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Modern web applications can now offer desktop-like experiences from within the browser, thanks
to technologies such as WebSockets, which enable low-latency duplex communication between the
browser and the server. While these advances are great for the user experience, they represent a
new responsibility for web developers who now need to manage and verify the correctness of more
complex and potentially stateful interactions in their application.

In this paper, we present a technique for developing interactive web applications that are stati-
cally guaranteed to communicate following a given protocol. First, the global interaction protocol is
described in the Scribble protocol language – based on multiparty session types. Scribble protocols
are checked for well-formedness, and then each role is projected to a Finite State Machine represent-
ing the structure of communication from the perspective of the role. We use source code generation
and a novel type-level encoding of FSMs using multi-parameter type classes to leverage the type
system of the target language and guarantee only programs that communicate following the protocol
will type check.

Our work targets PureScript – a functional language that compiles to JavaScript – which cru-
cially has an expressive enough type system to provide static linearity guarantees. We demonstrate
the effectiveness of our approach through a web-based Battleship game where communication is
performed through WebSocket connections.

1 Introduction

A common trait amongst modern JavaScript-based interactive web apps is continuous stateful communi-
cation between the clients and the servers to keep the interactions responsive. This is in stark contrast to
more traditional web pages, the related REST architecture [5], where a stateless HTTP request-response
is sufficient to retrieve static web pages and their associated resources from the servers. These usecases
led to the emergence of advanced communication transports over HTTP connections such as WebSock-
ets [23] protocol or the WebRTC [16] project, which provide web apps with full-duplex communication
channels (between browser-server and browser-browser respectively) from within the web browser. In
addition to the performance improvements by reducing connections per HTTP request to a single persis-
tent connection, they enable structured, bidirectional communication patterns not possible or convenient
with only stateless HTTP connections.

As the complexity of interactions in a web app approaches that of a networked desktop application, it
becomes increasingly important to ensure that the web app is free of communication errors that may lead
to its incorrect execution. Hence the implementation should be verified against a protocol specification.

Consider a simple turn-based board game Battleship between two players. Each player starts the
game by placing battle ships (contiguous rectangles) on a 2D grid, where the ships configuration is not
revealed to the opponent. Players then take turns to guess the coordinate of opponent’s ships, where the
opponent respond if it is a hit or a miss, and the game continues until all ships of one player have been
sunk. We will use this game as our running example in the rest of the paper.
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Figure 1: An architecture and message pattern of web-based Battleship.

A web-based im-
plementation of the game
may use the architec-
ture depicted in Fig-
ure 1. The players’
clients and the game
server are connected
by bidirectional Web-
Socket connections. Each connection follows a predefined structured communication protocol, where
the sequence and the label of the messages passed between the participants are deterministic. Figure 1
also shows a snapshot of the messaging pattern between the participants, which is divided into three
phases: initialisation, Player 1’s turn, and Player 2’s turn. During initialisation, both players send an
Init(Config) message to the server with their ship configurations. The game then enters the second phase
where Player 1 indicates the coordinate to attack with a Attack(x,y) message, followed by a reply from
the server which is either a Hit or a Miss message. At the same time, the Server forwards the (x,y)
to Player 2 as a Hit(x,y) or a Miss(x,y) message respectively. Finally, the roles of Player 1 and 2 are
reversed, and the game alternates between Player 1 and 2, until a winner can be decided.

While implementations of the game may use different user interfaces (e.g. web forms, graphical with
HTML5 canvas), a correct implementation of the game client should conform to the aforementioned pre-
defined communication protocol for the communication aspects of the game. We use Multiparty Session
Types (MPST) [10] to specify and verify communication protocols. Since our target endpoint language,
JavaScript, is dynamically typed, to apply the code generation methodology from MPST, we could use
a statically typed language and cross compile the language to JavaScript. Tools such as OCaml’s Js_-
of_ocaml [31, 3] compiler or Haskell’s GHCJS [9] compiles the respective language into JavaScript,
but the generated binaries are large in size and these languages have their own runtimes on top of
JavaScript which can complicate integration with existing JavaScript code. Alternatively, we can ap-
ply MPST to typed languages that are designed for JavaScript generation, examples include Microsoft’s
TypeScript [24] or Google’s Dart [6]. Their type systems are, however, fairly basic compared to func-
tional programming languages, which restricts the static guarantees we can provide.

In this work we use PureScript [29], a pure functional language inspired by Haskell, which compiles
to human readable JavaScript and doesn’t have a runtime. It has good library support for web develop-
ment and a library for cooperatively scheduling asynchronous effects, of which further details are given
in § 3.2.
Contributions This paper presents a type-safe web application development work flow following the
MPST framework: (1) A first multiparty session-based code generation work flow targeting interactive
web applications; (2) A novel encoding of Endpoint FSMs [11] using multi-parameter type classes; and
(3) A lightweight session runtime using the encoding which also statically prevents non-linear usage of
communication channels.

Figure 2 presents our proposed type-safe web application development work flow. We implement
our web application development framework in PureScript on the top of the Scribble framework.

2 The Scribble protocol language

Our development work flow extends Scribble [2, 32], a protocol specification language and code gener-
ation framework based on MPST. Development starts by specifying the overall communication structure
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Figure 2: Overview of development work flow.

of the target application as a global protocol in Scribble, which is then validated by the Scribble tool
chain to ensure the protocol is well-formed. Scribble protocols are organised into modules where each
module contains declaration of message payload types, and one or more global protocol definitions. We
explain the syntax and structure of Scribble protocols using the Battleship game Scribble protocol in
Listing 1. First, we declare the module of the protocol with the keyword module and the module name
(e.g. line 1). It is followed by message type declaration statements using the type ... as keywords.
Messages in Scribble is written as Label(payloads), where Label is an identifying label for the mes-
sage, and payloads is a list of types for the payloads of the message. For example, line 3 declares a new
payload type named Location, and specifies that the concrete type corresponds to a PureScript data type
Game.Battleships.Location. It is later used on line 6 in the protocol body as the payload type of
the Attack(Location) message. By associating the message types used in a protocol with a concrete
type from the implementation language, messages specified in the protocol can be verified against the
implementation of the protocol, which we will discuss in more details in the next section (§ 3.2.1).

1 module Game;

2 type <purescript> "Config" from "Game.BattleShips" as Config; // Ship configuration

3 type <purescript> "Location" from "Game.BattleShips" as Location; // Ship position

4

5 global protocol Game(role Atk, role Svr, role Def) {

6 Attack(Location) from Atk to Svr;

7 choice at Svr { // Svr knows if it’s a hit

8 Hit(Location) from Svr to Atk; Hit(Location) from Svr to Def;

9 do Game(Def, Svr, Atk);

10 } or {

11 Miss(Location) from Svr to Atk; Miss(Location) from Svr to Def;

12 do Game(Def, Svr, Atk);

13 } or {

14 choice at Svr {

15 Sunk(Location) from Svr to Atk; Sunk(Location) from Svr to Def;

16 do Game(Def, Svr, Atk);

17 } or {

18 Winner() from Svr to Atk; Loser() from Svr to Def;

19 }

20 }

21 }

Listing 1: Main body of the Battleships protocol.

Line 5 defines the global protocol Game with three roles: an attacker (Atk), the server (Svr), and a de-
fender (Def). In the body of the protocol, Atk first sends a coordinate to attack (i.e. a Attack(Location
) message) to Svr, using a message passing statement on line 6. After receiving the message, assuming
Svr holds the coordinates of the ship configurations of both the players, Svr will decide whether the
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coordinate is a hit or a miss. Depending on the outcome, the protocol will exhibit alternative behaviours.
For instance, if it is a hit, Svr will send a Hit message to Atk to notify it of the outcome, and also a
Hit message with the coordinate being attacked to Def; similarly if it is a miss, Miss message will be
sent instead. This is written in Scribble as a choice statement (line 7–20). The syntax choice at Svr

means the choice is being made at the role Svr, and also that Svr will the first sender of message in each
of the possible branches: the hit branch on lines 8–9 or the miss branch on lines 11–12. At the end of
the hit branch (line 9), we use a do statement to recursively call the Game protocol to move to the next
round of the game. A do statement includes role parameters to the protocol, where in this branch the
current Atk role and Def role continues as Atk and Def respectively, such that the attacker can launch
consecutive attacks if they had been hit. However, in the last line of the miss branch (line 12), Atk and
Def are swapped, meaning that if there is a miss, then the current defender gets a chance to attack in the
next round of game. Notice that in our protocol, we also describe a third branch in addition to the hit
branch and miss branch on lines 14–19. This branch describes the situation when a battleship is sunk
(i.e. all coordinates of a ship are hit). There are two possible outcomes, so we use a nested choice

statement to describe the two branches: the first branch is the game continues as a hit branch, but with
a Sunk message in place of a Hit message; the other branch is the endgame – i.e. all battleships of one
player are sunk – in this branch, a winner is declared with a Winner and Loser message, and there are
no do statements in this branch as the game ends immediately with no need for a next round of game.

We use the Scribble tool chain to check that the Scribble protocol is well-formed. For example, a
choice statement is well-formed only if the first message of all branches are sent by the choice maker,
otherwise the roles may be left in an inconsistent state. A well-formed global protocol can then be
projected automatically into an endpoint protocol for each role in the protocol. An endpoint protocol is
a localised version of the global protocol which includes only the interactions if they directly involve the
target role. Scribble can represent an endpoint protocol as an equivalent Endpoint Finite State Machine
(EFSM), where the communication interactions of the protocol are represented by transitions in the
EFSM between the protocol states. We use the definitions of EFSMs from Scribble in [11] as a basis.

3 Endpoint programming with EFSMs

The EFSMs derived from the global protocol represent the local communication behaviour at each of the
endpoints, and is used as a guidance for developers to implement their application endpoint. To integrate
the EFSMs in the user’s programming work flow, our approach interprets states and transitions in the
EFSMs as (uninhabited) types and type-class instances in the target programming language. We first
present an encoding of the types of ESFM transition such as send and receive as type classes (§ 3.1),
then we apply the encoding to generate types and instances for the user’s application (§ 3.2.1).

3.1 Transitions as Type Classes

A key contribution of this paper is our encoding of EFSMs from a Scribble protocol into type check-
ing constraints with multi-parameter type classes (MPTCs). Type classes [8] were introduced to allow
functions to be overloaded, where a type is polymorphic but constrained to be an instance of the class.
Examples of common type classes include Eq a, Show a and Monoid a. MPTCs [15] extend this by al-
lowing more than one type parameter in a type class definition. Combined with functional dependencies
between type parameters, which describe that a subset of the parameters uniquely determine another, it
is possible to encode relations between types.
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Figure 3: Send (top left), Receive (top right), Label selection (bottom left), and Label branching (bottom
right) transition type classes and their state diagrams.

By representing kinds of transitions as MPTCs, it is possible to both constrain the usage of the
corresponding functions and bring into context additional information about the transition, such as the
next state, the type of the value communicated and the role involved. Our encoding exploits the properties
of EFSMs derived from a well-formed protocol by the Scribble toolchain. The properties guaranteed by
EFSMs as noted in [11] include: (1) there is exactly one initial state; (2) there is at most one terminal
state; and (3) every state in an EFSM is one of three kinds: an output (resp. input) state where every
transition is an output (resp. input) or a terminal state.

We first consider EFSM transitions where the current state has only a single transition (hence a single
successor state). Figure 3 (top row) illustrates the type class definitions for output and input states. The
type parameters s, t, and a are the type representing the current and the successor state of the transition,
and the message payload type of the output and input action. Our current state s determines all other
parameters, which the functional dependency s ; t r a describes. A similar pair of transition type
classes exist for Connect and Disconnect for establishing and terminating connections (i.e. connection
actions from [12]) respectively but omitted here due to space constraints.

For output S! and input states S? in the EFSM which have multiple transitions and successor states
(i.e. branching and selection), each of the transitions can be identified by their message payload label,
used for determining the selected branch between the sender and the receiver. Our encoding makes the
label selection explicit, by splitting each of the output (or input) transitions into two parts: a label send
(resp. receive), then the actual output (resp. input) action. A new intermediate state T is introduced
between the two transitions and acts as the output (or input) state for the actual output (resp. input)
transition for each branch, such that transitions of T can be encoded into Send or Recv type classes
above. The original multi-transition states are no longer output and input states after the transformation,
as the transitions now perform label send and receive instead of output and input actions. We encode
the set of label send and receive transitions from the same state as Branch and Select type classes, as
depicted in Figure 3 (bottom row) for a type-safe mapping between the labels and the chosen branches.
The type parameter s is the initial state of the transition, and ts is a row list of tuples (li, ti)i∈|ts| containing
type-level string label li, and its corresponding continuation state ti for the branch. Instances of ts are used
to express the finite number of possible branches in the EFSM, such that branches with undefined labels
in the EFSM cannot be used. Similar to the Send and Recv type classes, the type classes are annotated
with their functional dependencies, indicating that instances of the initial state s uniquely determines ts.
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import Game.BattleShips (Config , Location)

...

data Init = Init Config

...

foreign import data BattleShips :: Protocol

foreign import data P2 :: Role

instance roleNameP2 :: RoleName P2 "P2"

...

foreign import data S34 :: Type

foreign import data S34Connected :: Type

foreign import data S36 :: Type

...

instance initialP2 :: Initial P2 S34

instance terminalP2 :: Terminal P2 S35

instance connectS34 :: Connect P2 GameServer S34 S34Connected

instance sendS34 :: Send GameServer S34Connected S36 Init

instance branchS36 :: Branch P2 GameServer S36

(Cons "loser" S36Loser (Cons "miss" S36Miss (Cons "hit" S36Hit Nil)))

...

S34

S34Connected

Connect

S36

Send

S36Loser

"loser"

S36Miss

"miss"

S36Hit

"hit"
Branch

Figure 4: Example fragment of generated types and its corresponding EFSM.

3.2 Implementation

3.2.1 Types generation

Given a valid Scribble protocol, our framework generates from the corresponding EFSM a new data
type to represent each state, and the transitions between the states are instantiated as type instances of
type classes described in § 3.1. The types generated by the framework is a static guidance for users
to use the session runtime to perform communication in way that conforms to the input protocol. A
fragment of the EFSM and its corresponding generated types for the Battleships protocol is given in
Figure 4. Message payload types are imported to the PureScript module from the specified path in the
protocol, and are defined by the user. For example, the Config type in Figure 4 corresponds to the
type declaration of the same name in the protocol (line 2 in Listing 1), imported from user-defined
Game.Battleships.Config. Role and RoleName are also generated from the protocol, where the lat-
ter provides metadata (a symbol representation) of a role, and is used by the runtime as a key for accessing
communication channels. Finally, the type class instances initialP2 and terminalP2 are the initial
and terminal transitions (no predecessor and successor states respectively); connectS34, sendS34 and
branchS36 are normal transitions for connect, send and branch actions. For each branch transition,
a RowList (a way to inductively represent a row type) is used to describe labels that can be chosen from
and their corresponding successor, e.g. loser label corresponds to the S36Loser successor state.

3.2.2 Session runtime

The session runtime is a library of communication combinators that can only be used to construct cor-
rect protocol implementations. These are: connect/disconnect (for managing connections between
participants), send/receive (for point-to-point message passing), choice/branch (for branching and
selection) and session (for running the session).
newtype Session m c i t a = Session (( Channels c i) -> m (Tuple (Channels c t) a))

bind :: Monad m => Session m c i s a -> (a -> Session m c s t b) -> Session m c i t b

A Session (above) is a continuation that consumes a Channel type, indexed by an initial state
channel type s, and (effectfully) produces a channel in a terminal state t with a result a. This definition
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session :: forall r c p s t m a.

Transport c p

=> Initial r s

=> Terminal r t

=> MonadAff m

=> Proxy c

-> Role r

-> Session m c s t a

-> m a

choice :: forall r r’ rn c s ts u funcs row m p a.

Branch r r’ s ts

=> RoleName r’ rn

=> IsSymbol rn

=> Terminal r u

=> Transport c p

=> Continuations (Session m c) ts u a funcs

=> ListToRow funcs row

=> MonadAff m

=> Record row -> Session m c s u a

send :: forall r rn c a s t m p.

Send r s t a

=> RoleName r rn

=> IsSymbol rn

=> Transport c p

=> EncodeJson a

=> MonadAff m

=> a -> Session m c s t Unit

receive :: forall r rn c a s t m p.

Receive r s t a

=> RoleName r rn

=> IsSymbol rn

=> Transport c p

=> DecodeJson a

=> MonadAff m

=> Session m c s t a

Figure 5: Sample types and primitives in the session runtime.

is not exported outside of the module, so the only way to construct a Session is through using one of
the communication combinators. We can compose two sessions where the terminal state of the first is the
initial of the second, resulting in a session that starts at initial state of the first and ends in the terminal
state of the second using (an indexed [1]) bind. Given a session whose initial and terminal states match
that of a protocol (provided by the Initial and Terminal constraints) using session we can ‘run’ it
(to produce a monadic value). The user is not required to provide concrete states, as the type checker can
determine them by solving the constraints.

In Figure 5 we provide the types of some session combinators. send can be read as “given a value
a can be encoded as JSON and there is a role r you can send the value to, by transitioning from state
s to t, then it will produce the session that starts at s and terminates at t producing the Unit value”.
receive is similar except instead the session produces the value received. choice can be read as “given
a record providing continuations for each of the branches ts from the state s that reach the terminal state
u producing a value a, then it will produce a session that starts at s and terminates at u producing a”. The
runtime will then select the appropriate continuation based on the message received. The MonadAff class
used by all of the combinators can be thought of like MonadIO in Haskell and allows the asynchronous
communication effects to be lifted into an arbitrary monad stack. A concrete example of their use in our
framework is shown in § 4.
Implementing branching In our choice combinator we need to decode the JSON, which we will apply
the continuation to, however we only know what type it should be decoded to at runtime based on the
message we receive. One solution would be to manually decode the JSON in the continuation, however
this is unsatisfactory as the runtime library should consistently abstract this. We solve this by inserting
Receive states, which a branch continuation must begin with – this works because we statically know
all possible types the value could be and enumerate them all. This is like receiving a label selecting
the branch, followed by the value, however in practice a single message is communicated. The runtime
selection relies on the JSON encoding of message data type, however as these are generated this is safe.
Transport abstraction In our example communication is performed over WebSocket connections, how-
ever this can be generalised to a reliable, order-preserving asynchronous channels. The type variable c

in Session and Channel allows this parameterisation. Communication in our runtime is implemented
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through abstract primitives defined in a Transport type class, allowing library users to provide their
own transport layer. With this abstraction we have additionally implemented support for using AVar’s
(similar to Haskell’s MVar) to perform communication locally through shared memory.
Linear usage of channel Through our careful choice of library design, inspired by existing work using
Indexed Monads [1], channels are not directly accessed by the programmer. This means reuse is im-
possible and by requiring continuation to a terminal state to ‘run’ a session, use is guaranteed. A faulty
runtime implementation could still violate this, however this only has be to verified once by the library
author rather than the user.

4 Case study

We present an implementation of the Battleship running example in PureScript using our framework. The
full implementation can be found in [14]. Most web frameworks (e.g. React or Halogen) are event driven,
where an update function handles events fired by user interaction. There is no knowledge however about
the order in which events are received, or that only a subset of events are possible in a given state (e.g. if
currently a button is disabled). This means that it is not possible to have a session that spans more than
one event in an event driven framework, while still preserving static linearity guarantees by construction.
We therefore use the Concur UI framework that constructs UIs sequentially, which is a perfect fit for
inherently sequential sessions.
Widgets Concur is built around composing Widgets. A Widget is something that has a view, can
internally update in response to some events, and will return some value. Consider the following snippet
of code, which defines a play button that displays "Play game" and returns once is has been pressed.

play :: forall a. Widget HTML Unit

play = button ’ [unit <$ onClick] [text "Play game"]

We can then sequence this button with the text "Game over!", which will be displayed after the but-
ton has been pressed. Note that the type "forall a. a" means this widget can never return (as it is
impossible to produce a value of this type) and so will be displayed forever.

example :: forall a. Widget HTML a

example = do

play

text "Game over!"

Lifting widgets Our runtime combinators are parameterised over any MonadAff1 so that we can pick
Widget HTML from the Concur UI framework. lift lets us lift a widget into a session, which produces
a value while remaining in the same session state.

lift :: forall c i f a. Functor f => f a -> Session f c i i a

We build a widget that plays the game as Player 1, with interleaved sessions and user input. We begin
by first connecting to the GameServer, followed by running the setupGameWidget to allow the user to
place their ship. This configuration is then sent to the GameServer and the player attacks. (Note: we use
PureScript’s support for rebinding bind and pure in a do block).

battleShipsWidgetP1 url :: URL -> Widget HTML Unit

battleShipsWidgetP1 = session

(Proxy :: Proxy WebSocket)

1The MonadAff class is an asynchronous effect monad, in some respects similar to MonadIO in Haskell.
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(Role :: Role P1) $ do

connect (Role :: Role GameServer) url

config <- lift setupGameWidget

send $ Init config

let pb = mkBoard config

let ob = mempty :: Board OpponentTile

attack pb ob

Limitations It is difficult to extract common ‘source code’ to a single function, as its type is dependent
on where it is used in the protocol. This can result in duplicated identical code, but with a different
type signature. Technically it is possible to write out the state polymorphic version, however you would
need to chain all the FSM constraints required by the runtime combinators which is tedious. This is a
fundamental limitation of the FSM representation compared to actually embedding session types in the
language. Additionally when splitting an implementation into multiple functions the user will need to
provide types for the initial and terminal states of each sub-protocol. For the same practical reasons, this
will be a concrete generated type (e.g. S20), meaning any changes to the Scribble protocol will require
the type to be updated manually.

5 Related work

Scribble-based code generation Code generation from Scribble is an effective way of applying multi-
party session types in mainstream programming languages.

Notably, Scribble-Java [11, 12] was the earliest work to propose hybrid session verification, by gener-
ating Java API from Scribble to statically type check user’s I/O action usages against the generated APIs,
combined with runtime checking of linear channel usages. The work focussed on desktop applications
and only support TCP and HTTP as the communication transport. Scribble-Scala [30] uses Scribble to
generate Scala APIs that use the lchannel library through a linear decomposition of multiparty session
types. The implementation uses the Akka actor framework and supports all transport abstractions pro-
vided by Akka. Neykova et al. [25] implemented in F# a session type provider to support on-demand
compile-time protocol by generating protocol-specific .NET types from Scribble. Pabble [26] generates
C/MPI skeleton code from parameterised Scribble for correct-by-construction role-parameterised MPI
parallel programming but do not use types to check for conformance. The approach was revisited in [4]
using a new distributed formalisation of parameterised Scribble and applied to Go in the Scribble-Go
toolchain, with support for TCP and in-process shared memory transport. StMungo [17, 18] uses Scrib-
ble to generate typestate definitions for static type checking of communication protocols in Java.

This is the first work that applies the session-based API generation approach to WebSocket transport,
and targets JavaScript applications for the web.
Session types in functional languages with linearity There are many approaches to embed session
types natively in advanced type systems found in functional programming languages. The most chal-
lenging aspects of the embedding to support full session type verification is ensuring linear usage of
channel resources. A more comprehensive survey of session types with linearity in functional languages
can be found in [27], we highlight a few works that are closely related to our approach. The Links web
programming language [21, 20] is a functional language designed for tierless web programming, and
recently adds a support for binary session types in the style of GV [19], and has an extension to support
linear types. Adding support for multiparty session types would require to extend the core calculus of the
language. Padovani’s FuSe [28, 22] infers and type checks usage of binary session-based communication
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in OCaml, and uses a hybrid static/dynamic linearity check similar to the hybrid verification approach
in [11]. Session-ocaml [13] implements session types in OCaml with lenses overcoming a linearity issue
but only treats binary session types.

To the best of our knowledge, this work is the first which implements (i.e. generates code from)
multiparty session types with fully static linearity guarantees.

6 Conclusion and Future work

We have presented a type-safe web application development work flow following the MPST framework,
by encoding Endpoint FSMs as type classes and generating PureScript code from the Endpoint FSMs.

Future work include applying the approach to Haskell, although we suspect the ergonomics would
be slightly worse without native row types support. The code generation process can be automated by a
typechecker plugin [7], and also provide better error message by directly traversing the FSM during type
checking. While WebSockets are bidirectional, a connection can only be opened by the browser, which
prevents use in peer-to-peer browser communication. WebRTC could be explored as a solution for this
use case. In our work we treat user interaction as a source of input separate to the session, however by
describing interaction as a session, treating widgets as roles, we may benefit from properties that well
typed protocols provide (i.e. progress). We believe this is an interesting design space where eventually
the need for (a subset of) UI testing could be replaced by type checking.
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