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We present a programming model and typing discipline for complex multi-robot coordination programming.
Our model encompasses both synchronisation through message passing and continuous-time dynamic motion
primitives in physical space. We specify continuous-time motion primitives in an assume-guarantee logic
that ensures compatibility of motion primitives as well as collision freedom. We specify global behaviour
of programs in a choreographic type system that extends multiparty session types with jointly executed
motion primitives, predicated refinements, as well as a separating conjunction that allows reasoning about
subsets of interacting robots. We describe a notion of well-formedness for global types that ensures motion
and communication can be correctly synchronised and provide algorithms for checking well-formedness,
projecting a type, and local type checking. A well-typed program is communication safe, motion compatible,
and collision free. Our type system provides a compositional approach to ensuring these properties.

We have implemented our model on top of the ROS framework. This allows us to program multi-robot
coordination scenarios on top of commercial and custom robotics hardware platforms. We show through case
studies that we can model and statically verify quite complex manoeuvres involving multiple manipulators
and mobile robots—such examples are beyond the scope of previous approaches.
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1 INTRODUCTION
Modern robotics applications are often deployed in safety- or business-critical applications and
formal specifications and reasoning about their correct behaviours is a difficult and challenging
problem. These applications tightly integrate computation, communication, control of physical
dynamics, and geometric reasoning. Developing programming models and frameworks for such
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applications has been long noted as an important and challenging problem in robotics [Lozano-
Pérez 1983], and yet very little support exists today for compositional specification of behaviours
or their static enforcement.

In this paper, we present a programming model for concurrent robotic systems and a type-based
approach to statically analyse programs. Our programming model uses choreographies—global
protocols which allow implementing distributed and concurrent components without a central
control—to compositionally specify and statically verify both message-based communications and
jointly executed motion between robotics components in the physical world. Our choreographies
extendmultiparty session types [Honda et al. 2008] with dynamic motion primitives, which represent
pre-verified motions that the robots can execute in the physical world. We compile well-typed
programs into robotics platforms. We show through a number of nontrivial usecases how our
programming model can be used to design and implement correct-by-construction, complex, robotic
applications on top of commercial and custom-build robotic hardware.
Our starting point is the theory of motion session types [Majumdar et al. 2019], which forms

a type discipline based on global types with simple, discrete-time motion primitives. For many
applications, we found this existing model too restrictive: it requires that all components agree on
a pre-determined, global, discrete clock and it forces global synchronisation among all robots at
the fixed interval determined by the “tick” of the global clock. For example, two robots engaged in
independent activities in different parts of a workspace must nevertheless stop their motion and
synchronise every tick. This leads to communication-heavy programs in which the programmer
must either pick a global clock that ensures every motion primitive can finish within one tick
(making the system very slow) or that every motion primitive is interruptible (all robots stop every
tick and coordinate). Our new model enhances the scope and applicability of motion sesstion types
to robots: we go from the global and discrete clock to continuous behaviours over time, allowing
complex synchronisations as well as frame separation between independent subgroups of robots.
That is, the programmer does not need to think about global ticks when writing the program.
Instead, they think in terms of motion primitives and the type system enforces that concurrent
composition of motions is well-formed and that trajectories exist in a global timeline.

Reasoning simultaneously about dynamics andmessage-based synchronisation is difficult because
time is global and can be used as an implicit broadcast synchronisation mechanism. The complexity
of our model arises from the need to ensure that every component is simultaneously ready to let time
progress (through dynamics) or ready to send or receive messages (property communication safety).
At the same time, we must ensure that systems are able to correctly execute motion primitives
(property motion compatibility); and jointly executed trajectories are separated in space and time
(property collision freedom). Our verification technique is static: if a program type checks, then
every execution of the system satisfies communication safety, motion compatibility, and collision
freedom. We manage the complexity of reasoning about the interplay between dynamics and
concurrency through a separation of concerns.

First, we specify continuous-time trajectories as motion primitives. Since the dynamics of different
components can be coupled, the proof system uses an assume-guarantee proof system [Abadi
and Lamport 1993; Chandy and Misra 1988; Jones 1983; Nuzzo et al. 2015] on continuous time
processes to relate an abstract motion primitive to the original dynamics. The assume guarantee
contracts decouple the dynamics. Additionally, the proof system also checks that trajectories ensure
disjointness of the use of geometric space over time.
Second, we interpret choreographic specifications in continuous time, and extend the existing

formalism in [Majumdar et al. 2019] with predicate refinements—to reason about permissions (i.e.,
what parts of the state space an individual robot can access without colliding into a different robot).
This is required for motion compatibility and collision freedom. We also introduce a separating
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conjunction operator, written ∗, to reason about disjoint frames. The combination of message passing
and dynamics makes static verification challenging. We introduce a notion of well-formedness of
choreographies that ensures motion and communication can be synchronised and disallows, e.g.,
behaviours when amessage is blocked because amotion cannot be interrupted.We give an algorithm
for checking well-formedness using a dataflow analysis on choreographies. We show that well-
formed types can be projected on to end-components and provide a local type checking that allows
refinement between motion primitives.

Checking compatibility and collision freedom reduces to validity queries in the underlying logic.
Interestingly, the separating conjunction allows subgroups of robots to interact—through motion
and messages—disjointly from other subgroups; this reduces the need for global communication in
our implementations.
We compile well-typed programs into programs in the PGCD [Banusic et al. 2019] and ROS

[Quigley et al. 2009] frameworks. We have used our implementation to program and verify a
number of complex robotic coordination and manipulation tasks. Our implementation uses both
commercial platforms (e.g., the Panda 7DOF manipulator, the BCN3D MOVEO arm) and custom-
built components (mobile carts). In our experience, our programming model and typing discipline
are sufficient to specify quite complex manoeuvres between multiple robots and to obtain verified
implementations. Moreover, the use of choreographies and the separating conjunction are crucial
in reducing verification effort: without the separating conjunction, verification times out on more
complex examples. Our implementation uses SMT solvers to discharge validity queries arising out
of the proof system; our initial experience suggests that while the underlying theories (non-linear
arithmetic) are complex, it is possible to semi-automatically prove quite involved specifications.

Contributions and Outline. This paper provides a static compositional modelling, verifica-
tion, and implementation framework through behavioural specifications for concurrent robotics
applications that involve reasoning about message passing, continuous control, and geometric
separation. We manage this complexity by decoupling dynamics and message passing and enables
us to specify and implement robotic applications on top of commercial and custom-build robotic
hardware. Our framework coherently integrates programming languages techniques, session type
theories, and static analysis techniques; this enables us to model continuous behaviours over time in
the presence of complex synchronisations between independent subgroups of robots. We extend the
global types in [Majumdar et al. 2019] to choreographies including key constructs such as framing
and predicate refinements, together with separation conjunctions, and integrate the typing system
with an assume-guarantee proof system. We implement our verification system using a new set
of robots (extending [Banusic et al. 2019; Majumdar et al. 2019]) in order to program and verify
complex coordinations and manipulation tasks.

The rest of the paper is organised as follows.

Sec. 2: We first motivate our design for robotics specifications, and explain the correctness criteria
– communication safety, motion compatibility, and collision freedom with an example.

Sec. 3: We introduce a multiparty motion session calculus with dynamic abstract motion primi-
tives; we provide an assume guarantee proof system to construct abstract motion primitives
for maintaining geometric separation in space and time for concurrently executed motion
primitives. We then prove Theorem 3.5 (Motion Compatibility).

Sec. 4: We provide choreographic specifications enriched with dynamic motion primitives and
separation operator, and define their dataflow analysis. We propose a typing system and
prove its main properties, Theorem 4.12 (Subject Reduction), Theorem 4.13 (Communication
and Motion Progress and Collision-free Progress).
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Fig. 1. An example with a cart and two robot arms (left: schematic on top, actual robots used in experiments
in Sec. 5 bottom) and a partial message sequence for one behavior of the system (right). Message exchanges
take zero time but are shown with downward sloping arrows for readability. The colored boxes denote motion
primitives and their execution allows physical time to pass. The light blue box denotes the motion primitive
“work” (in Figure 2), red denotes “m_move”, light green “m_idle”, dark green “pick”. The dotted horizontal
lines show synchronisation of global time across components. The use of the separating conjunction “∗”
ensures that time need not be synchronised with the red robot at intermediate synchronisations between the
cart and the green robot. At each point, at most one motion primitive is non-interruptible (shown with “⇝”)

𝜇t.

©«

©«

Cart → GRobot : arrive.Cart → RRobot : free .

©«
©«

dt⟨Cart : m_move⇝ (point),GRobot : work ⟩.
Cart → GRobot : ready.
dt⟨Cart : m_idle ,GRobot : pick⇝⟩.
GRobot → Cart : ok.
(dt⟨Cart : m_move⇝ (point)⟩ ∗ dt⟨GRobot : work ⟩)

ª®®®®®®®¬
∗ dt⟨RRobot : work ⟩

ª®®®®®®®¬

ª®®®®®®®®®®¬
+(

as the above swapping GRobot with RRobot
)

ª®®®®®®®®®®®®®®¬
.t

Fig. 2. Global choreography for the example

Sec. 5: We describe our implementation, evaluation, and case studies. Our evaluation demonstrates
that our framework allows specifying complex interactions and verifying examples beyond
the scope of previous work.

Sec. 6 and Sec. 7: We discuss related work and conclude with a number of open challenges in
reasoning about robotics applications.

Putting it all together, we obtain a compositional specification and implementation framework for
concurrent robotics applications. Our paper is a starting point rather than the final word on robot
programming. Indeed, we make many simplifying assumptions about world modeling, sensing
and filtering, and (distributed) feedback control and planning. Even with these simplifications, the
theoretical development is non-trivial. With a firm understanding of the basic theory, we hope that
future work will lift many of the current limitations.

The full version [Majumdar et al. 2020] includes the detailed proofs.
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2 MOTIVATING EXAMPLE
In this section, we show a coordination example and use it to motivate the different choices of our
programming model and choreography specifications. We start with a simple protocol. Consider a
scenario where a cart shuttles (based on some unmodeled criterion) between two robotic arms,
“red” and “green” (corresponding, e.g., to two different processing units). In each round, the cart lets
the robots know of its choice and then moves to the chosen robot. On reaching its destination, the
cart signals to the arm that it has arrived, and waits for the arm to finish processing. Meanwhile,
the other arm can continue its own work independently. When the arm finishes its processing,
it signals the cart that processing is complete. The cart moves back and then repeats the cycle.
Figure 1 shows a schematic of the system as well as a sample sequence of messages in each cycle.

Multiparty Motion Choreographies. We specify the global behaviour of a program using
choreographies, which describe the allowed sequence of global message exchanges and joint motion
primitives as types for programs. The choreography for our example is shown in Figure 2. It extends
session types [Bocchi et al. 2015, 2019, 2014] with joint motion primitives similarly to motion
session types [Majumdar et al. 2019] and a separating conjunction ∗.

(1) Messages and motion primitives. The choreography in Figure 2 is a recursion (𝜇t.𝐺), that
makes a choice (𝐺1 +𝐺2) between two possibilities, corresponding to the cart interacting with the
green or with the red robots (blue box).Message exchange is specified by p → q : ℓ which is a flow
of a message labeled ℓ from process p to process q. Joint motion primitives dt⟨p : a, p′ : a′, · · ·⟩
specify that the processes p, p′, etc. jointly execute motion primitives a, a′, etc. for the same amount
of time. Global time is a global synchroniser; the type system makes sure that there is a consistent
execution that advances time in the same way for every process.
With just the construct for joint motion primitives, every component is forced to globally

synchronise in time, preventing the robots to work independently in physically isolated spaces. We
would like to specify, for example, that when the cart and the green robot GRobot is interacting,
the red robot RRobot can independently perform its work without additional synchronisations.
(2) Separating conjunctions. To overcome this shortcoming, we introduce the separating

conjunction ∗ (a novel addition from previous session types [Bocchi et al. 2015, 2019, 2014;
Majumdar et al. 2019], explained below), which decomposes the participants into disjoint subgroups,
in terms of communication, dynamics, and use of geometric space over time, each of which can
proceed independently until a merge point.

The core interaction between the cart and an arm happens within the green box. Let us focus on
the interaction when the green robot is picked. In this case, the cart moves to the green robot (while
the green arm performs internal work), then synchronises with a ready message, and then idles
while the green arm picks an object from the cart. When the arm is done, it sends an ok message,
the cart moves back while the arm does internal work, and the protocol round ends. Meanwhile,
the red robot can independently perform its work without synchronising with either the cart or the
green robot. The other branch of + is identical, swapping the roles of the red and the green robots.

The separating conjunction makes it easy to specify physically and logically independent portions
of a protocol. Without it, we would be forced to send a message to the other (red) arm every time
the cart and the green arm synchronised, even if the red arm proceeded independently. This would
be required because time is global, and we would have to ensure that all motion primitives execute
for exactly the same duration. Obviously, this leads to unwanted global synchronisations.

(3) Interruptible and non-interruptible motions. Our type system ensures that messages and
motions alternate in the correct way. This requires differentiating between motion primitives that
are interruptible (marked by  ) from those that are not interruptible. An interruptible motion
primitive is one that can be interrupted by a message receipt. For example, m_idle or work in our
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example are interruptible. A non-interruptible motion primitive (marked by⇝), on the other
hand, should not be “stopped” by an external message. In order to ensure proper synchronisation
between motion primitives and messages, we annotate motion primitives with  or⇝, which
specify whether a motion can be interrupted by a message receipt or not. The type system checks
that there is, at any time, at most one non-interruptible motion primitive, and moreover, the process
executing that motion is the next one to send a synchronising message. This ensures that motion is
compatible with synchronisation.
The assumption that there is at most one non-interruptible motion primitive is a restriction;

it rules out complex multi-robot maneuvres. However, there are already many “loosely coupled”
systems that satisfy the assumption and it allows us to develop the (already complicated) the-
ory without introducing distributed feedback control strategies to the mix. We leave lifting the
assumption to future work.

Processes: Motion Primitives +Messages. Wemodel robotic systems as concurrent processes
in a variant of the session 𝜋-calculus for multiparty interactions [Yoshida and Gheri 2020]. Our
calculus (defined in Sec. 3) abstracts away from the sequential operations and only considers the
synchronisation behaviour and the physical state changes. Synchronisation is implemented through
synchronous message exchanges between individual physical components (participants). Between
message exchanges, each process executes motion primitives: controller code that implements an
actual robot motion. Motion primitives affect state changes in the physical world.

Correctness Criteria. Our type system prevents a well-typed implementation from “going
wrong” in the following ways.

Communication Safety. We provide a choreography type system to ensure that programs are
communication safe and deadlock free: a component does not get stuck sending a message with
no recipient or waiting for a non-existent message. Ensuring communication safety is trickier for
robotics programs because components may not be ready to receive messages because they are in
the middle of executing a motion primitive that cannot be interrupted.

Motion Compatibility.We check that programs are able to jointly execute motion primitives.
The controllers implementing motion primitives implement control actions for coupled dynamical
systems and we have to check that controllers for different components can be run together.

Collision Freedom. Components occupy 3D space; a correct implementation must ensure no
geometric collision among objects. For example, we must ensure that the robot arms do not hit
the cart when the cart is moving in their workspace. Our motion compatibility check ensures the
geometric footprint of each component remains disjoint from others at all points in time.

Type Checking. The type checking algorithm has three parts. (1) First, we use an assume
guarantee proof system to ensure jointly executed motion primitives are compatible: they allow
a global trajectory for all the robots in the system and ensure there is no collision between com-
ponents. (2) Second, we introduce a notion of well-formedness for choreographies. Well-formed
choreographies ensure motion and message exchanges can be globally synchronised and that joint
trajectories of the system are well-defined and collision free. (3) Finally, as in standard session types,
we project a global choreography to its end-points, yielding a local type that can be checked
for each process. The challenge is to manage the delicate interplay between time, motion, message
exchanges, choices and the separating conjunction. This makes the well-formedness check more
sophisticated than other choreography type systems.

3 MULTIPARTY MOTION SESSION CALCULUS
We now describe the motion session calculus, extending from [Majumdar et al. 2019].
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3.1 Syntax
Physical Components and Processes. We assume a fixed static set P of physical components

(ranged over by p, q,...), which are often called participants or roles; these are the different compo-
nents that constitute the overall system. Each physical component executes a software process,
which takes care of communication, synchronisation and motion. We describe the motion session
calculus, which forms the core of the software process.
A value 𝑣 can be a natural number n, an integer i, a boolean true/false, or a real number.

An expression e can be a variable, a value, or a term built from expressions by applying (type-
correct) computable operators. Amotion primitive (a, b, . . .) is an abstraction of underlying physical
trajectories; for themoment, consider amotion primitive simply as a name and describe its semantics
later. We use the notation dt⟨a⟩ to represent that a motion primitive executes and time elapses.
We write the tuple dt⟨(p𝑖 : a𝑖 )⟩ to denote a group of processes executing their respective motion
primitives at the same time. For the sake of simplicity, we sometimes use a for both single or
grouped motions.

The processes (𝑃,𝑄, 𝑅, ...) of the multiparty motion session calculus are defined by:

𝑃 ::= p!ℓ ⟨e⟩.𝑃 || ∑
𝑖∈𝐼

p?ℓ𝑖 (𝑥𝑖 ).𝑃𝑖 || if e then 𝑃 else 𝑃 || ∑
𝑖∈𝐼

p?ℓ𝑖 (𝑥𝑖 ) .𝑃𝑖 + dt⟨𝑎⟩.𝑃 || dt⟨a⟩.𝑃 || 𝜇x.𝑃 || x

The output process p!ℓ ⟨e⟩.𝑄 sends the value of expression e with label ℓ to participant p. The
sum of input processes (external choice)

∑
𝑖∈𝐼 p?ℓ𝑖 (𝑥𝑖 ).𝑃𝑖 is a process that can accept a value with

label ℓ𝑖 from participant p for any 𝑖 ∈ 𝐼 ;
∑

𝑖∈𝐼 p?ℓ𝑖 (𝑥𝑖 ).𝑃𝑖 + dt⟨𝑎⟩.𝑃 is an external choice with a
default branch with a motion action dt⟨𝑎⟩.𝑃 which can always proceed when there is no message
to receive. According to the label ℓ𝑖 of the received value, the variable 𝑥𝑖 is instantiated with the
value in the continuation process 𝑃𝑖 . We assume that the set 𝐼 is always finite and non-empty.
Motion primitives are indicated by dt⟨a⟩; the dt denoting that real time progresses when a motion
primitive a is executed. The conditional process if e then 𝑃 else 𝑄 represents the internal choice
between processes 𝑃 and 𝑄 . Which branch of the conditional process will be taken depends on the
evaluation of the expression e. The process 𝜇x.𝑃 is a recursive process. Note that our processes
do not have a null process: this is because a physical component does not “disappear” when the
program stops. Instead, we model inaction with an iteration of some default motion primitive.

Example 3.1 (Processes). The processes for the cart and the two robots from Figure 1 are given as:

Cart :
𝜇x.(GRobot!arrive.RRobot!free.

dt⟨m_move(co-ord of GRobot)⟩.GRobot!ready.
dt⟨m_idle⟩.GRobot?ok.dt⟨m_move(base)⟩.x

+ symmetrically for RRobot )

RRobot,
GRobot :
𝜇x.(Cart?arrive.dt⟨work⟩.Cart?ready.

dt⟨pick⟩.Cart!ok.dt⟨work⟩).x
+ (Cart?free.dt⟨work⟩).x

Note that for both processes, the recursion ensures that the program does not terminate. Motion
primitives for the cart involve moving to various locations m_move(pos) and idling at a location
(m_idle), and those for the robots involve doing some (unspecified) work work or picking items
off the cart pick (internally, these motion primitives would involve motion planning and inverse
kinematics for the robot arms). Next, we describe the modelling and representation of motion
primitives in more detail.

Physical Variables and Footprint. Motion primitives make the robot “move” in the physical
world. Each motion primitive represents an abstraction of an underlying controlled dynamical
system, such as the controller for the robot arm or the controller for a cart. The dynamical system
changes underlying physical state (such as the position and orientation of the arm or the position
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and velocity of the cart). The dynamics can be coupled: for example, if an arm is mounted on a cart,
then the motion of the cart is influenced by the mass and position of the arm.
We model the underlying physical system using physical variables, and we partition these into

state variables 𝑋 (dynamical variables read and controlled by the component), input variables𝑊
(dynamical variables read by the component, whose values are provided by the environment). The
specification of a motion primitive will constrain the values of these variables over time. We make
the physical variables clear by writing p ⊳ ⟨𝑋,𝑊 ; 𝑃⟩ for a physical component p ∈ P with state and
input variables 𝑋 and𝑊 , respectively, which executes the process 𝑃 .
Each physical component p ∈ P has a geometric footprint geom (p) associated with it. This

represents the physical space occupied by the component, and will be used to ensure that two
components do not collide. The footprint is a function from valuations to variables in 𝑋 to a subset
of R3. It describes an overapproximation of the space occupied by the component as a function of
the current state. Note that the footprint can depend on the state.

Example 3.2. Let 𝑥 and 𝑣 denote the position and the velocity of the cart, respectively, restricting
the discussion only on one axis. Thus, 𝑋 = {𝑥, 𝑣}. If we assume there are no external influences on
the cart, we can take𝑊 = ∅. The footprint provides a bounding box around the cart as it moves. If
the cart has dimensions (𝑙,𝑤, ℎ), the footprint at the location (𝑥,𝑦, 𝑧) is

{(x, y, z) | 𝑥 − 𝑙

2
≤ x ≤ 𝑥 + 𝑙

2
∧ 0 ≤ y ≤ ℎ ∧ 𝑧 − 𝑤

2
≤ z ≤ 𝑧 + 𝑤

2
} (1)

Composition. We now define parallel composition of physical components. Composition of
physical components ensure the following aspects. First, like process calculi, parallel composition
provides a locus for message exchange: a physical component can send messages to, or receive mes-
sages from, another one. Second, composition connects physical state variables of one component
to the physical input variables of another—this enables the coupling of the underlying dynamics.

To ease reasoning about connections between physical variables, we assume that the components
in a composition have disjoint sets of physical and logical variables, and connections occur through
syntactic naming of input variables. Thus, a component with an input variable 𝑥 gets its value from
the unique component that has a physical state variable called 𝑥 . Hence, there is no ambiguity in
forming connections. We refer to the variables of p as p.𝑋 and p.𝑊 .
We define a multiparty session as a parallel composition of pairs of participants and processes:

𝑀 ::= p ⊳ ⟨𝑋,𝑊 ; 𝑃⟩ || 𝑀 | 𝑀
with the intuition that process 𝑃 plays the role of participant p, and can interact with other processes
playing other roles in 𝑀 . A multiparty session is well-formed if all its participants are different,
and for each input variable of each participant there is a syntactically unique state variable in a
different participant so that connections between physical variables is well-defined. We consider
only well-formed processes.

Example 3.3. For the example from Sec. 2, the multiparty session is

Cart ⊳ ⟨{𝑥, 𝑣}, ∅; proc. for Cart⟩ | RRobot ⊳ ⟨·, ·; proc. for RRobot⟩ | GRobot ⊳ ⟨·, ·; proc. for GRobot⟩
(we have omitted the physical variables for the robot arms for simplicity).

3.2 Motion Primitives
Before providing the operational semantics, we first consider how motion primitives are specified.
Recall that motion primitives of a component p ⊳ ⟨𝑋,𝑊 ; 𝑃⟩ abstract a trajectory arising out of
the underlying dynamics. A first idea is to represent a motion primitive as a pair ⟨Pre, Post⟩—this
provides a precondition Pre that specifies the condition on the state under which the motion
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primitive can be applied and a postcondition Post that specifies the effect of applying the motion
primitive on the physical state. However, this is not sufficient: the motion of two components
can be coupled in time and the trajectory of a component depends on the inputs it gets from
other components and, in turn, its trajectory influences the trajectories of the other components.
Therefore, a motion primitive also needs to specify assumptions on its external inputs and guarantees
it provides to other processes over time. These predicates are used to decouple the dynamics.

Our motion primitive has three more ingredients. The first is the footprint: the geometric space
used by a process over timewhile it executes its trajectory and is used to ensure geometric separation
between components. The second is a pair (𝐷, ‡) of a time interval and an annotation: the time
interval bounds the minimal and maximal times between which a motion primitive is ready to
communicate via message passing, and the ‡ annotation distinguishes between motion primitives
that are interruptible by external messages from those that cannot be interrupted.
We assume preconditions and postconditions only depend on the state, while assumptions,

guarantees, and footprints may depend on both the state and the elapsed time.

Definition 3.4 (Motion primitive). The specification for a motion primitive a of a physical process
p ⊳ ⟨𝑋,𝑊 ; 𝑃⟩, written a ⊢ (Pre, 𝐴,𝐺, Post, FP, 𝐷, ‡), consists of two predicates precondition Pre and
postcondition Post over 𝑋 ∪𝑊 , an input assumption 𝐴 which is a predicate over𝑊 ∪ {clock}, an
output guarantee 𝐺 which is a predicate over 𝑋 ∪ {clock}, a footprint FP which is a predicate over
𝑋 ∪ {x, y, z, clock}, a duration 𝐷 ∈ (R ∪ {∞})2 which is a time interval, and ‡ ∈ { ,⇝} which
indicates if the motion primitive can be interrupted by an external message ( ) or not (⇝).
Given motion primitives a and a′, we say a refines a′, denoted by a ⪯ a′, with

a ⊢ (𝜑,𝐴,𝐺,𝜓, FP, 𝐷, ‡) and a′ ⊢ (𝜑 ′, 𝐴′,𝐺 ′,𝜓 ′, FP ′, 𝐷 ′, ‡′) iff (1) 𝜑 ⇒ 𝜑 ′, (2) 𝐴 ⇒ 𝐴′, (3)
𝐺 ′ ⇒ 𝐺 , (4) 𝜓 ′ ⇒ 𝜓 , (5) FP ′ ⊆ FP , (6) ‡ = ‡′, and (7) either ‡ =  and 𝐷 ⊆ 𝐷 ′ or ‡ = ⇝ and
𝐷 ′ ⊆ 𝐷 .

3.3 Operational Semantics
The operational semantics is given as reduction rules relative to stores X, W (Figure 3) that map
physical variables to values. The semantics uses the standard structural rules defined in Figure 4.
We adopt some standard conventions regarding the syntax of processes and sessions. Namely,

we will use
∏

𝑖∈𝐼 p𝑖 ⊳ ⟨𝑋𝑖 ,𝑊𝑖 ; 𝑃𝑖⟩ for p1 ⊳ ⟨𝑋1,𝑊1; 𝑃1⟩ | . . . | p𝑛 ⊳ ⟨𝑋𝑛,𝑊𝑛 ; 𝑃𝑛⟩, where 𝐼 = {1, . . . , 𝑛},
or simply as

∏
𝑖∈𝐼 p𝑖 ⊳ 𝑃𝑖 when the physical variables are not important. We use infix notation for

external choice process, e.g., instead of
∑

𝑖∈{1,2} p?ℓ𝑖 (𝑥).𝑃𝑖 , we write p?ℓ1 (𝑥) .𝑃1 + p?ℓ2 (𝑥).𝑃2. The
value 𝑣 of expression e with physical state X (notation e ↓X 𝑣) is computed as expected. We assume
that e ↓X 𝑣 is effectively computable and takes logical “zero time.”
For reduction rules that do not change the physical state, we omit writing the physical state in

the rule. Time is global, and processes synchronize in time to make concurrent motion steps of the
same (but not pre-determined) duration. Communication ([comm]) is synchronous and puts together
sends and receives. Rule [default] selects the default branch. Rules for conditionals, communication
without default motion and parallel composition are defined in a standard way [Dezani-Ciancaglini
et al. 2016; Ghilezan et al. 2019a; Majumdar et al. 2019].
To define the operational semantics for motions, we extend the process syntax 𝑃 with time-

annotated motion primitives, dt⟨a@𝑡⟩ for 𝑡 ≥ 0. Let us fix a component p and its motion
primitive a ⊢ (Pre, 𝐴,𝐺, Post, FP, 𝐷, ‡). Rules [traj-base] and [traj-step] set up trajectories for
each motion primitive. We distinguish between interruptible ([interrupt]) and non-interruptible
([non-interrupt]) motion primitives. Non-interruptible motion primitives are consumed by the pro-
cess. Interruptible motion primitives consume the motion primitive on a message receipt. The paral-
lel composition rule [m-par] requires a consistent global trajectory and ensures that when (physical)
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[recv]
𝑗 ∈ 𝐼

p ⊳ ⟨X, W;
∑
𝑖∈𝐼

q?ℓ𝑖 (𝑥) .𝑃𝑖 + dt⟨𝑎⟩.𝑃⟩
q?ℓ𝑗 (𝑣)−−−−−−→ p ⊳ ⟨X, W; 𝑃 𝑗 {𝑣/𝑥}⟩

[send]
e ↓X,W 𝑣

p ⊳ ⟨X, W; q!ℓ𝑗 ⟨e⟩.𝑄⟩
q!ℓ ⟨𝑣⟩
−−−−−→ p ⊳ ⟨X, W;𝑄⟩

[comm]
p ⊳ 𝑃

q!ℓ ⟨𝑣⟩
−−−−−→ p ⊳ 𝑃 ′ q ⊳𝑄

p?ℓ (𝑣)
−−−−−→ q ⊳𝑄 ′

p ⊳ 𝑃 | q ⊳𝑄 −→ p ⊳ 𝑃 ′ | q ⊳𝑄 ′

[default]

p ⊳ ⟨X, W; dt⟨a⟩.𝑃⟩ 𝜏−→ p ⊳ ⟨X, W; dt⟨a@0⟩.𝑃⟩ p ⊳ ⟨X, W; dt⟨a@0⟩.𝑃⟩
dt⟨a⟩,𝜉,𝜈,𝑡
−−−−−−−−−→ p ⊳ ⟨X′, W′; dt⟨a@𝑡⟩.𝑃⟩

p ⊳ ⟨X, W;
∑
𝑖∈𝐼

q?ℓ𝑖 (𝑥).𝑃𝑖 + dt⟨𝑎⟩.𝑃⟩
dt⟨a⟩,𝜉,𝜈,𝑡
−−−−−−−−−→ p ⊳ ⟨X′, W′; dt⟨a@𝑡⟩.𝑃⟩

[traj-base]
Pre{X/𝑋, W/𝑊, 0/clock} 𝐴{W/𝑊, 0/clock} ∧𝐺{X/𝑋, 0/clock} geom (p) (X) ⊆ FP{X/𝑋, 0/clock}

p ⊳ ⟨X, W; dt⟨a⟩.𝑃⟩ 𝜏−→ p ⊳ ⟨X, W; dt⟨a@0⟩.𝑃⟩

[traj-step]

𝜉 : [𝑡1, 𝑡2] → R𝑋 , 𝜈 : [𝑡1, 𝑡2] → R𝑊 𝜉 (𝑡1) = X, 𝜉 (𝑡2) = X′ 𝜈 (𝑡1) = W, 𝜈 (𝑡2) = W′

∀𝑡 ∈ [𝑡1, 𝑡2] . 𝐴{𝜈 (𝑡)/𝑊, 𝑡/clock} ∧𝐺{𝜉 (𝑡)/𝑋, 𝑡/clock} ∧ geom (p) (𝜉 (𝑡)) ⊆ FP{X/𝑋, 𝑡/clock}

p ⊳ ⟨X, W; dt⟨a@𝑡1⟩.𝑃⟩
dt⟨a⟩,𝜉,𝜈,𝑡2−𝑡1−−−−−−−−−−−−→ p ⊳ ⟨X′, W′; dt⟨a@𝑡2⟩.𝑃⟩

[t-conditional]
e ↓X,W true

p ⊳ ⟨X, W; if e then 𝑃 else 𝑄⟩ −→ p ⊳ ⟨X, W; 𝑃⟩

[non-interrupt]
𝑡 ∈ 𝐷 ‡ =⇝ Post{X/𝑋, W/𝑊, 𝑡/clock}

p ⊳ ⟨X, W; dt⟨a@𝑡⟩.𝑃⟩ 𝜏−→ p ⊳ ⟨X, W; 𝑃⟩

[interrupt]
𝑡 ∈ 𝐷 ‡ =  Post{X/𝑋, W/𝑊, 𝑡/clock} p ⊳ ⟨X, W; 𝑃⟩

q?ℓ (𝑣)
−−−−−→ p ⊳ ⟨X, W; 𝑃 ′⟩

p ⊳ ⟨X, W; dt⟨a@𝑡⟩.𝑃⟩
q?ℓ (𝑣)
−−−−−→ p ⊳ ⟨X, W; 𝑃 ′⟩

[m-par]
∃𝜉, 𝜈 . ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ disjoint(a𝑖 , a𝑗 ) p𝑖 ⊳ ⟨X𝑖 , W𝑖 ; 𝑃𝑖 ⟩

dt⟨a𝑖 ⟩,𝜉 |𝑋𝑖
,(𝜉∪𝜈) |𝑊𝑖

,𝑡
−−−−−−−−−−−−−−−−−−−→ p𝑖 ⊳ ⟨X′𝑖 , W

′
𝑖 ; 𝑃

′
𝑖 ⟩∏

𝑖∈𝐼
p𝑖 ⊳ ⟨X𝑖 , W𝑖 ; 𝑃𝑖 ⟩

dt⟨a𝑖 ⟩,𝑡−−−−−−→
∏
𝑖∈𝐼

p𝑖 ⊳ ⟨X′𝑖 , W
′
𝑖 ; 𝑃

′
𝑖 ⟩

[r-par𝜏]
𝑀1

𝜏−→ 𝑀2

𝑀1 | 𝑀
𝜏−→ 𝑀2 | 𝑀

[r-par]
𝑀1 −→ 𝑀2

𝑀1 | 𝑀 −→ 𝑀2 | 𝑀
[r-struct]

𝑀 ′
1 ≡ 𝑀1

𝛼−→ 𝑀2 ≡ 𝑀 ′
2

𝑀 ′
1

𝛼−→ 𝑀 ′
2

We omit [f-conditional]. We use
𝛼−→ for any labelled transition relation or reduction (−→).

Fig. 3. Operational semantics

[s-rec]
𝜇x.𝑃 ≡ 𝑃{𝜇x.𝑃/x}

[s-multi]
𝑃 ≡ 𝑄 ⇒ p ⊳ 𝑃 | 𝑀 ≡ p ⊳𝑄 | 𝑀

[s-par 1]
𝑀 | 𝑀 ′ ≡ 𝑀 ′ | 𝑀

[s-par 2]
(𝑀 | 𝑀 ′) | 𝑀 ′′ ≡ 𝑀 | (𝑀 ′ | 𝑀 ′′)

Fig. 4. Structural congruence rules

time elapses for one process, it elapses equally for all processes. Here, disjoint(a𝑖 , a𝑗 ) states that the
footprints along the trajectory are disjoint: a𝑖 .FP{𝜉𝑖 (𝑡 ′)/𝑋, 𝑡 ′/clock}∩a𝑗 .FP{𝜉 𝑗 (𝑡 ′)/𝑋, 𝑡 ′/clock} = ∅
for all 𝑡 ′ ∈ [0, 𝑡].

We use −→∗ for the reflexive transitive closure of −→. We say a program state
∏

𝑖 p𝑖 ⊳ ⟨X𝑖 , W𝑖 ; 𝑃𝑖⟩
is collision free if geom (p𝑖 ) (X𝑖 ) ∩ geom

(
p𝑗

)
(X𝑗 ) = ∅ for every 𝑖 ≠ 𝑗 .
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3.4 Joint Compatibility of Motion Primitives
Two motion primitives are compatible if they can be jointly executed. To decide compatibility, we
compose the specifications using the following assume-guarantee proof rule:

[AGcomp]
∃FP1, FP2 . 𝐺1 ∧𝐺2 ⇒ FP1 ∩ 𝐹𝑃2 = ∅ 𝐺1 ∧𝐺2 ⇒ FP1 ∪ 𝐹𝑃2 ⊆ FP

‡1 =  ∨ ‡2 =  ‡1 =⇝⇒ 𝐷1 ⊆ 𝐷2 ‡2 =⇝⇒ 𝐷2 ⊆ 𝐷1
a1 ⪯ ⟨𝜑1, 𝐴 ∧𝐺2,𝐺1, FP1,𝜓1, 𝐷1, ‡1⟩ a2 ⪯ ⟨𝜑2, 𝐴 ∧𝐺1,𝐺2, FP2,𝜓2, 𝐷2, ‡2⟩

⟨p1:a1, p2:a2⟩ ⊢ (𝜑1 ∧ 𝜑2, 𝐴,𝐺1 ∧𝐺2, FP,𝜓1 ∧𝜓2, 𝐷1 ∩ 𝐷2, ‡1 ⊕ ‡2)

The ⊕ operator combines the interruptibility:  ⊕  =  and  ⊕⇝ =⇝ ⊕  =⇝ ⊕⇝ =⇝.
The [AGcomp] rule performs three checks. First, the check on footprints ensures that the motion

primitives are disjoint in space (there is a way to find subsets FP1 and FP2 of the footprint FP so
that the composed motion primitives are in these disjoint portions). Second, the guarantee of one
motion primitive is used as the assumption of the other to check that they are compatible. Third, the
checks on timing ensures that at most one process executes a non-interruptible motion primitive
and the interruptible ones are ready before the non-interruptible one.
We say dt⟨(p𝑖 :a𝑖 )⟩ is compatible from Pre if there exist 𝐺 , Post, FP , and 𝐷 such that∏
𝑖 p𝑖 : a𝑖 ⊢ (Pre, true,𝐺, Post, FP, 𝐷, ‡) is derivable using [AGcomp] repeatedly. Thus, compat-

ibility checks that motion primitive specifications can be put together if processes start from
their preconditions: first, the assumptions and guarantees are compatible; second, there is no
“leftover” assumption; and third, the footprints of the motion primitives do not intersect in space.
Compatibility provides the “converse” condition that allows joint trajectories in [M-par] to exist.
The next theorem formalizes what motion compatibility guarantees. Intuitively, motion com-

patibility means it is sufficient to check the compatibility of contracts to guarantee the existence
of a joint trajectory, i.e., the execution is defined for all the components and the joint trajectory
satisfies the composition of the contracts.

Theorem 3.5 (Motion Compatibility). Suppose dt⟨(p1 : a1, p2 : a2)⟩ is compatible. For

every 𝑡 ∈ 𝐷 , if there exist trajectories 𝜉1, 𝜉2, 𝜈1, 𝜈2 such that p𝑖 ⊳ 𝑃𝑖
dt⟨a𝑖 ⟩,𝜉𝑖 ,𝜈𝑖 ,𝑡−−−−−−−−−→ p𝑖 ⊳ 𝑃 ′

𝑖 for
𝑖 ∈ {1, 2}, then there exist trajectories 𝜉 : [0, 𝑡] → R𝑋1∪𝑋2 , 𝜈 : [0, 𝑡] → R𝑊1∪𝑊2\(𝑋1∪𝑋2) such

that p𝑖 ⊳ 𝑃𝑖
dt⟨a𝑖 ⟩,𝜉 |𝑋𝑖

,𝜈 |𝑊𝑖
,𝑡

−−−−−−−−−−−−−→ p𝑖 ⊳ 𝑃
′
𝑖 and for all 0 ≤ 𝑡 ′ ≤ 𝑡 , the footprints of p1 and p2 are disjoint:

geom (p1) (𝜉 (𝑡 ′) |𝑋1 ) ∩ geom (p2) (𝜉 (𝑡 ′) |𝑋2 ) = ∅.

Proof. (Sketch.) This theorem is proved along the lines of the AG rule by Henzinger et al. [2001].
Their proof relies on motion primitives having the following properties: prefix closure, deadlock
freedom, and input permissiveness. Deadlock freedom is, in this setting [Henzinger et al. 2001],
means that if a precond is satisfied then the trajectory must exists, and every execution that does
not yet satisfies the postcondition can be prolonged be extended. Input permissiveness states that a
component cannot deadlock no matter how the environment decides to change the inputs. This
condition is needed to do induction over time. Input permissiveness does not directly follow from
the definition of our contracts. However, it holds when the environment changes the inputs in
a way that is allowed by the assumptions. As [AGcomp] checks that this is true and rejects the
composition otherwise, we can reuse the same proof strategy. A process should not be allowed to
block time making the system “trivially safe” but physically meaningless. We also need to check
the disjointness of footprints which is new in our model (needed by [M-par]). This is also checked
by [AGcomp]. □
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3.5 Examples for motion primitives, compatibilities and environments
Motion primitives from dynamics. For the Cart in Sec. 2, we can derive motion primitives

from a simple dynamical model ¤𝑥 = 𝑣, ¤𝑣 = 𝑢. Here, 𝑋 = {𝑥, 𝑣} and𝑊 = ∅. For simplicity, assume
the cart moves along a straight line (its 𝑥-axis) and that the control 𝑢 can apply a fixed acceleration
𝑎max or a fixed deceleration −𝑎max. Consider the motion primitive m_move which takes the cart
from an initial position and velocity (𝑥𝑖 , 𝑣𝑖 ) to a final position (𝑥 𝑓 , 𝑣 𝑓 ). From high school physics,
we can solve for 𝑥 and 𝑣 , given initial values 𝑥𝑖 and 𝑣𝑖 :

𝑥 = 𝑥𝑖 + 𝑣𝑖𝑡 + 1
2𝑎max𝑡

2 and 𝑣 = 𝑣𝑖 + 𝑎max𝑡

from which, by eliminating 𝑡 , we have (𝑣 − 𝑣𝑖 )2 = 2𝑎(𝑥 − 𝑥𝑖 ). Suppose that the cart starts from rest
(𝑣𝑖 = 0), accelerates until the midpoint mid = 1

2 (𝑥𝑖 + 𝑥 𝑓 ), and thereafter decelerates to reach 𝑥 𝑓
again with velocity 𝑣 𝑓 = 0. The precondition Pre is 𝑥 𝑓 > 𝑥 ∧ 𝑣 = 0, the first conjunction saying we
move right (we can write another motion primitive for moving left). The assumption 𝐴 is true, and
the guarantee is

𝑥𝑖 ≤ 𝑥 ≤ 𝑥 𝑓 ∧
(
(𝑥𝑖 ≤ 𝑥 ≤ mid ⇒ 𝑣2 = 2𝑎max (𝑥 − 𝑥𝑖 ))∧
(mid ≤ 𝑥 ≤ 𝑥 𝑓 ⇒ 𝑣2 = 2𝑎max (𝑥 𝑓 − 𝑥))

)
The postcondition is 𝑥 = 𝑥 𝑓 ∧ 𝑣 = 0. The footprint provides a bounding box around the cart as it
moves, and is given as in Example 3.2. We assume that the motion cannot be interrupted. Thus, we
place the annotation⇝. The least time to destination is 𝑡𝑚 = 2

√
(𝑥 𝑓 − 𝑥𝑖 )/𝑎max and the duration

(the interval when it is ready to communicate) is [𝑡𝑚,∞). A simpler primitive is m_idle: it keeps
the cart stationary. Its assumption is again true, guarantee (and postcondition) is 𝑥 = 𝑥𝑖 ∧ 𝑣 = 0,
footprint is a bounding box around the fixed position. It is interruptible by messages from other
components (annotation  ) at any time: 𝐷 = [0,∞).

Compatibility. Now consider the constraints that ensure the joint trajectories involving the
Cart’s motion and the Prod’s work primitive are compatible. First, note that the motion of the
cart is non-interruptible (⇝) but we assume the arm is interruptible, satisfying the constraint in
[AGcomp] that at most one motion is not interruptible. Instead of the complexities of modeling the
geometry and the dynamics of the arm, we approximate the footprint of the arm (the geometric
space it occupies) as a half-sphere centered at the base of the arm and extending upward. Assume
first that the motion primitive guarantees that the state is always within this half-sphere. In order
for the cart and the robot arm to be compatible, we have to check that the footprints do not overlap.
Our guarantee is too weak to prove compatibility, as the footprint of the cart and the arm can
intersect when the cart is close to the arm. Instead, we strengthen the guarantee to state that the
arm can use the entire sphere when the cart is far and as the cart comes closer the arm effector
moves up to make space.

To realise this motion, the cart sends the arm the following information with arrive:1 its current
position 𝑥𝑖 , its target position 𝑥 𝑓 , and a lower bound 𝑡ref on the time it will take to arrive at 𝑥 𝑓 . The
footprint for the cart’s motion can be specified by {(x, y, z) | x ≤ 𝑥0 + 𝑙/2 + (𝑥1 − 𝑥0) ∗ 𝑡/𝑡ref ∧ . . .}.
For the producer, suppose 𝑅base is the radius of its base and 𝑥Prod its 𝑥 coordinate. The footprint of
the work action is strengthened as {(x, y, z) | (z > min(𝑐𝑡, ℎ) ∨ |x − 𝑥Prod | ≤ 𝑅base) ∧ . . .}, where
𝑐 ≥ ℎ · |𝑥0 − 𝑙 − 𝑥Prod − 𝑅base |/𝑡ref . Finally, for compatibility, we need to check that both Cart and
Prod can adhere to their footprint and that the footprints are disjoint. Disjointness is satisfied if
𝑥1 + 𝑙 < 𝑥Prod − 𝑅base , set this as a precondition to m_move.

Environment Assumptions. We can model a more complex cart moving in a dynamic environ-
ment by adding a new component (participant) Env (for environment). The physical variables of the
1For clarity, the type in Figure 2 omits parameters to messages. Our type system uses predicated refinements to reason
about parameters.
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environment process encode dynamic properties of the state, such as obstacles in the workspace or
external disturbances acting on the cart. We can abstract the environment assumptions into a single
motion primitive whose guarantees provide assumptions about the environment behavior to the
other components. For example, the environment providing a bounded disturbance of magnitude
to the cart’s acceleration could be modeled as the guarantee −1 ≤ 𝑑 ≤ 1 for a physical variable 𝑑
(for disturbance) of Env. The cart can include this input variable in its dynamics: ¤𝑣 = 𝑢 + 𝑑 . We can
also model sensor and actuator errors in this way. Likewise, we can model obstacles by a physical
variable in the environment that denotes the portions of the state space occupied by obstacles,
exporting this information through the guarantees, and using this information when the cart plans
its trajectory in m_move.

4 MOTION CHOREOGRAPHIES
In this section, we develop a multiparty session typing discipline to prove communication safety
and collision freedom. Our session types extend usual multiparty session types by introducing new
operators and by reasoning about joint motion in real-time. Moreover, as message exchanges can
be a proxy to exchange permissions for motion primitives, our types have predicates as guards in
order to model permissions for motion primitives.

4.1 Global Types with Motions and Predicates
We start with a choreography given as a global type. The global type constrains the possible
sequences of messages and controller actions that may occur in any execution of the system. We
extend [Majumdar et al. 2019] by framing and predicate refinements, together with separating
conjunctions.

Sorts, ranged over by S, are used to define base types:

S ::= unit || real || point(R3) || vector || . . . || S × S

A predicate refinement is of the form {𝜈 : S | P}, where 𝜈 is a value variable not appearing in
the program, S a sort, and P a Boolean predicate. Intuitively, a predicate refinement represents
assumptions on the state of the sender and the communicated value to the recipient. We write S as
abbreviation for {𝜈 : S | true} and P for {𝜈 : S | P} if S is not important.

Definition 4.1 (Global types). Global types (G,G′, ...) are generated by the following grammar:

G ::= 𝑔.G || t || 𝜇t.G
𝑔 ::= dt⟨(p𝑖 :a𝑖 )⟩ || p → q : [P]ℓ ({𝜈 : S | P ′}) || 𝑔.𝑔 || 𝑔 + 𝑔 || 𝑔 ∗ 𝑔

where p, q range over P, a𝑖 range over abstract motion primitives, and P𝑖 ,P ′ range over predicates.
𝑔 corresponds to the prefix of global types where we do not allow the recursion. We require that
p ≠ q, 𝐼 ≠ ∅, fv(P𝑖 ) ⊆ p.𝑋 ∪ p.𝑊 , fv(P ′

𝑖 ) ⊆ p.𝑋 ∪ p.𝑊 ∪ {𝜈}, and ℓ𝑖 ≠ ℓ𝑗 whenever 𝑖 ≠ 𝑗, for all
𝑖, 𝑗 ∈ 𝐼 . We postulate that recursion is guarded and recursive types with the same regular tree are
considered equal. We omit the predicate annotation if the predicate is true or not important.

In Definition 4.1, the main syntax follows the standard definition of global types in multiparty
session types [Dezani-Ciancaglini et al. 2015; Kouzapas and Yoshida 2013, 2015], with the inclusion
of more flexible syntax of choreographies (separation 𝑔 ∗ 𝑔, sequencing 𝑔.𝑔 and summation 𝑔 + 𝑔)
and motion primitive dt⟨(p𝑖 :a𝑖 )⟩ extended from [Majumdar et al. 2019], and branching p → q :
[P]ℓ ({𝜈 : S | P ′}).
The motion primitive explicitly declares a synchronisation by AG contracts among all the partici-

pants p𝑖 . The branching type formalises a protocol where participant p first tests if the guard [P],
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then sends to q one message with label ℓ and a value satisfying the predicate refinement P ′. Recur-
sion is modelled as 𝜇t.G, where variable t is bound and guarded in𝐺 , e.g., 𝜇t.t is not a valid type. Fol-
lowing the standard session types, in𝑔1+𝑔2+ ...+𝑔𝑛 , we assume:𝑔𝑖 = p → q : [P𝑖 ]ℓ𝑖 ({𝜈 : S | P ′

𝑖 }) .𝑔′𝑖
and ℓ𝑖 ≠ ℓ𝑗 ; and similarly for G. By this rule, hereafter we write: p → q : {[P𝑖 ]ℓ𝑖 (P ′

𝑖 ).G𝑖 }𝑖∈𝐼 , com-
bining summations and branchings and putting G in the tail into each branching as the standard
multiparty session types. pt{G} denotes a set of participants appeared in G, inductively defined by
pt{dt⟨(p1:a1, . . . , p𝑘 :a𝑘 )⟩} = {p1, . . . , p𝑘 } and pt{p → q : ℓ𝑖 [P]({𝜈 : S | P ′})} = {p, q} with other
homomorphic rules.
A “separating conjunction” ∗ allows us to reason about subsets of participants. It places two

constraints on the processes and motion primitives on the two sides of ∗: first, there should not
be any communication that crosses the boundary and second, the motion primitives executed on
one side should not be coupled (through physical inputs) with motion primitives on the other. We
call 𝑔1 ∗ 𝑔2 fully-separated if pt{𝑔1} ∩ pt{𝑔2} = ∅, there exist FP1, FP2 with FP1 ∩ FP2 = ∅, and
for every motion primitive a ⊢ (Pre, 𝐴,𝐺, Post, FP, 𝐷, ‡) in 𝑔𝑖 , we have 𝐴 depends only on state
variables in pt{𝑔𝑖 } and for all 𝑡 , FP{𝑡/clock} ⊆ FP𝑖 {𝑡/clock}, for 𝑖 ∈ {1, 2}. G is fully-separated
if each 𝑔1 ∗ 𝑔2 in G is fully-separated.

Our global type does not include an end type. An end introduces an implicit global synchronisa-
tion that requires all components to finish exactly at the same time. Informally, “ending” a program
is interpreted as robots stopping their motion and staying idle forever (by forever executing an “idle”
primitive). Our progress theorem will show that well-typed programs have infinite executions.

Data Flow Analysis on Choreographies. Not every syntactically correct global type is mean-
ingful. We need to check that the AG contracts work together and that the sends and receive work
w.r.t the time taken by the different motions. These checks can be performed as a “dataflow analysis”
on the tree obtained by unfolding the global type. We start with a few definitions and properties.

Well-scopedness. Consider the unfolding of a global type G as a tree. The leaves of the tree
are labeled with motions dt⟨(p𝑖 :a𝑖 )⟩ or message p → q, and internal nodes are labeled with the
operators ., ∗, or +. By our assumption, we decorate each + node with the sender and receiver
p → q below it.

We say the tree is well-scoped if there is a way to label the nodes of the tree following the rules
below: (1) The root is labeled with the set P of all participants. (2) If a “.” node labeled with P′,
both its children are also labeled with P′, if possible. (3) If a “+” node associated with a message
exchange p → q is labeled with P′, and both p, q ∈ P′, then each of its children are also labeled
with P′, if possible. (4) If a “∗” node is labeled with P′, then we label its children with P1 and P2
such that P1 ∩ P2 = ∅ and P1 ∪ P2 = P′. (5) A leaf node dt⟨p𝑖 : a𝑖⟩ is labeled with P′ if all p𝑖 are
in P′, otherwise the labeling fails. (6) A leaf node p → q is labeled with P′ if both p, q are in P′,
otherwise the labeling fails.

Such a scope labeling is unique if the global type is fully-separated and no participant is “dropped,”
and so we can define the scope of a node in an unambiguous way.

Unique minimal communication. We first define a notion of happens-before with events as
nodes labeled with motions dt⟨(p𝑖 :a𝑖 )⟩ or message exchanges p → q. We define a happens before
relation on events as the smallest strict partial order such that: there is an edge 𝑛 : 𝑒 → 𝑛′ : 𝑒 ′ if
there is an internal node 𝑛∗ in the tree labeled with . and 𝑛 is in the left subtree of 𝑛∗ and 𝑛′ is in the
right subtree of 𝑛∗, and one of the following holds: (1) 𝑒 ≡ p → q, 𝑒 ′ ≡ p′ → q′ and p′ is either p or
q; or (2) pt{𝑒} ∩ pt{𝑒 ′} ≠ ∅. We say there is an immediate happens before edge 𝑛 → 𝑛′ if 𝑛 → 𝑛′ is
in the happens before relation but there is no 𝑛′′ such that 𝑛 → 𝑛′′ and 𝑛′′ → 𝑛′. A global type has
unique minimal communication after motion iff every motion node 𝑛 : dt⟨p𝑖 : a𝑖⟩ has a unique
immediate happens before edge to some node 𝑛′ : p → q.
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Sender readiness. Consider now a type with unique minimal communication after motion and
consider the unique immediate happens before edge 𝑛 : dt⟨(p𝑖 :a𝑖 )⟩ → 𝑛′ : (p → q). Suppose p is
among the processes executing the motion primitives. Since the motion primitives are assumed to
be compatible, we know that at most one process is executing a non-interruptible motion, and all
the others are executing interruptible motions. Since p is the next process to send a message, we
must ensure that it is the unique process executing the non-interruptible motion. Compatibility
ensures that the durations of all other processes are such that they are ready to receive the message
from p. We call this condition sender readiness: whenever there is a communication after a motion,
the sender of the communication was the unique participant executing a non-interruptible motion;
or every process in the motion was executing an interruptible motion. On the other hand, if p is
not among the processes (this can happen when to parallel branches merge), every participant in
the motion must have been executing an interruptible motion.

Total synchronisation. It is not enough that p sends a message to only one other participant:
if p and q decide to switch to a different motion primitive, every other participant in scope must
also be informed. This is ensured by the total synchronisation between motions: we require that
whenever there is a happens before edge between 𝑛 : dt⟨(p𝑖 : a𝑖 )⟩ to 𝑛′ : dt⟨(p′𝑖 : a′𝑖 )⟩, then for
every p𝑖 , there is a node where p𝑖 is a sender or a recipient that happens before 𝑛′.
Synchronisability. We call a global type is synchronisable if it satisfies unique minimal

communication, sender readiness, and total synchronisation. Synchronisability of a global type can
be checked in time polynomial in the size of the type by unfolding each recursive type once.

Example 4.2 (Synchronisability). We illustrate the synchronisability condition. In general, a node
can have multiple outgoing immediate happens before edges. Consider, for distinct participants
p, q, p′, the type p → q : ℓ .p′ → q : ℓ ′.G. The minimal senders are p and p′, because these two
sends cannot be uniquely ordered in an execution. We avoid such a situation because in a process q
we would not know whether to expect a message from p or from p′ or from both.

Note that synchronisability disallows a sequence of two motions without an intervening message
exchange. Thus, dt⟨(p:a1, q:a′1)⟩.dt⟨(p:a2, q:a′2)⟩.G is not well-formed. This is because the imple-
mentation of the participants do not have any mechanism to synchronize when to shift from the
first motion primitive to the second.

We require the total synchronisation between motions to notify every participant by some mes-
sage between any change of motion primitives. We disallow the type dt⟨(p:a11, q:a12, r:a13)⟩.p →
q : ℓ .dt⟨(p:a21, q:a22, r:a23)⟩.G. because r does not know when to shift from a13 to a23.
Note however, that the scoping introduced by ∗ requires messages to be sent only to “local”

subgroups. The following type is fine, even though p3 was not informed when p1 and p2 changed
motion primitives, as it is in a different branch and there is no happens before edge:(

( (dt⟨(p1:a1, p2:a2)⟩.p1 → p2 : ℓ1.dt⟨(p1:a′1, p2:a′2)⟩) ) ∗ dt⟨p3:a3⟩
)
.p1 → p2: ℓ1.p1 → p3: ℓ3.𝐺

Example 4.3. By inspection, the motion type in Figure 2 is well-scoped and fully separated. It is
also synchronizable: to see this, note that for every joint motion primitive, there is at most one
motion which is non-interruptible and the participant corresponding to that motion primitive is the
unique minimal sender. Moreover, the unique minimal sender sends messages to every participant
in the scope of the separating conjunction, thus the type is totally synchronized.

We are ready to define when global types are well-formed.

Definition 4.4 (Well-formed global types). A global typeG iswell-formed if it satisfies the following
conditions:
(1) Total choice: for each branching type p → q : {[P𝑖 ]ℓ𝑖 (P ′

𝑖 ).𝐺𝑖 }𝑖∈𝐼 , we have
∨

𝑖 P𝑖 is valid.
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(2) Well-scoped: G is well-scoped and fully-separated.
(3) Total and compatible motion: For every motion type dt⟨(p𝑖 :a𝑖 )⟩, there exists a motion primitive

for each participant in scope andmoreover the tuple of motion primitives (p𝑖 :a𝑖 ) is compatible.
(4) Synchronisability: The global type is synchronisable.

Hereafter we assume global types are well-formed.

Proposition 4.5 (Well-formedness). Synchronisability is decidable in polynomial time. Checking
well-formedness of global types reduces to checking validity in the underlying logic of predicates in
global types and motion primitives.

Proof. All causalities in global types can be checked when unfolding each recursive type once
(cf. [Honda et al. 2016, Sec.. 3.5]). Hence synchronisability of a global type can be checked in time
polynomial in the size of the type by checking unique minimum communication, sender readiness
and total synchronisation simultaneously. By Definition 4.4, checking well-formedness depends on
checking validity in the underlying logic. □

4.2 Local Types and Projection
Next, we project global types to their end points against which each end-point process is typed. The
syntax of local types extends local types from [Majumdar et al. 2019]. Each local type represents a
specification for each component.

Definition 4.6 (Local motion session types). The grammar of local types, ranged over by 𝑇 , is:

𝑇 ::= dt⟨a⟩.𝑇 || ⊕ {[P𝑖 ]q!ℓ𝑖 (P ′
𝑖 ).𝑇𝑖 }𝑖∈𝐼 || &{p?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼 || &{p?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼 & dt⟨a⟩.𝑇 || 𝜇t.𝑇 || t

where a ranges over motion primitives. We require that ℓ𝑖 ≠ ℓ𝑗 whenever 𝑖 ≠ 𝑗 , for all 𝑖, 𝑗 ∈ 𝐼 . We
postulate that recursion is always guarded. Unless otherwise noted, types are closed.

Our goal is to project a global type onto a participant to get a local type. To define this notion
formally, we first need the following definition that merges two global types.

Definition 4.7 (Merging). We define amerging operator
d
, which is a partial operation over global

types, as:

𝑇1
d
𝑇2 =



𝑇1 if 𝑇1 = 𝑇2

&{p′?ℓ𝑘 (P𝑘 ).𝑇𝑘 }𝑘∈𝐼∪𝐽 if
{
𝑇1 = &{p′?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼 and
𝑇2 = &{p′?ℓ𝑗 (P𝑗 ) .𝑇𝑗 }𝑗 ∈𝐽

&{p′?ℓ𝑘 (P𝑘 ).𝑇𝑘 }𝑘∈𝐼∪𝐽 & dt⟨a
d

a′⟩.𝑇 ′ if
{
𝑇1 = &{p′?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼& dt⟨a⟩.𝑇 ′ and
𝑇2 = &{p′?ℓ𝑗 (P𝑗 ) .𝑇𝑗 }𝑗 ∈𝐽 & dt⟨a′⟩.𝑇 ′

&{p′?ℓ𝑘 (P𝑘 ).𝑇𝑘 }𝑘∈𝐼∪𝐽 & dt⟨a⟩.𝑇 ′ if
{
𝑇1 = &{p′?ℓ𝑖 (P𝑖 ) .𝑇𝑖 }𝑖∈𝐼 and
𝑇2 = &{p′?ℓ𝑗 (P𝑗 ).𝑇𝑗 }𝑗 ∈𝐽 & dt⟨a⟩.𝑇 ′

&{p′?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼& dt⟨a
d

a′⟩.𝑇 ′ if
{
𝑇1 = dt⟨a⟩.𝑇 ′ and
𝑇2 = &{p′?ℓ𝑖 (P𝑖 ) .𝑇𝑖 }𝑖∈𝐼& dt⟨a′⟩.𝑇 ′

&{p′?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼& dt⟨a⟩.𝑇 ′ if
{
𝑇1 = dt⟨a⟩.𝑇 ′ and
𝑇2 = &{p′?ℓ𝑗 (P𝑗 ).𝑇𝑗 }𝑖∈𝐼

𝑇2
d
𝑇1 if 𝑇2

d
𝑇1 is defined,

undefined otherwise.

The merge operator for motion a
d

a′ returns a motion primitive a′′ such that a′′ ⪯ a and a′′ ⪯ a′.
We can build such a′′ by taking the union of the assumptions and precondition and the intersection
of the guarantees, postcondition, and footprint.
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[sub-motion]
a ⪯ a′ 𝑇 ⩽ 𝑇 ′

dt⟨a⟩.𝑇 ⩽ dt⟨a′⟩.𝑇 ′
==============================

[sub-out]
∀𝑖 ∈ 𝐼 . P𝑖 ⇒ P ′′

𝑖 ∧ P ′
𝑖 ⇒ P ′′′

𝑖 ∧𝑇𝑖 ⩽ 𝑇
′
𝑖

⊕{[P𝑖 ]p!ℓ𝑖 (P ′
𝑖 ) .𝑇𝑖 }𝑖∈𝐼 ⩽ ⊕{[P ′′

𝑖 ]p!ℓ𝑖 (P ′′′
𝑖 ).𝑇 ′

𝑖 }𝑖∈𝐼∪𝐽
==================================================================================

[sub-in1]
∀𝑖 ∈ 𝐼 . P ′

𝑖 ⇒ P𝑖 ∧𝑇𝑖 ⩽ 𝑇
′
𝑖 dt⟨a⟩.𝑇 ⩽ dt⟨a′⟩.𝑇 ′

&{p?ℓ𝑖 (P𝑖 ) .𝑇𝑖 }𝑖∈𝐼∪𝐽 & dt⟨a⟩.𝑇 ⩽ &{p?ℓ𝑖 (P ′
𝑖 ) .𝑇

′
𝑖 }𝑖∈𝐼 & dt⟨a′⟩.𝑇 ′

====================================================================================================

[sub-in2]
∀𝑖 ∈ 𝐼 . P ′

𝑖 ⇒ P𝑖 ∧𝑇𝑖 ⩽ 𝑇
′
𝑖

&{p?ℓ𝑖 (P𝑖 ) .𝑇𝑖 }𝑖∈𝐼∪𝐽 & dt⟨a⟩.𝑇 ⩽ &{p?ℓ𝑖 (P ′
𝑖 ).𝑇

′
𝑖 }𝑖∈𝐼

=================================================================================

[sub-in3]
dt⟨a⟩.𝑇 ⩽ dt⟨a′⟩.𝑇 ′

&{p?ℓ𝑖 (P𝑖 ).𝑇𝑖 }𝑖∈𝐼 & dt⟨a⟩.𝑇 ⩽ dt⟨a′⟩.𝑇 ′
==============================================================

Fig. 5. Subtyping rules

Definition 4.8 (Projection). The projection of a global type onto a participant r is the largest relation
↾r between global and session types such that, whenever G ↾r 𝑇 :
(1) if G = p → r : {[P𝑖 ]ℓ𝑖 (P ′

𝑖 ).G𝑖 }𝑖∈𝐼 then 𝑇 = &{p?ℓ𝑖 (P ′
𝑖 ).𝑇𝑖 }𝑖∈𝐼 with G𝑖 ↾r 𝑇𝑖 ;

(2) if G = r → q : {[P𝑖 ]ℓ𝑖 (P ′
𝑖 ).G𝑖 }𝑖∈𝐼 then 𝑇 = ⊕{[P𝑖 ]q!ℓ𝑖 (P ′

𝑖 ).𝑇𝑖 }𝑖∈𝐼 and G𝑖 ↾r 𝑇𝑖 , ∀𝑖 ∈ 𝐼 ;
(3) if G = p → q : {[P𝑖 ]ℓ𝑖 (P ′

𝑖 ).G𝑖 }𝑖∈𝐼 and r∉ {p, q} then there are 𝑇𝑖 , 𝑖 ∈ 𝐼 s.t. 𝑇 =
d

𝑖∈𝐼𝑇𝑖 , and
G𝑖 ↾r𝑇𝑖 , for every 𝑖 ∈ 𝐼 ;

(4) if G = 𝜇t.G′ then 𝑇 = 𝜇t.𝑇 ′ with G′ ↾r 𝑇 ′ if r occurs in G′, otherwise undefined; and
(5) if G = 𝑔.G then 𝑇 = 𝑇 ′.𝑇 ′′ with 𝑔 ↾r 𝑇 ′ and G ↾r 𝑇 ′′.2
(6) dt⟨(p𝑖 :a𝑖 )⟩ ↾r dt⟨𝑎 𝑗 ⟩ with r = p𝑗 ;
(7) (𝑔1 ∗ 𝑔2) ↾r 𝑇𝑖 and 𝑔𝑖 ↾r 𝑇𝑖 if r ∈ pt{𝑔𝑖 } (𝑖 ∈ {1, 2})
(8) 𝑔1.𝑔2 ↾r 𝑇1.𝑇2 with 𝑔𝑖 ↾r 𝑇𝑖 (𝑖 = 1, 2)

We omit the cases for recursions and selections (defined as [Scalas and Yoshida 2019, Section 3]).
The branching prefix is defined as the branching in (1-3).

Example 4.9 (Projection of Figure 2). For the example from Sec. 2, the local type of the cart is:

𝜇t.

( (GRobot!arrive(𝑡).RRobot!free.
dt⟨m_move(GRobot)⟩.GRobot!ready.dt⟨m_idle⟩.GRobot?ok.dt⟨m_move⟩)
& (RRobot!arrive(𝑡) .GRobot!free. . . . symmetric . . .)

)
.t

4.3 Subtyping and Typing Processes
The local types are a specification for the processes and there is some freedom to implement
these specifications. The subtyping relation helps bridge the gap between the specification and the
implementation.

Definition 4.10 (Subtyping). Subtyping ⩽ is the largest relation between session types coinduc-
tively defined by rules in Figure 5.

A subtype has fewer requirements and provide stronger guarantees. The subtyping of motion
primitives ([sub-motion]) allows replacing an abstract motion primitive by a concrete one if a
refines a′ and 𝑇 ⩽ 𝑇 ′. For internal choice and sending ([sub-out]), the subtyping ensure the all the
messages along with the associated predicate are allowed by the supertype. Predicate refinements
are converted to logical implication.

2We abuse𝑇 to denote a local type prefix which is given replacing t and 𝜇t.𝑇 by 𝜖 (as defined for global type prefix 𝑔).
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Table 1. Typing rules for motion processes.

[t-sub]
Γ, Σ ⊢ 𝑃 : 𝑇 𝑇 ⩽ 𝑇 ′

Γ, Σ ⊢ 𝑃 : 𝑇 ′

[t-rec]
Γ ∪ {x : 𝑇 }, true ⊢ 𝑃 : 𝑇

Γ, Σ ⊢ 𝜇x.𝑃 : 𝑇

[t-motion]
Γ, 𝑎.Post ⊢ 𝑄 : 𝑇 Σ ⇒ 𝑎.Pre

Γ, Σ ⊢ dt⟨𝑎⟩.𝑄 : dt⟨𝑎⟩.𝑇

[t-out]
Σ ⇒ P ∧ P ′{𝑒/𝜈} Γ, Σ ⊢ e : 𝑆 Γ, Σ ⊢ 𝑃 : 𝑇

Γ, Σ ⊢ q!ℓ (e).𝑃 : [P]q!ℓ ({𝜈 : 𝑆 | P ′}) .𝑇

[t-choice1]
∀𝑖 ∈ 𝐼 Γ ∪ {𝑥𝑖 : 𝑆𝑖 }, Σ ∧ P𝑖 {𝑥𝑖/𝜈} ⊢ 𝑃𝑖 : 𝑇𝑖
Γ, Σ ⊢

∑
𝑖∈𝐼

q?ℓ𝑖 (𝑥𝑖 ).𝑃𝑖 : &{q?ℓ𝑖 (P𝑖 ) .𝑇𝑖 }𝑖∈𝐼

[t-choice2]
∀𝑖 ∈ 𝐼 Γ ∪ {𝑥𝑖 : 𝑆𝑖 }, Σ ∧ P𝑖 {𝑥𝑖/𝜈} ⊢ 𝑃𝑖 : 𝑇𝑖 Γ, Σ ⊢ dt⟨𝑎⟩.𝑄 : 𝑇

Γ, Σ ⊢
∑
𝑖∈𝐼

q?ℓ𝑖 (𝑥𝑖 ).𝑃𝑖 + dt⟨𝑎⟩.𝑄 : &{q?ℓ𝑖 ({𝜈 : 𝑆 | P𝑖 }) .𝑇𝑖 }𝑖∈𝐼 & 𝑇

[t-cond]
Γ ⊢ e : bool ∃𝑘 ∈ 𝐼 Σ ∧ e ⇒ P𝑘 Γ, Σ ∧ e ⊢ 𝑃1 : 𝑇𝑘 Γ, Σ ∧ ¬e ⊢ 𝑃2 : ⊕{[P𝑖 ]𝑇𝑖 }𝑖∈𝐼\{𝑘 }

Γ, Σ ⊢ if e then 𝑃1 else 𝑃2 : ⊕{[P𝑖 ]𝑇𝑖 }𝑖∈𝐼

[t-sess]
∀𝑖 ∈ 𝐼 ∅,P𝑖 ⊢ 𝑃𝑖 : G↾p𝑖 pt{G} = P ∀𝑗 ∈ 𝐼 . 𝑗 ≠ 𝑖 ⇒ geom (p𝑖 ) (P𝑖 ) ∩ geom

(
p𝑗

)
(P𝑗 ) = ∅∧

𝑖∈𝐼
P𝑖 ⊢

∏
𝑖∈𝐼

p𝑖 ⊳ 𝑃𝑖 : G

For the external choice and message reception ([sub-in1,2,3]), subtyping makes sure the process
reacts properly to the messages expected by the super type. A subtype can have cases for more
messages but they don’t matter. The subtype guarantees that the process will never receive theses
messages. On the other hand, the sender of the messages has to be the same. We enforce this directly
in the syntax of the programming language and the type system. It may seem that ([sub-in3])
introduces a new sender in the subtype but this rule is correct because, in our synchronous model,
sending is blocking and cannot be delayed. Therefore, if the supertype only contains a motion, we
know for a fact that no messages can arrive unexpectedly in the subtype.

Our subtyping conditions generalise those of motion session types of Majumdar et al. [2019] in
multiple ways. First, we allow refinement of motion primitives ([sub-motion]) as a way to abstract
trajectories. In [Majumdar et al. 2019], the actions are abstract symbols and are fixed statically.
Second, the rules for communication must check predicate refinements—in [Majumdar et al. 2019],
global types did not have refinements.

The final step in ourworkflow checks that the process of each participant in a program implements
its local type using the typing rules from Table 1. Our typing rules additionally maintain a logical
context to deal with the predicate refinements [Rondon et al. 2008].

We write Γ, Σ ⊢ 𝑆 : 𝑇 to indicate the statement 𝑆 has type 𝑇 under the variable context Γ and the
logical context Σ. Γ is the usual typing context; Σ is a formula characterising what is known about
the state of the system when a process is about to execute. The typing rules are shown in Table 1.
[t-motion] considers Σ derives the pre-condition of motion 𝑎, while𝑄 guarantees its post-condition.
[t-out] assumes Σ of 𝑃 derives a conjunction of the guard and refined predicates declared in types.
[t-choice1] is its dual and [t-choice2] includes the default motion branch. [t-cond] is similar with
the usual conditional proof rule. [t-sess] combines well-typed participants each of which follows a
projection of some global typeG given assumptions over the initial state

∧
𝑖∈𝐼 P𝑖 of each participant.

We requires the initial state to be collision free as the global types only maintains collision freedom.
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4.4 Soundness
The soundness of multiparty sessions is shown, using subject reduction (typed sessions reduce
to typed sessions) and progress. In order to state soundness, we need to formalise how global
types are reduced when local session types evolve. To define the consumption of global types, as
done for processes in Sec. 3.3, we extend the syntax of global types to allow partial consumption
of motion types. In addition, we extend 𝑔, annotating each motion type with its unique minimal
sender, dt⟨(p𝑖 :a𝑖 )@𝑡⟩p for 𝑡 ≥ 0.

Definition 4.11 (Global types consumption and reduction). The consumption of the communication
p

ℓ−→ q or motion dt⟨𝑎⟩[𝑡1, 𝑡2] for the global type G (notation G \ p ℓ−→ q and G \ dt⟨𝑎⟩[𝑡1, 𝑡2]) is the
global type defined (up to unfolding of recursive types) using the following rules:

(1)
(
p → q : {ℓ𝑖 .G𝑖 }𝑖∈𝐼

)
\ p ℓ−→ q = G𝑘 if there exists 𝑘 ∈ 𝐼 with ℓ = ℓ𝑘 ;

(2)
(
r → s : {ℓ𝑖 .G𝑖 }𝑖∈𝐼

)
\ p ℓ−→ q = r → s : {ℓ𝑖 .(G𝑖 \ p

ℓ−→ q)}𝑖∈𝐼 if {r, s} ∩ {p, q} = ∅;
(3) (𝑔1 ∗ 𝑔2) \ p

ℓ−→ q = (𝑔′1 ∗ 𝑔2) if {p, q} ⊆ pt{𝑔1} and 𝑔1 \ p
ℓ−→ q = 𝑔′1 and symmetrically if

{p, q} ⊆ pt{𝑔2};
(4) dt⟨(p𝑖 :a𝑖 )⟩ \ dt⟨(p𝑖 :a𝑖 [𝑡𝑖 ; 𝑡 ′𝑖 ])⟩ = dt⟨(p𝑖 :a𝑖 )@0⟩p where p is the unique minimal sender in G.
(5) dt⟨(p𝑖 :a𝑖 )@𝑡⟩p \ dt⟨(p𝑖 :a𝑖 [𝑡𝑖 ; 𝑡 ′𝑖 ])⟩ = dt⟨(p𝑖 :a𝑖 )@𝑡 ′⟩p if 𝑡 ′ > 𝑡 and for all 𝑖 , 𝑡 ′𝑖 − 𝑡𝑖 = 𝑡 ′ − 𝑡 and

𝑡 ′ ≤ ⌈a𝑖 .𝐷⌉ where ⌈𝐷⌉ denotes the upper bound of the interval 𝐷 ;
(6) (𝑔1 ∗ 𝑔2) \ dt⟨(p𝑖 :a𝑖 [𝑡𝑖 ; 𝑡 ′𝑖 ])p𝑖 ∈pt{𝑔1 }⊎pt{𝑔2 }⟩ = (𝑔′1 ∗ 𝑔′2) if 𝑔 𝑗 \ dt⟨(p𝑖 : a𝑖 [𝑡𝑖 ; 𝑡 ′𝑖 ])p𝑖 ∈pt{𝑔𝑗 }⟩ = 𝑔′𝑗

( 𝑗 = 1, 2)
(7) 𝑔 \ 𝑥 = 𝑔′ then 𝑔.𝑔1 \ 𝑥 = 𝑔′.𝑔1 and 𝑔.G \ 𝑥 = 𝑔′.G.
(8) 𝑔 \ 𝑥 = 𝑔′ if ∃𝑔′′.∃®p. ∅ ▷ 𝑔⇝∗ ®p ▷ 𝑔′′ and 𝑔′′ \ 𝑥 = 𝑔′ where 𝐶 is a reduction context of the

prefix defined as: 𝐶 = 𝐶.𝑔 || 𝐶 ∗ 𝑔 || 𝑔 ∗𝐶 || [ ] and ®p is a set of enabled senders such that ®p ⊆ P
and

(a) ®p ▷𝐶 [dt⟨(p𝑖 :a𝑖 )@𝑡⟩p] ⇝ ®p ∪ {p} ▷𝐶 if ∃𝑖 . p𝑖 = p ∧ 𝑡 ∈ 𝐷𝑖 ∧ ‡𝑖 =⇝.
(b) ®p ▷𝐶 [dt⟨(p𝑖 :a𝑖 )@𝑡⟩p] ⇝ ®p ▷𝐶 with p ∈ ®p and for all 𝑖 , p𝑖 ≠ p and 𝑡 ∈ 𝐷𝑖 .

In (6) and (7), we write 𝑥 as either p → q or dt⟨𝑎⟩[𝑡1, 𝑡2]. The reduction of global types is the
smallest pre-order relation closed under the rule:G =⇒ G\p ℓ−→ q and G =⇒ G\dt⟨p𝑖 :a𝑖 [𝑡𝑖 , 𝑡 ′𝑖 ]⟩.
Note that the above reduction preserves well-formedness of global types. We can now state the main
results. Our typing system is based on one in [Ghilezan et al. 2019b] with motion primitives and
refinements. Since the global type reduction in Definition 4.11 is only related to communications or
synchronisation of motions but not refinements, (1) when the two processes p and q synchronise
by a communication, its global type can always reduce; or (2) when all processes synchronise by
the same motion action, their corresponding global type can always be consumed.

Thus process behaviours correspond to reductions of global types, which is formulated as in the
following theorem. Recall

𝛼−→ denotes any transition relation or reduction.
Theorem 4.12 (Subject Reduction). Let𝑀 be a multiparty session, G be a well-formed global

type, and a physical state 𝐼 such that 𝐼 ⊢ 𝑀 : G. For all𝑀 ′, if𝑀
𝛼−→ 𝑀 ′, then 𝐼 ′ ⊢ 𝑀 ′ : G′ for some G′,

𝐼 ′ such that G =⇒ G′. Thus, if 𝑀 ≡ 𝑀 ′ or 𝑀
𝛼1−−→ · · · 𝛼𝑛−−→ 𝑀 ′, then ⊢ 𝑀 ′ : G′ for some G′ such that

G =⇒ G′.

See [Majumdar et al. 2020] for the detailed proofs.
Below we state the two progress properties as already explained in Sec. 2. The first progress is

related to communications, while the second one gurantees the typed multiparty session processes
are always collision free. As a consequence, if 𝐼 ⊢ 𝑀 : G for a well-formed type, then𝑀 does not
get stuck and can always reduce.
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Theorem 4.13 (Progress). Let𝑀 be a multiparty session, G be a well-formed type, and a physical
state 𝐼 . If 𝐼 ⊢ 𝑀 : G then:

(1) (Communication and Motion Progress) there is𝑀 ′ such that𝑀 −→ 𝑀 ′ and
(2) (Collision-free Progress) If𝑀 −→∗ 𝑀 ′, then𝑀 ′ is also collision free.

Proof. (Outline – see [Majumdar et al. 2020] for the detailed proofs. )
(Communication Progress) The proof is divided into two cases: (a) the guard appearing in the

branching type followed by (b) a message exchange between two parties. Case (a) follows from
the fact that there is always at least one guard in a choice whose predicate is evaluated to true
(Definition 4.4(1)). The typing rules ensure that the predicates are satisfied when a message is sent.
Case (b) is proved using Theorem 4.12 with Definition 4.4(4) since the unique minimal sender in 𝐺
can always send a message.

(Motion Progress) For executing motions, Definition 4.4(3) and Theorem 3.5 ensure local trajecto-
ries can be composed into global trajectories.

(Collision-free Progress) By induction. Under 𝐼 and by [t-sess],𝑀 is initially collision free. For the
communication, note that it does not change the physical state, and therefore, does not impact the
geometric footprint used by a process. Hence the case G \ p ℓ−→ q is straightforward. For motion
actions, Definition 4.4(3) and Theorem 3.5 ensures collision freedom through execution steps. For a
collision free program, collision freedom of the next state follows from compatibility of motion. □

4.5 A More Complex Coordination Example with Producer
Wenow discuss an extended version of the coordination example from Sec. 2 that we shall implement
on physical robots in Sec. 5. In addition to cart and two arms, we add a producer robot. The Prod
generates green or red parts and places them on to the cart. The cart Cart carries the part to the
two robot arms as before. We shall use this extended version as the basis for one of our case studies.
The coordination protocol is as follows. First, the protocol starts by syncing all participants.

Then, the cart moves to the producer after announcing a message arrive. While the cart moves to
the producer, the two consumer robots can work independently. When the cart is at the producer,
it synchronises through a message ready, and idles while the producer places an object on to it.
When the producer is done, it synchronises with the cart, and tells it whether the object is green or
red. Based on this information, the cart tells one of the consumers that it is arriving with a part and
tells the other consumer that it is free to work. Subsequently, the cart moves to the appropriate
consumer to deposit the part, while the other consumer as well as the producer is free to continue
their work. When the robot is at the consumer, it syncs through a message, and idles until the part
is taken off. After this, the protocol starts again as the cart makes its journey back to the producer,
while the consumers independently continue their work.

Global Type. The global type for the example extends one in Figure 2, and is shown in Figure 6.
It can be seen that the global type has total choice (trivially), and is well-scoped and synchronisable.
The motion primitive specifications are omitted; we ensure in our evaluation that the motion
primitives are compatible and the type is fully separated using calls to the SMT solver dReal.
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Initial Phase ≡

Cart → Prod : arrive.Cart → GRobot : start .Cart → RRobot : start .©«
(
(dt⟨⟨Cart : m_move⇝ (Prod), Prod : work ⟩⟩Cart .
Cart → Prod : ready.dt⟨Cart : m_idle , Prod : place⇝⟩)Prod .

)
∗ dt⟨RRobot : work ⟩Prod ∗ dt⟨GRobot : work ⟩Prod

ª®¬
Process Green Item ≡(

dt⟨Prod : work ⟩Cart) ∗
(
Cart → GRobot : arrive.Cart → RRobot : free.(

as in the green box in Figure 2 ∗ dt⟨RRobot : work ⟩Cart
) ) )

Global Type ≡ 𝜇t.⟨Initial Phase⟩.
(
(Prod → Cart : green.⟨Process Green Item⟩)
+(Prod → Cart : red .⟨Process Red Item⟩)

)
.t

Fig. 6. Motion session type annotated with minimal senders. For readability, we have broken the type into
sub-parts: the initial phase, and processing items (the type for processing red items is symmetric and omitted)

Processes. The processes in this example extend the processes from Sec. 2 but the RRobot and
GRobot processes are as before:

Cart :

𝜇x.Prod!arrive.RRobot!start .GRobot!start .m_move(co-ord of Prod) .Prod!ready.m_idle.
(Prod?red .RRobot!arrive.GRobot!free.m_move(co-ord of RRobot).

RRobot!ready.m_idle.RRobot?ok.x
+Prod?green. symmetrically for GRobot )

Prod : 𝜇x.Cart?arrive.work.Cart?ready.place.(Cart!green + Cart!red) .work.x

Local Types. The local types for the components are:

Cart :
𝜇t. Prod!arrive(𝑡) .RRobot!start .GRobot!start .

dt⟨m_move(Prod)⟩.Prod!ready.dt⟨m_idle⟩.
( (Prod?green.GRobot!arrive(𝑡).RRobot!free.
dt⟨m_move(GRobot)⟩.GRobot!ready.
dt⟨m_idle⟩.GRobot?ok)
& (Prod?red . . . . symmetric . . .) ) .t

Prod :
𝜇t.Cart?arrive(𝑡) .dt⟨work⟩.Cart?ready.dt⟨place⟩.

(Cart!green.dt⟨work⟩.t ⊕ Cart!red .dt⟨work⟩.t)
RRobot,GRobot :

𝜇t.(Cart?start .dt⟨work⟩.
( (Cart?arrive(𝑡) .dt⟨work⟩.
Cart?ready.dt⟨pick⟩.Cart!ok)
& (Cart?free.dt⟨work⟩) ).t

We can show that all the processes type check. From the soundness theorems, we conclude that the
example satisfies communication safety, motion compatibility, and collision freedom.

5 IMPLEMENTATION AND CASE STUDY
Implementation. Our implementation has two parts. The first part takes a program, a spec-

ification for each motion primitive, and a global type and checks that the type is well-formed
and that each process satisfies its local type. The second part implements the program on top of
the Robotic Operating System (ROS) [Quigley et al. 2009], a software ecosystem for robots. We
reuse the infrastructure of motion session types [Majumdar et al. 2019]; for example, we write
programs in PGCD syntax [Banusic et al. 2019]. The verification infrastructure is about 4000 lines
of Python code, excluding the solver. The code is available at https://github.com/MPI-SWS/pgcd
and instructions to run these experiments are located in the oopsla20_artifact branch.
Internally, we represent programs and global types as state machines [Deniélou and Yoshida

2012], and implement the dataflow analysis on this representation. Additionally, we specify motion
primitives in the local co-ordinate system for each robot and automatically perform frame transfor-
mations between two robots. The core of ROS is a publish-subscribe messaging system; we extend
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the messaging layer to implement a synchronous message-passing layer. Our specifications contain
predicates with nonlinear arithmetic, for example, to represent footprints of components as spheres.
Obstacle are represented as passive components, i.e., components which have a physical footprint
but do not execute program. Such components can interact with normal components through input
and state variables and their are considered when checking the absence of collision. On the other
hand, the obstacles are excluded from the checks related to communication, e.g., synchronisability.
We use the dReal4 SMT solver [Gao et al. 2013] to discharge validity queries. The running times
are obtained on a Intel i7-7700K CPU at 4.2GHz and dReal4 running in parallel on 6 cores.

Tests. We evaluate our system on two benchmarks and a more complex case study: (1) We
test scalability of the verification using micro-benchmarks. (2) We compare our approach with
previous approaches on a set of robotic coordination scenarios from the literature [Banusic et al.
2019; Majumdar et al. 2019], and (3) As a large case study, we verify and implement a complex
choreography example based on a variation of the example from Sec. 4.5.
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Fig. 7. Parallel lanesmicro-benchmarks

(1) Micro-benchmarks. The micro-benchmarks com-
prise a parametric family of examples that highlight the ad-
vantage of our motion session calculus, specifically the sepa-
rating conjunction, over previous typing approaches [Majum-
dar et al. 2019]. The scenario consists of carts moving back
and forth along parallel trajectories, and is parameterised by
the number of carts. Fig. 7 shows the verification times for
this example in the two systems. We start with 2 robots and
increase the number of robots until we reach a 200 s. timeout
for the verification. The previous calculus is discrete-time
and does not separate independent components. Thus, the type system synchronises every process
and, therefore, generates complex collision checks which quickly overwhelms the verifier. Our
global types use the separating conjunction to split the specifications into independent pieces and
the verifcation time increases linearly in the number of processes.

Setup for (2) and (3). For examples used previously in related works [Banusic et al. 2019;
Majumdar et al. 2019], we write specifications using our motion session types, taking advantage of
the modularity of the type system. For the new case study (part (3)), we implement a variation of
the example presented in Sec. 2, where we decouple the producer placing an object and a sensor
that determines if the object is green or red. Thus, after the producer places an object on the cart,
the cart first moves to the sensor, communicates with the sensor to get the color, and then delivers
the object as described in the protocol. We filmed our experiments and a short video can be seen
in the supplementary materials. We use three robots: a custom-built robot arm modified from
an open-source arm, a commercial manipulator, and a mobile cart, as shown in Figure 8b. We use
placeholders for the producer arm and color sensor, as we do not have additional hardware (and
arms are expensive). The robots are built with a mix of off-the-self parts and 3D printed parts as
described below.

Arm. The arm is a modified BCN3D MOVEO (https://github.com/BCN3D/BCN3D-Moveo). The
upper arm section is shortened to make it lighter and easier to mount on a mobile cart. It has three
degrees of freedom. The motion primitives consist of moving between poses and opening/closing
the gripper. The motion is a straight line in the configuration space (angles of the joints) which
corresponds to curves in physical space.

Panda Arm. The Panda arm by Franka Emika (https://www.franka.de/technology) is a seven
degrees of freedom commercial manipulator platform. It is controlled similarly to the MOVEO arm
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but with a more complex configuration space. The Panda arm has a closed-loop controller and can
get to a pose with an error less than 0.1mm. The controller also comes with collision detection using
feedback from the motors. We command this arm using a library of motion primitives provided by
the manufacturer.

Mobile Carts. There are two carts. Both are omnidirectional driving platforms. One uses
mecanum wheels and the other omniwheels to get three degrees of freedom (two in translation,
one in rotation) and can move between any two positions on a flat ground. The advantage of using
such wheels is that all the three degrees of freedom are controllable and movement does not require
complex planning. Its basic motion primitives are moving in the direction of the wheels, moving
perpendicularly to the direction of the wheels, and rotating around its center.

The arm and cart are equipped with RaspberryPi 3 model B to run their processes and use stepper
motors. This enables a control of the joints and wheels with less than 1.8 degree of error. However,
these robots do not have global feedback on their position and keep track of their state using dead
reckoning. This can be a challenge for the cart, which keeps accummulating error over time. As
our example is a loop, we manually reset the cart’s position when it gets back to the producer
after delivering the object. (A more realistic implementation would use feedback control, but we
omit this because control algorithms are a somewhat orthogonal concern.) For the producer and
the color sorter, we run the processes but have placeholders in the physical world and realise the
corresponding action manually. All computers run Ubuntu 18.04 with ROS 2 Dashing Diademata.

Table 3 shows the specification for the robots and their motions. As the two carts share most of
their specification, we group them together. The specification includes the geometrical description
of the robots and the motion primitives.

(2) Revisiting the Examples from PGCD. As we build on top of PGCD, we can use the
examples used to evaluate that system. We take 4 examples, for which we compare the specification
effort in the previous calculus [Majumdar et al. 2019] to our new calculus. As the two calculi have
different models for the time and synchronisation, we made some minor adaptations such that the
same programs can be described by the two calculi. The old calculus requires motion primitives
to have fixed duration and does not support interruptible motions. Furthermore, there is no “∗”
in the old calculus so all the motions are always synchronised. In our new specification, we take
advantage of our richer calculus to better decompose the protocol. We use the following scenarios.
Fetch. in this experiment, the Moveo arm is attached on top of a cart. The goal is to get an object.

The cart moves toward the object until the object if within the arm’s reach. The arm grabs
the object and the cart goes back to its initial position.

Handover. This experiment is a variation of the previous one. There are two carts instead of one
and the object to fetch is on top of the new cart. The two carts meet before the arm takes an
object placed on top of the second cart and then, both go back to their initial positions.

Twist and Turn. In this experiment, the two carts start in front of the each other. The arm takes
an object from the small cart. Then all three robots move simultaneously.
The cart carrying the arm rotates in place, the other cart describes a curve around the first
cart, and arm moves from one side of the cart to the other side. At the end, the arm puts the
object on the carrier.

Underpass. In this experiment, the arm and the cart cooperate to go under an obstacle. First, the
cart goes toward the arm, which takes the object from the cart. The cart goes around the arm
passing under an obstacle. Finally, the arm puts the object back on the cart on the other side
of the obstacle.

Table 2 reports the size of the examples and their specifications, as well as the verification time.
The verification time is broken down into syntactic well-formedness checks on the choreography,
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Table 2. Programs, specification, and verification time for the PGCD examples. “Prev” refers to [Majumdar
et al. 2019].

Scenario Program (Loc) Global Type Syntactic Motion Typing (s.)
(LoC) Checks (s.) Compatibility (s.)

Arm Cart 1 Cart 2 Prev This work Prev This work Prev This work Prev This work

Fetch 14 19 − 22 42 0.1 0.1 > 3600 3 7 0.1 0.1
Handover 9 8 6 14 26 0.1 0.1 2224 70 0.1 0.1
Twist and turn 12 16 6 15 17 0.1 0.1 599 203 0.1 0.1
Underpass 18 3 14 21 65 0.1 0.1 187 114 0.1 0.1

(a) Setup (b) Sequence of motions

Fig. 8. Experimental setup for the sorting example

the motion compatibility checks for the trajectories, and typing the processes w.r.t. local types. The
motion compatibility checks dominate the verification time. When we compare our new calculus to
the previous approach, we can observe that the global types are slightly larger but the verification
time can be significantly smaller. The increase in specification size comes with the addition of new
Assume-Guarantee contracts when ∗ is used.

The verification time from the existing specification are higher than the time reported in the
previously published results. When implementing our new calculus, we found and fixed some bugs
in the verifier code from PGCD. Those bugs resulted in incomplete collision checks and fixing
them increased the burden on the SMT solver.3

(3) A Complex Case Study. The purpose of the case study is to show that we can semi-
automatically verify systems beyond the scope of previous work. Table 3 shows the sizes of the
processes (in lines of code, in the syntax of PGCD) and statistics related to the global specification
and verification time. The global specification consists of the global type, the environment descrip-
tion, and (manually provided) annotations for the verification. The annotations are mostly related
to the footprints and the parallel composition. Each time we use the parallel composition operator
we specify a partition of the current footprint (the “∃FP1, FP2” in rule [AGcomp]).

In Table 3, we split the running times into the well-formedness checks which can be done
syntactically, the verification conditions for the execution of the motion primitives, and the typing.
We did not try to encode this example using the older PGCD specifications for two reasons. First,
the stronger requirement on discrete time steps and global synchronisation in time in the previous
calculus would subtantially change this example. Remember that motions in [Majumdar et al. 2019]
are specified simultaneously for all the robots and must have the same duration. When multiple
motion primitives have different durations, a motion step can only be as long as the shortest motion.
Thus, we would need to chunk the longer motions into a sequence of smaller steps. This would, in
3 Two out of 217 queries in the Fetch example are particularly hard for the solver and could not be solved with 1 hour. We
suspect a bug in the solver as all the other queries are solved in 134s.
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Table 3. Programs, motion specification, type, and verification time

Robot Motion Spec (LoC) Program (LoC) Specification

Moveo arm 306 28 Global type 96 LoC
Panda arm 348 31 Syntactic checks 0.2 s.
Carts 404 45 Compatibility checks 2410 s.
Sensor/Producer 105 17 / 10 Typing 3.1 s.

turn, make the (sub)typing much more difficult as one motion step in the code would correspond to
a sequence of motion steps in the specification. Second, as the previous calculus does not include
the separating conjunction, there is little hope that the SMT solver can cope with the compelxity of
this example: it contains more robots and more complex ones. Because our global types include
separating conjunctions, we can more efficiently generate and discharge the verification conditions.
At the modest cost of specifying the footprints for each thread, the collision checks only need to
consider the robots within a thread and not all the robots in the system. This brings a substantial
reduction in the complexity of the verification conditions.

In conclusion, the case study demonstrates the power of our method in specifying and verifying
non-trivial coordination tasks between multiple robots. It requires the expressiveness of our motion
primitive specifications and the modularity of our separating conjunction.

6 RELATEDWORK
The field of concurrent robotics has made enormous progress—from robot soccer to self-driving
systems and to industrial manufacturing. However, to the best of our knowledge, none of these
impressive systems come with formal guarantees of correctness. Our motivation, like many other
similar projects in the area of high-confidence robotics and cyber-physical systems design, is to be
able to reason formally about such systems.
A spectrum of computer-assisted formal methods techniques can be, and have been, applied

to reasoning about concurrent robotics, ranging from interactive theorem proving to automated
analysis via model checking. As is well known, these techniques provide a tradeoff between manual
effort and the expressiveness of specifications and the strength of guarantees. Our choice using
manually specified choreographies and motion primitive specifications and automatically checked
type correctness attempts to explore a point in the design space that requires manual abstraction of
motion and geometry but provides automated checks for the interaction. We build on a type-based
foundation rather than global model checking to again reflect the tradeoff: our use of choreographies
and projections from global to local types restricts the structure of programs that can be type
checked but enables a more scalable local check for each process; in contrast, a model checking
approach could lead to state-space explosion already at the level of concurrency.

There are a vast number of extensions and applications of session types and choreographies [An-
cona et al. 2016; Gay and Ravera 2017; Hüttel et al. 2016], but little work bringing types to practical
programming in the domain of robotics or cyber-physical systems. We discuss the most related
work. Our starting point was the theory of motion session types and PGCD [Banusic et al. 2019;
Majumdar et al. 2019], whose goals are similar to ours. We considerably extend the scope and
expressiveness of motion session types: through continuous-time motion primitives and through
separating conjunction for modular synchronisation.
Syntactic extensions of original global types [Honda et al. 2008] to represent more expressive

communication structures have been studied, e.g., in [Lange et al. 2015], in the context of synthesis
from communicating automata; in [Castagna et al. 2012] to include parallel and choices; in [De-
mangeon and Honda 2012] to represent nested global types. Our aim is to include the minimum
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syntax extension to [Honda et al. 2008] to represent separation and synchronisations best suited to
implementing robotics applications. In turn, a combination of motion primitives and predicates
required us to develop a novel and non-trivial data flow analysis of global choreographies for the
well-formedness check.

Hybrid extensions to process algebras [Bergstra and Middelburg 2005; Liu et al. 2010; Lynch et al.
2003; Rounds and Song 2003] extend process algebras with hybrid behaviour and study classical
concurrency issues such as process equivalences. Extensions to timed (but not hybrid) specifications
in the 𝜋-calculus are studied in Bocchi et al. [2019, 2014] to express properties on times on top of
binary session typed processes.
The theory of hybrid automata [Alur et al. 1995; Henzinger 1996] provides a foundation for

verifying models of hybrid systems. The main emphasis in hybrid automaton research has been
in defining semantics and designing model checking algorithms—too many to enumerate, see
[Henzinger 1996; Platzer 2018]—and not on programmability. Assume guarantee reasoning for
hybrid systems has been studied, e.g. [Benveniste et al. 2018; Nuzzo 2015; Nuzzo et al. 2015; Tripakis
2016]. These works do not consider programmability or choreography aspects.

Deductive verification for hybrid systems attempts to define logics and invariant-based reasoning
to hybrid systems. Differential dynamic logic (dL) [Platzer 2018; Platzer and Tan 2018] is a general
logical framework to deductively reason about hybrid systems. It extends dynamic logic with
differential operators and shows sound and (relatively) complete axiomatisations for the logic.
Keymaera [Fulton et al. 2015] and HHL Prover [Wang et al. 2015] are interactive theorem provers
based on hybrid progam logics. These tools can verify complex properties of systems at the cost of
intensive manual effort. In contrast, we explore a point in the design space with more automation
but less expressiveness. The “trusted base” in an interactive theorem prover is the core logic;
optimizing the trusted base was not one of our goals.

A well-studied workflow in high-confidence cyber-physical systems is model-based design (see,
e.g., [Henzinger and Sifakis 2007] for an overview), where a system is constructed by successive
refinement of an abstract model down to an implementation. An important problem in model-
based design is to ensure property-preserving refinement: one verifies properties of the system
at higher levels of abstraction, and ensures that properties are preserved through refinement. In
the presence of continuous dynamics, defining an appropriate notion of refinement and proving
property-preserving compilation formally are hard problems [Bohrer et al. 2018; Yan et al. 2020].

In our implementation, we use automated tools based on the dReal SMT solver [Gao et al. 2013].
Our verification is semi-automatic, as we require user annotations for footprints or for the motion
primitive specifications, but discharge verification conditions through dReal. Of course, there are
programs that go past the capability of the solver—this is already true for systems that only have
concurrency or only deal with dynamics. Our proof rules is to allow sound reasoning, potentially
inside an interactive prover. Our implementation shows that—at least some—nontrivial examples do
allow automation. Non-linear arithmetic is difficult to scale. Our observation is that a combination
of manual specification of abstract footprints that replace complex geometrical shapes with simpler
over-approximations along with the power of state-of-the-art SMT solvers is reasonably effective
even for complicated examples.
Our choice of dReal (as opposed to a different SMT solver) is dReal’s “off the shelf” support for

non-linear arithmetic and trigonometric functions. Trigonometry shows up in our handling of
frame shifts. Note that dReal only considers 𝛿-decidability and can be incomplete in theory. We
expect that most implementations will be collision free in a “robust” way (that is, two robots will
not just not collide, they would be separated by a minimum distance). Therefore we believe the
potential incompleteness is less of a concern. Indeed, the main limiting factor in our experiments
was scalability for larger verification conditions.
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Formal methods have been applied to multi-robot planning [Desai et al. 2017; Gavran et al. 2017].
These systems ignore programming or geometry concerns and view robots as sequences of motion
primitives.

7 DISCUSSION AND FUTURE DIRECTIONS
In this paper, we have shown how choreographies can be extended with dynamic motion primitives
to enable compositional reasoning in the presence of continuous-time dynamics. We have developed
an automated verification tool and a compiler from type-correct programs to distributed robotics
applications using ROS and commercial and custom-made robotics hardware. Our goal is to integrate
types and static analysis techniques into existing robotics frameworks, rather than provide fully
verified stacks (see, e.g., [Bohrer et al. 2018]). We explain our language features in terms of a calculus
but session processes can be easily embedded into existing frameworks for robot programming. We
have demonstrated that the language and type system are expressive enough to statically verify
distributed manoeuvres on top of existing hardware and software.

We view our paper as a first step in verifying robotics programs. There are many other important
but yet unmodelled aspects. We outline several directions not addressed in our work.

For example, we omit probabilistic robotics aspects, including the perception stack (vision, LIDAR,
etc.), and aspects such as filtering, localisation, and mapping [LaValle 2012; Thrun et al. 2006]. These
will require a probabilistic extension to our theory. Such a theory requires a nontrivial extension
of program logics and analyses for probabilistic programs [McIver and Morgan 2005] with the
verification and synthesis for stochastic continuous-state systems [Zamani et al. 2014]. We also
omit any modeling of the perception stack or dynamic techniques, often based on machine learning,
of learning the environment. Instead, our models assume worst-case disturbance bounds on the
sensing or dynamics. We believe an integration of learning techniques with formal methods is an
interesting challenge but goes beyond the scope of this paper.

Our framework statically verifies properties of a program. In practice, robots work in dynamic,
often unknown, environments [LaValle 2006, 2012; Siegwart et al. 2011; Thrun et al. 2006]. When
confronted with a formal method, domain experts often expect that a verification methodology
should be able to verify correctness of behaviors in an arbitrary dynamic environment and any
failure to do so simply shows the inadequacy of verification techniques. Formal methods cannot
prove correctness in an arbitrary dynamic environment. When we verify a system, it is—as true in
any formal methods—relative to an environment assumption; such assumptions are usually implicit
in robotics implementations. Thus, we can model moving obstacles, etc. in the environment through
assumptions on the behaviour of such obstacles (e.g., limits on their speed or trajectories); these
assumptions are propagated by our assume-guarantee proof system, and show up as a premise in
the eventual correctness proof.
We focus on communication safety and collision freedom as the basic correctness conditions

any system has to satisfy. An interesting next step is to extend the reasoning to more expressive
specifications. For safety specifications, such as invariants, one could reduce the problem to checking
communication safety. For liveness specifications, the proof system would need to be extended
with ranking arguments.

While all the above problems are interesting in their own right, they are orthogonal to our
main contribution that one can reason about concurrency and dynamics in continuous time in
a type-based setting. Our future work will look at more expressive scenarios, but the setting in
our paper already required complex proofs and it was important for us to get the core correct. We
believe a verification system that can faithfully model and uniformly reason about more complex
interactions and that scales to larger implementations remains a grand challenge in computer
science (see, e.g., [Lozano-Pérez 1983] for an articulation of these challenges).
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