
Nested Protocols in Session Types

Romain Demangeon and Kohei Honda

Queen Mary, University of London

Abstract. We propose an improvement to session-types, introducing
nested protocols, the possibility to call a subprotocol from a parent
protocol. This feature adds expressiveness and modularity to the ex-
isting session-type theory, allowing arguments to be passed and enabling
higher-order protocols definition. Our theory is introduced through a
new type system for protocols handling subprotocol calls, and its imple-
mentation in a session-calculus. We propose validation and satisfaction
relations between specification and implementation. Sound behaviour is
enforced thanks to the usage of kinds and well-formedness, allowing us
to ensure progress and subject reduction. In addition, we describe an
extension of our framework allowing subprotocols to send back results.

1 Introduction

Decentralised computation is becoming more and more popular thanks to the
fast growth of web services and other distributed computing technologies. In
such a distributed framework, agents (users, servers, applications) are inter-
acting through message-passing communications, without central control. The
programmatic coordination of a large number of independent entities interacting
with each other inside a network is a challenging task: without global control,
the only place where coordination can come from is local endpoints. How can we
specify and ensure correctly coordinated behaviour without having any global
control? Session types [11] provide a powerful expressive framework to help solv-
ing this issue, focusing on the notion of session seen as a unit of conversation
among participants called roles. The expected scenario of the session is described
in a global protocol given as a global type, projected into end-point specifications
called local types, describing the behaviour of each role. Those are enforced lo-
cally, either through a static analysis of programs (static validation [8, 3, 13]) or
at run-time (monitoring [2]). If each agent in the network conforms to its local
type, it is guaranteed that their overall interactions conform to the global spec-
ification. In the past few years, the theory of session types has been extended in
several directions. On the one hand, new features added to the language of the
global types allow one to specify more accurately the interactions inside a proto-
col, for instance by including logical assertions [3], or information flow [4]. This
“internal expressiveness” ensure the satisfaction of auxiliary properties: security
(“the messages between Alice and Bob cannot be read by Carol”), or governance
(“Alice can send a buying request to Bob only if she has enough money on her

bank account”). On the other hand, extensions of the session mechanisms al-
low greater control over, for example, how participants join or leave a session
(through dynamic multiparty session [9] or through a reputation system [10]) or
how sessions can be parametrised, increasing “external expressiveness”.

Real-world specifications for decentralised networks are large, complex and
often highly modular: for example, such specifications are found in many use
cases from the development of a large-scale distributed infrastructure for ocean
sciences, Ocean Observatories Initiative [15], with whom we are collaborating.
Among the use cases in the project, several protocols, used in different contexts,
share the same shape. Moreover, some protocols call other protocols. In order to
be able to specify, verify, simplify and organise such complex protocol frameworks
effectively, solid improvements to the theory of session-types are needed.

In this paper, we present a novel approach to session-types that addresses
the structuring principle itself of protocols, increasing both internal and exter-
nal expressiveness. We introduce nesting of protocols, that is, the possibility to
define a subprotocol independently of its parent protocol, which calls the sub-
protocol explicitly. Through a call, arguments can be passed, such as values,
roles and other protocols, allowing higher-order description. At the program-
ming level, subprotocols are realised as subsessions: one agent creates a new
private session, inviting roles of the parent session (internal invitations) as well
as other agents from the network (external invitations). Uninvited participants
of the parent session do not have access to the subsession, allowing one to model
private interactions inside public sessions. This contrasts with the current use of
subprotocols in the protocol description language Scribble [16], where they only
correspond to the in-lining mechanism. As an example, we noticed that in several
use cases described in [15], a negotiation procedure Nego between two agents is
invoked inside a main protocol, and other participants do not take part in that
negotiation. The Nego procedure has its own description, subject to independent
modifications and can be invoked in different contexts for different purposes. The
theory we propose introduces such modularity in the framework of session types,
yielding a solid, formal verification method for distributed programs.

One strong motivation for introducing subprotocols and subsession is that
they are a powerful structuring tool: cross-cutting features such as login, nego-
tiations or security controls can be abstracted from the targeted protocols in a
compositional way, becoming subprotocols. If we update a login protocol to en-
force stronger security checks, specifications of applications using it do not need
be updated. Moreover, nesting allows one to call multiple copies of the same pro-
tocol with different arguments, improving flexibility and readability. This allows
us to clean up and reorganise a large protocol database in [15], by unifying many
protocols with the same shape into one parametrised protocol. Another direct
benefit from nesting is allowing a better separation of the different branches by
inviting participants only when necessary, reducing complexity and resource us-
age. For instance, in protocol P involving Alice,Bob and Carol, if Carol interacts
only if a certain condition is met, we can have Carol act in a separate subpro-
tocol, inviting Carol only if her presence is required. In our framework, internal

invitations to a subsession are sent inside the parent-session, targeting a specific
participant through a linear channel. This extends the existing session-calculi
where invitations are always done externally, through shared channels.

We propose in Section 2 a syntax for nested protocols, with dedicated con-
structors for protocol definitions and protocol calls. In order to ensure sound
composition, we introduce the notion of kinds, “types for types”, and define a
notion of well-formedness. In Section 3, we describe a session-calculus (based on
the π-calculus [14]) handling subsessions. We describe in Section 4 a static val-
idation and a run-time satisfaction, each linking specifications and processes in
the session-calculus. We sketch the main properties of typed processes. Finally
we propose an extension to our theory in Section 5, allowing a subsession to have
a goal: a result that is returned to its parent session.

2 Nested Protocols

Global types Throughout the paper, we use G for global types, T for local types,
l for communication labels, s, k for session names, a, b for shared channels, ` for
transition labels, r, r′ for role identifiers and P for protocol identifiers. We use v
to describe values, which can be base type variables (integers, strings, . . .), labels
or protocol identifiers. x, y are variables, possibly abstracting any value. For any
identifier e, we use ẽ to abstract the sequence e1, . . . , en of unspecified length n.
We use R+ (resp. R∗) for the reflexive (resp. reflexive-transitive) closure of the
relation R. We assume a Barendregt convention for bound variables.

Global types describe protocols from the network point of view: they consist
of sequences of interactions between roles. We choose the already existing syntax
of multi-party session types (e.g., in [3, 1]) as a basis. The syntax for our global
types is given by the following grammar:

G ::= let P = λr̃1, ỹ 7→ new r̃2.G in G′ (declaration)
| r calls P〈r̃, ỹ〉.G (call)
| r1 → r2 : Σi∈I{li(xi).Gi} (com)
| G1 ⊕r G2 | G1 ‖ G2 | µt.G | t (choice,par,rec,rec-var)

Communications between two roles are specified with r1 → r2 : Σi∈I{li(xi :

Si).Gi}, stating that r1 has a directed choice between several labels l̃ proposed
by r2. Each branch expects a value xi and executes the continuation Gi. When
I is a singleton, we write r1 → r2 : l(x : S). Primitive ⊕r is located choice:
the choice for one participant r between two distinct protocol branches. Parallel
composition is denoted by ‖ and recursion by the two operators µt and t. We
assume a congruence over global types, handling implicit unfolding of recursion.

The new primitives addressing protocol stratification are let and calls.
We describe the declaration of an auxiliary protocol, to be called by a main
protocol, by the notation let P = λr̃1, ỹ 7→ new r̃2.G1 in G2. In this notation,
the protocol G1 is identified by P in the main protocol G2. The participants of G1

are explicitly separated into two groups, r̃1 are internally invited from the parent
session and thus given as arguments to P together with values ỹ; whereas r̃2 are

externally invited from the network at the beginning of G1. The counterpart of
this constructor is the protocol call r calls P(r̃, ṽ) stating that participant r

executes an auxiliary protocol P with role arguments r̃, value arguments ṽ. Note
that ṽ can contain protocol identifiers, thus allowing higher-order programming.

Kinds As protocols can be abstracted, called and used as arguments, we in-
troduce a simple and concise discipline for protocols, which ensures that they
are used in an adequate way, well-formedness. In order to formalise this no-
tion, we type all objects appearing in specifications with kinds (types for types)
K,S ::= Role | Val | � | (K1 × · · · × Kn) → K. We use Val to denote the
value-kinds, which are first-order types for values (like Nat for integers) or data
types (such as Req in Section 2), � to denote protocol type and → to denote
parametrisation. The presence of higher-order calls allows us to treat protocols
whose kinds have shapes like Role × (Role → �) → �, describing a protocol
parametrised by a role and another protocol, the latter parametrised by a role.
In the following, we will sometimes adopt an à la Church notation for protocol
constructors, as in let P = λbuyer : Role, price : Nat 7→ new r̃.G in G′, in
order to specify the kinds of the arguments passed to a protocol.

We define well-formedness to rule out unsound protocols. For instance, a
protocol where P has kind Role→ � but is used with kind Nat→ � is not well-
kinded. A protocol containing (r1 → r2 : ok)⊕r0 (r2 → r1 : ko) is not projectable
as r1 has no mean to know which branch r0 chooses, and thus is not able to know
if it must perform an input or an output. In order to define projectability, which
ensures that a global type can be coherently projected into local types, we define
the restriction of a protocol to a role, noted (G)|r as the global type obtained
by removing every constructor of G where r does not appear. A protocol is
projectable if for every choice (directed or located), the difference between the
branches are only visible to the roles involved in that choice.

Definition 1 (Well-Formedness)
A global-type G is well-kinded if there exists τ from all identifiers of G to types
satisfying, for all subprotocols of G:

1. let P = (λỹ 7→ new r̃·) in · is s.t. τ(P) = τ(ỹ)→ �, and ∀i, τ(ri) = Role.
2. r calls P〈ỹ〉.G is s.t. τ(r) = Role, τ(P) = τ(ỹ)→ �.
3. for all identifiers r in r→ r′ : l(x : S).G and G1 ⊕r G2, τ(r) = Role.

A global type G is projectable if:
1. for each subterm of G of the form G1⊕r0G2, for any free r 6=r0, (G1)|r=

(G2)|r.
2. for each subterm of G of the form r → r′ : Σi∈I{li(xi : Si).Gi}, for any

role free role r /∈ {r, r′} and for all {i, j} ⊆ I, (Gi)|r = (Gj)|r.
A protocol G is well-formed when it is well-kinded and projectable, and satisfies
the standard linearity condition [1].

There exists in [9, 12] mergeability conditions that allows the authors to be less
restrictive in the definition of projectability. Our framework could accommodate
this refinement. We do not present it here, for the sake of clarity.

Motivating Examples In this section, we motivate our contribution with three
examples extracted from concrete specifications and illustrate higher-order pro-
gramming with a fourth one.

Resource usage The following example is inspired by the use cases (UC R2.34,
UC R2.32) from the OOI project [15]. A negotiation procedure Nego is first
defined independently, to be used in several different protocols. This negotiation
procedure involves two participants trying to agree on a contract: first participant
specifies a request, second participant offers a corresponding contract, then both
participants enter a loop when the first one can either accept the contract, which
ends the protocol or make a counter-offer.

let Nego = λr1, r2 7→
r1 → r2 : ask(terms).
µt.
r2 → r1 : proposition(contract2).
r1 → r2 : {accept.end

counter(contract1).t}
in

client→ agent : request(coord). agent→ instr : connect
instr→ agent : available. agent→ client : ack.
agent calls Nego(agent, client).
µt.

client→ instr : {abort(coord).end
command(code).

instr→ client : result(data).t}

The main protocol UseRes consists of several interactions between three par-
ticipants (client, agent, instr), processed in the following order: first client sends
a request to agent for an instrument he wants to use, agent tries to connect
to instr which acknowledges when available. Then, agent negotiates a contract
with client (by calling protocol Nego). After a successful negotiation, client and
instr interact inside a loop, the client sending commands and receiving data.
The negotiation phase is considered external: should the auxiliary protocol be
modified, for instance to enforce another negotiation policy, the main protocol
would remain the same.

Client-Middleware-Server The protocol CMS, presented of the left side of
Figure 1 describing a typical service interaction. This protocol initially involves
two participants, client starts the interactions by sending a request to the mid-
dleware middle. If the latter is able to treat the request directly, it answers to
client, if not, it contacts server, calling subprotocol Contact with itself as role
argument. In the subprotocol, middle performs an external invitation of server,
forwards the request and waits for an answer. After the subprotocol is com-
pleted, the answer is forwarded to the client. Nesting, in this example, allows
us to invite server to participate only when necessary: if middle can treat the
request, server is not even invited. Using subprotocols in such a way allows us
to cut a great deal of unnecessary traffic caused by external invitations, saving
bandwidth.

Dynamic distribution We then describe on the right side of Figure 1 a third
example, inspired by a concrete protocol from the Array Network Facility, used

let Contact = λagent, req 7→
new server.
agent→ server : request(req).
server→ agent : answer(ans).
end

in

client→ middle : request(req0).
(middle→ client : answer(ans0).end)

⊕middle

(middle calls Contact(middle, req0).
middle→ client : answer(ans0).end)

let Treat =
λr1, r2 7→

new worker.
r1 → worker : raw(data).
worker→ r2 : processed(data).
end

in

paralleln(
source calls Treat(source, target)
).

end

Fig. 1. Protocols CMS and ANF

for processing seismic data. Here, the operator paralleln(G) is used as a short-
cut for n parallel copies of the protocol G. In this protocol, data comes in a raw
state from a participant source and should reach participant target processed. In
the body of each of the n parallel executions, source calls the subprotocol Treat
inviting a new participant worker and using it to process data. This protocol is
run in networks where many computing units can accept temporarily the worker
role. In this example, stratification is used to present in a clean way the execution
of thousands of copies of the same protocol. As each copy is implemented by a
different session, the different calls to the subprotocol are actually independent
from each other.

Marketplace Finally, we propose a protocol for a virtual marketplace in which
participants have the possibility to engage in trade actions with other partici-
pants. General protocols Buy and Sell are defined to handle these buying and
selling. The encounter between two agents follows the same procedure (hand-
shake, authentication, possibility to cancel the transaction) whatever the reason
of their meeting is. This common procedure is abstracted in Meet and a protocol
identifier Action is given as an argument to Meet calls, meant to be substituted
by Buy or Sell (or any similar protocol). Thus, Meet is an higher-order protocol,
parametrised with protocol Action.

let Buy = λ agent : Role, seller : Role, item : Tradable 7→ . . .
in let Sell = λ agent : Role,buyer : Role, item : Tradable 7→ . . .
in let Meet = λ agent : Role,partner : Role,

item : Tradable, Action : (Role→ Role→ Tradable→ �) 7→ . . .
agent calls Action〈partner, item〉 . . .
in . . .
alice calls Meet〈bob, kettle, Buy〉. carol calls Meet〈bob, teacup, Sell〉 . . .

The protocols presented in this section are well-formed: notice that protocol
CMS is projectable, in each branch of the choice ⊕middle, the restriction on
client is “middle→ client : answer.end”. Kinds for subprotocols presented in the
examples are as follows: Nego : Role × Role → �, Contact : Role × Req → �,
Treat : Role × Role → �, Buy, Sell : Role × Role × Tradable → �, Meet :
Role× Role× Tradable× (Role× Role× Tradable→ �)→ �

Local types and Projection Local types describe a global conversation from the
partial point-of-view of a participant and are used to validate and monitor dis-
tributed programs. Their syntax is given by:

T ::= get[r]?i∈I{li(xi : Si).Ti} | send[r]!i∈I{li(xi : Si).Ti}
| T ‖ T | T ⊕ T | µt.T | t | end

| call P : G with (ṽ as ỹ : S̃)&(r̃2).T
| ent P[r]〈ṽ〉 from r.T | req P[r]〈ṽ〉 to r.T

Creating a subsession for protocol P having global type G is specified by
call P : G with (ṽ as ỹ : S̃)&(r̃2), with ṽ as value arguments and involv-
ing external invitations for roles r̃2. Internal invitations are handled using two
specific constructors, as they are meant to be performed on the parent session
channel: ent specifies the act of accepting such an invitation, req specifies the
dual action. Syntax contains endpoint primitives for communications, specified
by get for the receiver side and send for the sender side, as well as constructors
for parallel, choice and recursion. We handle equivalence of types through re-
cursions and parallel compositions implicitly. In the following, we omit trailing
occurrences of end.

Projection from global to local types is defined w.r.t. a protocol environment,
associating protocols identifiers to their contents. Environment is updated by
let in constructors. We present below the projection rule for call and let. For
the former the result of the projection depends on the participant we project
on, rproj. If it is the subprotocol initiator rA it is responsible for creating the
subsession (call) and sending the internal invitations (req). If it participates
in the subprotocol, it has to accept an internal invitation (ent). Projection on
other constructors is standard.

(let P = λr̃1.ỹ 7→ new r̃2.GP in G′) ⇓Env
rp = G′ ⇓Env,P7→(r̃1,ỹ;̃r2;GP)

rp

(rA calls P(r̃0, ṽ).G) ⇓Env,P7→(r̃1,ỹ;̃r2;GP)
rp =

if rp = rA, rA /∈ r̃0

call P : GP with (ṽ as ỹ)&(r̃2).[(G) ⇓Env,P7→(r̃1,ỹ;̃r2;GP)
rp

‖ req P[r10]〈ṽ〉 to r00 ‖ · · · ‖ req P[r1n]〈ṽ〉 to r0n]
if rp = rA and rA = r0i

call P : GP with (ṽ as ỹ)&(r̃2).[(G) ⇓Env,P7→(r̃1,ỹ;̃r2,GP)
rp

‖ ent P[r1i]〈ṽ〉 from rA ‖ req P[r10]〈ṽ〉 to r00 ‖ · · · ‖ req P[r1n]〈ṽ〉 to r0n]
if rp 6= rA and rp = r0i

ent P[r1i]〈ṽ〉 from rA.(G) ⇓Env,P7→(r̃1,ỹ;̃r2;GP)
rp

Otherwise

(G) ⇓Env,P7→(r̃1,ỹ;̃r2;GP)
rp

If the initiator rA of the subsession also takes part in it, the projection on rA

specifies that it invites itself. It is easy to add to our language a dedicated con-
structor handling session-invitation directly, without inducing communication at
the network level. For the sake of clarity, we do not include such a constructor
in this paper.

We present below the projection of CMS on its two roles. GCMS is the global
type of the whole protocol and GC the global type of Contact.

GCMS ⇓∅client = send[middle]!{request(req0)}.get[middle]?{answer(ans0)}
GCMS ⇓∅middlew = get[client]?{request(req0)}.

send[client]!{answer(ans0)}
⊕
(call Contact : GC with (req0 as req : Req)&(server).

(req Contact[agent]〈req〉 to middle ‖
ent Contact[agent]〈req〉 from middle ‖
send[client]!{answer(ans0)}))

3 Session-Calculus

Our session-calculus, based on the π-calculus [14], contains usual primitives from
existing session-calculi [3], as well as dedicated primitives for session creation and
internal (on-session) invitations. Names are divided into shared channels a, b, u
(standard π-names) and session channels s, k. The former are used to send and
receive external invitations, the latter to handle all session interactions.

P ::= 0 | P |P | a(x).P | a〈s〉.P | P + P
| k?[r, r]i∈I{li(xi).Pi} | k![r, r]l〈v〉.P | (νu) P
| new s on s with (ṽ)&(ã as r̃).P
| s ↓ [r, r : r](x).P | s ↑ [r, r : r]〈s〉.P | µX(x).P 〈v〉 | X〈v〉

We denote by k?[r1, r2]i∈I{li(xi).Pi} a branching input on session k from r1 to
r2, with continuations (Pi)i∈I . The dual primitive is k![r1, r2]l〈v〉.P . Creation
of a subsession is done with new s on k with (ṽ)&(ã as r̃2) with s being the
subsession, k the parent session, ṽ the arguments and ã the channels on which
the external invitations are sent. Operator s ↓ [r1, r2 : r3](x).P is the action of
waiting on s for an internal invitation sent by r1 to r2 in order to play role r3

in a subsession x. Finally, s ↑ [r1, r2 : r3]〈s〉.P is its dual action. Inputs and
outputs on shared channels, choice, parallel composition and inactive process 0
are inherited from the π-calculus. We omit trailing occurrences of 0. Structural
congruence ≡ for processes is defined in the usual way.

Semantics is given by reduction rules below, defined w.r.t. a notion of evalua-
tion context E ::= [] | P | E | (νa) E. The crucial rule of our system is (subs)
where a session creation operator new is destructed in order to create external
invitations on shared channels. (join) handles internal session invitation, other
rules are standard:

(comS)
E[s![r1, r2]lj〈ṽ〉.P | s?[r1, r2]i∈I{li(x̃i).Pi}]→ E[P | Pj{ṽ/x̃j}]

(comC)
E[a〈ṽ〉.P | a(ỹ).Q]→ E[P | Q{ṽ/ỹ}]

(subs)
r̃2 = (r21, . . . , r

2
n) ã = (a1, . . . , an)

E[new s on k with (ṽ)&(ã as r̃2).P]→ E[P | a1〈s[r21]〉 | . . . | an〈s[r2n]〉]

(join)
E[s ↑ [r, r′ : r′′]〈k〉.P | s ↓ [r, r′ : r′′](x).Q]→ E[P | Q{k/x}]

(choice)
Pi → P ′i

E[(P1 + P2)]→ E[P ′i]

As an example consider the following processes:
Palice = a(x).x![client,middle]request(“kettle”).x?[middle, client]answer(ans0)
Pbob = a〈s〉.s?[client,middle]request(req0).

(s![middle, client]answer(ans0)
+ (new k on s with (req0)&(c as server).
s ↑ [middle,middle : agent]〈k〉 | s ↓ [middle,middle : agent](z).
z![agent, server]request〈req0〉.z?[server, agent]answer(ansr).
s![middle, client]answer〈ansr〉)

Pcarol = c(y).y?[agent, server]request(req).y![server, agent]answer(ans)

Palice, Pbob and Pcarol are processes ready to play, respectively roles client, middle
and server in the CMS protocol. Palice (resp. Pcarol) is a simple process, ready to
accept an external invitation to the parent session on a (resp. to the child session
on c) and to behave as expected. Pbob is more complex: it sends an invitation
on a, and after receiving a request it chooses, as specified in Figure 1, between
answering directly on the session channel or contacting the server through a
subsession. In this case, the new session channel k is created and one internal
invitation to play role agent in k is sent and accepted by Pbob itself, then it
proceeds as expected. We describe a reduction sequence for the composition of
these three processes:
Palice | Pcarol | Pbob →→ s?[middle, client]answer(ans0) | Pcarol

| (. . .) + (new k on s with (req0)&(c as server) . . .)
→ s?[middle, client]answer(ans0) | Pcarol | c〈k〉

| s ↑ [middle,middle : agent]〈k〉 | s ↓ [middle,middle : agent](z) . . .
→ s?[middle, client]answer(ans0) | Pcarol

| c〈k〉 | k![middle, server]request(req0) . . .
→ s?[middle, client]answer(ans0)

| k![agent, server]request(req0) . . .
| k?[agent, server]request(req) . . . →→→ 0

After two communications on a and s, the reduct of Pbob reaches the located
choice. We suppose it chooses the second branch. Thus, an output on c containing
session name k is created. Then the internal self-invitation for k is performed,
and, finally, the external invitation of Pcarol on c. Three reductions can still be
played, two on k and one on s.

Validation We describe a static way to ensuring that processes conforms
to formal specifications. The global environment Γ relates shared channels to
the type of the invitation they carry, protocol names to their code and session
channels to the global type they implement. a : T [r] means that a is used to
send and receive invitations to play role r with local type T , P : (r̃1, ỹ; r̃2;GP)
describes the participants, arguments and code of protocol P, finally, s : G means
that protocol G can be implemented on s. The session environment ∆ relates
pairs of session channels and roles s[r] to local types. s[r] : T means that in
session s, participant r still has to perform the actions of T . s[r]• : T (resp.
s[r]◦ : T) stands for the capability to invite externally (resp. internally) someone
to play role r in s. In the following, we consider only environments which are
mappings, and we will write ∆(s[r]). Additionally, we write ∆(s) = 0 when s
does not appear in ∆ and s[r] to denote either s[r]◦, s[r]• or s[r]. We allow
”garbage collection” for session environment: (∆, s[r] : end) = ∆.

Γ ::= ∅ | Γ, a : T [r] | Γ,P : (r̃1, ỹ; r̃2;GP) | Γ, s : G
∆ ::= ∅ | ∆, s[r] : T | ∆, s[r]• : T | ∆, s[r]◦ : T

A typing judgement Γ ` P .∆ means that under the global environment Γ , the
process P is validated by the session environment ∆. We use ` v : S to notify
that value v has kind S. The validation rules are as follows:

(I,O)
Γ ` P . ∆, x[r] : T Γ (a) = T [r]

Γ ` a(x).P . ∆

Γ ` P . ∆ Γ (a) = T [r]

Γ ` a〈s〉.P . ∆, s[r]• : T

(C)
(Γ ` Pi . ∆, s[r′] : Ti ` yi : Si)i∈I

Γ ` s?[r, r′]i∈I{li(yi).Pi} . ∆, s[r
′] : get[r]?i∈I{li(xi : Si).Ti}

(S)
Γ ` P . ∆, s[r] : Tj ` v : Sj

Γ ` s![r, r′]lj〈v〉.P . ∆, s[r] : send[r′]!i∈I{li(xi : Si).Ti}

(P)
Γ ` P . ∆, s[r] : T Γ (P) = (r̃1, ỹ; r̃2;G) G{ṽ/ỹ} ⇓r′′= T ′′

Γ ` s ↑ [r, r′ : r′′]〈k〉.P . ∆, s[r] : req P[r′′]〈ṽ〉 to r′.T, k[r′′]◦ : T ′′

(J)
Γ ` P . ∆, s[r′].T, x[r′′] : T ′′ Γ (P) = (r̃1, ỹ; r̃2;G) G{ṽ/ỹ} ⇓r′′= T ′′

Γ ` s ↓ [r, r′ : r′′](x).P . ∆, s[r′] : ent P[r′′]〈ṽ〉 from r.T

(New)

Γ ` P . ∆, s[r] : T, k[r11]
◦ : T ′1, . . . , k

◦[r1n] : T
′
n, k
•[r21] : T

′
n+1, . . . , k

•[r2m] : T ′n+m
Γ (P) = (r̃1, ỹ; r̃2;G) ∀i, Γ (ai) = T ′i+n[ri+n]

∀i, G{ṽ/ỹ} ⇓
r1i
= T ′i ∀j,G{ṽ/ỹ} ⇓

r2j
= T ′j+n ` ṽ : S Γ (k) : P{ṽ/ỹ}

Γ ` new k on s with (ṽ)&(ã as r̃2).P . ∆, s[r] : call P : G with (ṽ as ỹ : S̃)&(r̃2).T

(N,P)
Γ ` 0 . ∅

Γ ` P1 . ∆1 Γ ` P2 . ∆2

Γ ` P1 | P2 . ∆1 ⊗∆2

(S1)
Γ ` P1 . ∆, s[r] : T1 Γ ` P2 . ∆, s[r] : T2

Γ ` P1 + P2 . ∆, s[r] : T1 ⊕ T2

(S2,R)
Γ ` P . ∆, s[r] : Ti i ∈ {1, 2}

Γ ` P . ∆, s[r] : T1 ⊕ T2
Γ, a : T [r] ` P . ∆

Γ ` (νa) P . ∆

Rule (New) is the crux of this type system, as it ensures subsessions are called
in a sound way. To type the process new k on s with (ṽ)&(ã as r̃2).P , the session
channel k should be associated with a protocol G{ṽ/ỹ} matching the one present

in the local type of r in the parent session s: call P : G with (ṽ as ỹ : S̃)&(r̃2).T
and global environment Γ should map P to (r̃1, ỹ; r̃2;G). The endpoint projec-
tions (Tp)1≤p≤n+m of P are divided into two sets, the ones that correspond
to roles (r1i)1≤i≤n internally invited, and the ones that correspond to roles
(r2j)1≤j≤m externally invited through ã. Capabilities (k[ri]

◦ : Ti)i, (k[rj]
• : Tj)j

for both types of invitations are given to the continuation process P . Rule (P)
types a process whose role r on session s consists in sending a internal invitation
to play role r′′ in session k. The process is required to hold the capability for
k[r′′], we ensure it corresponds to the type of the invitation. Its counterpart (J)
ensures that role r of session s after receiving an invitation for k[r′′], gets the cor-
responding local type T ′′ in its ∆. Rules (I) and (O) handle external invitations.
As in the internal case, we ensure that the sending process has the correspond-
ing capability. Rules (C) and (S) address branching communications on session
channels. In both rules we ensure that the values communicated xi, v have the
same value-type as the identifiers yi in the type. Summations are handled by two
rules (S1) and (S2). If the local type specifies a choice between two branches, the
process can either implement this choice with the + constructor, or implement
only one branch of the choice. This illustrates the fact that the decision can be
made at implementation time (for instance a middleware implementing CMS

which always contacts the server) or at run-time (a middleware which can pro-
ceed both ways according to the request). Rule (Pa) requires a small explanation,
as it allows one to split local types into two branches. We define the ⊗ operator
with ∆1⊗∅ = ∆1, ∆1⊗ (∆2, s[r] : T) = (∆1, s[r] : T)⊗∆2 if ∆1(s[r]) = 0 and
(∆1, s[r] : T1) ⊗ (∆2, s[r] : T2) = (∆1, s[r] : T1 ‖ T2) ⊗∆2. Thus, when split-
ting the session environment in a parallel constructor, we allow the splitting of
a single local type composed of two parallel subtypes. Finally, rule (N) specifies
that the session environment should be empty to type 0. This ensures that the
processes eventually complete the local types of their specification.

Following the typing rules, one can type the processes introduced in Section 3
as follows: Γ ` Palice . ∅, Γ ` Pbob . s[middle] : Tmiddle, s[client]• : Tclient, Γ `
Pcarol.∅ with Γ = a : Tclient, c : Tserver, Contact : (agent, req; server;GContact), s :
CMS, k : Contact,GContact ⇓∅server= Tserver, and Tclient = GCMS ⇓∅client, Tmiddle =

GCMS ⇓∅middle as defined in Section 2.
Session environments for Palice and Pcarol are empty: processes are not bound

to do anything as long as they did not receive an invitation. Session environment
for Pbob contains both the local type for the role middle played by the process
and the capability to send an external invitation for client in the same session.
The capability to send an external invitation to server is not created yet.

4 Properties

In this section we justify our theory with two main propositions, subject reduc-
tion and progress. First, we define a satisfaction relation relating dynamically
processes and specifications. We introduce Labelled Transition Systems for both
the processes and the specification. Labels are defined by ` ::= τ | a〈v〉 | a〈v〉 |
s?[r, r′]l〈k〉 | s![r, r′]l〈k〉 | s ↓ [r, r′ : r′′]〈k〉 | s ↑ [r, r′ : r′′]〈k〉 The subject
of a label sbj(`) is defined intuitively for all labels, knowing that sbj(τ) = 0.
Labels a〈v〉, a〈v〉, s![r, r′]l〈k〉, s ↑ [r, r′ : r′′]〈k〉 and τ (resp. s?[r, r′]l〈k〉 and
s ↓ [r, r′ : r′′]〈k〉) are denoted as output labels (resp. input labels). In the satis-
faction relation defined below, output labels are the ones played by the process,
to which the specification must answer (thus τ and a〈v〉 are considered outputs),
and the input labels are the ones the specification plays, to which the process

must answer. Transitions for processes P
`−→ P ′ follow the reduction semantics.

The most relevant transitions for specifications, defined w.r.t. a global environ-
ment Γ , are presented in Figure 2.

Definition 2 (Satisfaction) We say that RΓ is a satisfaction relation between
process P and specification ∆, if:

whenever ∆
`−→
Γ
∆′ with an input label `, then P

`−→ P ′ and P ′RΓ∆′,

whenever P
`−→ P ′ with an output label `, then ∆

`−→
Γ
∆′ and P ′RΓ∆′.

The largest relation RΓ is called satisfaction w.r.t. Γ denoted sat(P,∆)Γ .
In this case, we say that P satisfies ∆ w.r.t. Γ (we omit this last part when Γ
is clear from context)

(Ssub)

Γ (P) = (r̃1, ỹ : S̃; r̃2;GP) ∀i, GP{ṽ/ỹ} ⇓r1i
= T ′i

∀j,GP{ṽ/ỹ} ⇓r2j
= T ′′j Γ (k) = G{ṽ/ỹ}

s[r] : call P : G with (ṽ as ỹ : S̃)&(r̃2).T
τ−→
Γ

s[r] : T, (k[r1i] : T
′
i)i, (k[r

2
j] : T

′′
j)j

(Sout)
Γ (a) = T [r]

k[r]• : T
a〈k〉−−−→
Γ
∅

(Sin)
Γ (a) = T [r]

∅ a〈k〉−−−→
Γ

k[r] : T

(ScomC)
k[r′′]• : T ′′

τ−→
Γ

k[r′′] : T ′′

(Sjoin)
Γ (P) = (r̃1, ỹ : S̃; r̃2;GP) GP{ṽ/ỹ} ⇓r′′= T ′′

s[r′] : ent P[r′′]〈ṽ〉 from r.T
s↓[r,r′:r′′]〈k〉−−−−−−−−−→

Γ
s[r′] : T, k : [r′′] : T ′′

(Sparti)
Γ (P) = (r̃1, ỹ : S̃; r̃2;GP) GP{ṽ/ỹ} ⇓r′′= T ′′

s[r] : req P[r′′]〈ṽ〉 to r′.T, k[r′′]◦ : T ′′
s↑[r,r′:r′′]〈k〉−−−−−−−−−→

Γ
s[r] : T

(Sinvit)
Γ (P) = (r̃1, ỹ : S̃; r̃2;GP) GP{ṽ/ỹ} ⇓r′′= T ′′

s[r] : ent P[r′′]〈ṽ〉 from r.T, s[r′] : req P[r′′]〈ṽ〉 to r.T ′, k[r′′]◦ : T ′′
τ−→
Γ

s[r] : T, s[r′] : T ′, k[r′′] : T ′′

Fig. 2. Transitions for specifications (excerpt)

We justify the soundness of our framework by relating the static validation
to the dynamic satisfaction, through correspondence. If a process is validated by
a specification ∆, it is able to behave as described in ∆. From this property, we
derive subject reduction, which ensures that validation is preserved by reduction.
A session environment is coherent if it is composed of projections of well-formed
global types. A coherent session environment is simple if it consists of a single
session. A process is unblocked if it does not contain hidden channels and if
its session channel is never under a prefix whose subject is a shared channel,
except when the latter binds the former. If an unblocked process is validated
by a simple coherent session environment, interactions at session channels can
proceed. If, further, the original global type is non-recursive, the process can
eventually complete all interactions at its session-environment.

Proposition 3 (Soundness of the type system)

(Correspondence) If Γ ` P . ∆ then sat(P,∆)Γ .

(Subject Reduction) If Γ ` P . ∆ and P → P ′ then there exists ∆′ s.t.
Γ ` P ′ . ∆′.

(Progress) If P is unblocked and Γ ` P .∆ such that ∆ is simple, then there
exists P ′ s.t. P →+ P ′, Γ ` P ′ . ∆′ and ∆′ is coherent.

(Coherence) If P is unblocked and Γ ` P . ∆ such that ∆ is simple, and
moreover ∆ does not contain recursions, then there exists P ′ s.t. P →∗ P ′ and
Γ ` P ′ . ∅.

5 Returning a result

We introduce the notion of result of a session as an object (which can be a
value or even a protocol), sent back to the initiator of the session. Protocols with
results allow us to describe complex governance properties, such as ensuring
that a privately negotiated price corresponds to the one proposed publicly in
the parent protocol. Suppose we want to ensure that, in CMS, the answer ans
given in the subprotocol Contact by server is the same as ans0 sent by middle to
client. Information can be transmitted from a parent session to a subsession, but
the converse is not possible. Continuation-Passing-Style is a possible solution: we
convert the end of the CMS protocol into a continuation K, send it as argument
when calling Contact and call K inside Contact with ans. However, this may
not lead to a clean descriptive framework. Thus we choose to use a dedicated
mechanism. The syntax of global types with results adds r returns(res : S)
and (res : S)← r calls P〈r̃, ṽ〉 (replacing end and r calls P〈ṽ〉). The former
constructor ends the session by specifying that the protocol returns the value
identified in the session by res and that r is responsible for doing it, the latter
specifies that we call a subprotocol which eventually produces a result res. Kinds
ensure that the returned result has the type expected by the initiator.

We present corresponding modifications to CMS. Inside the Contact pro-
tocol, we ask agent to send the result ans back to the parent protocol. In the
latter, the result ans0 is expected when calling Contact, thus we ensure that the
answer sent by the server in the subprotocol is the same as the one sent to client
in the parent one. Local types use similar constructors and implementation of
result is done through cross-session communications.

let Contact = (agent, req : Req){
. . . agent returns(ans : Req)
in

. . . ans0 : Req← middle calls Contact〈middle, req0〉 . . .

In the framework presented above, subsessions are executed in parallel with
the parent session. The result mechanism allows one to include synchronisation
between the two sessions:

. . . Alice waits for contract calling Nego(Alice,Carol).
Alice→ Bob : Data(contract) . . .

Here participant Alice starts a negotiation subsession with Carol. When the
negotiation is over, she sends the result of the subsession to Bob, participant
of the parent session not invited in the subsession. This has two advantages,
first Bob can know the result of a subsession without going through the internal
invitation procedure, and it prevents both Alice and Bob to perform actions in
the parent session as long as the subsession is not over.

6 Conclusion and Future Works

To our knowledge, there does not exist other works addressing the notion of
nested session types, or protocol calls inside session types. The closest contribu-

tion is [9], which introduces parametrisation of protocols through dynamic ses-
sion types. Parametrisation allows one single two-party protocol to be applied to
each pair of agents in a large network. Our framework contains more than simple
parametrisation, it presents nesting and introduces kinds and higher-order pro-
gramming. Another related work is [7]: the authors describe a global language
for choreographies, implementing global types, protocols interleaved in the same
choreography can be merged together into a single global type, removing costly
invitations. The authors actually proceed in a direction different from ours, by
trying to unify every protocol into a single superprotocol. Their approach focuses
on implementation, while ours focus on types. We believe session type theory
benefits independently from both methods. Our contribution makes use of the
same formal framework as [3, 13, 2]. Each of these contributions adds expressive-
ness, in different directions (logical assertions, ghost states, monitoring), to a
large common theory for validation of distributed programs with session types.
The whole theory (including this work) is put in practise by the development of
the Scribble language [16] and the collaboration with the OOI project [15].

We are currently investigating how the result mechanism can be improved (in
the context of [16]). Currently, the result is sent to the initiator. Broadcasting
the result to every member of the subsession might also be a desirable feature.
Moreover, our results are restricted to value-types, but some use cases of [15]
specify that a negotiation subprotocol produces a contract that is used in the
parent protocol to control interactions. Although it leads to technical challenges,
we believe our framework can eventually accommodate such behaviours by using
dependent types, introducing abstract logical predicate decided at run-time in-
side global types. Exceptions handling in a distributed asynchronous framework,
remains a challenging task, even if some progress have been made in [6] and [5].
Yet exceptions are absolutely necessary when specifying real-world protocols. We
believe that nested protocols give a simple way to handle exceptions, by making
explicit blocks of computation.

Acknowledgements We thank the CONCUR reviewers for their comments, our
colleagues in Mobility Reading Group for discussions, and the OOI project and
Matthew Arrott for their feedback. This work is supported by Ocean Observa-
tories Initiative [15] and EPSRC grants EP/F002114/1 and EP/G015481/1.

References

1. Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically inter-
leaved multiparty sessions. In CONCUR, pages 418–433, 2008.

2. Laura Bocchi, Pierre-Malo Denéilou, Romain Demangeon, Kohei Honda, Raymond
Hu, Rumyana Neykova, and Nobuko Yoshida. Dynamic and static safety validation
in distributed programs through multiparty sessions. (submitted), 2012.

3. Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of
design-by-contract for distributed multiparty interactions. In CONCUR, volume
6269 of LNCS, pages 162–176, 2010.

4. Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information
flow safety in multiparty sessions. In EXPRESS, volume 64 of EPTCS, pages
16–30, 2011.

5. Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in multiparty
sessions. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS, volume 8 of
LIPIcs, pages 338–351. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

6. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interactional
exceptions in session types. In CONCUR, volume 5201 of LNCS, pages 402–417.
Springer, 2008.

7. Marco Carbone and Fabrizio Montesi. Merging multiparty protocols in multiparty
choreographies. (unpublished, presented at PLACES), 2012.

8. Mario Coppo and Mariangiola Dezani-Ciancaglini. Structured communications
with concurrent constraints. In TGC, pages 104–125, 2008.

9. Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In
POPL, pages 435–446, 2011.

10. Mariangiola Dezani-Ciancaglini. A reputation system for multirole sessions. Invited
talk at TGC, September 2011.

11. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 22–138. Springer, 1998.

12. Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridg-
ing the gap between interaction- and process-oriented choreographies. In Antonio
Cerone and Stefan Gruner, editors, SEFM, pages 323–332. IEEE Computer Soci-
ety, 2008.

13. Romain Demangeon Laura Bocchi and Nobuko Yoshida. A multiparty multi-
session logic. (submitted), 2012.

14. Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, Berlin, 1980.

15. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
16. Scribble Project homepage. www.scribble.org.

