t̃2 ∆ ◦∆′
[CONC]

∆ end only ∆′ [] only
Γ ` 0 .∅ ∆,∆′

Γ ` P .t̃ ∆ ∆ ≤ ∆′

Γ ` P .t̃ ∆′
[INACT],[SUBS]

Γ, a : 〈G〉 `t̃ P . ∆

Γ `t̃ (ν a)P . ∆

Γ ` P .t̃ ∆, s̃ : {Tp@p}p∈I s̃ ∈ t̃ {Tp@p}p∈I coherent
Γ `t̃\s̃ (ν s̃)P . ∆

[NRES],[CRES]

Γ ` ẽ : S̃ ∆ end only
Γ, X : S̃T̃ `∅ X〈ẽs̃1..s̃n〉 . ∆, s̃1 :T1@p1, .., s̃n :Tn@pn

[VAR]

Γ, X : S̃T̃ , x̃ : S̃ `∅ P . s̃1 :T1@p1..s̃n :Tn@pn Γ, X : S̃T̃ `t̃ Q . ∆

Γ `t̃ def X(x̃s̃1..s̃n) = P in Q . ∆
[DEF]

The typing rules for queues are from Figure 8.

B.1. Proof of Proposition 5.5
Suppose P is a program phrase. By definition, P is without queues and without bound
channels. We show two implications.
(1) Γ ` P .∆ implies Γ ` P .∅ ∆: Suppose P is typable in the original typing rules (for
program phrases). Since the typing rules for runtime processes subsume the original
rules, they can type P with the same derivation.
(2) Γ ` P .∅ ∆ without [SUBS] implies Γ ` P . ∆: Suppose P is typable in the refined
system as Γ ` P .∅ ∆ without type contexts in ∆ and without using [SUBS]. By the

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:55

lack of [SUBS] in the derivation, the derivation precisely follows the structure of P . We
inspect the potential differences between the original rules and the refined rules.

— (Use of Type Contexts in Derivation) Suppose the derivation uses a type context.
The only place it can be taken off is [CONC]. Since there is no queue in P this means
the type context has been empty as the result of weakening by [INACT]. Hence its
use can be taken off from the derivations.

— (Use of Refined Constraints on Queue Channels in Judgements) Since the only rule
which decreases the number of mentioned queue channels in the judgement (as in
.s̃) is [CRES] we know each judgement in the derivation has the ∅ as its mentioned
queue channels. Hence the constraint on queue channels in [CONC] and other rules
are never used.

Thus this derivation for P in the refined rules offers the derivation in the original rules
as is, hence done. 2

B.2. Proof of Proposition 5.6
Assume Γ ` P .s[1..m] ∆. We call s1...sm in Γ ` P .s[1..m] ∆, the judgement’s mentioned
queue channels or simply queue channels.

We first show there is one-to-one correspondence between the free queues in P and
the mentioned queue channels by inspecting each rule.

Case [INACT]: Zero queue channel to zero queue.

Case [QNIL]: It connects precisely one channel to one queue.

Case [QVAL], [QSESS], [QSEL]: These “enqueue” rules leave the number of channels
one assigned to the unique queue channel.

Case [MCAST], [MACC], [SEND], [RCV], [DELEG], [SREC], [SEL] and [BRANCH], [IF],
[VAR], [DEF]: Each of these process construction rules leaves the queue channels
unchanged (empty).

Case [CONC]: in the premise, assume Γ ` P .t̃1 ∆ and Γ `t̃2 Q . ∆′ the free queues
in P have channels t̃1 while the free queues in Q have channels t̃2. Since we assume
t̃1 ∩ t̃2 = ∅ and P |Q have exactly the sum of their respective queues.

Case [NRES]: The rule leaves both the queues and the queue channels unchanged.

Case [CRES]: The rule precisely takes off those channels whose channels become
bound.

Case [SUBS]: No change in the process and no change in the queue. This exhausts all
cases.

By the case analysis above, we conclude that free queues and mentioned queue chan-
nels precisely correspond to each other. Further the case analysis also shows that each
prefix rule assumes the process has no free queue before prefixing (in the premise).
Further a program phrase cannot have channel restriction so that all of its existing
queues should be recorded in queue channels. We can now conclude that no queue can
be under a prefix. 2

B.3. Proof of Lemma 5.14
By the definition of ◦ on ∆, it suffices to show the commutativity and associativity at
the level of types and type contexts, assuming that combined type contexts never share
a target channel (in the sense defined just before Lemma 5.14, page 33).

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:56 Honda, Yoshida and Carbone

We first show the commutativity. We write H1 � H2 (which we read: “H1 and H2 are
coherent”) when H1 ◦H2 is defined. Note H1 ◦H2 means either:

— both of H1,2 are type contexts and they do not share a target channel; or
— one of H1,2 is a type context and the other is a type.

Below the designation “context-context” below means the case when we compose two
contexts, similarly for others.

Case Context-Context: We consider the composition of T1,2 which are disjoint in targets
(by our assumption). Then we always have:

T1 � T2 (22)
T1 ◦ T2 = T1[T2] (23)

By the symmetry of � (or equivalently by the assumption on target channels) we have:

T2 � T1 (24)
T2 ◦ T1 = T2[T1] (25)

Because of the isomorphism by the permutation equivalence for target-disjoint type
contexts (cf. Section 5.1, paragraph Type contexts: recall ≈ is extended to type
contexts unlike ≤sub) we have T1[T2] ≈ T2[T1] hence we are done.

Case Type-Context: Immediate since, by definition, T � T and T � T always and
T ◦ T = T ◦ T = T [T].

Case Context-Type: Symmetric to the case above.

Case Type-Type: Never defined hence vacuous.

This exhausts all cases.
Next we show associativity.

Case Context-Context-Context: We consider the composition of T1,2,3, showing (T1◦T2)◦
T3 and T1 ◦ (T2 ◦ T3) coincide in definedness and their resulting values. Assume T1,2 are
mutually disjoint in target channels, similarly for T1[T2] and T3. Then automatically:

T1 � T2 (26)
T1[T2] � T3 (27)

T1[T2] ◦ T3 = T1[T2][T3] (28)

By (27) we have:

T2 � T3 (29)
T1 � T2[T3] (30)

T1 ◦ T2[T3] = T1[T2[T3]] (31)

Since T1[T2][T3] = T1[T2[T3]] we are done. The other direction is symmetric.

Case Context-Context-Type: We consider the composition of T1,2 and T , showing that
the definedness and the resulting value of (T1 ◦ T2) ◦ T and T1 ◦ (T2 ◦ T) coincide. This
case is not symmetric hence we show both directions. First if T1,2 are disjoint then
automatically:

T1 � T2 (32)
T1[T2] � T (33)

T1[T2] ◦ T = T1[T2][T] (34)

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:57

We also always have:

T2 � T (35)
T1 � T2[T] (36)

T1 ◦ T2[T] = T1[T2[T]] (37)

Since T1[T2][T] = T1[T2[T]] we are done. For the other direction, we first compose T2 and
T then compose T1. As noted we always have

T2 � T (38)
T1 � T2[T] (39)

T1 ◦ T2[T] = T1[T2[T]] (40)

By our assumption T1 and T2 do not share a target channel. Hence:

T1 � T2 (41)
T1[T2] � T (42)

T1[T2] ◦ T = T1[T2][T] (43)

Again we note T1[T2[T]] = T1[T2][T]; hence we are done.

Case Type-Context-Context, Context-Type-Context: By the case Context-Context-
Type above and commutativity.

Since we can never combine two types this exhausts all cases. 2

B.4. Proof of Subject Reduction Theorem (Theorem 5.19)
(1) is by rule induction on ≡ showing, in both ways, that if one side has a typing then
the other side has the same typing. In the following we safely ignore uninteresting
(permutable) final applications of [SUBS] in derivations by way of Lemma 5.16.

Case P | 0 ≡ P : First assume Γ ` P .s̃ ∆. By Γ ` 0 .∅ ∅ and by applying [CONC] to
these two sequents we immediately obtain Γ ` P |0 .s̃ ∆, as required. For the converse
direction assume Γ ` P |0 .s̃ ∆. We can safely assume (via Lemma 5.16) that the
last rule applied is [CONC]. Thus we can set Γ ` P .s̃ ∆1 and Γ ` 0 .∅ ∆2 such that
∆1 ◦ ∆2 = ∆. Note we can safely regard Γ ` 0 . ∆2 as being inferred by the axiom
[INACT] since applying [SUBS] to empty types and empty type contexts again lead to
the empty types and empty type contexts: thus ∆2 consists of only empty types and
empty type contexts. Thus, in the composition ∆1 ◦ ∆2, the empty types and some of
the empty type contexts from ∆2 are added to ∆1 to generate ∆. Let this added part
be ∆′2. Since we can weaken ∆1 in the first sequent with ∆′2 using Lemma 5.18 (2) we
are done.

Case P | Q ≡ Q | P : By symmetry of the rule we have only to show one direction.
Suppose Γ ` P |Q .s̃ ∆. We can safely assume the last rule applied is [CONC]. We can
thus set Γ ` P .t̃ ∆1 and Γ ` Q .r̃ ∆2 such that ∆1 � ∆2, ∆1 ◦∆2 = ∆ and t̃] r̃ = s̃. By
Lemma 5.14 we know ∆2 � ∆1 and ∆2 ◦ ∆1 = ∆ hence by applying [CONC] with the
premises reversed we are done.

Case (P | Q) | R ≡ P | (Q | R): By the establishment of the previous case again we
have only to show one direction. Suppose Γ ` (P | Q) | R .s̃ ∆. We can safely assume:
Γ ` P .t̃ ∆1, Γ ` P .r̃ ∆2 and Γ ` P .q̃ ∆3 such that ∆1 � ∆2, (∆1 ◦ ∆2) � ∆3 and
(∆1 ◦ ∆2) ◦ ∆3 = ∆, as well as t̃] r̃] q̃ = s̃. By the last condition, no two of ∆1, ∆2

and ∆3 share a common target channel in their type contexts (in the sense given
just before Lemma 5.14, page 33) because if the queue for a certain channel does not

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:58 Honda, Yoshida and Carbone

exist in a sequent then it cannot be used as a target channel in a type context in
its typing. Thus we can apply Lemma 5.14 to know ∆2 � ∆3, ∆1 � (∆2 ◦ ∆3) and
∆1 ◦ (∆2 ◦∆3) = ∆. By applying [CONC] in an appropriate order we are done.

The remaining rules are reasoned exactly as in [Yoshida and Vasconcelos 2007] (note
the arguments for congruence rules are direct from the compositionality of the typing
rules). This concludes the proof of (1).

For (2), we establish the following stronger claim by rule induction.
Claim. Suppose Γ ` P .s̃ ∆ and ∆ is partially coherent (cf. Definition 5.9). Then
P → P ′ implies Γ ` P .s̃ ∆′ such that either ∆

`→ ∆′ or ∆ = ∆′.
All results on reduction on coherent typing is immediately applicable to partially
coherent typing by Proposition 5.13 (1). Further by Proposition 5.13 (3), ∆′ above is
again partially coherent. Below we again ignore irrelevant final application of [SUBS]
through Lemma 5.16. All rule names are those of the typing rules .
Case [LINK]: Let R def

= a[2..n] (s̃).P1 | a[2] (s̃).P2 | · · · | a[n] (s̃).Pn which is a redex of
[LINK]. We write R1 for a[2..n] (s̃).P1 and Ri for a[i] (s̃).Pi (2 ≤ i ≤ n). Assume:

Γ ` R . ∆ (44)

By Lemma 5.15 we know a ∈ dom(Γ). Let Γ(a) = G. Since (44) can only be inferred by
the sequence of [CONC] (up to permutable [SUBS], similarly in the following), we know
Γ ` Ri . ∆i (1 ≤ i ≤ n) such that ∆1 ◦ ... ◦ ∆n = ∆. By [MCAST] and [MACC] this
means:

Γ ` Pi . ∆i, s̃ : {(G� i)@i} (45)

for each 1 ≤ i ≤ n. Hence by the successive applications of [CONC] we reach:

Γ ` (ΠiPi) | (Πisi ::∅) .s̃ ∆, s̃ : {(G� i)@i}1≤i≤n (46)

Since {(G� i)@i}i collects all projections of G we can apply [CRES] to obtain:

Γ ` (νs̃)((ΠiPi) | (Πisi ::∅)) . ∆ (47)

for a reductum of [LINK]. Note the typing does not change.

Case [SEND]: We use the first rule of Lemma 5.17 for “rolling back” a message. Sup-
pose we have:

Γ ` s!〈ẽ〉;P | s :: h̃ .s ∆ (48)

Since [CONC] is the only rule to derive this process we can set

Γ ` s!〈ẽ〉;P .∅ ∆1 (49)

and

Γ ` s :: h̃ .s ∆2 (50)

such that ∆1 ◦∆2 = ∆. Since (49) can only be inferred from [SEND] we know, first:

Γ ` ej :Sj (51)

for each ej in ẽ; and, second, for some p and for some s̃ which includes s,

∆1 = ∆′1 ◦ s̃ : k! 〈S̃〉;T@p (52)

and moreover

Γ ` P .∅ ∆′1 ◦ s̃ :T@p. (53)

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:59

On the other hand by ∆1 � ∆2 and (50) we know:

∆2 = ∆′2 ◦ s̃ : T @p (54)

Now assume ẽ ↓ ṽ. Notice by (51) we have Γ ` vj :Sj for each vj in ṽ. Thus by Lemma
5.17, [QVAL], we infer:

Γ ` s :: h̃ · ṽ . ∆′2 ◦ s̃ : T [k! 〈S̃〉; []]@p. (55)

By the algebra of located types and type contexts:

(∆′1 ◦ s̃ :T@p) ◦ (∆′2 ◦ s̃ :T [k! 〈S̃〉; []]@p)

= (∆′1 ◦ s̃ : k! 〈S̃〉;T@p) ◦ (∆′2 ◦ s̃ :T []@p)

= ∆

Thus by applying [CONC] to (49) and (50) we obtain:

Γ ` P | s :: h̃ · ṽ . ∆ (56)

which gives the expected typing for the reductum of [SEND], with no type change.

Case [DELEG]: Similar to [SEND] using the second rule of Lemma 5.17, see Appendix
B.5.

Case [LABEL]: We use the third rule of Lemma 5.17 together with the subtyping ≤sub.
Suppose we have:

Γ ` s� l;P | s :: h̃ .s ∆ (57)
which is the redex of [LABEL]. Since [CONC] is the only rule to derive this process we
can set, without loss of generality:

Γ ` s� l;P .∅ ∆1 (58)

and
Γ ` s :: h̃ .s ∆2 (59)

such that ∆1 ◦∆2 = ∆. Since (58) can only be inferred from [SEL] as the last rule (up to
permutable applications of [SUBS]), we know, for some p and for some s̃ which includes
s and for some {li} which includes l,

∆1 = ∆′1 ◦ s̃ : k ⊕ {li : Ti}i∈I@p (60)

and moreover
Γ ` P .∅ ∆′1 ◦ s̃ :Ti@p, for i ∈ I. (61)

On the other hand we can write:

∆2 = ∆′2 ◦ s̃ : T @p (62)

By (59), (62) and Lemma 5.17, [QSEL], we infer:

Γ ` s :: h̃ · l . ∆′2 ◦ s̃ : T [k ⊕ l : []]@p. (63)

By the algebra of located types and type contexts together with subtyping:

(∆′1 ◦ s̃ :Ti@p) ◦ (∆′2 ◦ s̃ : T [k ⊕ l : []]@p)

= ∆′1 ◦∆′2 ◦ s̃ :T [k ⊕ l : Ti]@p

≤sub ∆′1 ◦∆′2 ◦ s̃ :T [k ⊕ {li : Ti}i∈I]@p

= (∆′1 ◦ s̃ : k ⊕ {li : Ti}i∈I@p) ◦ (∆′2 ◦ s̃ :T @p)

= ∆

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:60 Honda, Yoshida and Carbone

Thus we obtain, by applying [CONC] to (61), (63) then applying [SUBS] (the subsump-
tion rule):

Γ ` P | s :: h̃ · l . ∆ (64)

which gives the expected typing for the reductum of [SEND], with no type change.

Case [RECV]: By the first of the latter three rules of Lemma 5.17 together with Lemma
5.18. Suppose

Γ ` s?(x̃);P | s :: ṽ · h̃ .s ∆ (65)

Since [CONC] is the only possible last rule (up to permutable [SUBS]) we can set

Γ ` s?(x̃);P .∅ ∆1 (66)

and

Γ ` s :: ṽ · h̃ .s ∆2 (67)

such that ∆1 ◦∆2 = ∆. Since (66) can only be inferred from [RCV] we know, for some p
and for some s̃ which includes s,

∆1 = ∆′1 ◦ s̃ : k? 〈S̃〉;T@p (68)

and moreover

Γ, x̃ : S̃ ` P .∅ ∆′1 ◦ s̃ :T@p. (69)

By Lemma 5.18, we obtain:

Γ ` P [ṽ/x̃] .∅ ∆′1 ◦ s̃ :T@p. (70)

Further by ∆1 � ∆2 and (67) we know:

∆2 = ∆′2 ◦ s̃ : k! 〈S̃〉.T @p (71)

By Lemma 5.17, [QVALDQ], we infer:

Γ ` s :: h̃ . ∆′2 ◦ s̃ : T @p. (72)

Then we obtain:

∆
def
= (∆′1 ◦ s̃ : k? 〈S̃〉.T@p) ◦ (∆′2 ◦ s̃ : k! 〈S̃〉.T @p)

`→ (∆′1, s̃ :T@p) ◦ (∆′2 ◦ s̃ : T @p) (
def
= ∆′)

Thus by applying [CONC] to (66) and (67) we obtain:

Γ ` P [ṽ/x̃] | s :: h̃ . ∆′ (73)

such that ∆
`→ ∆′, as required. Note this case demands reduction of typings.

Case [SREC], [BRANCH]: Similar to [RECV], using the latter two rules of Lemma 5.17,
see Appendix B.5.

Case [IFT], [IFF], [DEF], [DEFIN]: Standard, cf. [Yoshida and Vasconcelos 2007]. No
difference in the typing.

Case [SCOP]: When a shared name is hidden, assume

Γ ` (νa)P .s̃ ∆ (74)

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:61

and P → P ′. Then we can set

Γ, a : 〈G〉 ` P .s̃ ∆. (75)

By induction hypothesis we know

Γ, a : 〈G〉 ` P ′ .s̃ ∆′ (76)

such that either ∆
`→
0,1

∆′. Hence by [NRES] we have

Γ ` (νa)P ′ .s̃ ∆′ (77)

as required. When session channels are hidden, suppose

Γ ` (νs̃)P .t̃\s̃ ∆ (78)

and P → P ′. We can set:

Γ ` P .t̃ ∆, s̃ : {Tp@p}p∈I (79)

where {Tp@p}p∈I is coherent. By induction hypothesis

Γ ` P ′ .t̃ ∆′, s̃ : {T ′p@p}p∈I (80)

where either ∆
`→
0,1

∆′ or {s} : {Tp@p}p∈I →0,1 {s} : {T ′p@p}p∈I . By Proposition 5.13
(2) {T ′p@p}p∈I is again coherent. Hence by [CRES] we obtain

Γ ` (νs̃)P ′ .t̃\s̃ ∆′ (81)

as required.

Case [PAR]: Suppose we have Γ ` P |Q .t̃1·t̃2 ∆ and P → P ′. By [CONC] we have
Γ ` P .t̃1 ∆1 and Γ ` Q .t̃2 ∆2 such that ∆1 ◦ ∆2 = ∆. By induction hypothesis
we have Γ ` P ′ .t̃1 ∆′1 such that ∆1 →0,1 ∆′1. By Proposition 5.13 (1) we have
∆′1 � ∆2 hence Γ ` P ′|Q .t̃1·t̃2 ∆′1 ◦ ∆2. Noting Proposition 5.13 (1) also says that
(∆1 ◦∆2)→0,1 (∆′1 ◦∆2) we are done.

Case [STR]: Immediate from Subject Congruence (the first clause of this theorem).
This exhausts all cases for (2).

(3) is because the empty typing ∅ is always coherent. 2

B.5. Remaining Cases of Theorem 5.19
Case [DELEG]: We use the second rule of Lemma 5.17. Suppose we have:

Γ ` s!〈〈t̃ 〉〉;P | s :: h̃ .s ∆ (82)

Since [CONC] is the only rule to derive this process we can set

Γ ` s!〈〈t̃ 〉〉;P .∅ ∆1 (83)

and

Γ ` s :: h̃ .s ∆2 (84)

such that ∆1 ◦∆2 = ∆. Since (83) can only be inferred from [DELEG] we know, for some
p and for some s̃ which includes s,

∆1 = ∆′1 ◦ (s̃ : k! 〈T ′@p′〉.T@p, t̃ :T ′@p′) (85)

and moreover

Γ ` P .∅ ∆′1, s̃ :T@p. (86)

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:62 Honda, Yoshida and Carbone

On the other hand by ∆1 � ∆2 and (50) we know:

∆2 = ∆′2 ◦ s̃ : T []@p (87)

By Lemma 5.17, [QSESS], we infer:

Γ ` s :: h̃ · t̃ .s̃′ ∆′2 ◦ s̃ : {T [k! 〈T@p′〉.[]]@p}, t̃ : {T@p′}. (88)

By the algebra of located types and type contexts:

(∆′1, s̃ :T@p) ◦ (∆′2 ◦ s̃ : {T [k! 〈T@p′〉.[]]@p}, t̃ : {T@p′})
= (∆′1 ◦ (s̃ : k! 〈T ′@p′〉.T@p, t̃ :T ′@p′)) ◦ (∆′2 ◦ s̃ : T []@p)

= ∆

Thus by applying [CONC] to (83) and (84) we obtain:

Γ ` P | s :: h̃ · t̃ . ∆ (89)

which gives the expected typing for the reductum of [DELEG], with no type change.

Case [SREC]: By the second to the last rule of Lemma 5.17. Suppose

Γ ` s?((t̃));P | s :: t̃ · h̃ .s ∆ (90)

Since [CONC] is the only possible last rule (up to permutable [SUBS]) we can set

Γ ` s?((t̃));P .∅ ∆1 (91)

and

Γ ` s :: t̃ · h̃ .s ∆2 (92)

such that ∆1 ◦∆2 = ∆. Since (91) can only be inferred from [SREC] we know, for some
p and for some s̃ which includes s,

∆1 = ∆′1 ◦ s̃ : k? 〈T ′@p′〉.T@p (93)

and moreover

Γ ` P .∅ ∆′1 ◦ s̃ :T@p, t̃ :T ′@p′ (94)

By ∆1 � ∆2 and (92) we know:

∆2 = ∆′2 ◦ s̃ : k! 〈T ′@p′〉.T @p, t̃ : T ′@p′ (95)

By Lemma 5.17, [QSESSDQ], we infer:

Γ ` s :: h̃ . ∆′2 ◦ s̃ : T @p. (96)

Then we obtain:

∆
def
= (∆′1 ◦ s̃ : k? 〈T ′@p′〉.T@p) ◦ (∆′2 ◦ s̃ : k! 〈T ′@p′〉.T @p, t̃ : T ′@p′)

`→ (∆′1 ◦ s̃ :T@p, t̃ : T ′@p′) ◦ (∆′2 ◦ s̃ : T @p) (
def
= ∆′)

Thus by applying [CONC] to (91) and (92) we obtain:

Γ ` P | s :: h̃ . ∆′ (97)

such that ∆
`→ ∆′, as required. Note this case again demands reduction of typings.

Case [BRANCH]: By the last rule of Lemma 5.17. Suppose

Γ ` s� {li : Pi}i∈I | s :: lj · h̃ .s ∆ (98)

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:63

where we assume j ∈ I. Since [CONC] is the only possible last rule (up to permutable
[SUBS]) we can set

Γ ` s� {li : Pi}i∈I .∅ ∆1 (99)

and

Γ ` s :: lj · h̃ .s ∆2 (100)

such that ∆1 ◦∆2 = ∆. First for ∆2 we know, for some p and for some s̃ which includes
s:

∆2 = ∆′2 ◦ s̃ : k ⊕ lj : T @p (101)

where by assumption we have j ∈ I. Since (99) can only be inferred from [BRANCH]
and by ∆1 � ∆2, we also know:

∆1 = ∆′1 ◦ s̃ : k &lj : Tj@p (102)

(where &lj : Tj is the singleton notation as in selection) and moreover

Γ ` Pi .∅ ∆′1 ◦ s̃ :Ti@p (103)

for each i ∈ I (so (102) is inferred using [SUBS]). By Lemma 5.17, [QSELDQ], we infer:

Γ ` s :: h̃ . ∆′2 ◦ s̃ : T @p. (104)

Then we obtain:

∆
def
= (∆′1 ◦ s̃ : k &lj : Tj@p) ◦ (∆′2 ◦ s̃ : k ⊕ lj : T @p)

`→ (∆′1, s̃ :Tj@p) ◦ (∆′2 ◦ s̃ : T @p) (
def
= ∆′)

Thus by applying [CONC] to (99) and (100) we obtain:

Γ ` P | s :: h̃ . ∆′ (105)

such that ∆
`→ ∆′, as required. Again we need a reduction of typings. 2

B.6. Proof of Lemma 5.21
Proof of (1) and (2). We prove the following claim which implies both (1) and (2) by rule
induction on the typing rules. Below and henceforth we are confusing a free session
channel and its numeric representation in the typing. Recall ∆ is partially coherent
when for some ∆0 we have ∆ � ∆0 and ∆ ◦∆0 is coherent.

Claim. Assume Γ ` P .t̃ ∆ s.t. ∆ is partially coherent and there is no queue at s.
Assume P 〈〈s〉〉. Then one of the following conditions holds.

(a) P contains a unique active receiving (resp. emitting) prefix at s and ∆ contains a
unique minimal receiving (resp. emitting) prefix at s (∆ may contain another mini-
mal prefix at s).

(b) P contains a unique minimal receiving prefix at s and a unique minimal emitting
prefix at s. Moreover ∆ contains a unique minimal receiving prefix at s and a unique
minimal emitting prefix at s.

Case [MCAST], [MACC]: Vacuous since in this case the unique active prefix in the
process is at a shared name.

Case [SEND], [RCV], [DELEG], [SREC], [SEL] and [BRANCH]: Immediate since there
can only be a unique active channel name which is by the given prefixing.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:64 Honda, Yoshida and Carbone

Case [INACT], [IF], [VAR], [DEF], [QNIL], [QVAL], [QSESS], [QSEL]: Vacuous.

Case [CONC]: Suppose

Γ ` P .t̃1 ∆, Γ `t̃2 Q .∆′ (106)

such that t̃1 ∩ t̃2 = ∅ and ∆ � ∆′. Observe if ∆ ◦ ∆′ is partially coherent then ∆ and
∆′ respectively are partially coherent by definition. By induction hypothesis we can
assume P and Q satisfy the required condition.

(1) If only one party has an active prefix at s there is nothing to prove.
(2) If both are active at s, suppose both processes, hence ∆ and ∆′, have receiving

active prefixes at s. Then this cannot be partially coherent since if so then the
assumed completion of ∆◦∆′ to a coherent typing should also contain two minimal
receiving prefixes which are impossible by the definition of ◦. Similarly when two
include active emitting prefixes at s, hence as required.

Note that this pair may not be a redex: we do not (have to) validate coherence until we
hide channels, however it is important that there is one output and one input since if
not there will be a conflict at s.

Case [NRES]: Vacuous since there is no change either in the process nor in the typing.

Case [CRES]: Vacuous since there is no difference in the typing for s nor in the active-
ness in prefixes.

Case [SUBS]: Vacuous again. 2

B.7. Proof of Proposition 5.26
We show the following logically equivalent result:

Claim. (1) If P is simple then

(1-a) no delegation prefix (input or output) occurs in P and
(1-b) for each prefix with a shared name in P , say a[i](s̃).P ′ or a[2..n](s̃).P ′, there is no

free session channels in P ′ except s̃.

(2) If P is simple and P → P ′ then P ′ is again simple.

We first show (1) by rule induction on typing rules.

Case [MCAST]: The rule reads:

Γ ` a : 〈G〉 Γ `∅ P .∆, s̃ : (G�1)@1 |s̃| = sid(G)

Γ `∅ a[2..n] (s̃).P .∆

First by simplicity we know ∆ = ∅ (since if not the premise has at least a doubleton
typing). (1-a) is immediate from the induction hypothesis since the rule does not add a
delegation prefix: For (1-b) if P ′ in a[i](~s).P ′ (resp. a[2..n](s̃).P ′) has free session chan-
nels then we cannot have ∆ = ∅ , violating simplicity.

Case [MACC]: The rule reads:

Γ ` a : 〈G〉 Γ `∅ P .∆, s̃ : (G�p)@p |s̃| = sid(G)

Γ `∅ a[p] (s̃).P .∆

Again ∆ = ∅, and the remaining reasoning is precisely the same as [MCAST].

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:65

Case [SEND]: The rule reads:
Γ ` ej :Sj Γ `∅ P .∆, s̃ :T@p

Γ `∅ s[k]!〈ẽ〉;P .∆, s̃ : k! 〈S̃〉;T@p

Again ∆ = ∅. (1-a) is immediate from the induction hypothesis since the rule does not
add any delegation prefix. (1-b) is again immediate from the induction hypothesis since
the rule doe not add a shared-name prefix.

Case [RCV]: The rule reads:

Γ, x̃ : S̃ ` P∅ .∆, s̃ :T@p

Γ `∅ s[k]?(x̃);P .∆, s̃ : k? 〈S̃〉;T@p

Precisely the same as in [SEND] above.

Case [DELEG]: The rule reads:
Γ `∅ P .∆, s̃ :T@p

Γ `∅ s[k]!〈〈t̃ 〉〉;P .∆, s̃ : k! 〈T ′@p′〉;T@p, t̃ :T ′@p′

Even if ∆ = ∅ the conclusion’s typing becomes a doubleton hence this rule cannot be
applied.

Case [SREC]: The rule reads:

Γ `∅ P .∆, s̃ :T@p, t̃ :T ′@p′

Γ `∅ s[k]?((t̃));P .∆, s̃ : k? 〈T ′@p′〉;T@p

which is again impossible to apply (the premise’s typing becomes a doubleton).

Case [SEL],[BRANCH]: Similar with [SEND] and [RCV].

Case [IF], [CONC], [CRES], [NRES], [SUBS], [DEF]: By the shape of these rules,
in each rule, there is no addition or removal of a prefix from the premise to the
conclusion. Hence both (1-a/b) are immediate from the induction hypothesis.

Case [INACT], [VAR], [QNIL], [QVAL], [QSESS], [QSEL]: Vacuous since no prefixes are
involved.

Hence as required.
For (2) suppose a derivation of P is simple. By the proof of Theorem 5.19, if P → P ′

then we have essentially the same derivation for both P and P ′ except:

— taking off the lost pair of prefixes from that of P (three pair of prefix rules);
— one of the branches is chosen (conditional)
— copying some part from the derivation for P to that of P ′ (for recursion)

In each case clearly the simplicity of the derivation for P implies that of P ′, as
required. 2

B.8. Proof of Lemma 5.28
Suppose:

(C1). Γ ` P .∆.
(C2). P is simple.
(C3). ∆ has a minimal receiving (resp. emitting) prefix at s.
(C4). none of the prefixes at s in P are under a shared name.
(C5). none of the prefixes at s in P are under a conditional branch.

, Vol. 0, No. 0, Article 0, Publication date: 0.

0:66 Honda, Yoshida and Carbone

Under these conditions, we show that P has an active receiving prefix (resp. has an
active emitting prefix or a non-empty queue). We use rule induction on typing rules.

Case [MCAST], [MACC]: By Proposition 5.26 there can be no free session channels
hence vacuous (since (C3) is not satisfied).

Case [SEND]: The “simple” rule reads:

Γ ` ej :Sj Γ `∅ P . s̃ :T@p

Γ `∅ s[k]!〈ẽ〉;P . s̃ : k! 〈S̃〉;T@p

Observe that there can be no other minimal prefix in the typing in the conclusion than
the newly introduced prefix itself: this corresponds to the unique minimal prefix in the
typing.

Case [RCV]: The “simple” rule reads:

Γ, x̃ : S̃ ` P∅ .∆, s̃ :T@p

Γ `∅ s[k]?(x̃);P .∆, s̃ : k? 〈S̃〉;T@p

Same as [SEND].

Case [SREC], [DELEG]: By Proposition 5.26 these rules are not used in derivation of a
simple process, hence vacuous.

Case [SEL],[BRANCH]: Similar with [SEND],[RCV].

Case [IF]: Vacuous since (C5) does not hold.

Case [CONC]: The rule reads:

Γ ` P .t̃1 ∆ Γ `t̃2 Q .∆′ t̃1 ∩ t̃2 = ∅ ∆ � ∆′

Γ `t̃1·t̃2 P | Q .t̃1·t̃2 ∆ ◦∆′

We first observe:

Claim A1. If the result of the operation ◦ on typings (when defined) has a minimal
input prefix then one of the original typings also has the same.

This is because, direct from the definition of ◦, if ◦ results in an input minimal input
prefix then it cannot come from a type context (which contains only an output prefix)
hence it can come only from the same in the premise. Further:

Claim A2. If the result of the operation ◦ on typings (when defined) has a minimal
output prefix then one of the premises also has the same in the form of either the
corresponding non-empty type context or the corresponding type (“corresponding”
means that the minimal prefix coincides).

Above the details of the shape of a typing is in fact unnecessary.
Claim B. The composition | preserves activeness of each prefix.

This is immediate from the definition.
Now we reason by induction. In the case of an input prefix in the typing, by Claim

A1 we know one of the premises also contains an input prefix in the typing. Hence the
corresponding process has an active input prefix by induction hypothesis. By Claim B
we are done.

, Vol. 0, No. 0, Article 0, Publication date: 0.

Multiparty Asynchronous Session Types 0:67

On the other hand in the case of an output prefix in the typing, by Claim A2 we know
one of the premises also contains the same (either as the corresponding type context
or the corresponding output prefix) in the typing. Hence by induction hypothesis the
corresponding process has an active output prefix or a non-empty queue. Hence by
induction hypothesis we are done. By Claim B we are done.

Case [INACT], [VAR]: Vacuous since in this case the typing does not contain any active
channel hence violating (C3).

Case [SUBS], : The subsumption does not add any new active prefix in the typing
hence by induction hypothesis we are done.

Case [DEF]: As [SUBS] above.

Case [QVAL], [QSESS], [QSEL]: In these cases we have a minimal emitting prefix in
the typing; and we have a corresponding non-empty queue, as required.

Case [QNIL]: Vacuous since (C3) is violated.

Case [NRES]: This reads:
Γ, a : 〈G〉 `t̃ P .∆

Γ `t̃ (ν a)P .∆

which shows there is no change in the typing and in the process with respect to (free)
active/minimal prefixes hence immediate by induction hypothesis.

Case [CRES]: This reads:

Γ ` P .t̃ ∆, s̃ : {Tp@p}p∈I s̃ ∈ t̃ {Tp@p}p∈I coherent
Γ `t̃\s̃ (ν s̃)P .∆

Suppose in the conclusion there is a minimal prefix at s in ∆. Then it is also minimal
in the premise hence by induction hypothesis we are done.

This exhausts all cases. 2

, Vol. 0, No. 0, Article 0, Publication date: 0.

