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Abstract. The hiding operation, crucial in the compositional aspect of
game semantics, removes computation paths not leading to observable
results. Accordingly, games models are usually biased towards angelic
non-determinism: diverging branches are forgotten.
We present here new categories of games, not suffering from this bias. In
our first category, we achieve this by avoiding hiding altogether; instead
morphisms are uncovered strategies (with neutral events) up to weak
bisimulation. Then, we show that by hiding only certain events dubbed
inessential we can consider strategies up to isomorphism, and still get a
category – this partial hiding remains sound up to weak bisimulation, so
we get a concrete representations of programs (as in standard concurrent
games) while avoiding the angelic bias. These techniques are illustrated
with an interpretation of affine nondeterministic PCF which is adequate
for weak bisimulation; and may, must and fair convergences.

1 Introduction

Game semantics represents programs as strategies for two player games deter-
mined by the types. Traditionally, a strategy is simply a collection of execution
traces, each presented as a play (a structured sequence of events) on the corre-
sponding game. Beyond giving a compositional framework for the formal seman-
tics of programming languages, game semantics proved exceptionally versatile,
providing very precise (often fully abstract) models of a variety of languages and
programming features. One of its rightly celebrated achievements is the reali-
sation that combinations of certain effects, such as various notions of state or
control, could be characterised via corresponding conditions on strategies (inno-
cence, well bracketing, . . . ) in a single unifying framework. This led Abramsky to
propose the semantic cube programme [1], aiming to extend this success to fur-
ther programming features: concurrency, non-determinism, probabilities, etc. . .

However, this elegant picture soon showed some limitations. While indeed the
basic category of games was successfully extended to deal with concurrency [10,
13], non-determinism [11], and probabilities [9] among others, these extensions
(although fully abstract) are often incompatible with each other, and really,
incompatible as well with the central condition of innocence. Hence a semantic
hypercube encompassing all these effects remained out of reach. It is only recently
that some new progress has been made with the discovery that some of these



effects could be reconciled in a more refined, more intensional games framework.
For instance, in [6,16] innocence is reconciled with non-determinism, and in [15]
with probabilities. In [7], innocence is reconciled with concurrency.

But something is still missing: the works above dealing with non-deterministic
innocence consider only may-convergence; they ignore execution branches lead-
ing to divergence. To some extent this seems to be a fundamental limitation of
the game semantics methodology: at the heart of the composition of strategies
lies the hiding operation that removes unobservable events. Diverging paths, by
nature non-observable, are forgotten by hiding. Some models of must-testing do
exist for particular languages, notably McCusker and Harmer’s model for non-
deterministic Idealized Algol [11]; the model works by annotating strategies with
stopping traces, recording where the program may diverge. But this approach
again mixes poorly with other constructions (notably innocence), and more im-
portantly, is tied to may and must equivalences. It is not clear how it could be
extended to support richer notions of convergence, such as fair-testing [2].

Our aim is to present a basis for non-deterministic game semantics which,
besides being compatible with innocence, concurrency, etc, is not biased towards
may-testing; it is non-angelic. It should not be biased towards must-testing ei-
ther ; it should in fact be agnostic with respect to the testing equivalence, and
support them all. Clearly, for this purpose it is paramount to remember the
non-deterministic branching information; indeed in the absence of that infor-
mation, notions such as fair-testing are lost. In fact, there has been a lot of
activity in the past five years or so around games model that do observe the
branching information. It is a feature of Hirschowitz’s work presenting strategies
as presheaves or sheaves on certain categories of cospans [12]; of Tsukada and
Ong’s work on nondeterministic innocence via sheaves [16]; and of our own line
of work presenting strategies as certain event structures [5, 7, 14].

But observing branching information is not sufficient. Of the works mentioned
above, those of Tsukada and Ong and our own previous work are still angelic, be-
cause they rely on hiding for composition. On the other hand, Hirschowitz’s work
gets close to achieving our goals; by refraining from hiding altogether, his model
constructs an agnostic and precise representation of the operational behaviour of
programs, on which he then considers fair-testing. But by not considering hiding
he departs from the previous work and methods of game semantics, and from the
methodology of denotational semantics. In contrast, we would like an agnostic
games model that still has the categorical structure of traditional semantics. A
games model with partial hiding was also recently introduced by Yamada [18],
albeit for a different purpose: he uses partial hiding to represent normalization
steps, whereas we use it to represent fine-grained nondeterminism.

Contributions. In this paper, we present the first category of games and strate-
gies equipped to handle non-determinism, but agnostic with respect to the notion
of convergence (including fair convergence). We showcase our model by inter-
preting APCF+, an affine variant of non-deterministic PCF: it is the simplest
language featuring the phenomena of interest. We show adequacy with respect to
may, must and fair convergences. The reader will find in the first author’s PhD



thesis [3] corresponding results for full non-deterministic PCF (with detailed
proofs), and an interpretation of a higher-order language with shared memory
concurrency. In [3], the model is proved compatible with our earlier notions of
innocence, by establishing a result of full abstraction for may equivalence, for
nondeterministic PCF. We have yet to prove full abstraction in the fair and must
cases; finite definability does not suffice anymore.

Outline. We begin Section 2 by introducing APCF+. To set the stage, we
describe an angelic interpretation of APCF+ in the category CG built in [14]
with strategies up to isomorphism, and hint at our two new interpretations. In
Section 3, starting from the observation that the cause of “angelism” is hiding,
we omit it altogether, constructing an uncovered variant of our concurrent games,
similar to that of Hirschowitz. Despite not hiding, when restricting the location
of non-deterministic choices to internal events, we can still obtain a category up
to weak bisimulation. But weak bisimulation is not perfect: it does not preserve
must-testing, and is not easily computed. So in Section 4, we reinstate some
hiding: we show that by hiding all synchronised events except some dubbed
essential, we arrive at the best of both worlds. We get an agnostic category of
games and strategies up to isomorphism, and we prove our adequacy results.

2 Three interpretations of affine nondeterministic PCF

2.1 Syntax of APCF+

The language APCF+ extends affine PCF with a nondeterministic boolean
choice, choice. Its types are A,B ::= B | A( B, where A( B represents affine
functions from A to B. The following grammar describes terms of APCF+:

M,N ::= x |M N | λx.M | tt | ff | if M N1N2 | choice | ⊥

Typing rules are standard, we show application and conditionals. As usual,
a conditional eliminating to arbitrary types can be defined as syntactic sugar.

Γ `M : A( B ∆ ` N : A

Γ,∆ `M N : B

Γ `M : B ∆ ` N1 : B ∆ ` N2 : B
Γ,∆ ` if M N1N2 : B

The first rule is multiplicative: Γ and ∆ are disjoint. The operational se-
mantics is that of PCF extended with the (only) two nondeterministic rules
choice→ tt and choice→ ff.

2.2 Game semantics and event structures

Game semantics interprets an open program by a strategy, recording the be-
haviour of the program (Player) against the context (Opponent) in a 2-player
game. Usually, the executions recorded are represented as plays, i.e. linear se-
quences of computational events called moves; a strategy being then a set of



such plays. For instance, the nondeterministic boolean would be represented as
the (even-prefix closure of the) set of plays {q− · tt+, q− · ff+} on the game for
booleans. In the play q− · tt+, the context starts the computation by asking the
value of the program (q−) and the program replies (tt+). Polarity indicates the
origin (Program (+) or Opponent/Environment (−)) of the event.

Being based on sequences of moves, traditional game semantics handles con-
currency via interleavings [10]. In contrast, in concurrent games [14], plays are
generalised to partial orders which can express concurrency as a primitive. For
instance, the execution of a parallel implementation of and against the context
(tt, tt) gives the following partial order:

B ⇒ B ⇒ B
q
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tt
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(−)
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In this picture, the usual chronological linear order is replaced by an ex-
plicit partial order representing causality. Moves are concurrent when they
are incomparable (as the two Player questions here). Following the longstanding
convention in game semantics, we show which component of the type a computa-
tional event corresponds to by displaying it under the corresponding occurrence
of a ground type. For instance in this diagram, Opponent first triggers the com-
putation by asking the output value, and then and concurrently evaluates his
two arguments. The arguments having evaluated to tt, and can finally answer
Opponent’s initial question and provide the output value.

In [7], we have shown how deterministic pure functional parallel programs
can be interpreted (in a fully abstract way) using such representations.

Partial-orders and non-determinism To represent nondeterminism in this par-
tial order setting, one possibility is to use sets of partial orders [4]. This rep-
resentation suffers however from two drawbacks: firstly it forgets the point of
non-deterministic branching; secondly, one cannot talk of an occurrence of a
move independently of an execution. Those issues are solved by moving to event
structures [17], where the nondeterministic boolean can be represented as:

B
q2uu} � !!)

(−)

tt ff (+)

The wiggly line ( ) indicates conflict : the boolean values cannot coexist
in an execution. Together this forms an event structure, defined formally later.

2.3 Interpretations of APCF+ with event structures

Let us introduce informally our interpretations by showing which event struc-
tures they associate to certain terms of APCF+.
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(a) Interp. before hiding
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(c) Interp. with partial hiding

Fig. 1: Three interpretations of (λb. if b tt⊥) choice

Angelic covered interpretation. Traditional game semantics interpretations
of nondeterminism are angelic (with exceptions, see e.g. [11]); they only describe
what terms may do, and forget where they might get stuck. The interpretation of
M = (λb. if b tt⊥) choice for instance, in usual game semantics is the same as
that of tt. This is due to the nature of composition which tends to forget paths
that do not lead to a value. Consider the strategy for the function λb. if b tt⊥:

B ⇒ B
q

,rrz
(−)

q:xx� � ��&
(+)

ff tt
� ��'

(−)

tt (+)

The interpretation of M arises as the composition of this strategy with the non-
deterministic boolean. Composition is defined in two steps: interaction (Figure
1a) and then hiding (Figure 1b). Hiding removes intermediate behaviour which
does not correspond to visible actions in the output type of the composition.

Hiding is crucial in order for composition to satisfy basic categorical proper-
ties (without it, the identity candidate, copycat, is not even idempotent). Strate-
gies on event structures are usually considered up to isomorphism, which is the
strongest equivalence relation that makes sense. Without hiding, there is no
hope to recover categorical laws up to isomorphism. However, it turns out that,
treating events in the middle as τ -transitions (∗ in Figure 1a), weak bisimulation
equates enough strategies to get a category. Following these ideas, a category of
uncovered strategies up to weak bisimilarity is built in Section 3.

Interpretation with partial hiding. However, considering uncovered strate-
gies up to weak bisimulation blurs their concrete nature; causal information is
lost, for instance. Moreover checking for weak bisimilarity is computationally
expensive, and because of the absence of hiding, a term evaluating to skip may
yield a very large representative. However, there is a way to cut down the strate-



gies to reach a compromise between hiding no internal events, or hiding all of
them and collapsing to an angelic interpretation.

In our games based on event structures, having a non-ambiguous notion of an
occurrence of event allows us to give a simple definition of the internal events we
need to retain (Definition 9). Hiding other internal events yields a strategy still
weakly bisimilar to the original (uncovered) strategy, while allowing us to get a
category up to isomorphism. The interpretation of M in this setting appears in
Figure 1c. As before, only the events under the result type (not labelled ∗) are
now visible, i.e. observable by a context. But the events corresponding to the
argument evaluation are only partially hidden; those remaining are considered
internal, treated like τ -transitions. Because of their presence, the partial hiding
performed loses no information (w.r.t. the uncovered interpretation) up to weak
bisimilarity. But we have hidden enough so that the required categorical laws
between strategies hold w.r.t. isomorphism. The model is more precise and con-
crete than that of weak bisimilarity, preserves causal information and preserves
must-convergence (unlike weak bisimilarity).

Following these ideas, a category of partially covered strategies up to iso (the
target of our adequacy results) is constructed in Section 4.

3 Uncovered strategies up to weak bisimulation

We now construct a category of “uncovered strategies”, up to weak bisimulation.
Uncovered strategies are very close to the partial strategies of [8], but [8] focused
on connections with operational semantics rather than categorical structure.

3.1 Preliminaries on event structures

Definition 1. An event structure is a triple (E,≤E ,ConE) where (E,≤E) is
a partial-order and ConE is a non-empty collection of finite subsets of E called
consistent sets subject to the following axioms:

– If e ∈ E, the set [e] = {e′ ∈ E | e′ ≤ e} is finite,
– For all e ∈ E, the set {e} is consistent,
– For all Y ∈ ConE, for all X ⊆ Y , then X ∈ ConE.
– If X ∈ ConE and e ≤ e′ ∈ X then X ∪ {e} is consistent.

A down-closed subset of events whose finite subsets are all consistent is
called a configuration. The set of finite configurations of E is denoted C (E).

If x ∈ C (E) and e 6∈ x, we write x
e
−−⊂x′ when x′ = x ∪ {e} ∈ C (E); this is the

covering relation between configurations, and we say that e gives an exten-
sion of x. Two extensions e and e′ of x are compatible when x∪{e, e′} ∈ C (E),
incompatible otherwise. In the latter case, we have a minimal conflict be-
tween e and e′ in context x (written e xe

′).
These event structures are based on consistent sets rather than the more

commonly-encountered binary conflict relation. Consistent sets are more general,



and more handy mathematically, but throughout this paper, event structures
concretely represented in diagrams will only use binary conflict, i.e. the relation
e xe

′ does not depend on x, meaning e ye
′ whenever y extends with e,

and with e′ – in which case we only write e e′. Then consistent sets can be
recovered as those finite X ⊆ E such that ¬(e e′) for all e, e′ ∈ X. Our
diagrams display the relation , along with the Hasse diagram of ≤E , called
immediate causality and denoted by _E . All the diagrams above denote
event structures. The missing ingredient in making the diagrams formal is the
names accompanying the events (q, tt, ff, . . . ). These will arise as annotations
by events from games, themselves event structures, representing the types.

The parallel composition E0 ‖ E1 of event structures E0 and E1 has for
events ({0}×E0)∪ ({1}×E1). The causal order is given by (i, e) ≤E0‖E1

(j, e′)
when i = j and e ≤Ei e

′, and consistent sets by those finite subsets of E0 ‖ E1

that project to consistent sets in both E0 and E1.
A (partial) map of event structures f : A ⇀ B is a (partial) function on

events which (1) maps any finite configuration of A to a configuration of B, and
(2) is locally injective: for a, a′ ∈ x ∈ C (A) and fa = fa′ (both defined) then
a = a′. We write E for the category of event structures and total maps and E⊥
for the category of event structures and partial maps.

An event structure with partial polarities is an event structure A with
a map pol : A→ {−,+, ∗} (where events are labelled “negative”, “positive”, or
“internal” respectively). It is a game when no events are internal. The dual A⊥

of a game A is obtained by reversing polarities. Parallel composition naturally
extends to games. If x and y are configurations of an event structure with partial
polarities we use x ⊆p y where p ∈ {−,+, ∗} for x ⊆ y & pol(y \ x) ⊆ {p}.

Given an event structure E and a subset V ⊆ E of events, there is an event
structure E ↓ V whose events are V and causality and consistency are inherited
from E. This construction is called the projection of E to V and is used in [14]
to perform hiding during composition.

3.2 Definition of uncovered pre-strategies

As in [14], we first introduce pre-strategies and their composition, and then
consider strategies, those pre-strategies well-behaved with respect to copycat.

Uncovered pre-strategies. An uncovered pre-strategy on a game A is a
partial map of event structures σ : S ⇀ A. Events in the domain of σ are called
visible or external, and events outside invisible or internal. Via σ, visible
events inherit polarities from A.

Uncovered pre-strategies are drawn just like the usual strategies of [14]: the
event structure S has its events drawn as their labelling in A if defined or ∗ if
undefined. The drawing of Figure 1a is an example of an uncovered pre-strategy.
From an (uncovered) pre-strategy, one can get a pre-strategy in the sense of
[14]: for σ : S ⇀ A, define S↓ = S ↓ dom(σ) where dom(σ) is the domain
of σ. By restriction σ yields σ↓ : S↓ → A, called a covered pre-strategy. A



configuration x of S can be decomposed as the disjoint union x↓ ∪ x∗ where x↓
is a configuration of S↓ and x∗ a set of internal events of S.

A pre-strategy from a game A to a game B is a (uncovered) pre-strategy
on A⊥ ‖ B. An important pre-strategy from a game A to itself is the copycat
pre-strategy. In A⊥ ‖ A, each move of A appears twice with dual polarity. The
copycat pre-strategy ccA simply waits for the negative occurrence of a move a
before playing the positive occurrence. See [5] for a formal definition.

Isomorphism of strategies [14] can be extended to uncovered pre-strategies:

Definition 2. Pre-strategies σ : S ⇀ A, τ : T ⇀ A are isomorphic (written
σ ∼= τ) if there is an iso ϕ : S ∼= T s.t. τ ◦ ϕ = σ (equality of partial maps).

Interaction of pre-strategies. Recall that in the covered case, composition
is performed first by interaction, then hiding; where interaction of pre-strategies
is described as their pullback in the category of total maps [14]. Even though
E⊥ has pullbacks, those pullbacks are inadequate to describe interaction. In [8],
uncovered strategies are seen as total maps σ : S → A ‖ N , and their interaction
as a pullback involving these. This method has its awkwardness so, instead, here
we give a direct universal construction of interaction, replacing pullbacks.

We start with the simpler case of a closed interaction of a pre-strategy σ :
S ⇀ A against a counter pre-strategy τ : T ⇀ A⊥. As in [5] we first describe the
expected states of the closed interaction in terms of secured bijections, from which
we construct an event structure; before characterising the whole construction via
a universal property.

Definition 3 (Secured bijection). Let q,q′ be partial orders and ϕ : q ' q′

be a bijection between the carrier sets (non necessarily order-preserving). It is
secured when the following relation /ϕ on the graph of ϕ is acyclic:

(s, ϕ(s)) /ϕ (s′, ϕ(s′)) iff s _q s
′ ∨ ϕ(s) _q′ ϕ(s′)

If so, the resulting partial order (/ϕ)∗ is written ≤ϕ.

Let σ : S ⇀ A and τ : T ⇀ A be partial maps of event structures (we
dropped polarities, as the construction is completely independent of them). A
pair (x, y) ∈ C (S) × C (T ) such that σ↓x = τ↓y ∈ C (A), induces a bijection
ϕx,y : x ‖ y∗ ' x∗ ‖ y defined by local injectivity of σ and τ :

ϕx,y(0, s) = (0, s) (s ∈ x∗)
ϕx,y(0, s) = (1, τ−1(σs)) (s ∈ x↓)
ϕx,y(1, t) = (1, t)

The configurations x and y have a partial order inherited from S and T .
Viewing y∗ and x∗ as discrete orders (the ordering relation is the equality), ϕx,y
is a bijection between carrier sets of partial orders. An interaction state of σ
and τ is (x, y) ∈ C (S) × C (T ) with σ↓x = τ↓y for which ϕx,y is secured. As a
result (the graph of) ϕx,y is naturally partial ordered. Write Sσ,τ for the set of
interaction states of σ and τ . As usual [5], we can recover an event structure:



Definition 4 (Closed interaction of uncovered pre-strategies). Let A be
an event structure, and σ : S ⇀ A and τ : T ⇀ A be partial maps of event
structures. The following data defines an event structure S ∧ T :

– events: those interaction states (x, y) such that ϕx,y has a top element,
– causality: (x, y) ≤S∧T (x′, y′) iff x ⊆ x′ and y ⊆ y′,
– consistency: a finite set of interaction states X ⊆ S ∧ T is consistent iff its

union
⋃
X is an interaction state in Sσ,τ .

This event structure comes with partial mapsΠ1 : S∧T ⇀ S andΠ2 : S∧T ⇀ T ,
analogous to the usual projections of a pullback: for (x, y) ∈ S ∧ T , Π1(x, y)
is defined to s ∈ S whenever the top-element of ϕx,y is ((0, s), w2) for some
w2 ∈ x∗ ‖ y. The map Π1 is undefined only on events of S ∧ T corresponding to
internal events of T (i.e. (x, y) with top element of ϕx,y of the form ((1, t), (1, t))).
The map Π2 is defined symmetrically, and undefined on events corresponding to
internal events of S. We write σ ∧ τ for σ ◦Π1 = τ ◦Π2 : S ∧ T ⇀ A.

Lemma 1. Let σ : S ⇀ A and τ : T ⇀ A be partial maps. Let (X, f : X ⇀
S, g : X ⇀ T ) be a triple such that the following outer square commutes:

X

S S ∧ T T

A

〈f,g〉f g

σ

Π2Π1

σ∧τ
τ

If for all p ∈ X with f p and g p defined, σ(f p) = τ(g p) is defined, then there
exists a unique 〈f, g〉 : X ⇀ S ∧ T making the two upper triangles commute.

From this closed interaction, we define the open interaction as in [14]. Given
two pre-strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, their interaction

τ ~ σ : (S ‖ C) ∧ (A ‖ T ) ⇀ A⊥ ‖ C

is defined as the composite partial map (S ‖ C)∧(A ‖ T ) ⇀ A ‖ B ‖ C ⇀ A ‖ C,
where the “pullback” is first computed ignoring polarities – the codomain of the
resulting partial map is A⊥ ‖ C, once we reinstate polarities.

Weak bisimulation. To compare uncovered pre-strategies, we cannot use iso-
morphisms as in [14], since as hinted earlier, ccA ~ σ comprises synchronised
events not corresponding to those in σ. To solve this, we introduce weak bisim-
ulation between uncovered strategies:

Definition 5. Let σ : S ⇀ A and τ : T ⇀ A be uncovered pre-strategies. A
weak bisimulation between σ and τ is a relation R ⊆ C (S) × C (T ) containing
(∅, ∅), such that for all xR y, we have:



– If x
s
−−⊂x′ such that s is visible, then there exists y ⊆∗ y′

t
−−⊂ y′′ with σs = τt

and x′R y′′ (and the symmetric condition for τ)

– If x
s
−−⊂x′ such that s is internal, then there exists y ⊆∗ y′ such that x′R y′

(and the symmetric condition for τ)

Two uncovered pre-strategies σ, τ are weakly bisimilar (written σ ' τ) when
there is a weak bisimulation between them.

Associativity of interaction (up to isomorphism, hence up to weak bisimu-
lation) follows directly from Lemma 1. Moreover, it is straightforward to check
that weak bisimulation is a congruence (i.e. compatible with composition).

Composition of covered strategies. From interaction, we can easily define
the composition of covered strategies. If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C
are covered pre-strategies, their composition (in the sense of [14]) τ�σ is defined
as (τ ~ σ)↓. The operation ↓ is well-behaved with respect to interaction:

Lemma 2. For σ, τ composable pre-strategies, (τ ~ σ)↓ ∼= τ↓ � σ↓.

3.3 A compact-closed category of uncovered strategies

Although we have a notion of morphism (pre-strategies) between games and
an associative composition, we do not have a category up to weak bisimulation
yet. Unlike in [14], races in a game may cause copycat on this game to not be
idempotent (see [3] for a counterexample), which is necessary for it to be an
identity. To ensure that, we restrict ourselves to race-free games: those such
that whenever a configuration x can be extended by a1, a2 of distinct polarities,
the union x∪{a1, a2} is consistent. From now on, games are assumed race-free.

Lemma 3. For a race-free game A, ccA ~ ccA ' ccA.

Proof. It will follow from the forthcoming Lemma 4.

Uncovered strategies. Finally, we characterise the pre-strategies invariant
under composition with copycat. The two ingredients of [5, 14], receptivity and
courtesy (called innocence in [14]) are needed, but this is not enough: we need
another condition as witnessed by the following example.

Consider the strategy σ : ⊕1 ⊕2 on the game A = ⊕1⊕2 playing non-
deterministically one of the two moves. Then the interaction ccA ~ σ is:

A∗ A

∗1 � ,,2⊕1

∗2 � ,,2⊕2

It is not weakly bisimilar to σ: ccA ~ σ can do ∗1, an internal transition, to
which σ can only respond by not doing anything. Then σ can still do ⊕1 and



⊕2 whereas ccA ~ σ cannot: it is committed to doing ⊕1. To solve this problem,
we need to force strategies to decide their nondeterministic choices secretly, by
means of internal events – so σ will not be a valid uncovered strategy, but ccA~σ
will. Indeed, ccA ~ ( ccA ~ σ) below is indeed weakly bisimilar to ccA ~ σ.

A∗ A∗ A

∗1 � ,,2∗1 � ,,2⊕1

∗2 � ,,2∗2 � ,,2⊕2

Definition 6. An (uncovered) strategy is a pre-strategy σ : S ⇀ A satisfying:

– receptivity: if x ∈ C (S) is such that σx
a
−−⊂ with a ∈ A negative, then there

exists a unique x
s
−−⊂ with σs = a.

– courtesy: if s _ s′ and s is positive or s′ is negative, then σs _ σs′.
– secrecy: if x ∈ C (S) extends with s1, s2 but x∪{s1, s2} 6∈ C (S), then s1 and
s2 are either both negative, or both internal.

Receptivity and courtesy are stated exactly as in [14]. As a result, hiding the
internal events of an uncovered strategy yields a strategy σ↓ in the sense of [14].

For any game A, ccA is an uncovered strategy: it satisfies secrecy as its only
minimal conflicts are inherited from the game and are between negative events.

The category CG~. Our definition of uncovered strategy does imply that
copycat is neutral for composition.

Lemma 4. Let σ : S ⇀ A be an uncovered strategy. Then ccA ~ σ ' σ.

The result follows immediately:

Theorem 1. Race-free games and uncovered strategies up to weak bisimulation
form a compact-closed category CG~.

3.4 Interpretation of affine nondeterministic PCF

From now on, strategies are by default considered uncovered. We sketch the
interpretation of APCF+ inside CG~. As a compact-closed category, CG~

supports an interpretation of the linear λ-calculus. However, the empty game 1
is not terminal, as there are no natural transformation εA : A→ 1 in CG~.

The negative category CG−
~ . We solve this issue as in [4], by looking at

negative strategies and negative games.

Definition 7. An event structure with partial polarities is negative when all
its minimal events are negative.

A strategy σ : S ⇀ A is negative when S is. Copycat on a negative game is
negative, and negative strategies are stable under composition:



Lemma 5. There is a subcategory CG−~ of CG~ consisting in negative race-
free games and negative strategies. It inherits a monoidal structure from CG in
which the unit (the empty game) is terminal.

Moreover, CG−~ has products. The product A & B of two games A and
B, has events, causality, polarities as for A ‖ B, but consistent sets restricted
to those of the form {0} × X or {1} × X with X consistent in A or B. The
projections are $A : CCA → (A&B)⊥ ‖ A, and $B : CCB → (A&B)⊥ ‖ B.

Finally, the pairing of negative strategies σ : S ⇀ A⊥ ‖ B and τ : T →
A⊥ ‖ C is the obvious map 〈σ, τ〉 : S & T ⇀ A⊥ ‖ B & C, and the laws for the
cartesian product are direct verifications.

We also need a construction to interpret the function space. However, for A
and B negative, A⊥ ‖ B is not usually negative. To circumvent this, we introduce
a negative variant A ( B, the linear arrow. To simplify the presentation, we
only define it in a special case. A game is well-opened when it has at most
one initial event. When B is well-opened, we define A ( B to be 1 if B = 1;
and otherwise A⊥ ‖ B with the exception that every move in A depends on the
single minimal move in B. As a result ( preserves negativity. We get:

Lemma 6. If B is well-opened, A ( B is well-opened and is an exponential
object of A and B.

In other words, well-opened games are an exponential ideal in CG−~. We

interpret types of APCF+ inside well-opened games of CG−~:

JcomK =
run−

_���
done+

JBK =
q−

C{{� {��#
tt+ ff+

JA( BK = JAK ( JBK

Interpretation of terms. Interpretation of the affine λ-calculus in CG~
− fol-

lows standard methods. First, the primitives tt, ff,⊥, if are interpreted as:

JttK : B

q
_���
tt

ff : B

q
_���
ff

J⊥K : B

q
_���∗
_���∗_���
...

if : B ( (B & B) ( B

q
'ppwq

4uu� _���
tt

� &&-
ff

� &&-q
_���

q_���
b

� $$,

b′

� $$,b b′

A non-standard point is the interpretation of ⊥: usually interpreted in game
semantics by the minimal strategy simply playing q (as will be done in the next
section), our interpretation here reflects the fact that ⊥ represents an infinite
computation that never returns. Conditionals are implemented as usual:

Jif M N N ′K~ = if~ (JMK~ ‖ 〈JNK~, JN ′K~〉).



Soundness and adequacy. We now prove adequacy for various notions of con-
vergence. First, we build an uncovered strategy from the operational semantics.

Definition 8 (The operational tree). Let M be a closed term of type B. We
define the pre-strategy t(M) on B as follows:

Events An initial event ⊥ plus one event per derivation M →∗ M ′.
Causality ⊥ is below other events, and derivations are ordered by prefix
Consistency A set of events is consistent when its events are comparable.
Labelling ⊥ has label q, a derivation M →∗ b where b ∈ {tt, ff} is labelled by

b. Other derivations are internal.

As a result, t(M) is a tree. Our main result of adequacy can now be stated:

Theorem 2. For a term `M : B, t(if M tt ff) and JMK~ are weakly bisimilar.

We need to consider t(if M tt ff) and not simply t(M) to ensure secrecy.
From this theorem, adequacy results for may and fair convergences arise:

Corollary 1. For any term `M : B, we have:

May M →∗ tt if and only if JMK~ contains a positive move
Fair For all M →∗ M ′, M ′ can converge, if and only if all finite configurations

of JM ′K~ can be extended to contain a positive move.

However, we cannot conclude adequacy for must equivalence from Theorem 2.
Indeed, must convergence is not generally stable under weak bisimilarity: for
instance, (the strategies representing) tt and Y (λx. if choice ttx) are weakly
bisimilar but the latter is not must convergent. To address this in the next section
we will refine the interpretation to obtain a closer connection with syntax.

4 Essential events

The model presented in the previous section is very operational; configurations
of JMK~ can be seen as derivations for an operational semantics. The price,
however, is that besides the fact that the interpretation grows dramatically in
size, we can only get a category up to weak bisimulation, which can be too
coarse (for instance for must convergence). We would like to remove all events
that are not relevant to the behaviour of terms up to weak bisimulation. In other
words, we want a notion of essential internal events that (1) suffices to recover
all behaviour with respect to weak bisimulation, but which (2) is not an obstacle
to getting a category up to isomorphism (which amounts to ccA ◦ σ ∼= σ).

4.1 Definition of essential events

As shown before, the loss of behaviours when hiding is due to the disappearance
of events participating in a conflict. A neutral event may not have visible con-
sequences but still be relevant if in a minimal conflict; such events are essential.



Definition 9. Let σ : S ⇀ A be an uncovered pre-strategy. An essential event
of S is an event s which is either visible, or (internal and) involved in a minimal
conflict (that is such that we have s xs

′ for some s′, x.)

Write ES for the set of essential events of σ. Any pre-strategy σ : S ⇀ A induces
another pre-strategy E (σ) : E (S) = S ↓ ES ⇀ A called the essential part of
σ. The following proves that our definition satisfies (1): no behaviour is lost.

Lemma 7. An uncovered pre-strategy σ : S ⇀ A is weakly bisimilar to E (σ).

This induces a new notion of (associative) composition only keeping the es-
sential events. For σ : A⊥ ‖ B and τ : B⊥ ‖ C, let τ }σ = E (τ ~σ). We observe
that E (τ ~ σ) ∼= E (τ) } E (σ).

Which pre-strategies compose well with copycat with this new composition?

4.2 Essential strategies

We now can state property (2): the events added by composition with copycat
are inessential, hence hidden during composition:

Theorem 3. Let σ : S ⇀ A be an uncovered strategy. Then ccA } σ ∼= E (σ).

This prompts the following definition. An uncovered pre-strategy σ is essential
when it is a strategy, and if, equivalently: (1) all its events are essential, (2)
σ ∼= E (σ). We obtain a characterisation of strategies in the spirit of [14]:

Theorem 4. A pre-strategy σ : S ⇀ A is essential if and only if ccA } σ ∼= σ.

As a result, we get:

Theorem 5. Race-free games, and essential strategies up to isomorphism form
a compact-closed category CG}.

Relationship between CG and CG}. Covered strategies can be made into
a compact-closed category [5, 14]. Remember that the composition of σ : S →
A⊥ ‖ B and τ : T → B⊥ ‖ C in CG is defined as τ � σ = (τ ~ σ)↓.

Lemma 8. The operation σ 7→ σ↓ extends to an identity-on-object functor
CG} → CG.

In the other direction, a strategy σ : A might not be an essential strategy; in
fact it might not even be an uncovered strategy, as it may fail secrecy. Sending
σ to ccA}σ delegates the non-deterministic choices to internal events and yields
an essential strategy, but this operation is not functorial.

Relationship between CG} and CG~. The forgetful operation mapping an
essential strategy σ to itself, seen as an uncovered strategy, defines a functor
CG} → CG~. Indeed, if two essential strategies are isomorphic, they are also
weakly bisimilar. Moreover, we have that τ ~σ ' E (τ ~σ) = τ }σ. However the
operation E (·) does not extend to a functor in the other direction even though
E (τ) } E (σ) ∼= E (τ ~ σ), as it is defined only on concrete representatives, not
on equivalence classes for weak bisimilarity.



4.3 Interpretation of APCF+

We now show that this new category also supports a sound and adequate inter-
pretation of APCF+ for various testing equivalences, including must. As before,
we need to construct the category of negative games and strategies.

Lemma 9. There is a cartesian symmetric monoidal category CG−} of negative
race-free games and negative essential strategies up to isomorphism. Well-opened
negative race-free games form an exponential ideal of CG−}.

We keep the same interpretation of types of affine nondeterministic PCF.
Moreover, the strategy if is essential. As a result, we let:

J⊥K} = q : B Jif M N N ′K} = if} (JMK} ‖ 〈JNK}, JN ′K}〉)

Using E (σ ~ τ) = E (σ) } E (τ), one can prove by induction that for any
term M we have JMK} = E (JMK~). Furthermore, this interpretation permits a
stronger link between the operational and the denotational semantics:

Theorem 6. For all terms `M : B, E (t(M)) ∼= JMK}.

Theorem 6 implies Theorem 2. It also implies adequacy for must:

Corollary 2. The interpretation J·K} is adequate for may, and fair, and must:
`M : B has no infinite derivations if and only if all (possibly infinite) maximal
configurations of JMK} have a positive event.

This result also implies that J·K~ is adequate for must.

5 Conclusion

We have described an extension of the games of [14] to uncovered strategies,
composed without hiding. It has strong connections with operational semantics,
as the interpretations of terms of base type match their tree of reductions. It also
forms a compact-closed category up to weak bisimulation, and is adequate for
the denotational semantics of programming languages. Identifying the inessential
events as those responsible for the non-neutrality of copycat, we remove them
to yield a compact closed category up to isomorphism. Doing so we obtain our
sought-after setting for the denotational semantics of programming languages,
one agnostic w.r.t. the chosen testing equivalence. The work blends well with
the technology of [7] (symmetry, concurrent innocence) dealing with non-affine
languages and characterising strategies corresponding to pure programs; these
developments appear in the first author’s PhD thesis [3].
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