
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

On Polymorphic Sessions and Functions
A Tale of Two (Fully Abstract) Encodings

BERNARDO TONINHO, NOVA-LINCS and NOVA School of Science and Technology, Portugal

NOBUKO YOSHIDA, Imperial College London, United Kingdom

This work exploits the logical foundation of session types to determine what kind of type discipline for the

𝜋-calculus can exactly capture, and is captured by, _-calculus behaviours. Leveraging the proof theoretic

content of the soundness and completeness of sequent calculus and natural deduction presentations of linear

logic, we develop the firstmutually inverse and fully abstract processes-as-functions and functions-as-processes
encodings between a polymorphic session 𝜋-calculus and a linear formulation of System F. We are then able

to derive results of the session calculus from the theory of the _-calculus: (1) we obtain a characterisation of

inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our

results to account for value and process passing, entailing strong normalisation.

CCS Concepts: • Theory of computation � Distributed computing models; Process calculi; Linear
logic; • Software and its engineering� Message passing; Concurrent programming languages; Concurrent
programming structures.

Additional Key Words and Phrases: Session Types, 𝜋-calculus, System F, Linear Logic, Full Abstraction

ACM Reference Format:
Bernardo Toninho and Nobuko Yoshida. 2021. On Polymorphic Sessions and Functions: A Tale of Two (Fully

Abstract) Encodings. ACM Trans. Program. Lang. Syst. 1, 1 (March 2021), 55 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
The 𝜋-calculus is an analytical tool for understanding [interactive] systems – Robin Milner [41]

Encodability is the main traditional method to compare and examine process calculi and their

operators with respect to their expressive power. There are in fact an enormous number of process

calculi for expressing non-determinism, parallelism, distribution, locality, real-time, stochastic phe-

nomena, etc, and each of these aspects can be described in different ways. Encodings not only allow

a comparison of the expressive power of languages but also formalise similarities and differences

between the considered calculi. Thus, they provide a basis for design and implementations of con-

current language primitives and operators into real systems and programming languages [49, 52].

One of the first examples of this is an input-guarded choice encoding in the 𝜋-calculus [44], which

provided a library in the Pict Programming Language [57].

Dating back to Milner’s seminal work [42], encodings of _-calculus into 𝜋-calculus are, in particu-

lar, seen as essential benchmarks to examine expressiveness of various extensions of the 𝜋-calculus.

Authors’ addresses: Bernardo Toninho, NOVA-LINCS and NOVA School of Science and Technology, Department of

Informatics, Portugal, btoninho@fct.unl.pt; Nobuko Yoshida, Imperial College London, Department of Computing, United

Kingdom, nobuko.yoshida@imperial.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0164-0925/2021/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Bernardo Toninho and Nobuko Yoshida

Milner’s original motivation was to demonstrate the power of link mobility by decomposing higher-

order computations into pure name passing. Another goal was to analyse functional behaviours in

a broad computational universe of concurrency and non-determinism. While operationally correct

encodings of many higher-order constructs exist, it is challenging to obtain encodings that are pre-

cise with respect to behavioural equivalence: the semantic distance between the _-calculus and the

𝜋-calculus typically requires either restricting process behaviours [64] (e.g. via typed equivalences

[8]) or enriching the _-calculus with constants that allow for a suitable characterisation of the term

equivalence induced by the behavioural equivalence on processes [62].

Pierce and Sangiorgi [56], exploring the fact that types for 𝜋-calculi limit the valid contexts

in which processes may interact, observed the semantic consequences of typed equivalences

by showing that the observational congruence induced by IO-subtyping can prove the semantic
correctness of Milner’s encoding [55], which was impossible in the untyped setting. Following

these developments, many works on typed 𝜋-calculi have investigated the correctness of Milner’s

encodings in order to examine the power of proposed typing systems.

Encodings in 𝜋-calculi also gave rise to new typing disciplines: Session types [28, 30], a typing
system that is able to ensure deadlock-freedom for communication protocols between two or more

parties [31], were originally motivated “from process encodings of various data structures in an

asynchronous version of the 𝜋-calculus” [29]. Following this original motivation, session types

have been integrated into mainstream programming languages [1, 21]. A popular technique is to

use “encodings” of session types into linear or functional types to correctly implement structured
communications in programming languages such as Haskell [46], OCaml [32, 34, 48] and Scala

[67, 68] (see Section 6).

Recently, a propositions-as-types correspondence between linear logic and session types [12,

13, 76] has produced several new developments and logically-motivated techniques [11, 37, 70, 76]

to augment both the theory and practice of session-based message-passing concurrency. Notably,

parametric session polymorphism [11] (in the sense of Reynolds [59]) has been proposed and a

corresponding abstraction theorem has been shown.

Our work expands upon the proof theoretic consequences of this propositions-as-types corre-

spondence to address the problem of how to exactly match the behaviours induced by session

𝜋-calculus encodings of the _-calculus with those of the _-calculus. We develop mutually inverse
and fully abstract encodings (up to typed observational congruences) between a polymorphic

session-typed 𝜋-calculus and the polymorphic _-calculus. The encodings arise from the proof

theoretic content of the equivalence between sequent calculus (i.e. the session calculus) and natural

deduction (i.e. the _-calculus) for second-order intuitionistic linear logic, greatly generalising those

for the propositional setting [70]. While fully abstract encodings between _-calculi and 𝜋-calculi

have been proposed (e.g. [8, 62]), our work is the first to consider a two-way, both mutually inverse

and fully abstract embedding between the two calculi by crucially exploiting the linear logic-based

session discipline. This also sheds some definitive light on the nature of concurrency in the (logical)

session calculi, which exhibit “don’t care” forms of non-determinism (e.g. processes may race

on stateless replicated servers) rather than “don’t know” non-determinism (which requires less

harmonious logical features [3]).

In the spirit of Gentzen [22], who established soundness and completeness of his sequent calculus

and natural deduction in order to use the former as a way to study the latter (i.e., to show consistency

and normalisation of natural deduction through cut elimination in the sequent calculus), we use

our encodings as a tool to study non-trivial properties of the session calculus, deriving them

from results in the _-calculus: We show the existence of inductive and coinductive sessions in

the polymorphic session calculus by considering the representation of initial 𝐹 -algebras and final

𝐹 -coalgebras [40] in the polymorphic _-calculus [2, 27] (in a linear setting [10]). By appealing to

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

On Polymorphic Sessions and Functions 3

full abstraction, we are able to derive processes that satisfy the necessary algebraic properties

and thus form adequate uniform representations of inductive and coinductive session types. The

derived algebraic properties enable us to reason about standard data structure examples, providing

a logical justification to typed variations of the representations in [43].

We systematically extend our results to a session calculus with _-term and process passing [71],

inspired by Benton’s LNL [6]. By showing that our encodings naturally adapt to this setting, we

prove that it is possible to encode higher-order process passing in the first-order session calculus

fully abstractly, providing a typed and proof-theoretically justified re-envisioning of Sangiorgi’s

encodings of higher-order 𝜋-calculus [65]. In addition, the encoding instantly provides a strong

normalisation property of the higher-order session calculus.

Contributions and Outline. Contributions of our article are as follows:
Section 3.1 develops a functions-as-processes encoding of a linear formulation of System F,

Linear-F, using a logically motivated polymorphic session 𝜋-calculus, Poly𝜋 , and shows that

the encoding is operationally sound and complete.

Section 3.2 develops a processes-as-functions encoding of Poly𝜋 into Linear-F, arising from

the completeness of the sequent calculus wrt natural deduction, also operationally sound

and complete.

Section 3.3 studies the relationship between the two encodings, establishing they aremutually
inverse and fully abstract wrt typed congruence, the first two-way embedding satisfying both
properties.

Section 4 develops a faithful representation of inductive and coinductive session types in

Poly𝜋 via the encoding of initial and final (co)algebras in the polymorphic _-calculus, which

is driven through our encodings to produce processes satisfying the necessary algebraic

properties. We demonstrate a use of these algebraic properties via examples.

Sections 5 and 5.2 study term-passing and process-passing session calculi, extending our

encodings to provide embeddings into the first-order session calculus. As a consequence, we

obtain a proof-theoretically, type-driven reinvisioning of Sangiorgi’s encodings of higher-

order processes into first-order processes. We show that the full abstraction and mutual

inversion results are smoothly extended to these calculi and derive strong normalisation of

the higher-order session calculus from the encoding.

In order to introduce our encodings, we first overview the logically motivated polymorphic session

calculus Poly𝜋 , its typing system and behavioural equivalence (Section 2). We discuss related work

in Section 6 and conclude with future work in Section 7. The appendix includes detailed proofs and

additional lemmas.

Outline. This article revises and extends an earlier version of this work [73] with additional

materials and full proofs. § 2 was extended to include all the necessary formal definitions for the

development of the coming sections, namely the definitions of structural and extended structural

congruence, typed barbed congruence and logical equivalence. We further include the complete set

of typing rules of the system and extended discussion on their relationship with the literature on

linear logic. We further include a more detailed analysis of logical equivalence. Section 3 now details

the operational semantics of Linear-F. Section 3.2 includes the encoding from session 𝜋-calculus

typing derivations to Linear-F typing derivations explicitly. We have also included additional

discussion throughout the section on the relationship with various proof theoretic considerations

and extended the examples, as well as additional discussion on the nature of the encodings with

respect to the operational semantics of Linear-F and potential extensions to effects and non-

divergence. The proofs of the main results of the section, namely of full abstraction (Theorems 3.15

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Bernardo Toninho and Nobuko Yoshida

and 3.16) are included in the main article. Proofs of the results in the remainder of the section

can be found in detail in the appendix. Section 4 has been extended with additional discussion,

explanations and proofs. Section 5 has generally been extended with additional results and proofs.

Section 5.2 now includes the development of the strong normalisation result (Theorem 5.24) for the

higher-order process passing calculus via a modification of the encoding presented previously in the

section, which also includes the reestablishment of the properties of operational correspondence,

and the inverse theorem for the reformulated encoding. Finally, Section 6 has been enhanced with

additional discussion of related work, including works that were published after the conference

version of this work [73].

2 POLYMORPHIC SESSION 𝜋-CALCULUS
This section summarises the polymorphic session 𝜋-calculus [11], dubbed Poly𝜋 , arising as a process

assignment to second-order linear logic [23], its typing system and behavioural equivalences.

2.1 Processes and Typing
Syntax. Given an infinite set of names 𝑥,𝑦, 𝑧,𝑢, 𝑣,𝑤 , the grammar of processes 𝑃,𝑄, 𝑅 and session

types 𝐴, 𝐵,𝐶 is defined by:

𝑃,𝑄, 𝑅 ::= 𝑥 ⟨𝑦⟩.𝑃 | 𝑥 (𝑦) .𝑃 | 𝑃 | 𝑄 | (a𝑦)𝑃 | [𝑥 ↔ 𝑦] | 0
| 𝑥 ⟨𝐴⟩.𝑃 | 𝑥 (𝑌) .𝑃 | 𝑥 .inl; 𝑃 | 𝑥 .inr; 𝑃 | 𝑥 .case(𝑃,𝑄) | !𝑥 (𝑦).𝑃

𝐴, 𝐵 ::= 1 | 𝐴 ⊸ 𝐵 | 𝐴 ⊗ 𝐵 | 𝐴 & 𝐵 | 𝐴 ⊕ 𝐵 | !𝐴 | ∀𝑋 .𝐴 | ∃𝑋 .𝐴 | 𝑋
𝑥 ⟨𝑦⟩.𝑃 denotes the output of channel 𝑦 on 𝑥 with continuation process 𝑃 ; 𝑥 (𝑦).𝑃 denotes an input

along 𝑥 , bound to 𝑦 in 𝑃 ; 𝑃 | 𝑄 denotes parallel composition; (a𝑦)𝑃 denotes the restriction of name

𝑦 to the scope of 𝑃 ; 0 denotes the inactive process; [𝑥 ↔ 𝑦] denotes the linking of the two channels
𝑥 and 𝑦 (implemented as renaming); 𝑥 ⟨𝐴⟩.𝑃 and 𝑥 (𝑌).𝑃 denote the sending and receiving of a type
𝐴 along 𝑥 bound to 𝑌 in 𝑃 of the receiver process; 𝑥 .inl; 𝑃 and 𝑥 .inr; 𝑃 denote the emission of a

selection between the left or right branch of a receiver 𝑥 .case(𝑃,𝑄) process; !𝑥 (𝑦) .𝑃 denotes an

input-guarded replication that spawns replicas upon receiving an input along 𝑥 . We often abbreviate

(a𝑦)𝑥 ⟨𝑦⟩.𝑃 to 𝑥 ⟨𝑦⟩.𝑃 and omit trailing 0 processes. By convention, we range over linear channels

with 𝑥,𝑦, 𝑧 and shared channels with 𝑢, 𝑣,𝑤 .

The syntax of session types is that of (intuitionistic) linear logic propositions which are assigned

to channels according to their usages in processes: 1 denotes the type of a channel along which
no further behaviour occurs; 𝐴 ⊸ 𝐵 denotes a session that waits to receive a channel of type 𝐴

and will then proceed as a session of type 𝐵; dually, 𝐴 ⊗ 𝐵 denotes a session that sends a channel

of type 𝐴 and continues as 𝐵; 𝐴 & 𝐵 denotes a session that offers a choice between proceeding as

behaviours 𝐴 or 𝐵; 𝐴 ⊕ 𝐵 denotes a session that internally chooses to continue as either 𝐴 or 𝐵,

signalling appropriately to the communicating partner; !𝐴 denotes a session offering an unbounded

(but finite) number of behaviours of type 𝐴; ∀𝑋 .𝐴 denotes a polymorphic session that receives

a type 𝐵 and behaves uniformly as 𝐴{𝐵/𝑋 }; dually, ∃𝑋 .𝐴 denotes an existentially typed session,

which emits a type 𝐵 and behaves as 𝐴{𝐵/𝑋 }.

Operational Semantics. The operational semantics of our calculus is presented as a standard

labelled transition system (Fig. 1) in the style of the early system for the 𝜋-calculus [65].

In the remainder of this work we write ≡ for a standard 𝜋-calculus structural congruence

(Def. 2.1) extended with the clause [𝑥 ↔ 𝑦] ≡ [𝑦 ↔ 𝑥]. In order to streamline the presentation of

observational equivalence [11, 50], we write ≡! (Def. 2.2) for structural congruence extended with

the so-called sharpened replication axioms [65], which capture basic equivalences of replicated

processes (and are present in the proof dynamics of the exponential of linear logic).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

On Polymorphic Sessions and Functions 5

(out)

𝑥 ⟨𝑦⟩.𝑃
𝑥 ⟨𝑦⟩
→ 𝑃

(in)

𝑥 (𝑦).𝑃
𝑥 (𝑧)
→ 𝑃{𝑧/𝑦}

(outT)

𝑥 ⟨𝐴⟩.𝑃
𝑥 ⟨𝐴⟩
→ 𝑃

(inT)

𝑥 (𝑌).𝑃
𝑥 (𝐵)
→ 𝑃{𝐵/𝑌 }

(rout)

𝑥 .inr; 𝑃
𝑥.inr→ 𝑃

(lout)

𝑥 .inl; 𝑃
𝑥.inl→ 𝑃

(id)

(a𝑥) ([𝑥 ↔ 𝑦] | 𝑃) 𝜏→ 𝑃{𝑦/𝑥}
(rin)

𝑥 .case(𝑃,𝑄) 𝑥.inr→ 𝑄

(lin)

𝑥 .case(𝑃,𝑄) 𝑥.inl→ 𝑃

(rep)

!𝑥 (𝑦).𝑃
𝑥 (𝑧)
→ 𝑃{𝑧/𝑦} |!𝑥 (𝑦).𝑃

(open)

𝑃
𝑥 ⟨𝑦⟩
→ 𝑄

(a𝑦)𝑃
(a𝑦)𝑥 ⟨𝑦⟩
→ 𝑄

(close)

𝑃
(a𝑦)𝑥 ⟨𝑦⟩
→ 𝑃 ′ 𝑄

𝑥 (𝑦)
→ 𝑄 ′

𝑃 | 𝑄 𝜏→ (a𝑦) (𝑃 ′ | 𝑄 ′)

(par)

𝑃
𝛼→ 𝑄

𝑃 | 𝑅 𝛼→ 𝑄 | 𝑅

(com)

𝑃
𝛼→ 𝑃 ′ 𝑄

𝛼→ 𝑄 ′

𝑃 | 𝑄 𝜏→ 𝑃 ′ | 𝑄 ′

(res)

𝑃
𝛼→ 𝑄

(a𝑦)𝑃 𝛼→ (a𝑦)𝑄

Fig. 1. Labelled Transition System.

Definition 2.1 (Structural congruence). (𝑃 ≡ 𝑄), is the least congruence relation generated by the

following laws:

𝑃 | 0 ≡ 𝑃 𝑃 ≡𝛼 𝑄 ⇒ 𝑃 ≡ 𝑄 𝑃 | 𝑄 ≡ 𝑄 | 𝑃 𝑃 | (𝑄 | 𝑅) ≡ (𝑃 | 𝑄) | 𝑅
(a𝑥) (a𝑦)𝑃 ≡ (a𝑦) (a𝑥)𝑃 𝑥 ∉ fn(𝑃) ⇒ 𝑃 | (a𝑥)𝑄 ≡ (a𝑥) (𝑃 | 𝑄) (a𝑥)0 ≡ 0 [𝑥 ↔ 𝑦] ≡ [𝑦 ↔ 𝑥]
Definition 2.2 (Extended Structural Congruence). We write ≡! for the least congruence relation on

processes which results from extending structural congruence ≡ with the following axioms:

(1) (a𝑢) (!𝑢 (𝑧).𝑃 | (a𝑦) (𝑄 | 𝑅)) ≡! (a𝑦) ((a𝑢) (!𝑢 (𝑧).𝑃 | 𝑄) | (a𝑢) (!𝑢 (𝑧).𝑃 | 𝑅))
(2) (a𝑢) (!𝑢 (𝑦).𝑃 | (a𝑣) (!𝑣 (𝑧).𝑄 | 𝑅)) ≡! (a𝑣) ((!𝑣 (𝑧).(a𝑢) (!𝑢 (𝑦).𝑃 | 𝑄)) | (a𝑢) (!𝑢 (𝑦).𝑃 | 𝑅))
(3) (a𝑢) (!𝑢 (𝑦).𝑄 | 𝑃) ≡! 𝑃 if 𝑢 ∉ fn(𝑃)

Axioms (1) and (2) above represent principles for the distribution of shared servers among

processes, while (3) formalises the garbage collection of shared servers which cannot be invoked

by any process. The axioms embody distributivity, contraction and weakening of shared resources

and are sound wrt (typed) observational equivalence [50].

A transition 𝑃
𝛼→ 𝑄 denotes that 𝑃 may evolve to 𝑄 by performing the action represented by

label 𝛼 . An action 𝛼 (𝛼) requires a matching 𝛼 (𝛼) in the environment to enable progress. Labels of

our transition semantics include the silent internal action 𝜏 , output and bound output actions (𝑥 ⟨𝑦⟩
and (a𝑧)𝑥 ⟨𝑧⟩); input action 𝑥 (𝑦); labels pertaining to the binary choice actions (𝑥 .inl, 𝑥 .inl, 𝑥 .inr,
and 𝑥 .inr); and labels describing output and input actions of types (𝑥 ⟨𝐴⟩ and 𝑥 (𝐴)).

Definition 2.3 (Labelled Transition System). The labelled transition relation is defined by the rules

in Fig. 1, subject to the side conditions: in rule (res), we require 𝑦 ∉ fn(𝛼); in rule (par), we require
bn(𝛼) ∩ fn(𝑅) = ∅; in rule (close), we require 𝑦 ∉ fn(𝑄). We omit the symmetric versions of (par),
(com), (id), (close) and closure under 𝛼-conversion.

We write 𝜌1𝜌2 for the composition of relations 𝜌1, 𝜌2. We write → to stand for

𝜏→≡. Weak

transitions are defined as usual: we write =⇒ for the reflexive, transitive closure of→ and→+ for
the transitive closure of→. Given 𝛼 ≠ 𝜏 , notation

𝛼
=⇒ stands for =⇒ 𝛼→=⇒ and

𝜏
=⇒ stands for =⇒.

Typing System. The typing rules of Poly𝜋 are given in Fig. 2, following [11]. The rules define

the judgment Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴, denoting that process 𝑃 offers a session of type 𝐴 along channel

𝑧, using the linear sessions in Δ, (potentially) using the unrestricted or shared sessions in Γ, with

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Bernardo Toninho and Nobuko Yoshida

(1R)
Ω; Γ; · ⊢ 0 :: 𝑧:1

(1L)
Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :1 ⊢ 𝑃 :: 𝑧:𝐶

(⊸R)
Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧 (𝑥).𝑃 :: 𝑧:𝐴 ⊸ 𝐵
(⊗R)

Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑦:𝐴 Ω; Γ;Δ2 ⊢ 𝑄 :: 𝑧:𝐵

Ω; Γ;Δ1,Δ2 ⊢ (a𝑦)𝑧⟨𝑦⟩.(𝑃 | 𝑄) :: 𝑧:𝐴 ⊗ 𝐵

(⊸L)
Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑦:𝐴 Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄) :: 𝑧:𝐶
(⊗L)

Ω; Γ;Δ, 𝑦:𝐴, 𝑥 :𝐵 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑦).𝑃 :: 𝑧:𝐶

(&R)
Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 Ω; Γ;Δ ⊢ 𝑄 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧.case(𝑃,𝑄) :: 𝑧:𝐴 & 𝐵
(&L1)

Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 & 𝐵 ⊢ 𝑥 .inl; 𝑃 :: 𝑧:𝐶

(&L2)
Ω; Γ;Δ, 𝑥 :𝐵 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 & 𝐵 ⊢ 𝑥 .inr; 𝑃 :: 𝑧:𝐶
(⊕R1)

Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ω; Γ;Δ ⊢ 𝑧.inl; 𝑃 :: 𝑧:𝐴 ⊕ 𝐵

(⊕R2)
Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧.inr; 𝑃 :: 𝑧:𝐴 ⊕ 𝐵
(⊕L)

Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶 Ω; Γ;Δ, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊕ 𝐵 ⊢ 𝑥 .case(𝑃,𝑄) :: 𝑧:𝐶

(!R)
Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴

Ω; Γ; · ⊢!𝑧 (𝑥).𝑃 :: 𝑧:!𝐴
(!L)

Ω; Γ, 𝑢:𝐴;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :!𝐴 ⊢ 𝑃{𝑥/𝑢} :: 𝑧:𝐶

(copy)
Ω; Γ, 𝑢:𝐴;Δ, 𝑦:𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ, 𝑢:𝐴;Δ ⊢ (a𝑦)𝑢⟨𝑦⟩.𝑃 :: 𝑧:𝐶

(∀R)
Ω, 𝑋 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ω; Γ;Δ ⊢ 𝑧 (𝑋).𝑃 :: 𝑧:∀𝑋 .𝐴
(∀L)

Ω ⊢ 𝐵 type Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑃 :: 𝑧:𝐶

(∃R)
Ω ⊢ 𝐵 type Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴{𝐵/𝑋 }

Ω; Γ;Δ ⊢ 𝑧⟨𝐵⟩.𝑃 :: 𝑧:∃𝑋 .𝐴
(∃L)

Ω, 𝑋 ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∃𝑋 .𝐴 ⊢ 𝑥 (𝑋).𝑃 :: 𝑧:𝐶

(id)
Ω; Γ;𝑥 :𝐴 ⊢ [𝑥 ↔ 𝑧] :: 𝑧:𝐴

(cut)
Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃 | 𝑄) :: 𝑧:𝐶

(cut!)
Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ, 𝑢:𝐴;Δ ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥).𝑃 | 𝑄) :: 𝑧:𝐶
Fig. 2. Typing Rules

polymorphic type variables maintained in Ω. We use a well-formedness judgment Ω ⊢ 𝐴 typewhich
states that 𝐴 is well-formed wrt the type variable environment Ω (i.e. fv(𝐴) ⊆ Ω). We often write

𝑇 for the right-hand side typing 𝑧:𝐴, · for the empty context and Δ,Δ′ for the union of contexts Δ
and Δ′, only defined when Δ and Δ′ are disjoint. We write · ⊢ 𝑃 :: 𝑇 for ·; ·; · ⊢ 𝑃 :: 𝑇 .

Moreover, typing treats processes quotiented by structural congruence – given a well-typed

process Ω; Γ;Δ ⊢ 𝑃 :: 𝑇 , subject reduction ensures that for all possible reductions 𝑃
𝜏→ 𝑃 ′, there

exists a process 𝑄 where 𝑃 ′ ≡ 𝑄 such that Ω; Γ;Δ ⊢ 𝑄 :: 𝑇 . Related properties hold wrt general

transitions 𝑃
𝛼→ 𝑃 ′. We refer the reader to [12, 13] for additional details on this matter.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

On Polymorphic Sessions and Functions 7

As in [12, 13, 50, 76], the typing discipline enforces that channel outputs always have as object a

fresh name, in the style of the internal mobility 𝜋-calculus [63]. We clarify a few of the key rules:

Rule id types a linear forwarding between the sole ambient linear session 𝑥 :𝐴 and the offered

session at channel 𝑧 with the same type (the use of a non-empty Γ context embodies weakening

of persistent resources). Rule ∀R defines the meaning of (impredicative) universal quantification

over session types, stating that a session of type ∀𝑋 .𝐴 inputs a type and then behaves uniformly

as 𝐴; dually, to use such a session (rule ∀L), a process must output a type 𝐵 which then warrants

the use of the session as type 𝐴{𝐵/𝑋 }. Rule⊸R captures session input, where a session of type

𝐴 ⊸ 𝐵 expects to receive a session of type 𝐴 which will then be used to produce a session of

type 𝐵. Dually, session output (rule ⊗R) is achieved by producing a fresh session of type 𝐴 (that

uses a disjoint set of sessions to those of the continuation) and outputting the fresh session along

𝑧, which is then a session of type 𝐵. Rule !R types a process offering a session of type !𝐴 along

channel 𝑧, consisting of a replicated input along 𝑧 which may be triggered an arbitrary (but finite)

number of times. To preserve linearity, the replicated process cannot use any linear sessions. We

note that the !R rule is often called the promotion rule in linear logic literature, whereas rule !L
formalises the idea that a channel 𝑢:𝐴 in the persistent context Γ is the same as a channel 𝑥 :!𝐴 in

the linear context Δ. The use of a persistent session is captured by the copy rule: To use a persistent
session 𝑢 of type 𝐴, a process must output along 𝑢 a fresh linear name 𝑦, triggering the replication

and warranting the linear use of 𝑦 as a session of type 𝐴. Proof-theoretically, copy corresponds

to an instance of dereliction followed by contraction. Linear and persistent session composition is

captured by rules cut and cut!, respectively. The former enables a process that offers a session 𝑥 :𝐴

(using linear sessions in Δ1) to be composed with a process that uses that session (amongst others

in Δ2) to offer 𝑧:𝐶 . The latter allows for a process that uses no linear sessions to be replicated and

thus composed with processes that use the offered session in an unrestricted fashion. As shown in

[11], typing entails Subject Reduction, Global Progress, and Termination.

The key properties of the typing system follow. For any 𝑃 , we define live(𝑃) iff 𝑃 ≡ (a�̃�) (𝜋.𝑄 | 𝑅),
for some set of names �̃�, process 𝑅, and non-replicated guarded process 𝜋.𝑄 . We write 𝑃 ⇓ if there
is no infinite reduction sequence starting from 𝑃 .

Theorem 2.4 (Properties of Well-Typed Processes [11]).

Subject Reduction If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then Ω; Γ;Δ ⊢ 𝑄 :: 𝑧:𝐴.
Global Progress If ⊢ 𝑃 :: 𝑧:1 and live(𝑃), there exists 𝑄 such that 𝑃 → 𝑄 .
Termination/Strong Normalisation If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then 𝑃 ⇓.

Observational Equivalences. We briefly summarise the typed congruence and logical equiva-

lence with polymorphism, giving rise to a suitable notion of relational parametricity in the sense of

Reynolds [59], defined as a contextual logical relation on typed processes [11]. The logical relation

is reminiscent of a typed bisimulation. However, extra care is needed to ensure well-foundedness

due to impredicative type instantiation. As a consequence, the logical relation allows us to reason

about process equivalences where type variables are not instantiated with the same, but rather
related types.

Typed Barbed Congruence (�). We use the typed contextual congruence from [11], which

preserves observable actions, called barbs. In untyped process settings, barbed congruence is

typically defined as the largest equivalence relation on processes, closed under all possible process

contexts and internal actions, that preserves some basic notion of observable, called a barb. In our

setting, following [11], we consider a typed variant of barbed congruence in which the notion

of context is typed. Thus, typed barbed congruence is the largest equivalence relation on typed

processes that is type-respecting, 𝜏-closed, barb-preserving and contextual (for a suitable notion of

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Bernardo Toninho and Nobuko Yoshida

typed context). We make these four notions precise. Thus, a relation is contextual if it is closed under
any typed process context. A typed process context consists of a process with a typed hole (these

can be mechanically derived from the typing rules by exhaustively considering all possibilities for

typed holes). We omit the full details of defining typed contexts and refer the reader to the work of

[11] for the full development.

Definition 2.5 (Type-respecting Relations [11]). A type-respecting relation over processes, written

{R𝑆 }𝑆 is defined as a family of relations over processes indexed by typing 𝑆 (i.e., 𝑆 lists the left-hand

context and right-hand typing information for processes in the relation). We often writeR to refer to

the whole family, and write Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 to denote Ω; Γ;Δ ⊢ 𝑃,𝑄 :: 𝑇 and (𝑃,𝑄) ∈ RΩ;Γ;Δ⊢𝑇 .

We say that a type-respecting relation is an equivalence if it satisfies the usual properties of

reflexivity, transitivity and symmetry. In the remainder of this development we often omit “type-

respecting”.

Definition 2.6 (𝜏-closed [11]). Relation R is 𝜏-closed if Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 and 𝑃 → 𝑃 ′ imply there

exists a 𝑄 ′ such that 𝑄 =⇒ 𝑄 ′ and Ω; Γ;Δ ⊢ 𝑃 ′R𝑄 ′ :: 𝑇 .
Our definition of basic observable on processes, or barb, is given below.

Definition 2.7 (Barbs [11]). Let 𝑂𝑥 = {𝑥, 𝑥, 𝑥 .inl, 𝑥 .inr, 𝑥 .inl, 𝑥 .inr} be the set of basic observables
under name 𝑥 . Given a well-typed process 𝑃 , we write:

(i) barb(𝑃, 𝑥), if 𝑃
(a𝑦)𝑥 ⟨𝑦⟩
→ 𝑃 ′;

(ii) barb(𝑃, 𝑥), if 𝑃
𝑥 ⟨𝐴⟩
→ 𝑃 ′, for some 𝐴, 𝑃 ′;

(iii) barb(𝑃, 𝑥), if 𝑃
𝑥 (𝐴)
→ 𝑃 ′, for some 𝐴, 𝑃 ′;

(iv) barb(𝑃, 𝑥), if 𝑃
𝑥 (𝑦)
→ 𝑃 ′, for some 𝑦, 𝑃 ′;

(v) barb(𝑃, 𝛼), if 𝑃 𝛼→ 𝑃 ′, for some 𝑃 ′ and 𝛼 ∈ 𝑂𝑥 \ {𝑥, 𝑥}.
Given some 𝑜 ∈ 𝑂𝑥 , we write wbarb(𝑃, 𝑜) if there exists a 𝑃 ′ such that 𝑃 =⇒ 𝑃 ′ and barb(𝑃 ′, 𝑜)
holds.

Definition 2.8 (Barb preserving relation). Relation R is a barb preserving if, for every name 𝑥 ,

Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 and barb(𝑃, 𝑜) imply wbarb(𝑄,𝑜), for any 𝑜 ∈ 𝑂𝑥 .

Definition 2.9 (Contextuality). A relation R is contextual if Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 implies Ω; Γ;Δ′ ⊢
C[𝑃] R C[𝑄] :: 𝑇 ′, for every Δ′ 𝑇 ′ and typed context C.
Definition 2.10 (Barbed Congruence). Barbed congruence, noted �, is the largest equivalence on

well-typed processes symmetric type-respecting relation that is 𝜏-closed, barb preserving, and

contextual.

Logical Equivalence (≈L). The definition of logical equivalence is no more than a typed con-

textual bisimulation with the following intuitive reading: given two open processes 𝑃 and 𝑄 (i.e.

processes with non-empty left-hand side typings), we define their equivalence by inductively

closing out the context, composing with equivalent processes offering appropriately typed sessions.

When processes are closed, we have a single distinguished session channel along which we can

perform observations, and proceed inductively on the structure of the offered session type. We can

then show that such an equivalence satisfies the necessary fundamental properties (Theorem 2.13).

The logical relation is defined using the candidates technique of Girard [24]. In this setting,

an equivalence candidate is a relation on typed processes satisfying basic closure conditions: an

equivalence candidate must be compatible with barbed congruence and closed under forward and

converse reduction.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

On Polymorphic Sessions and Functions 9

Definition 2.11 (Equivalence Candidate). An equivalence candidate R at 𝑧:𝐴 and 𝑧:𝐵, noted R ::

𝑧:𝐴⇔𝐵, is a binary relation on processes such that, for every (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵 both · ⊢ 𝑃 :: 𝑧:𝐴

and · ⊢ 𝑄 :: 𝑧:𝐵 hold, together with the following (we often write (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵 as

𝑃 R𝑄 :: 𝑧:𝐴⇔𝐵):

(1) If (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵, · ⊢ 𝑃 � 𝑃 ′ :: 𝑧:𝐴, and · ⊢ 𝑄 � 𝑄 ′ :: 𝑧:𝐵 then (𝑃 ′, 𝑄 ′) ∈ R :: 𝑧:𝐴⇔𝐵.

(2) If (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵 then, for all 𝑃0 such that · ⊢ 𝑃0 :: 𝑧:𝐴 and 𝑃0 =⇒ 𝑃 , we have

(𝑃0, 𝑄) ∈ R :: 𝑧:𝐴⇔𝐵. Symmetrically for 𝑄 .

To define the logical relation we rely on some auxiliary notation, pertaining to the treatment of

type variables arising due to impredicative polymorphism. We write 𝜔 : Ω to denote a mapping 𝜔

that assigns a closed type to the type variables in Ω. We write 𝜔 (𝑋) for the type mapped by 𝜔 to

variable 𝑋 . Given two mappings 𝜔 : Ω and 𝜔 ′ : Ω, we define an equivalence candidate assignment

[between 𝜔 and 𝜔 ′ as a mapping of equivalence candidate [(𝑋) :: −:𝜔 (𝑋)⇔𝜔 ′(𝑋) to the type

variables in Ω, where the particular choice of a distinguished right-hand side channel is delayed
(i.e. to be instantiated later on). We write [(𝑋) (𝑧) for the instantiation of the (delayed) candidate

with the name 𝑧. We write [: 𝜔⇔𝜔 ′ to denote that [is a candidate assignment between 𝜔 and 𝜔 ′;
and �̂� (𝑃) to denote the application of mapping 𝜔 to 𝑃 .

We define a sequent-indexed family of process relations, that is, a set of pairs of processes (𝑃,𝑄),
written Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[: 𝜔⇔𝜔 ′], satisfying some conditions, typed under Ω; Γ;Δ ⊢ 𝑇 , with
𝜔 : Ω, 𝜔 ′ : Ω and [: 𝜔⇔𝜔 ′. Logical equivalence is defined inductively on the size of the typing

contexts and then on the structure of the right-hand side type.

Definition 2.12 (Logical Equivalence). (Base Case) Given a type 𝐴 and mappings 𝜔,𝜔 ′, [, we
define logical equivalence, noted 𝑃 ≈L 𝑄 :: 𝑧:𝐴[[: 𝜔⇔𝜔 ′], as the smallest symmetric binary relation

containing all pairs of processes (𝑃,𝑄) such that (i) · ⊢ �̂� (𝑃) :: 𝑧:�̂� (𝐴); (ii) · ⊢ �̂� ′(𝑄) :: 𝑧:�̂� ′(𝐴); and

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Bernardo Toninho and Nobuko Yoshida

(iii) satisfies the conditions given below we write 𝑃 ̸→ to denote that 𝑃 cannot reduce):

𝑃 ≈L 𝑄 :: 𝑧:𝑋 [[: 𝜔⇔𝜔 ′] iff (𝑃,𝑄) ∈ [(𝑋) (𝑧)
𝑃 ≈L 𝑄 :: 𝑧:1[[: 𝜔⇔𝜔 ′] iff ∀𝑃 ′, 𝑄 ′. (𝑃 =⇒ 𝑃 ′ ∧ 𝑃 ′ ̸→ ∧𝑄 =⇒ 𝑄 ′ ∧𝑄 ′ ̸→) ⇒

(𝑃 ′ ≡! 0 ∧𝑄 ′ ≡! 0)
𝑃 ≈L 𝑄 :: 𝑧:𝐴 ⊸ 𝐵 [[: 𝜔⇔𝜔 ′] iff ∀𝑃 ′, 𝑦. (𝑃

𝑧 (𝑦)
→ 𝑃 ′) ⇒ ∃𝑄 ′.𝑄

𝑧 (𝑦)
=⇒ 𝑄 ′ 𝑠 .𝑡 .

∀𝑅1, 𝑅2. 𝑅1 ≈L 𝑅2 :: 𝑦:𝐴[[: 𝜔⇔𝜔 ′]
(a𝑦) (𝑃 ′ | 𝑅1) ≈L (a𝑦) (𝑄 ′ | 𝑅2) :: 𝑧:𝐵 [[: 𝜔⇔𝜔 ′]

𝑃 ≈L 𝑄 :: 𝑧:𝐴 ⊗ 𝐵 [[: 𝜔⇔𝜔 ′] iff ∀𝑃 ′, 𝑦. (𝑃
(a𝑦)𝑧 ⟨𝑦⟩
→ 𝑃 ′) ⇒ ∃𝑄 ′.𝑄

(a𝑦)𝑧 ⟨𝑦⟩
=⇒ 𝑄 ′ 𝑠 .𝑡 .

∃𝑃1, 𝑃2, 𝑄1, 𝑄2.𝑃
′ ≡! 𝑃1 | 𝑃2 ∧𝑄 ′ ≡! 𝑄1 | 𝑄2

𝑃1 ≈L 𝑄1 :: 𝑦:𝐴[[: 𝜔⇔𝜔 ′] ∧ 𝑃2 ≈L 𝑄2 :: 𝑧:𝐵 [[: 𝜔⇔𝜔 ′]
𝑃 ≈L 𝑄 :: 𝑧:!𝐴[[: 𝜔⇔𝜔 ′] iff ∀𝑃 ′. (𝑃

𝑧 (𝑦)
→ 𝑃 ′) ⇒ ∃𝑄 ′.𝑄

𝑧 (𝑦)
=⇒ 𝑄 ′∧

𝑃 ′ ≈L 𝑄 ′ :: 𝑦:𝐴[[: 𝜔⇔𝜔 ′]
𝑃 ≈L 𝑄 :: 𝑧:𝐴 & 𝐵 [[: 𝜔⇔𝜔 ′] iff

(∀𝑃 ′.(𝑃 𝑧.inl→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inl
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[: 𝜔⇔𝜔 ′])) ∧

(∀𝑃 ′.(𝑃 𝑧.inr→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inr
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐵 [[: 𝜔⇔𝜔 ′]))

𝑃 ≈L 𝑄 :: 𝑧:𝐴 ⊕ 𝐵 [[: 𝜔⇔𝜔 ′] iff

(∀𝑃 ′.(𝑃 𝑧.inl→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inl
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[: 𝜔⇔𝜔 ′])) ∧

(∀𝑃 ′.(𝑃 𝑧.inr→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inr
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐵 [[: 𝜔⇔𝜔 ′]))

𝑃 ≈L 𝑄 :: 𝑧:∀𝑋 .𝐴[[: 𝜔⇔𝜔 ′] iff ∀𝐵1, 𝐵2, 𝑃
′,R :: −:𝐵1⇔𝐵2. (𝑃

𝑧 (𝐵1)→ 𝑃 ′) implies

∃𝑄 ′.𝑄
𝑧 (𝐵2)
=⇒ 𝑄 ′, 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[[𝑋 ↦→ R] : 𝜔 [𝑋 ↦→ 𝐵1]⇔𝜔 ′[𝑋 ↦→ 𝐵2]]

𝑃 ≈L 𝑄 :: 𝑧:∃𝑋 .𝐴[[: 𝜔⇔𝜔 ′] iff ∃𝐵1, 𝐵2,R :: −:𝐵1⇔𝐵2 . (𝑃
𝑧 ⟨𝐵1 ⟩→ 𝑃 ′) implies

∃𝑄 ′.𝑄
𝑧 ⟨𝐵2 ⟩
=⇒ 𝑄 ′, 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[[𝑋 ↦→ R] : 𝜔 [𝑋 ↦→ 𝐵1]⇔𝜔 ′[𝑋 ↦→ 𝐵2]]

(Inductive Case) Let Γ,Δ be non empty. Given Ω; Γ;Δ ⊢ 𝑃 :: 𝑇 and Ω; Γ;Δ ⊢ 𝑄 :: 𝑇 , the binary

relation on processes Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[: 𝜔⇔𝜔 ′] (with 𝜔,𝜔 ′ : Ω and [: 𝜔⇔𝜔 ′) is inductively
defined as:

Γ;Δ, 𝑦 : 𝐴 ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[: 𝜔⇔𝜔 ′] iff ∀𝑅1, 𝑅2. s.t. 𝑅1 ≈L 𝑅2 :: 𝑦:𝐴[[: 𝜔⇔𝜔 ′],
Γ;Δ ⊢ (a𝑦) (�̂� (𝑃) | �̂� (𝑅1)) ≈L (a𝑦) (�̂� ′(𝑄) | �̂� ′(𝑅2)) :: 𝑇 [[: 𝜔⇔𝜔 ′]

Γ, 𝑢 : 𝐴;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[: 𝜔⇔𝜔 ′] iff ∀𝑅1, 𝑅2. s.t. 𝑅1 ≈L 𝑅2 :: 𝑦:𝐴[[: 𝜔⇔𝜔 ′],
Γ;Δ ⊢ (a𝑢) (�̂� (𝑃) |!𝑢 (𝑦).�̂� (𝑅1)) ≈L (a𝑢) (�̂� ′(𝑄) |!𝑢 (𝑦).�̂� ′(𝑅2)) :: 𝑇 [[: 𝜔⇔𝜔 ′]

For the sake of readability we often omit the [: 𝜔⇔𝜔 ′ portion of ≈L, which is henceforth

implicitly universally quantified. Thus, we write Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴 (or 𝑃 ≈L 𝑄) iff the two

given processes are logically equivalent for all consistent instantiations of its type variables.

It is instructive to inspect the clause for type input (∀𝑋 .𝐴): the two processesmust be able tomatch

inputs of any pair of related types (i.e. types related by a candidate), such that the continuations

are related at the open type 𝐴 with the appropriate type variable instantiations, following Girard

[24]. The power of this style of logical relation arises from a combination of the extensional flavour

of the equivalence and the fact that polymorphic equivalences do not require the same type to

be instantiated in both processes, but rather that the types are related (via a suitable equivalence

candidate relation).

Theorem 2.13 (Properties of Logical Eqivalence [11]).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

On Polymorphic Sessions and Functions 11

Parametricity: If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then, for all 𝜔,𝜔 ′ : Ω and [: 𝜔⇔𝜔 ′, we have Γ;Δ ⊢
�̂� (𝑃) ≈L 𝜔 ′(𝑃) :: 𝑧:𝐴[[: 𝜔⇔𝜔 ′].

Soundness: If Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴 then C[𝑃] � C[𝑄] :: 𝑧:𝐴, for any closing C[−].
Completeness: If Ω; Γ;Δ ⊢ 𝑃 � 𝑄 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴.

The contextual nature of logical equivalence (and thus of typed barbed congruence) admits what

may at first seem as exotic equivalences from a concurrency perspective. For instance, the following

can be a valid equivalence: 𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2) ≈L (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑥 (𝑎).𝑃2). To argue why such

prefix commutations are reasonable, we first consider a possible typing for such processes:

·; ·; · ⊢ 𝑃1 :: 𝑏 : 𝐶 ·; ·;𝑎:𝐴, 𝑥 :𝐵 ⊢ 𝑃2 :: 𝑦:𝐷
·; ·;𝑎:𝐴, 𝑥 :𝐵 ⊢ (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2) :: 𝑦:𝐶 ⊗ 𝐷

(⊗R)

·; ·;𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2) :: 𝑦:𝐶 ⊗ 𝐷
(⊗L)

·; ·; · ⊢ 𝑃1 :: 𝑏 : 𝐶

·; ·;𝑎:𝐴, 𝑥 :𝐵 ⊢ 𝑃2 :: 𝑦:𝐷
·; ·;𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑎) .𝑃 :: 𝑦:𝐷

(⊗L)

·; ·;𝑥 :𝐴 ⊗ 𝐵 ⊢ (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑥 (𝑎).𝑃2) :: 𝑦:𝐶 ⊗ 𝐷
(⊗R)

To type the first process we first apply rule ⊗L, receiving on 𝑥 and then rule ⊗R to send on 𝑦

accordingly. To type the second process, we apply the same rules in reverse order. Why is it then

reasonable to equate the two processes through logical equivalence? Both processes are typed

in a context that must provide a session 𝑥 :𝐴 ⊗ 𝐵 so that the processes may offer 𝑦:𝐶 ⊗ 𝐷 . Let us

posit a process 𝑄 :: 𝑥 :𝐴 ⊗ 𝐵, we can compose 𝑄 with the given processes via the cut rule to then

have (a𝑥) (𝑄 | 𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2)) and (a𝑥) (𝑄 | (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑥 (𝑎).𝑃2)), respectively, both
offering 𝑦:𝐶 ⊗𝐷 in the empty context. Now the contextual nature of the equivalence becomes clear:

since both processes are typed in a context requiring 𝑥 :𝐴⊗𝐵, they must be reasoned about as if their

contextual requirements are satisfied. In this setting, the channel 𝑥 is now hidden by the a-binder

and therefore no actions on 𝑥 are visible, only those on 𝑦 (the right-hand side typing). Thus, it is

impossible for any well-typed process (and any well-typed context) to distinguish between the two

processes, and so the equivalence is justified.

We further note that if 𝑃1 ≡ 0 and 𝐶 = 1, we can specialize the equivalence to the seemingly

more exotic 𝑥 (𝑎) .(a𝑏)𝑦⟨𝑏⟩.𝑃2 ≡ (a𝑏)𝑦⟨𝑏⟩.𝑥 (𝑎).𝑃2, or, if 𝐶 = 𝐷 = 1 and 𝑃1 ≡ 0, we can even derive

𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.𝑃2 ≡ (a𝑏)𝑦⟨𝑏⟩.0 | 𝑥 (𝑎).𝑃2. Neither of these are derivable in the general case, albeit

all are perfectly justified given the typed and contextual nature of logical equivalence (and barbed

congruence). A more complete discussion of commuting conversions and their interpretation as

behavioural equivalences can be found in [11, 50, 51].

3 TO LINEAR-F AND BACK
We now develop our mutually inverse and fully abstract encodings between Poly𝜋 and a linear

polymorphic _-calculus [79] that we dub Linear-F. We first introduce the syntax and typing of the

linear _-calculus and then proceed to detail our encodings and their properties (we omit typing

ascriptions from the existential polymorphism constructs for readability).

Definition 3.1 (Linear-F). The syntax of terms𝑀, 𝑁 and types 𝐴, 𝐵 of Linear-F is given below.

𝑀, 𝑁 ::= _𝑥 :𝐴.𝑀 | 𝑀 𝑁 | ⟨𝑀 ⊗ 𝑁 ⟩ | let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 | !𝑀 | let !𝑢 = 𝑀 in𝑁 | Λ𝑋 .𝑀

| 𝑀 [𝐴] | pack𝐴with𝑀 | let (𝑋,𝑦) = 𝑀 in𝑁 | let 1 = 𝑀 in𝑁 | ⟨⟩ | T | F
𝐴, 𝐵 ::= 𝐴 ⊸ 𝐵 | 𝐴 ⊗ 𝐵 | !𝐴 | ∀𝑋 .𝐴 | ∃𝑋 .𝐴 | 𝑋 | 1 | 2

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Bernardo Toninho and Nobuko Yoshida

(var)

Ω; Γ;𝑥 :𝐴 ⊢ 𝑥 :𝐴

(⊸ 𝐼)

Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑀 : 𝐵

Ω; Γ;Δ ⊢ _𝑥 :𝐴.𝑀 : 𝐴 ⊸ 𝐵

(⊸ 𝐸)

Ω; Γ;Δ ⊢ 𝑀 : 𝐴 ⊸ 𝐵 Ω; Γ;Δ′ ⊢ 𝑁 : 𝐴

Ω; Γ;Δ,Δ′ ⊢ 𝑀 𝑁 : 𝐵

(⊗𝐼)
Ω; Γ;Δ ⊢ 𝑀 : 𝐴 Ω; Γ;Δ′ ⊢ 𝑁 : 𝐵

Ω; Γ;Δ,Δ′ ⊢ ⟨𝑀 ⊗ 𝑁 ⟩ : 𝐴 ⊗ 𝐵

(⊗𝐸)
Ω; Γ;Δ ⊢ 𝑀 : 𝐴 ⊗ 𝐵 Ω; Γ;Δ′, 𝑥 :𝐴,𝑦:𝐵 ⊢ 𝑁 : 𝐵′

Ω; Γ;Δ,Δ′ ⊢ let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 : 𝐵′

(!𝐼)
Ω; Γ; · ⊢ 𝑀 : 𝐴

Ω; Γ; · ⊢!𝑀 :!𝐴

(!𝐸)
Ω; Γ;Δ ⊢ 𝑀 :!𝐴 Ω; Γ, 𝑢:𝐴;Δ′ ⊢ 𝑁 : 𝐵

Ω; Γ;Δ,Δ′ ⊢ let !𝑢 = 𝑀 in𝑁 : 𝐵

(uvar)

Ω; Γ, 𝑢:𝐴; · ⊢ 𝑢:𝐴
(∀𝐼)

Ω, 𝑋 ; Γ;Δ ⊢ 𝑀 : 𝐴

Ω; Γ;Δ ⊢ Λ𝑋 .𝑀 : ∀𝑋 .𝐴

(∀𝐸)
Ω ⊢ 𝐴 type Ω; Γ;Δ ⊢ 𝑀 : ∀𝑋 .𝐵

Ω; Γ;Δ ⊢ 𝑀 [𝐴] : 𝐵{𝐴/𝑋 }
(∃𝐼)
Ω ⊢ 𝐴 type Ω; Γ;Δ ⊢ 𝑀 : 𝐵{𝐴/𝑋 }
Ω; Γ;Δ ⊢ pack𝐴with𝑀 : ∃𝑋 .𝐵

(∃𝐸)
Ω; Γ;Δ ⊢ 𝑀 : ∃𝑋 .𝐴 Ω, 𝑋 ; Γ;Δ′, 𝑦:𝐴 ⊢ 𝑁 : 𝐵 Ω ⊢ 𝐵 type

Ω; Γ;Δ,Δ′ ⊢ let (𝑋,𝑦) = 𝑀 in𝑁 : 𝐵

(1𝐼)

Ω; Γ; · ⊢ ⟨⟩ : 1

(1𝐸)
Ω; Γ;Δ ⊢ 𝑀 : 1 Ω; Γ;Δ′ ⊢ 𝑁 : 𝐶

Ω; Γ;Δ,Δ′ ⊢ let 1 = 𝑀 in𝑁 : 𝐶

(2𝐼1)

Ω; Γ; · ⊢ T : 2

(2𝐼2)

Ω; Γ; · ⊢ F : 2

Fig. 3. Linear-F Typing Rules

The syntax of types is that of the multiplicative and exponential fragments of second-order intuition-

istic linear logic. The term assignment is mostly standard: _𝑥 :𝐴.𝑀 denotes linear _-abstractions;

𝑀 𝑁 denotes the application; ⟨𝑀 ⊗ 𝑁 ⟩ denotes the multiplicative pairing of𝑀 and 𝑁 , as reflected

in its elimination form let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 which simultaneously deconstructs the pair𝑀 , binding

its first and second projection to 𝑥 and 𝑦 in 𝑁 , respectively; !𝑀 denotes a term 𝑀 that does not

use any linear variables and so may be used an arbitrary number of times; let !𝑢 = 𝑀 in𝑁 binds

the underlying exponential term of 𝑀 as 𝑢 in 𝑁 ; Λ𝑋 .𝑀 is the type abstraction former; 𝑀 [𝐴]
stands for type application; pack𝐴with𝑀 is the existential type introduction form, where𝑀 is a

term where the existentially typed variable is instantiated with 𝐴; let (𝑋,𝑦) = 𝑀 in𝑁 unpacks an

existential package𝑀 , binding the representation type to 𝑋 and the underlying term to 𝑦 in 𝑁 ; the

multiplicative unit 1 has as introduction form the nullary pair ⟨⟩ and is eliminated by the construct

let 1 = 𝑀 in𝑁 , where 𝑀 is a term of type 1. Booleans (type 2 with values T and F) are the basic
observable.

The typing judgment in Linear-F is given as Ω; Γ;Δ ⊢ 𝑀 : 𝐴, following the DILL formulation

of linear logic [5], stating that term 𝑀 has type 𝐴 in a linear context Δ (i.e. bindings for linear

variables 𝑥 :𝐵), intuitionistic context Γ (i.e. binding for intuitionistic variables 𝑢:𝐵) and type variable

context Ω. The typing rules are given in Figure 3.

The operational semantics of the calculus are the expected call-by-name semantics [39, 79], given

in Figure 4. For conciseness we use a evaluation context to codify the various congruence rules,

where 𝐸 [𝑀] stands for the instantiation of the single hole • in context 𝐸 with the term𝑀 . We write

⇓ for the usual evaluation relation.

We write � for the largest typed congruence that is consistent with the observables of type 2 (i.e.
a so-called Morris-style equivalence as in [8]).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

On Polymorphic Sessions and Functions 13

(_𝑥 :𝐴.𝑀) 𝑁 → 𝑀{𝑁 /𝑥} let !𝑢 = !𝑀 in𝑁 → 𝑁 {𝑀/𝑢}

(Λ𝑋 .𝑀) [𝐴] → 𝑀{𝐴/𝑋 } let𝑥 ⊗ 𝑦 = ⟨𝑀1 ⊗ 𝑀2⟩ in𝑁 → 𝑁 {𝑀1/𝑥,𝑀2/𝑦}

let (𝑋,𝑦) = pack𝐴with𝑀 in𝑁 → 𝑁 {𝐴/𝑋,𝑀/𝑦} let 1 = ⟨⟩ in𝑀 → 𝑀

𝑀 → 𝑀 ′

𝐸 [𝑀] → 𝐸 [𝑀 ′]

𝐸 ::= • | 𝐸 𝑀 | let 1 = 𝐸 in𝑀 | let 1 = 𝑀 in𝐸 | let !𝑢 = 𝑀 in𝐸 | let !𝑢 = 𝐸 in𝑀
| let𝑥 ⊗ 𝑦 = 𝐸 in𝑀 | ⟨𝐸 ⊗ 𝑀⟩ | ⟨𝑀 ⊗ 𝐸⟩

Fig. 4. Operational Semantics of Linear-F

3.1 Encoding Linear-F into Session 𝜋-Calculus
We define a translation from Linear-F to Poly𝜋 generalising the one from [70], accounting for

polymorphism and multiplicative pairs. We translate typing derivations of _-terms to those of

𝜋-calculus terms (we omit the full typing derivation for the sake of readability).

Proof theoretically, the _-calculus corresponds to a proof term assignment for natural deduction

presentations of logic, whereas the session 𝜋-calculus from § 2 corresponds to a proof term assign-

ment for sequent calculus. Thus, we obtain a translation from _-calculus to the session 𝜋-calculus

by considering the proof theoretic content of the constructive proof of soundness of the sequent

calculus wrt natural deduction. Following Gentzen [22], the translation from natural deduction to

sequent calculus maps introduction rules to the corresponding right rules and elimination rules to

a combination of the corresponding left rule, cut and/or identity.

Since typing in the session calculus identifies a distinguished channel along which a process offers

a session, the translation of _-terms is parameterised by a “result” channel alongwhich the behaviour

of the _-term is implemented. Given a _-term𝑀 , the process J𝑀K𝑧 encodes the behaviour of𝑀 along

the session channel 𝑧.We enforce that the type 2 of booleans and its two constructors are consistently
translated to their polymorphic Church encodings before applying the translation to Poly𝜋 . Thus,

type 2 is first translated to∀𝑋 .!𝑋⊸ !𝑋⊸𝑋 , the value T toΛ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑥
and the value F to Λ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑦. Such representations of the booleans

are adequate up to parametricity [10] and suitable for our purposes of relating the session calculus

(which has no primitive notion of value or result type) with the _-calculus precisely due to the

tight correspondence between the two calculi.

Definition 3.2 (From Linear-F to Poly𝜋). JΩK; JΓK; JΔK ⊢ J𝑀K𝑧 :: 𝑧:𝐴 denotes the translation of

contexts, types and terms from Linear-F to the polymorphic session calculus. The translations

on contexts and types are the identity function. Booleans and their values are first translated to

their (typed) Church encodings, that is, type 2 is translated to type ∀𝑋 .!𝑋⊸ !𝑋⊸𝑋 , the value T to

Λ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑥 and value F to Λ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑦,
as specified above. The translation on _-terms is given below:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Bernardo Toninho and Nobuko Yoshida

J𝑥K𝑧 ≜ [𝑥 ↔ 𝑧] J𝑀 𝑁 K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | (a𝑦)𝑥 ⟨𝑦⟩.(J𝑁 K𝑦 | [𝑥 ↔ 𝑧]))
J𝑢K𝑧 ≜ (a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧] Jlet !𝑢 = 𝑀 in𝑁 K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧 {𝑥/𝑢})
J_𝑥 :𝐴.𝑀K𝑧 ≜ 𝑧 (𝑥).J𝑀K𝑧 J⟨𝑀 ⊗ 𝑁 ⟩K𝑧 ≜ (a𝑦)𝑧⟨𝑦⟩.(J𝑀K𝑦 | J𝑁 K𝑧)
J!𝑀K𝑧 ≜ !𝑧 (𝑥).J𝑀K𝑥 Jlet𝑥 ⊗ 𝑦 = 𝑀 in𝑁 K𝑧 ≜ (a𝑦) (J𝑀K𝑦 | 𝑦 (𝑥).J𝑁 K𝑧)
JΛ𝑋 .𝑀K𝑧 ≜ 𝑧 (𝑋).J𝑀K𝑧 J𝑀 [𝐴]K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝐴⟩.[𝑥 ↔ 𝑧])
Jpack𝐴with𝑀K𝑧 ≜ 𝑧⟨𝐴⟩.J𝑀K𝑧 Jlet (𝑋,𝑦) = 𝑀 in𝑁 K𝑧 ≜ (a𝑦) (J𝑀K𝑦 | 𝑦 (𝑋).J𝑁 K𝑧)
J⟨⟩K𝑧 ≜ 0 Jlet 1 = 𝑀 in𝑁 K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧)

To translate a (linear) _-abstraction _𝑥 :𝐴.𝑀 , which corresponds to the proof term for the introduc-

tion rule for⊸, we map it to the corresponding⊸R rule, thus obtaining a process 𝑧 (𝑥).J𝑀K𝑧 that
inputs along the result channel 𝑧 a channel 𝑥 which will be used in J𝑀K𝑧 to access the function

argument. To encode the application 𝑀 𝑁 , we compose (i.e. cut) J𝑀K𝑥 , where 𝑥 is a fresh name,

with a process that provides the (encoded) function argument by outputting along 𝑥 a channel 𝑦

which offers the behaviour of J𝑁 K𝑦 . After the output is performed, the type of 𝑥 is now that of the

function’s codomain and thus we conclude by forwarding (i.e. the id rule) between 𝑥 and the result

channel 𝑧.

The encoding for polymorphism follows a similar pattern: To encode the abstraction Λ𝑋 .𝑀 , we

receive along the result channel a type that is bound to 𝑋 and proceed inductively. To encode type

application 𝑀 [𝐴] we encode the abstraction 𝑀 in parallel with a process that sends 𝐴 to it, and

forwards accordingly. Finally, the encoding of the existential package pack𝐴with𝑀 maps to an

output of the type 𝐴 followed by the behaviour J𝑀K𝑧 , with the encoding of the elimination form

let (𝑋,𝑦) = 𝑀 in𝑁 composing the translation of the term of existential type 𝑀 with a process

performing the appropriate type input and proceeding as J𝑁 K𝑧 .
Computation in the _-calculus entails substitution of variables with terms whereas commu-

nication in the 𝜋-calculus substitutes names for names. Thus, we observe that the encoding of

𝑀{𝑁 /𝑥} is identified with (a𝑥) (J𝑀K𝑧 | J𝑁 K𝑥). Similarly, the encoding of𝑀{𝑁 /𝑢} corresponds to
(a𝑢) (!𝑢 (𝑥).J𝑁 K𝑥 | J𝑀K𝑧).

Example 3.3 (Encoding of Linear-F). Consider the following _-term corresponding to a polymor-

phic pairing function (recall that we write 𝑧⟨𝑤⟩.𝑃 for (a𝑤)𝑧⟨𝑤⟩.𝑃):
𝑀 ≜ Λ𝑋 .Λ𝑌 ._𝑥 :𝑋 ._𝑦:𝑌 .⟨𝑥 ⊗ 𝑦⟩ and 𝑁 ≜ ((𝑀 [𝐴] [𝐵]𝑀1)𝑀2)

Then we have, with 𝑥 = 𝑥1𝑥2𝑥3𝑥4:

J𝑁 K𝑧 ≡ (a𝑥) (J𝑀K𝑥1 | 𝑥1⟨𝐴⟩.[𝑥1 ↔ 𝑥2] | 𝑥2⟨𝐵⟩.[𝑥2 ↔ 𝑥3] |
𝑥3⟨𝑥⟩.(J𝑀1K𝑥 | [𝑥3 ↔ 𝑥4]) | 𝑥4⟨𝑦⟩.(J𝑀2K𝑦 | [𝑥4 ↔ 𝑧]))

≡ (a𝑥) (𝑥1 (𝑋).𝑥1 (𝑌).𝑥1 (𝑥).𝑥1 (𝑦).𝑥1⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑥1]) | 𝑥1⟨𝐴⟩.[𝑥1 ↔ 𝑥2] |
𝑥2⟨𝐵⟩.[𝑥2 ↔ 𝑥3] | 𝑥3⟨𝑥⟩.(J𝑀1K𝑥 | [𝑥3 ↔ 𝑥4]) | 𝑥4⟨𝑦⟩.(J𝑀2K𝑦 | [𝑥4 ↔ 𝑧]))

We can observe that 𝑁 →+ (((_𝑥 :𝐴._𝑦:𝐵.⟨𝑥 ⊗ 𝑦⟩)𝑀1)𝑀2) →+ ⟨𝑀1 ⊗ 𝑀2⟩. At the process level,
each reduction corresponding to the redex of type application is simulated by two reductions,

obtaining:

J𝑁 K𝑧 →+ (a𝑥3, 𝑥4) (𝑥3 (𝑥).𝑥3 (𝑦).𝑥3⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑥3]) |
𝑥3⟨𝑥⟩.(J𝑀1K𝑥 | [𝑥3 ↔ 𝑥4]) | 𝑥4⟨𝑦⟩.(J𝑀2K𝑦 | [𝑥4 ↔ 𝑧])) = 𝑃

The reductions corresponding to the 𝛽-redexes clarify the way in which the encoding repre-

sents substitution of terms for variables via fine-grained name passing. Consider J⟨𝑀1 ⊗𝑀2⟩K𝑧 ≜
𝑧⟨𝑤⟩.(J𝑀1K𝑤 | J𝑀2K𝑧) and

𝑃 →+ (a𝑥,𝑦) (J𝑀1K𝑥 | J𝑀2K𝑦 | 𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]))

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

On Polymorphic Sessions and Functions 15

The encoding of the pairing of𝑀1 and𝑀2 outputs a fresh name𝑤 which will denote the behaviour

of (the encoding of)𝑀1, and then the behaviour of the encoding of𝑀2 is offered on 𝑧. The reduct

of 𝑃 outputs a fresh name 𝑤 which is then identified with 𝑥 and thus denotes the behaviour of

J𝑀1K𝑤 . The channel 𝑧 is identified with 𝑦 and thus denotes the behaviour of J𝑀2K𝑧 , making the

two processes listed above equivalent. This informal reasoning exposes the insights that justify the

operational correspondence of the encoding. Proof-theoretically, these equivalences simply map to

commuting conversions which push the processes J𝑀1K𝑥 and J𝑀2K𝑧 under the output on 𝑧.

We note that in Theorem 3.5 (and in the subsequent development) we distinguish between the

soundness and completeness directions of operational correspondence (c.f. [25]).

Lemma 3.4 (Compositionality).

(1) Let Ω; Γ;Δ1, 𝑥 :𝐴 ⊢ 𝑀 : 𝐵 and Ω; Γ;Δ2 ⊢ 𝑁 : 𝐴. We have that Ω; Γ;Δ1,Δ2 ⊢ J𝑀{𝑁 /𝑥}K𝑧 ≈L
(a𝑥) (J𝑀K𝑧 | J𝑁 K𝑥) :: 𝑧:𝐵.

(2) LetΩ; Γ, 𝑢:𝐴;Δ ⊢ 𝑀 : 𝐵 andΩ; Γ; · ⊢ 𝑁 : 𝐴. we have thatΩ; Γ;Δ ⊢ J𝑀{𝑁 /𝑢}K𝑧 ≈L (a𝑢) (J𝑀K𝑧 |
!𝑢 (𝑥).J𝑁 K𝑥) :: 𝑧:𝐵.

Proof. By induction on the structure of𝑀 , exploiting the fact that commuting conversions and

≡! are sound ≈L equivalences. See Lemma 5.2 for further details. □

Theorem 3.5 (Operational Correspondence). Let Ω; Γ;Δ ⊢ 𝑀 : 𝐴.

Completeness: If𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that J𝑁 K𝑧 ≈L 𝑃
Soundness: If J𝑀K𝑧 → 𝑃 then𝑀 →+ 𝑁 and J𝑁 K𝑧 ≈L 𝑃

3.2 Encoding Session 𝜋-calculus to Linear-F
Just as the proof theoretic content of the soundness of sequent calculus wrt natural deduction

induces a translation from _-terms to session-typed processes, the completeness of the sequent
calculus wrt natural deduction induces a translation from the session calculus to the _-calculus. For

conciseness, we omit the additive types ⊕ and& from the translation, which can be straightforwardly

considered by adding the corresponding additive pairs and sums to Linear-F. This mapping identifies

sequent calculus right rules with the introduction rules of natural deduction and left rules with

elimination rules combined with (type-preserving) substitution. Crucially, the mapping is defined

on typing derivations, enabling us to consistently identify when a process uses a session (i.e. left

rules) or, dually, when a process offers a session (i.e. right rules). The encoding makes use of the

two admissible substitution principles denoted by the following rules:

(subst)

Ω; Γ;Δ1, 𝑥 :𝐵 ⊢ 𝑀 : 𝐴 Ω; Γ;Δ2 ⊢ 𝑁 : 𝐵

Ω; Γ;Δ1,Δ2 ⊢ 𝑀{𝑁 /𝑥} : 𝐴

(subst
!
)

Ω; Γ, 𝑢:𝐵;Δ ⊢ 𝑀 : 𝐴 Ω; Γ; · ⊢ 𝑁 : 𝐵

Ω; Γ;Δ ⊢ 𝑀{𝑁 /𝑢} : 𝐴

Definition 3.6 (From Poly𝜋 to Linear-F). We write LΩM; LΓM; LΔM ⊢ L𝑃M : 𝐴 for the translation from

typing derivations in Poly𝜋 to derivations in Linear-F. The translations on types and contexts

are the identity function. The translation on processes is given below, where the leftmost column

indicates the typing rule at the root of the derivation (Figures 5 and 6 list the translation on typing

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Bernardo Toninho and Nobuko Yoshida

derivations, where we write L𝑃MΩ;Γ;Δ⊢𝑧:𝐴 to denote the translation of Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴).

(id) L[𝑥 ↔ 𝑦]M ≜ 𝑥 (copy) L(a𝑥)𝑢⟨𝑥⟩.𝑃M ≜ L𝑃M{𝑢/𝑥}
(1R) L0M ≜ ⟨⟩ (1L) L𝑃M ≜ let 1 = 𝑥 in L𝑃M
(⊸R) L𝑧 (𝑥) .𝑃M ≜ _𝑥 :𝐴.L𝑃M (⊸L) L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄)M ≜ L𝑄M{(𝑥 L𝑃M)/𝑥}
(⊗R) L(a𝑥)𝑧⟨𝑥⟩.(𝑃 | 𝑄)M ≜ ⟨L𝑃M ⊗ L𝑄M⟩ (⊗L) L𝑥 (𝑦).𝑃M ≜ let𝑥 ⊗ 𝑦 = 𝑥 in L𝑃M
(!R) L!𝑧 (𝑥).𝑃M ≜ !L𝑃M (!L) L𝑃{𝑢/𝑥}M ≜ let !𝑢 = 𝑥 in L𝑃M
(∀R) L𝑧 (𝑋) .𝑃M ≜ Λ𝑋 .L𝑃M (∀L) L𝑥 ⟨𝐵⟩.𝑃M ≜ L𝑃M{(𝑥 [𝐵])/𝑥}
(∃R) L𝑧⟨𝐵⟩.𝑃M ≜ pack𝐵with L𝑃M (∃L) L𝑥 (𝑌).𝑃M ≜ let (𝑌, 𝑥) = 𝑥 in L𝑃M
(cut) L(a𝑥) (𝑃 | 𝑄)M ≜ L𝑄M{L𝑃M/𝑥} (cut!) L(a𝑢) (!𝑢 (𝑥) .𝑃 | 𝑄)M ≜ L𝑄M{L𝑃M/𝑢}

For instance, the encoding of a process 𝑧 (𝑥).𝑃 :: 𝑧:𝐴 ⊸ 𝐵, typed by rule ⊸R, results in the

corresponding⊸ 𝐼 introduction rule in the _-calculus and thus is _𝑥 :𝐴.L𝑃M. To encode the process

(a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄), typed by rule⊸L, we make use of substitution: Given that the sub-process 𝑄 is

typed as Ω; Γ;Δ′, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶 , the encoding of the full process is given by L𝑄M{(𝑥 L𝑃M)/𝑥}. The
term 𝑥 L𝑃M consists of the application of 𝑥 (of function type) to the argument L𝑃M, thus ensuring
that the term resulting from the substitution is of the appropriate type. We note that, for instance,

the encoding of rule ⊗L does not need to appeal to substitution – the _-calculus let style rules can
be mapped directly. Similarly, rule ∀R is mapped to type abstraction, whereas rule ∀L which types

a process of the form 𝑥 ⟨𝐵⟩.𝑃 maps to a substitution of the type application 𝑥 [𝐵] for 𝑥 in L𝑃M. The
encoding of existentials is simpler due to the let-style elimination. We also highlight the encoding

of the cut rule which embodies parallel composition of two processes sharing a linear name, which

clarifies the use/offer duality of the intuitionistic calculus – the process that offers 𝑃 is encoded

and substituted into the encoded user 𝑄 .

Theorem 3.7. If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then LΩM; LΓM; LΔM ⊢ L𝑃M : 𝐴.

Proof. Straightforward induction. The proof follows from the typing derivations of Figures 5

and 6. □

Example 3.8 (Encoding of Poly𝜋). Consider the following processes

𝑃 ≜ 𝑧 (𝑋).𝑧 (𝑌).𝑧 (𝑥).𝑧 (𝑦).𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) 𝑄 ≜ 𝑧⟨1⟩.𝑧⟨1⟩.𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤) .[𝑤 ↔ 𝑟]

with ⊢ 𝑃 :: 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗𝑌 and 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗𝑌 ⊢ 𝑄 :: 𝑟 :1, derivable as follows:

𝑋,𝑌 ; ·;𝑥 :𝑋 ⊢ [𝑥 ↔ 𝑤] :: 𝑤 :𝑋 𝑋,𝑌 ; ·;𝑦:𝑌 ⊢ [𝑦 ↔ 𝑧] :: 𝑧:𝑌
𝑋,𝑌 ; ·;𝑥 :𝑋,𝑦:𝑌 ⊢ 𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:𝑋 ⊗ 𝑌

𝑋,𝑌 ; ·;𝑥 :𝑋 ⊢ 𝑧 (𝑦) .𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:𝑌 ⊸ 𝑋 ⊗ 𝑌
𝑋,𝑌 ; ·; · ⊢ 𝑧 (𝑥) .𝑧 (𝑦) .𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌

𝑋 ; ·; · ⊢ 𝑧 (𝑌).𝑧 (𝑥).𝑧 (𝑦) .𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌
·; ·; · ⊢ 𝑧 (𝑋).𝑧 (𝑌) .𝑧 (𝑥) .𝑧 (𝑦) .𝑧⟨𝑤⟩.([𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌

The derivation (read bottom-up) consists of two applications of rule ∀R, two instances of rule⊸R
and one instance of rule ⊗R followed by two uses of the identity rule.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

On Polymorphic Sessions and Functions 17

L(1R)Ω; Γ; · ⊢ 0 :: 𝑧:1 M ≜ (1𝐼)Ω; Γ; · ⊢ ⟨⟩ : 1

L(1L)Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :1 ⊢ 𝑃 :: 𝑧:𝐶
M ≜ (1𝐸)Ω; Γ;𝑥 :1 ⊢ 𝑥 : 1 Ω; Γ;Δ ⊢ L𝑃MΩ;Γ;Δ⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :1 ⊢ let 1 = 𝑥 in L𝑃MΩ;Γ;Δ⊢𝑧:𝐶 : 𝐶

L(id)Ω; Γ;𝑥 :𝐴 ⊢ [𝑥 ↔ 𝑧] :: 𝑧:𝐴 M ≜ (var)Ω; Γ;𝑥 :𝐴 ⊢ 𝑥 :𝐴

L(!R)Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴

Ω; Γ; · ⊢ !𝑧 (𝑥) .𝑃 :: 𝑧:!𝐴
M ≜ (!𝐼)Ω; Γ; · ⊢ L𝑃MΩ;Γ;·⊢𝑥 :𝐴 : 𝐴

Ω; Γ; · ⊢ !L𝑃MΩ;Γ;·⊢𝑧:!𝐴 :!𝐴

L(⊸R)
Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧 (𝑥) .𝑃 :: 𝑧:𝐴 ⊸ 𝐵 M ≜ (⊸ 𝐼)
Ω; Γ;Δ, 𝑥 :𝐴 ⊢ L𝑃MΩ,Γ;Δ,𝑥 :𝐴⊢𝑧:𝐵 : 𝐵

Ω; Γ;Δ ⊢ _𝑥 :𝐴.L𝑃MΩ,Γ;Δ,𝑥 :𝐴⊢𝑧:𝐵 : 𝐴 ⊸ 𝐵

L(⊸L)
Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑦:𝐴 Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄) :: 𝑧:𝐶 M ≜
(subst)

Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐵⊢𝑧:𝐶 : 𝐶

(⊸ 𝐸)
Ω; Γ;𝑥 :𝐴 ⊸ 𝐵 ⊢ 𝑥 :𝐴 ⊸ 𝐵 Ω; Γ;Δ1 ⊢ L𝑃MΩ;Γ;Δ1⊢𝑦:𝐴 : 𝐴

Ω; Γ;Δ1, 𝑥 :𝐴 ⊸ 𝐵 ⊢ 𝑥 L𝑃MΩ;Γ;Δ1⊢𝑦:𝐴 : 𝐵

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐵⊢𝑧:𝐶 {(𝑥 L𝑃MΩ;Γ;Δ1⊢𝑦:𝐴)/𝑥 } : 𝐶

L(⊗R)Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ;Δ2 ⊢ 𝑄 :: 𝑧:𝐵

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥)𝑧 ⟨𝑥 ⟩.(𝑃 | 𝑄) :: 𝑧:𝐴 ⊗ 𝐵
M ≜ (⊗𝐼)Ω; Γ;Δ1 ⊢ L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴 : 𝐴 Ω; Γ;Δ2 ⊢ L𝑄MΩ;Γ;Δ2⊢𝑧:𝐵 : 𝐵

Ω; Γ;Δ1,Δ2 ⊢ ⟨L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴⊗L𝑄MΩ;Γ;Δ2⊢𝑧:𝐵 ⟩ : 𝐴 ⊗ 𝐵

L(⊗L)Ω; Γ;Δ, 𝑦:𝐴.𝑥 :𝐵 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑦) .𝑃 :: 𝑧:𝐶
M ≜ (⊗𝐸)Ω; Γ;𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 : 𝐴 ⊗ 𝐵 Ω; Γ;Δ, 𝑦:𝐴,𝑥 :𝐵 ⊢ L𝑃MΩ;Γ;Δ,𝑦:𝐴.𝑥 :𝐵⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊗ 𝐵 ⊢ let𝑥 ⊗ 𝑦 = 𝑥 in L𝑃MΩ;Γ;Δ,𝑦:𝐴.𝑥 :𝐵⊢𝑧:𝐶 : 𝐶

Fig. 5. Translation on Typing Derivations from Poly𝜋 to Linear-F (Part 1)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Bernardo Toninho and Nobuko Yoshida

L(!L) Ω; Γ,𝑢:𝐴;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :!𝐴 ⊢ 𝑃 {𝑥/𝑢 } :: 𝑧:𝐶 M ≜ (!𝐸) Ω; Γ;𝑥 :!𝐴 ⊢ 𝑥 :!𝐴 Ω; Γ,𝑢:𝐴;Δ ⊢ L𝑃MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :!𝐴 ⊢ let !𝑢 = 𝑥 in L𝑃MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 : 𝐶

L(copy) Ω; Γ,𝑢:𝐴;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ,𝑢:𝐴;Δ ⊢ (a𝑥)𝑢 ⟨𝑥 ⟩.𝑃 :: 𝑧:𝐶 M ≜
(subst)

Ω; Γ,𝑢:𝐴;Δ, 𝑥 :𝐴 ⊢ L𝑃MΩ;Γ,𝑢:𝐴;Δ,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶 Ω; Γ,𝑢:𝐴; · ⊢ 𝑢:𝐴
Ω; Γ,𝑢:𝐴;Δ ⊢ L𝑃MΩ;Γ,𝑢:𝐴;Δ,𝑥 :𝐴⊢𝑧:𝐶 {𝑢/𝑥 } : 𝐶

L(∀R) Ω, 𝑋 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ω; Γ;Δ ⊢ 𝑧 (𝑋) .𝑃 :: 𝑧:∀𝑋 .𝐴 M ≜ (∀𝐼) Ω, 𝑋 ; Γ;Δ ⊢ L𝑃MΩ,𝑋 ;Γ;Δ⊢𝑧:𝐴 : 𝐴

Ω; Γ;Δ ⊢ Λ𝑋 .L𝑃MΩ,𝑋 ;Γ;Δ⊢𝑧:𝐴 : ∀𝑋 .𝐴

L(∀L) Ω ⊢ 𝐵 type Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑃 :: 𝑧:𝐶 M ≜
(subst)

Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ L𝑃MΩ;Γ;Δ,𝑥 :𝐴{𝐵/𝑋 }⊢𝑧:𝐶 : 𝐶
(∀𝐸)

Ω; Γ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 :∀𝑋 .𝐴 Ω ⊢ 𝐵 type

Ω; Γ;𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 [𝐵] : 𝐴{𝐵/𝑋 }
Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ L𝑃MΩ;Γ;Δ,𝑥 :𝐴{𝐵/𝑋 }⊢𝑧:𝐶 {(𝑥 [𝐵]/𝑥) } : 𝐶

L(∃R) Ω ⊢ 𝐵 type Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴{𝐵/𝑋 }
Ω; Γ;Δ ⊢ 𝑧 ⟨𝐵⟩.𝑃 :: 𝑧:∃𝑋 .𝐴 M ≜ (∃𝐼) Ω ⊢ 𝐵 type Ω; Γ;Δ ⊢ L𝑃MΩ;Γ;Δ⊢𝑧:𝐴{𝐵/𝑋 } : 𝐴{𝐵/𝑋 }

Ω; Γ;Δ ⊢ pack𝐵with L𝑃MΩ;Γ;Δ⊢𝑧:𝐴{𝐵/𝑋 } : ∃𝑋 .𝐴

L(∃L) Ω, 𝑌 ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∃𝑋 .𝐴 ⊢ 𝑥 (𝑌) .𝑃 :: 𝑧:𝐶 M ≜
(∃𝐸)

Ω; Γ;𝑥 :∃𝑌 .𝐴 ⊢ 𝑥 :∃𝑌 .𝐴 Ω, 𝑌 ; Γ;Δ, 𝑥 :𝐴 ⊢ L𝑃MΩ,𝑌 ;Γ;Δ,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :∃𝑌 .𝐴 ⊢ let (𝑌, 𝑥) = 𝑥 in L𝑃MΩ,𝑌 ;Γ;Δ,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶

L(cut)Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃 | 𝑄) :: 𝑧:𝐶
M ≜

(subst)

Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶 Ω; Γ;Δ1 ⊢ L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴 : 𝐴

Ω; Γ;Δ1,Δ2 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐴⊢𝑧:𝐶 {L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴/𝑥 } : 𝐶

L(cut!)Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ,𝑢:𝐴;Δ ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥) .𝑃 | 𝑄) :: 𝑧:𝐶
M ≜ (subst!)Ω; Γ,𝑢:𝐴;Δ ⊢ L𝑄MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 : 𝐶 Ω; Γ; · ⊢ L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴 : 𝐴

Ω; Γ;Δ ⊢ L𝑄MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 {L𝑃MΩ;Γ;·⊢𝑥 :𝐴/𝑢 }

Fig. 6. Translation on Typing Derivations from Poly𝜋 to Linear-F (Part 2)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

On Polymorphic Sessions and Functions 19

· ⊢ 1 type
· ⊢ 1 type

·; ·;𝑤 :1 ⊢ [𝑤 ↔ 𝑟] :: 𝑟 :1
·; ·;𝑤 :1, 𝑧:1 ⊢ [𝑤 ↔ 𝑟] :: 𝑟 :1

·; ·; 𝑧:1 ⊗ 1 ⊢ 𝑧 (𝑤).[𝑤 ↔ 𝑟] :: 𝑟 :1
·; ·; 𝑧:1 ⊸ 1 ⊗ 1 ⊢ 𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟] :: 𝑟 :1

·; ·; 𝑧:1 ⊸ 1 ⊸ 1 ⊗ 1 ⊢ 𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟] :: 𝑟 :1
·; ·; 𝑧:∀𝑌 .1 ⊸ 𝑌 ⊸ 1 ⊗ 𝑌 ⊢ 𝑧⟨1⟩.𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟] :: 𝑟 :1

·; ·; 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌 ⊢ 𝑧⟨1⟩.𝑧⟨1⟩.𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟] :: 𝑟 :1

The typing derivation for𝑄 above is dual to that of 𝑃 : two instances of ∀L, followed by two instances
of⊸L, followed by an instance of ⊗L, 1L and the identity rule.

Then: L𝑃M = Λ𝑋 .Λ𝑌 ._𝑥 :𝑋 ._𝑦:𝑌 .⟨𝑥 ⊗ 𝑦⟩ L𝑄M = let𝑥 ⊗ 𝑦 = 𝑧 [1] [1] ⟨⟩ ⟨⟩ in let 1 = 𝑦 in𝑥
L(a𝑧) (𝑃 | 𝑄)M = let𝑥 ⊗ 𝑦 = (Λ𝑋 .Λ𝑌 ._𝑥 :𝑋 ._𝑦:𝑌 .⟨𝑥 ⊗ 𝑦⟩) [1] [1] ⟨⟩ ⟨⟩ in let 1 = 𝑦 in𝑥

By the behaviour of (a𝑧) (𝑃 | 𝑄), which consists of a sequence of cuts, and its encoding, we have

that L(a𝑧) (𝑃 | 𝑄)M→+ ⟨⟩ and (a𝑧) (𝑃 | 𝑄) →+ 0 = L⟨⟩M.

The reader may at this point be wondering what reasonable properties can a translation from

(typed) 𝜋-calculus processes to polymorphic _-terms have, given that the 𝜋-calculus exhibits non-

determinism that is absent from the _-calculus. However, as is made clear by our developments

in Section 3.3, our type-preserving translation from Poly𝜋 to Linear-F is only possible precisely

because the session discipline effectively erases all forms of non-determinism (in the sense of non-

confluent computations) from the 𝜋-calculus. While the operational semantics of Poly𝜋 processes

does contain forms of non-determinism (sometimes dubbed don’t care non-determinism, as opposed

to don’t know non-determinism), the session typing ensures nonetheless confluence and strong

normalisation [51], as is the case with parallel reduction in typed _-calculus.

Note that typing of Poly𝜋 is implicitly modulo structural equivalence, as in previous work

[12, 13].

In general, the translation of Def. 3.6 can introduce some distance between the immediate
operational behaviour of a process and its corresponding _-term, insofar as the translations of

cuts (and left rules to non let-form elimination rules) make use of substitutions that can take

place deep within the resulting term. Consider the process at the root of the following typing

judgment Δ1,Δ2,Δ3 ⊢ (a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑃2 | 𝑤 (𝑧).0)) :: 𝑤 :1 ⊸ 1, derivable through a

cut on session 𝑥 between instances of⊸R and⊸L, where the continuation process𝑤 (𝑧).0 offers
a session 𝑤 :1 ⊸ 1 (and so must use rule 1L on 𝑥). We have that: (a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑃2 |
𝑤 (𝑧).0)) → (a𝑥,𝑦) (𝑃1 | 𝑃2 | 𝑤 (𝑧).0). However, the translation of the process above results in

the term _𝑧:1.let 1 = ((_𝑦:𝐴.L𝑃1M) L𝑃2M) in let 1 = 𝑧 in ⟨⟩, where the redex that corresponds to the

process reduction is present but hidden under the binder for 𝑧 (corresponding to the input along𝑤).

In this sense, the encoding of parallel composition through a (meta-level) substitution can indeed

hide some of the computational behaviour of a process under a binder in the corresponding _-term,

(albeit the encoding L(a𝑥,𝑦) (𝑃1 | 𝑃2 | 𝑤 (𝑧).0)M is 𝛽-equivalent to the _-term above). This is justified

proof theoretically by the commuting conversions of sequent calculus and therefore by contextual

equivalence. An alternative would be to consider a let-binder in the _-calculus that would act as the

translation target of all substitution-style rules (the cuts, copy,⊸L and ∀L rules). In this alternate

formulation, the process above would be translated as let𝑥 = _𝑦:𝐴.L𝑃1M in let𝑥 ′ = 𝑥 L𝑃2M in let 1 =

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Bernardo Toninho and Nobuko Yoshida

𝑥 ′ in _𝑧:1.let 1 = 𝑧 in ⟨⟩, which mirrors the process reduction order more explicitly, at the cost of an

extra-logical construct in the _-calculus.

Thus, to establish a more precise form of operational completeness, without adding extra-logical

constructs to the _-calculus, we consider full 𝛽-reduction, denoted by→𝛽 , i.e. enabling 𝛽-reductions

under binders (such an extension is easily obtained by including evaluation context clauses under

all binding sites in the language). We note that, as argued above, operational correspondence

does not require full 𝛽-reduction, but the results can be established more naturally and precisely

(i.e., without an appeal to contextual equivalence and/or by adding extra-logical features to the

_-calculus).

Theorem 3.9 (Operational Completeness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴. If 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M.

In order to study the soundness direction it is instructive to consider typed process 𝑥 :1 ⊸ 1 ⊢
𝑥 ⟨𝑦⟩.(a𝑧) (𝑧 (𝑤).0 | 𝑧⟨𝑤⟩.0) :: 𝑣 :1 and its translation:

L𝑥 ⟨𝑦⟩.(a𝑧) (𝑧 (𝑤) .0 | 𝑧⟨𝑤⟩.0)M = L(a𝑧) (𝑧 (𝑤).0 | 𝑧⟨𝑤⟩.0)M{(𝑥 ⟨⟩)/𝑥}
= let 1 = (_𝑤 :1.let 1 = 𝑤 in ⟨⟩) ⟨⟩ in let 1 = 𝑥 ⟨⟩ in ⟨⟩

The process above cannot reduce due to the output prefix on 𝑥 , which cannot synchronise with a

corresponding input action since there is no provider for 𝑥 (i.e. the channel is in the left-hand side

context). However, its encoding can exhibit the 𝛽-redex corresponding to the synchronisation along

𝑧, hidden by the prefix on 𝑥 . The corresponding reductions hidden under prefixes in the encoding

can be soundly exposed in the session calculus by appealing to the commuting conversions of linear

logic (e.g. in the process above, the instance of rule⊸L corresponding to the output on 𝑥 can be

commuted with the cut on 𝑧).

As shown in [50], commuting conversions are sound wrt observational equivalence, and thus we

formulate operational soundness through a notion of extended process reduction, which extends

process reduction with the reductions that are induced by commuting conversions. Such a relation

was also used for similar purposes in [8] and in [37], in a classical linear logic setting. For conciseness,

we define extended reduction as a relation on typed processes modulo ≡.

Definition 3.10 (Extended Reduction [8]). We define ↦→ as the type preserving relations on typed

processes modulo ≡ generated by:

(1) C[(a𝑦)𝑥 ⟨𝑦⟩.𝑃] | 𝑥 (𝑦).𝑄 ↦→ C[(a𝑦) (𝑃 | 𝑄)];
(2) C[(a𝑦)𝑥 ⟨𝑦⟩.𝑃] | !𝑥 (𝑦).𝑄 ↦→ C[(a𝑦) (𝑃 | 𝑄)] | !𝑥 (𝑦).𝑄 ; and (3) (a𝑥) (!𝑥 (𝑦) .𝑄) ↦→ 0

where C is a (typed) process context which does not capture the bound name 𝑦.

We highlight that clause (3) above is exactly the reduction of a cut between promotion and

weakening in linear logic.

Theorem 3.11 (Operational Soundness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M → 𝑀 , there exists 𝑄
such that 𝑃 ↦→∗ 𝑄 and L𝑄M =𝛼 𝑀 .

Before addressing the more semantic properties that are detailed in the following sections, it

is important to consider the general landscape of our encodings: Both Poly𝜋 and Linear-F are

extremely proof-theoretically well-behaved, satisfying confluence and strong normalization. In

this sense, our encodings are greatly simplified and inherit significant intrinsic correctness from

typing alone, seeing as the main differences between the two calculi lie in those between natural

deduction and sequent calculi style systems themselves. This is made manifest in our encodings

by the accounting of commutting conversions via behavioural equivalence or full 𝛽-reduction

(alternatively, as discussed above, by considering an extension of the _-calculus with a general

let-binder).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

On Polymorphic Sessions and Functions 21

Any extensions of either system that would weaken their proof-theoretic robustness, e.g. diver-

gence or other forms of effects, would require careful revision of the encodings and their operational

properties. In terms of divergence, a revision of the encoding along the lines detailed above with a

let-binder (and the appropriate recursive constructs) would likely suffice. To consider more general

effects, a framework along the lines of the work [47] would need to be considered, likely foregoing

the logical correspondence. In such a setting, operational correctness can be reestablished although

the status of the semantic properties of Section 3.3 (and subsequent sections) is unclear.

3.3 Inversion and Full Abstraction
Having established the operational preciseness of the encodings to-and-from Poly𝜋 and Linear-F,

we establish our main results for the encodings. Specifically, we show that the encodings are

mutually inverse up-to behavioural equivalence (with fullness as its corollary), which then enables

us to establish full abstraction for both encodings.

Theorem 3.12 (Inverse).

• If Ω; Γ;Δ ⊢ 𝑀 : 𝐴 then Ω; Γ;Δ ⊢ LJ𝑀K𝑧M � 𝑀 : 𝐴

• If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ JL𝑃MK𝑧 ≈L 𝑃 :: 𝑧:𝐴

Corollary 3.13 (Fullness).

• Given Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴, there exists 𝑀 such that Ω; Γ;Δ ⊢ 𝑀 : 𝐴 and Ω; Γ;Δ ⊢ J𝑀K𝑧 ≈L 𝑃 ::

𝑧:𝐴.
• Given Ω; Γ;Δ ⊢ 𝑀 : 𝐴, there exists 𝑃 such that Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and Ω; Γ;Δ ⊢ L𝑃M � 𝑀 : 𝐴.

We now state our full abstraction results. Given two Linear-F terms of the same type, equivalence

in the image of the J−K𝑧 translation can be used as a proof technique for contextual equivalence in

Linear-F. This is called the soundness direction of full abstraction in the literature [26] and proved

by showing the relation generated by J𝑀K𝑧 ≈L J𝑁 K𝑧 forms �; we then establish the completeness
direction by contradiction, using fullness (see Appendix A.2).

Lemma 3.14. Let · ⊢ 𝑀 : 2.𝑀 ⇓ T iff J𝑀K𝑧 ≈L JTK𝑧 :: 𝑧:J2K

Proof. By operational correspondence. □

Theorem 3.15 (Full Abstraction). Ω; Γ;Δ ⊢ 𝑀 � 𝑁 : 𝐴 iff Ω; Γ;Δ ⊢ J𝑀K𝑧 ≈L J𝑁 K𝑧 :: 𝑧:𝐴.

Proof. (Soundness, ⇐) Since � is the largest consistent congruence compatible with the

booleans, let𝑀R𝑁 iff J𝑀K𝑧 ≈L J𝑁 K𝑧 . We show that R is one such relation.

(1) (Congruence) Since ≈L is a congruence, R is a congruence.

(2) (Reduction-closed) Let𝑀 → 𝑀 ′ and J𝑀K𝑧 ≈L J𝑁 K𝑧 . Then we have by operational correspon-

dence (Theorem 3.5) that J𝑀K𝑧 →∗ 𝑃 such that 𝑃 ≈L J𝑀 ′K𝑧 hence J𝑀 ′K𝑧 ≈L J𝑁 K𝑧 , thus R is

reduction closed.

(3) (Compatible with the booleans) Follows from Lemma 3.14.

(Completeness,⇒) Assume to the contrary that𝑀 � 𝑁 : 𝐴 and J𝑀K𝑧 ̸≈L J𝑁 K𝑧 :: 𝑧:𝐴.
Thismeanswe can find a distinguishing context𝑅 such that (a𝑧, 𝑥) (J𝑀K𝑧 | 𝑅) ≈L JTK𝑦 :: 𝑦:J2K and
(a𝑧, 𝑥) (J𝑁 K𝑧 | 𝑅) ≈L JFK𝑦 :: 𝑦:J2K. By Fullness (Theorem 3.13), we have that there exists some 𝐿 such

that J𝐿K𝑦 ≈L 𝑅, thus: (a𝑧, 𝑥) (J𝑀K𝑧 | J𝐿K𝑦) ≈L JTK𝑦 :: 𝑦:J2K and (a𝑧, 𝑥) (J𝑁 K𝑧 | J𝐿K𝑦) ≈L JFK𝑦 :: 𝑦:J2K.
By Theorem 3.15 (Soundness), we have that 𝐿[𝑀] � T and 𝐿[𝑁] � F and thus 𝐿[𝑀] � 𝐿[𝑁] which
contradicts𝑀 � 𝑁 : 𝐴. □

We can straightforwardly combine the above full abstraction with Theorem 3.12 to obtain full

abstraction of the L−M translation.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Bernardo Toninho and Nobuko Yoshida

Theorem 3.16 (Full Abstraction). Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴 iff Ω; Γ;Δ ⊢ L𝑃M � L𝑄M : 𝐴.

Proof. (Soundness,⇐) Let𝑀 = L𝑃M and 𝑁 = L𝑄M. By Theorem 3.15 (Completeness) we have

J𝑀K𝑧 ≈L J𝑁 K𝑧 . Thus by Theorem 3.12 we have: J𝑀K𝑧 = JL𝑃MK𝑧 ≈L 𝑃 and J𝑁 K𝑧 = JL𝑄MK𝑧 ≈L 𝑄 . By
compatibility with observational equivalence we have 𝑃 ≈L 𝑄 :: 𝑧:𝐴.

(Completeness, ⇒) From 𝑃 ≈L 𝑄 :: 𝑧:𝐴, Theorem 3.12 and compatibility with observational

equivalence we have JL𝑃MK𝑧 ≈L JL𝑄MK𝑧 :: 𝑧:𝐴. Let L𝑃M = 𝑀 and L𝑄M = 𝑁 . We have by Theorem 3.15

(Soundness) that𝑀 � 𝑁 : 𝐴 and thus L𝑃M ≈L L𝑄M : 𝐴. □

4 INDUCTIVE AND COINDUCTIVE SESSION TYPES
In this section we study inductive and coinductive sessions, arising through encodings of initial

𝐹 -algebras and final 𝐹 -coalgebras in the polymorphic _-calculus.

The study of polymorphism in the _-calculus [2, 10, 27, 58] has shown that parametric polymor-

phism is expressive enough to encode both inductive and coinductive types in a precise way, through

a faithful representation of initial and final (co)algebras [40], without extending the language of

terms nor the semantics of the calculus, giving a logical justification to the Church encodings of

inductive datatypes such as lists and natural numbers.

The polymorphic session typing framework of the previous sections allows us to express fairly

intricate communication behaviours, being able to specify generic protocols through both existential

and universal polymorphism (i.e. protocols that are parametric in their sub-protocols). However, it

is often the case that protocols are expressed in terms of recursive behaviours (e.g., a client iterates

over a buy list with a server, a server that repeats a sequence of interactions with a client an arbitrary

number of times until the client chooses to terminate, etc) which are seemingly unavailable in

the framework of Section 2. The introduction of recursive behaviours in the logical-based session

typing framework has been addressed through the introduction of explicit inductive and coinductive

session types [37, 72] and the corresponding process constructs, preserving the good properties of

the framework such as strong normalisation and absence of deadlocks.

However, the study of polymorphism in the _-calculus [2, 10, 27, 58] has shown that parametric

polymorphism is expressive enough to encode both inductive and coinductive types in a precise

way, through a faithful representation of initial and final (co)algebras [40], without extending the

language of terms nor the semantics of the calculus.

Given the logical foundation of the polymorphic session calculus it is natural to wonder if such a

result holds for inductive and coinductive sessions. In this section we answer this question positively
by using our fully abstract encodings of (linear) polymorphic _-calculus to show that session

polymorphism is expressive enough to encode inductive and coinductive sessions, “importing” the

results for the _-calculus through the encodings. The development of this section is a particular

instance of the benefits of our encodings which enable us to import non-trivial results from the

_-calculus to our process setting for free. We first provide a brief recap of the representation of

inductive and coinductive types using polymorphism in System F.

Inductive and Coinductive Types in System F. Exploring an algebraic interpretation of

polymorphism where types are interpreted as functors, it can be shown that given a type 𝐹 with a

free variable 𝑋 that occurs only positively (i.e., occurrences of 𝑋 are on the left-hand side of an

even number of function arrows), the polymorphic type ∀𝑋 .((𝐹 (𝑋) → 𝑋) → 𝑋) forms an initial

𝐹 -algebra [2, 60] (we write 𝐹 (𝑋) to denote that 𝑋 may occur in 𝐹). This enables the representation

of inductively defined structures using an algebraic or categorical justification. For instance, the

natural numbers can be seen as the initial 𝐹 -algebra of 𝐹 (𝑋) = 1 + 𝑋 (where 1 is the unit type

and + is the coproduct), and are thus already present in System F, in a precise sense, as the type

∀𝑋 .((1 + 𝑋) → 𝑋) → 𝑋 (noting that both 1 and + can also be encoded in System F). A similar

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

On Polymorphic Sessions and Functions 23

𝐹 (𝑇𝑖)
𝐹 (fold[𝐴] (𝑓))- 𝐹 (𝐴)

𝑇𝑖

in

? fold[𝐴] (𝑓) - 𝐴

𝑓

?

(a)

𝐴
unfold[𝐴] (𝑓) - 𝑇𝑓

𝐹 (𝐴)

𝑓

?
𝐹 (unfold[𝐴] (𝑓))- 𝐹 (𝑇𝑓)

out

?

(b)

Fig. 7. Diagrams for Initial 𝐹 -algebras and Final 𝐹 -coalgebras

story can be told for coinductively defined structures, which correspond to final 𝐹 -coalgebras and

are representable with the polymorphic type ∃𝑋 .(𝑋 → 𝐹 (𝑋)) × 𝑋 , where × is a product type. In

the remainder of this section we assume the positivity requirement on 𝐹 mentioned above.

While the complete formal development of the representation of inductive and coinductive types

in System F would lead us too far astray, we summarise here the key concepts as they apply to the

_-calculus (the interested reader can refer to [27] for the full categorical details).

To show that the polymorphic type 𝑇𝑖 ≜ ∀𝑋 .((𝐹 (𝑋) → 𝑋) → 𝑋) is an initial 𝐹 -algebra, one

exhibits a pair of _-terms, often dubbed fold and in, such that the diagram in Fig. 7(a) commutes

(for any 𝐴, where 𝐹 (𝑓), where 𝑓 is a _-term, denotes the functorial action of 𝐹 applied to 𝑓), and,

crucially, that fold is unique. When these conditions hold, we are justified in saying that𝑇𝑖 is a least

fixed point of 𝐹 . Through a fairly simple calculation, we have that:

fold ≜ Λ𝑋 ._𝑓 :𝐹 (𝑋) → 𝑋 ._𝑡 :𝑇𝑖 .𝑡 [𝑋] (𝑓)
in ≜ _𝑥 :𝐹 (𝑇𝑖) .Λ𝑋 ._𝑓 :𝐹 (𝑋) → 𝑋 .𝑓 (𝐹 (fold[𝑋] (𝑥)) (𝑥))

satisfy the necessary equalities. To show uniqueness one appeals to parametricity, which allows

us to prove that any function of the appropriate type is equivalent to fold. This property is often

dubbed initiality or universality.

The construction of final 𝐹 -coalgebras and their justification as greatest fixed points is dual.

Assuming products in the calculus and taking 𝑇𝑓 ≜ ∃𝑋 .(𝑋 → 𝐹 (𝑋)) × 𝑋 , we produce the _-terms

unfold ≜ Λ𝑋 ._𝑓 :𝑋 → 𝐹 (𝑋)._𝑥 :𝑇𝑓 .pack𝑋 with (𝑓 , 𝑥)
out ≜ _𝑡 : 𝑇𝑓 .let (𝑋, (𝑓 , 𝑥)) = 𝑡 in 𝐹 (unfold[𝑋] (𝑓)) (𝑓 (𝑥))

such that the diagram in Fig. 7(b) commutes and unfold is unique (again, up to parametricity).

While the argument above applies to System F, a similar development can be made in Linear-F [10]

by considering 𝑇𝑖 ≜ ∀𝑋 .!(𝐹 (𝑋) ⊸ 𝑋) ⊸ 𝑋 and 𝑇𝑓 ≜ ∃𝑋 .!(𝑋 ⊸ 𝐹 (𝑋)) ⊗ 𝑋 . Reusing the same

names for the sake of conciseness, the associated linear _-terms are:

fold ≜ Λ𝑋 ._𝑢:!(𝐹 (𝑋) ⊸ 𝑋)._𝑦:𝑇𝑖 .(𝑦 [𝑋] 𝑢) : ∀𝑋 .!(𝐹 (𝑋) ⊸ 𝑋) ⊸ 𝑇𝑖 ⊸ 𝑋

in ≜ _𝑥 :𝐹 (𝑇𝑖) .Λ𝑋 ._𝑦:!(𝐹 (𝑋) ⊸ 𝑋).let !𝑢 = 𝑦 in𝑘 (𝐹 (fold[𝑋] (!𝑢)) (𝑥)) : 𝐹 (𝑇𝑖) ⊸ 𝑇𝑖
unfold ≜ Λ𝑋 ._𝑢:!(𝑋 ⊸ 𝐹 (𝑋)) ._𝑥 :𝑋 .pack𝑋 with ⟨𝑢 ⊗ 𝑥⟩ : ∀𝑋 .!(𝑋 ⊸ 𝐹 (𝑋)) ⊸ 𝑋 ⊸ 𝑇𝑓

out ≜ _𝑡 : 𝑇𝑓 .let (𝑋, (𝑢, 𝑥)) = 𝑡 in let !𝑓 = 𝑢 in 𝐹 (unfold[𝑋] (!𝑓)) (𝑓 (𝑥)) : 𝑇𝑓 ⊸ 𝐹 (𝑇𝑓)

Inductive and Coinductive Sessions for Free. As a consequence of full abstraction we may

appeal to the J−K𝑧 encoding to derive representations of fold and unfold that satisfy the necessary

algebraic properties. The derived processes are (recall that we write 𝑥 ⟨𝑦⟩.𝑃 for (a𝑦)𝑥 ⟨𝑦⟩.𝑃):

JfoldK𝑧 ≜ 𝑧 (𝑋).𝑧 (𝑢).𝑧 (𝑦).(a𝑤) ((a𝑥) ([𝑦 ↔ 𝑥] | 𝑥 ⟨𝑋 ⟩.[𝑥 ↔ 𝑤]) | 𝑤 ⟨𝑣⟩.([𝑢 ↔ 𝑣] | [𝑤 ↔ 𝑧]))
JunfoldK𝑧 ≜ 𝑧 (𝑋).𝑧 (𝑢).𝑧 (𝑥).𝑧⟨𝑋 ⟩.𝑧⟨𝑦⟩.([𝑢 ↔ 𝑦] | [𝑥 ↔ 𝑧])

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Bernardo Toninho and Nobuko Yoshida

We can then show universality of the two constructions. We write 𝑃𝑢𝑥,𝑦 to single out that 𝑥 and 𝑦

and 𝑢 are free in 𝑃 and 𝑃 𝑣
𝑧,𝑤 to denote the result of employing capture-avoiding substitution on 𝑃 ,

substituting 𝑥,𝑦,𝑢 by 𝑧,𝑤, 𝑣 , respectively. Let:

foldP(𝐴)𝑢𝑦1,𝑦2 ≜ (a𝑥) (JfoldK𝑥 | 𝑥 ⟨𝐴⟩.𝑥 ⟨𝑣⟩.(𝑢⟨𝑦⟩.[𝑦 ↔ 𝑣] | 𝑥 ⟨𝑧⟩.([𝑧 ↔ 𝑦1] | [𝑥 ↔ 𝑦2])))
unfoldP(𝐴)𝑢𝑦1,𝑦2 ≜ (a𝑥) (JunfoldK𝑥 | 𝑥 ⟨𝐴⟩.𝑥 ⟨𝑣⟩.(𝑢⟨𝑦⟩.[𝑦 ↔ 𝑣] | 𝑥 ⟨𝑧⟩.([𝑧 ↔ 𝑦1] | [𝑥 ↔ 𝑦2])))

where foldP(𝐴)𝑢𝑦1,𝑦2 corresponds to the application of fold to an 𝐹 -algebra 𝐴 with the associated

morphism 𝐹 (𝐴) ⊸ 𝐴 available on the shared channel 𝑢, consuming an ambient session 𝑦1:𝑇𝑖 and

offering 𝑦2:𝐴. Similarly, unfoldP(𝐴)𝑢𝑦1,𝑦2 corresponds to the application of unfold to an 𝐹 -coalgebra

𝐴 with the associated morphism 𝐴 ⊸ 𝐹 (𝐴) available on the shared channel 𝑢, consuming an

ambient session 𝑦1:𝐴 and offering 𝑦2:𝑇𝑓 .

Theorem 4.1 (Universality of foldP). Let 𝑄 be a well-typed process such that

𝑋 ;𝑢:𝐹 (𝑋) ⊸ 𝑋 ;𝑦1:𝑇𝑖 ⊢ 𝑄 :: 𝑦2:𝑋

for some functor 𝐹 and channels 𝑦1, 𝑦2. We have that:

𝑋 ;𝑢:𝐹 (𝑋) ⊸ 𝑋 ;𝑦1:𝑇𝑖 ⊢ 𝑄 ≈L foldP(𝑋)𝑢𝑦1,𝑦2 :: 𝑦2:𝑋

Proof. By universality of fold we have that fold[𝑋] (𝑢) � 𝑀 where 𝑢 :!(𝐹 (𝑋) ⊸ 𝑋), for any𝑀
of the appropriate type. In particular we have that fold[𝑋] (𝑢) � LfoldP(𝑋)𝑦1,𝑦2M. By full abstraction
(Theorem 3.15) and transitivity we have that Jfold[𝑋] (𝑢)K𝑦2 ≈L JLfoldP(𝑋)𝑢𝑦1,𝑦2MK𝑦2 ≈L J𝑀K𝑦2 . By
the inverse theorem (Theorem 3.12) it follows that foldP(𝑋)𝑢𝑦1,𝑦2 ≈L J𝑀K𝑦2 . Since the reasoning
holds for any such𝑀 we can conclude by Fullness of the encoding (Corollary 3.13). □

Theorem 4.2 (Universality of unfoldP). Let 𝑄 be a well-typed process 𝐴 an 𝐹 -coalgebra such
that:

·; ·;𝑦1:𝐴 ⊢ 𝑄 :: 𝑦2:𝑇𝑓

we have that
·;𝑢:𝐴 ⊸ 𝐹 (𝐴);𝑦1:𝐴 ⊢ 𝑄 ≈L unfoldP(𝐴)𝑢𝑦1,𝑦2 :: 𝑦2 :: 𝑇𝑓

Proof. By universality of unfold we have that unfold[𝐴] (𝑢) � 𝑀 where 𝑢:!(𝐴 ⊸ 𝐹 (𝐴)),
for any 𝑀 of the appropriate type. We thus have that unfold[𝐴] (𝑢) � LunfoldP(𝐴)𝑢𝑦1,𝑦2M, since
LunfoldP(𝐴)𝑢𝑦1,𝑦2M is one such𝑀 . By full abstraction (Theorem 3.15) and transitivity we have that

Junfold[𝐴] (𝑢)K𝑦2 ≈L JLunfoldP(𝐴)𝑢𝑦1,𝑦2MK𝑦2 ≈L J𝑀K𝑦2 . By the inverse theorem (Theorem 3.12) it

then follows that unfoldP(𝐴)𝑢𝑦1,𝑦2 ≈L J𝑀K𝑦2 . Since the reasoning holds for any such 𝑀 we can

conclude by Fullness of the encoding (Corollary 3.13). □

Example 4.3 (Natural Numbers). We show how to represent the natural numbers as an inductive

session type using 𝐹 (𝑋) = 1 ⊕ 𝑋 , making use of in:

zero𝑥 ≜ (a𝑧) (𝑧.inl; 0 | Jin(𝑧)K𝑥) succ𝑦,𝑥 ≜ (a𝑠) (𝑠 .inr; [𝑦 ↔ 𝑠] | Jin(𝑠)K𝑥)

with Nat ≜ ∀𝑋 .!((1 ⊕ 𝑋) ⊸ 𝑋) ⊸ 𝑋 where ⊢ zero𝑥 :: 𝑥 :Nat and 𝑦:Nat ⊢ succ𝑦,𝑥 :: 𝑥 :Nat encode
the representation of 0 and successor, respectively. The natural 1 would thus be represented by

one𝑥 ≜ (a𝑦) (zero𝑦 | succ𝑦,𝑥). The behaviour of type Nat can be seen as a that of a sequence of

internal choices of arbitrary (but finite) length. We can then observe that the foldP process acts as

a recursor. For instance consider:

stepDec𝑑 ≜ 𝑑 (𝑛).𝑛.case(zero𝑑 , [𝑛 ↔ 𝑑]) dec𝑥,𝑧 ≜ (a𝑢) (!𝑢 (𝑑).stepDec𝑑 | foldP(Nat)𝑢𝑥,𝑧)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

On Polymorphic Sessions and Functions 25

with stepDec𝑑 :: 𝑑 :(1 ⊕ Nat) ⊸ Nat and 𝑥 :Nat ⊢ dec𝑥,𝑧 :: 𝑧:Nat, where dec decrements a given

natural number session on channel 𝑥 . We have that:

(a𝑥) (one𝑥 | dec𝑥,𝑧) ≡ (a𝑥,𝑦,𝑢) (zero𝑦 | succ𝑦,𝑥 !𝑢 (𝑑).stepDec𝑑 | foldP(Nat)𝑢𝑥,𝑧) ≈L zero𝑧

We note that the resulting encoding is reminiscent of the encoding of lists of [43] (where zero
is the empty list and succ the cons cell). The main differences in the encodings arise due to our

primitive notions of labels and forwarding, as well as due to the generic nature of in and fold.

Example 4.4 (Streams). We build on Example 4.3 by representing streams of natural numbers

as a coinductive session type. We encode infinite streams of naturals with 𝐹 (𝑋) = Nat ⊗ 𝑋 . Thus:

NatStream ≜ ∃𝑋 .!(𝑋 ⊸ (Nat ⊗ 𝑋)) ⊗ 𝑋 . The behaviour of a session of type NatStream amounts

to an infinite sequence of outputs of channels of type Nat. Such an encoding enables us to construct

the stream of all naturals nats (and the stream of all non-zero naturals oneNats):

genHdNext𝑧 ≜ 𝑧 (𝑛).𝑧⟨𝑦⟩.(𝑛⟨𝑛′⟩.[𝑛′↔ 𝑦] | !𝑧 (𝑤).𝑛⟨𝑛′⟩.succ𝑛′,𝑤)
nats𝑦 ≜ (a𝑥,𝑢) (zero𝑥 | !𝑢 (𝑧).genHdNext𝑧 | unfoldP(!Nat)𝑢𝑥,𝑦)
oneNats𝑦 ≜ (a𝑥,𝑢) (one𝑥 | !𝑢 (𝑧).genHdNext𝑧 | unfoldP(!Nat)𝑢𝑥,𝑦)

with genHdNext𝑧 :: 𝑧:!Nat ⊸ Nat⊗!Nat and both nats𝑦 and oneNats :: 𝑦:NatStream. genHdNext𝑧
consists of a helper that generates the current head of a stream and the next element. As expected,

the following process implements a session that “unrolls” the stream once, providing the head of

the stream and then behaving as the rest of the stream (recall that out : 𝑇𝑓 ⊸ 𝐹 (𝑇𝑓)).
(a𝑥) (nats𝑥 | Jout(𝑥)K𝑦) :: 𝑦:Nat ⊗ NatStream

We note a peculiarity of the interaction of linearity with the stream encoding: a process that

begins to deconstruct a stream has no way of “bottoming out” and stopping. One cannot, for

instance, extract the first element of a stream of naturals and stop unrolling the stream in a well-

typed way. We can, however, easily encode a “terminating” stream of all natural numbers via

𝐹 (𝑋) = (Nat⊗!𝑋) by replacing the genHdNext𝑧 with the generator given as:

genHdNextTer𝑧 ≜ 𝑧 (𝑛).𝑧⟨𝑦⟩.(𝑛⟨𝑛′⟩.[𝑛′↔ 𝑦] | !𝑧 (𝑤).!𝑤 (𝑤 ′).𝑛⟨𝑛′⟩.succ𝑛′,𝑤′)

It is then easy to see that a usage of Jout(𝑥)K𝑦 results in a session of type Nat⊗!NatStream,

enabling us to discard the stream as needed. One can replay this argument with the operator

𝐹 (𝑋) = (!Nat ⊗ 𝑋) to enable discarding of stream elements. Assuming such modifications, we can

then show:

(a𝑦) ((a𝑥) (nats𝑥 | Jout(𝑥)K𝑦) | 𝑦 (𝑛).[𝑦 ↔ 𝑧]) ≈L oneNats𝑧 :: 𝑧:NatStream

5 COMMUNICATING VALUES
We now study encodings for an extension of the core session calculus with term passing (i.e.,

sending and receiving typed _-terms). The core calculus drops polymorphism from Poly𝜋 .

Using the development of term passing (Section 5.1) as a stepping stone, we generalise the

encodings to a higher-order session calculus (Section 5.2), where processes can send, receive and

execute other processes. To obtain such a calculus process passing, you extend the term-passing

fragment with a monadic embedding of processes [71]. Proof theoretically, this calculus is inspired

by Benton’s LNL [6]. We show full abstraction and mutual inversion theorems for the encodings

from higher-order to first-order. As a consequence, we can straightforwardly derive a strong

normalisation property for the higher-order process-passing calculus.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Bernardo Toninho and Nobuko Yoshida

5.1 Session Processes with Term Passing – Sess𝜋_
We consider a session calculus extended with a data layer obtained from a _-calculus (whose terms

are ranged over by𝑀, 𝑁 and types by 𝜏, 𝜎). We dub this calculus Sess𝜋_.

𝑃,𝑄 ::= · · · | 𝑥 ⟨𝑀⟩.𝑃 | 𝑥 (𝑦).𝑃
𝑀, 𝑁 ::= _𝑥 :𝜏 .𝑀 | 𝑀 𝑁 | 𝑥

𝐴, 𝐵 ::= · · · | 𝜏 ∧𝐴 | 𝜏 ⊃ 𝐴

𝜏, 𝜎 ::= · · · | 𝜏 → 𝜎

Without loss of generality, we consider the data layer to be simply-typed, with a call-by-name

semantics, satisfying the usual type safety properties. The typing judgment for this calculus is

Ψ ⊢ 𝑀 : 𝜏 . We omit session polymorphism for the sake of conciseness, restricting processes to

communication of data and (session) channels. The typing judgment for processes is thus modified

to Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴, where Ψ is an intuitionistic context that accounts for variables in the data layer.

The rules for the relevant process constructs are (all other rules simply propagate the Ψ context

from conclusion to premises):

Ψ ⊢ 𝑀 : 𝜏 Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ψ; Γ;Δ ⊢ 𝑧⟨𝑀⟩.𝑃 :: 𝑧:𝜏 ∧𝐴 (∧R)
Ψ, 𝑦:𝜏 ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ψ; Γ;Δ, 𝑥 :𝜏 ∧𝐴 ⊢ 𝑥 (𝑦).𝑄 :: 𝑧:𝐶
(∧L)

Ψ, 𝑥 :𝜏 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ψ; Γ;Δ ⊢ 𝑧 (𝑥).𝑃 :: 𝑧:𝜏 ⊃ 𝐴
(⊃R)

Ψ ⊢ 𝑀 : 𝜏 Ψ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ψ; Γ;Δ, 𝑥 :𝜏 ⊃ 𝐴 ⊢ 𝑥 ⟨𝑀⟩.𝑄 :: 𝑧:𝐶
(⊃L)

With the reduction rule given by:
1 𝑥 ⟨𝑀⟩.𝑃 | 𝑥 (𝑦).𝑄 → 𝑃 | 𝑄{𝑀/𝑦}. With a simple extension to

our encodings we may eliminate the data layer by encoding the data objects as processes, showing

that from an expressiveness point of view, data communication is orthogonal to the framework.

We note that the data language we are considering is not linear, and the usage discipline of data in

processes is itself also not linear. For instance, the following is a valid typing derivation:

𝑥 :𝜏 ⊢ 𝑥 : 𝜏

𝑥 :𝜏,𝑦:𝜎 ⊢ 𝑥 :𝜏
𝑥 :𝜏 ⊢ _𝑦:𝜎.𝑥 : 𝜎 → 𝜏 𝑥 :𝜏 ; ·; · ⊢ 0 :: 𝑧:1 1R

𝑥 :𝜏 ; ·; · ⊢ 𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 :: 𝑧:(𝜎 → 𝜏) ∧ 1 ∧R

𝑥 :𝜏 ; ·; · ⊢ 𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 :: 𝑧:𝜏 ∧ ((𝜎 → 𝜏) ∧ 1) ∧R

·; ·; · ⊢ 𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 :: 𝑧:𝜏 ⊃ (𝜏 ∧ ((𝜎 → 𝜏) ∧ 1)) ⊃R (1)

The process at the root of the typing derivation above receives a data element of type 𝜏 bound to 𝑥

and uses it in the two subsequent outputs. The first is a simple forwarding of the received term,

whereas the second is that of a non-linear function that discards its argument and returns 𝑥 .

To First-Order Processes. We now introduce our encoding from Sess𝜋_ to Sess𝜋 (the core

calculus without value passing) via an encoding from Lin_ (the simply-typed linear lambda-calculus)

to Sess𝜋 . The encodings are defined inductively on session types, processes, types and _-terms (we

omit the purely inductive cases on session types and processes for conciseness).

The encoding on processes J−K from Sess𝜋_ to Sess𝜋 , is defined on typing derivations, where we
indicate the typing rule at the root of the typing derivation. The encoding J−K𝑧 , from Lin_ to Sess𝜋 ,

follows the same pattern of Section 3.1.

J𝜏 ∧𝐴K ≜!J𝜏K ⊗ J𝐴K J𝜏 ⊃ 𝐴K ≜!J𝜏K ⊸ J𝐴K J𝜏 → 𝜎K ≜!J𝜏K ⊸ J𝜎K

(∧R) J𝑧⟨𝑀⟩.𝑃K ≜ 𝑧⟨𝑥⟩.(!𝑥 (𝑦).J𝑀K𝑦 | J𝑃K) (∧L) J𝑥 (𝑦) .𝑃K ≜ 𝑥 (𝑦).J𝑃K
(⊃R) J𝑧 (𝑥).𝑃K ≜ 𝑧 (𝑥).J𝑃K (⊃L) J𝑥 ⟨𝑀⟩.𝑃K ≜ 𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃K)

J𝑥K𝑧 ≜ 𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧] J_𝑥 :𝜏 .𝑀K𝑧 ≜ 𝑧 (𝑥).J𝑀K𝑧
J𝑀 𝑁 K𝑧 ≜ (a𝑦) (J𝑀K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑁 K𝑤 | [𝑦 ↔ 𝑧]))

1
For simplicity, in this section, we define the process semantics through a reduction relation.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

On Polymorphic Sessions and Functions 27

The encoding addresses the non-linear usage of data elements in processes by encoding the types

𝜏 ∧𝐴 and 𝜏 ⊃ 𝐴 as !J𝜏K ⊗ J𝐴K and !J𝜏K ⊸ J𝐴K, respectively. Thus, sending and receiving of data is

codified as the sending and receiving of channels of type !, which therefore can be used non-linearly.

Moreover, since data terms are themselves non-linear, the 𝜏 → 𝜎 type is encoded as !J𝜏K ⊸ J𝜎K,
following Girard’s embedding of intuitionistic logic in linear logic [23].

At the level of processes, offering a session of type 𝜏 ∧𝐴 (i.e. a process of the form 𝑧⟨𝑀⟩.𝑃) is
encoded according to the translation of the type: we first send a fresh name 𝑥 which will be used

to access the encoding of the term 𝑀 . Since 𝑀 can be used an arbitrary number of times by the

receiver, we guard the encoding of𝑀 with a replicated input, proceeding with the encoding of 𝑃

accordingly. Using a session of type 𝜏 ⊃ 𝐴 follows the same principle. The input cases (and the rest

of the process constructs) are completely homomorphic.

The encoding of _-terms follows Girard’s decomposition of the intuitionistic function space [70].

The _-abstraction is translated as input. Since variables in a _-abstraction may be used non-linearly,

the case for variables and application is slightly more intricate: to encode the application 𝑀 𝑁

we compose𝑀 in parallel with a process that will send the “reference” to the function argument

𝑁 which will be encoded using replication, in order to handle the potential for 0 or more usages

of variables in a function body. Respectively, a variable is encoded by performing an output to

trigger the replication and forwarding accordingly. Without loss of generality, we assume variable

names and their corresponding replicated counterparts match, which can be achieved through

𝛼-conversion before applying the translation. We exemplify our encoding as follows:

J𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0K = 𝑧 (𝑥).𝑧⟨𝑤⟩.(!𝑤 (𝑢) .J𝑥K𝑢 | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).J_𝑦:𝜎.𝑥K𝑖 | 0))
= 𝑧 (𝑥).𝑧⟨𝑤⟩.(!𝑤 (𝑢).𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑢] | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).𝑖 (𝑦).𝑥 ⟨𝑡⟩.[𝑡 ↔ 𝑖] | 0))

Properties of the Encoding. We discuss the correctness of our encoding. We can straightfor-

wardly establish that the encoding preserves typing.

Lemma 5.1 (Type Soundness of J−K𝑧 Encoding).
(1) If Ψ ⊢ 𝑀 : 𝜏 then JΨK; · ⊢ J𝑀K𝑧 :: 𝑧:J𝜏K
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JΨK, JΓK; JΔK ⊢ J𝑃K :: 𝑧:J𝐴K

Proof. Straightforward induction on the given typing derivations. □

To show that our encoding is operationally sound and complete, we capture the interaction

between substitution on _-terms and the encoding into processes through logical equivalence.

Consider the following reduction of a process:

(a𝑧) (𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 | 𝑧⟨_𝑤 :𝜏0 .𝑤⟩.𝑃)
→ (a𝑧) (𝑧⟨_𝑤 :𝜏0.𝑤⟩.𝑧⟨(_𝑦:𝜎._𝑤 :𝜏0.𝑤)⟩.0 | 𝑃) (2)

Given that substitution in the target session 𝜋-calculus amounts to renaming, whereas in the

_-calculus we replace a variable for a term, the relationship between the encoding of a substitution

𝑀{𝑁 /𝑥} and the encodings of𝑀 and 𝑁 corresponds to the composition of the encoding of𝑀 with

that of 𝑁 , but where the encoding of 𝑁 is guarded by a replication, codifying a form of explicit

non-linear substitution. We note the contrast with the notions of compositionality for the linear

setting (Lemma 3.4), where we separate shared variable usage, which requires replication, from

linear variable usage, which does not.

Lemma 5.2 (Compositionality). Let Ψ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎 and Ψ ⊢ 𝑁 : 𝜏 . We have that J𝑀{𝑁 /𝑥}K𝑧 ≈L
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦)

Proof. See Appendix A.3.1. □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Bernardo Toninho and Nobuko Yoshida

Revisiting the process to the left of the arrow in Equation 2 we have:

J(a𝑧) (𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 | 𝑧⟨_𝑤 :𝜏0 .𝑤⟩.𝑃)K
= (a𝑧) (J𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0K𝑧 | 𝑧⟨𝑥⟩.(!𝑥 (𝑏).J_𝑤 :𝜏0.𝑤K𝑏 | J𝑃K))
→ (a𝑧, 𝑥) (𝑧⟨𝑤⟩.(!𝑤 (𝑢).𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑢] | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).J_𝑦:𝜎.𝑥K𝑖 | 0) | !𝑥 (𝑏).J_𝑤 :𝜏0.𝑤K𝑏 | J𝑃K))

whereas the process to the right of the arrow is encoded as:

J(a𝑧) (𝑧⟨_𝑤 :𝜏0.𝑤⟩.𝑧⟨(_𝑦:𝜎._𝑤 :𝜏0.𝑤)⟩.0 | 𝑃)K
= (a𝑧) (𝑧⟨𝑤⟩.(!𝑤 (𝑢).J_𝑤 :𝜏0.𝑤K𝑢 | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).J_𝑦:𝜎._𝑤 :𝜏0.𝑤K𝑖 | J𝑃K)))

While the reduction of the encoded process and the encoding of the reduct differ syntactically, they

are observationally equivalent – the latter inlines the replicated process behaviour that is accessible

in the former on 𝑥 . Having characterised substitution, we can establish operational soundness and

completeness for the encoding (see Appendix A.3.1 for proofs of Theorems 5.3 and 5.4 below).

Theorem 5.3 (Operational Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Theorem 5.4 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

The process equivalence in Theorems 5.3 and 5.4 above need not be extended to account for data

(although it would be relatively simple to do so), since the processes in the image of the encoding

are fully erased of any data elements.

Back to _-Terms. We extend our encoding of processes to _-terms to Sess𝜋_. Our extended

translation maps Sess𝜋_ processes to Lin_-terms, with the session type 𝜏 ∧𝐴 interpreted as a pair

type where the first component is replicated. Dually, 𝜏 ⊃ 𝐴 is interpreted as a function type where

the domain type is replicated. The remaining session constructs are translated as in Section 3.2. By

a slight abuse of notation, the translation L−M is overloaded, taking Sess𝜋_ processes and types to

Lin_-terms and types, respectively, but also translating the simply-typed _-calculus fragment of

Sess𝜋_ to Lin_.

L𝜏 ∧𝐴M ≜ !L𝜏M ⊗ L𝐴M L𝜏 ⊃ 𝐴M ≜ !L𝜏M ⊸ L𝐴M L𝜏 → 𝜎M ≜ !L𝜏M ⊸ L𝜎M

(∧L) L𝑥 (𝑦).𝑃M ≜ let𝑦 ⊗ 𝑥 = 𝑥 in let !𝑦 = 𝑦 in L𝑃M (∧R) L𝑧⟨𝑀⟩.𝑃M ≜ ⟨!L𝑀M ⊗ L𝑃M⟩
(⊃R) L𝑥 (𝑦).𝑃M ≜ _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑃M (⊃L) L𝑥 ⟨𝑀⟩.𝑃M ≜ L𝑃M{(𝑥 !L𝑀M)/𝑥}

L_𝑥 :𝜏 .𝑀M ≜ _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑀M L𝑀 𝑁 M ≜ L𝑀M !L𝑁 M L𝑥M ≜ 𝑥

The treatment of non-linear components of processes is identical to our previous encoding:

non-linear functions 𝜏 → 𝜎 are translated to linear functions of type !𝜏 ⊸ 𝜎 ; a process offering a

session of type 𝜏 ∧ 𝐴 (i.e. a process of the form 𝑧⟨𝑀⟩.𝑃 , typed by rule ∧R) is translated to a pair

where the first component is the encoding of𝑀 prefixed with ! so that it may be used non-linearly,

and the second is the encoding of 𝑃 . Non-linear variables are handled at the respective binding

sites: a process using a session of type 𝜏 ∧𝐴 is encoded using the elimination form for the pair and

the elimination form for the exponential; similarly, a process offering a session of type 𝜏 ⊃ 𝐴 is

encoded as a _-abstraction where the bound variable is of type !L𝜏M. Thus, we use the elimination

form for the exponential, ensuring that the typing is correct. We illustrate our encoding:

L𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0M = _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in ⟨!𝑥 ⊗ ⟨!L_𝑦:𝜎.𝑥M ⊗ ⟨⟩⟩⟩
= _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in ⟨!𝑥 ⊗ ⟨!(_𝑦:!L𝜎M.let !𝑦 = 𝑦 in𝑥) ⊗ ⟨⟩⟩⟩

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

On Polymorphic Sessions and Functions 29

Properties of the Encoding. Unsurprisingly due to the logical correspondence between natural
deduction and sequent calculus presentations of logic, our encoding satisfies both type soundness

and operational correspondence (c.f. Theorems 3.7, 3.9, and 3.11).

Lemma 5.5 (Type Soundness of L−M Encoding).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then LΨM, LΓM; LΔM ⊢ L𝑃M : L𝐴M
(2) If Ψ ⊢ 𝑀 : 𝜏 then LΨM; · ⊢ L𝑀M : L𝜏M

Proof. Straightforward induction on the given typing derivation. □

As before, we establish operational soundness and completeness of the encoding by appealing to

a notion of compositionality wrt substitution.

Lemma 5.6 (Compositionality).

(1) If Ψ, 𝑥 :𝜏 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐵 and and Ψ ⊢ 𝑀 : 𝜏 then L𝑃{𝑀/𝑥}M =𝛼 L𝑃M{L𝑀M/𝑥}
(2) If Ψ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎 and Ψ ⊢ 𝑁 : 𝜏 then L𝑀{𝑁 /𝑥}M =𝛼 L𝑀M{L𝑁 M/𝑥}

Proof. By induction on the structure of the given process and term with free variable 𝑥 . □

Mirroring the development of Section 3.2, we make use of extended reduction ↦→ for processes

and full 𝛽-reduction→𝛽 for _-terms (see Appendix A.3.2 for proofs of Theorems 5.7 and 5.8).

Theorem 5.7 (Operational Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+

𝛽
𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Theorem 5.8 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M.
Relating the Two Encodings. We prove the two encodings are mutually inverse and preserve

the full abstraction properties (we write =𝛽 and =𝛽[for 𝛽- and 𝛽[-equivalence, respectively).

Theorem 5.9 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M.

Proof. We prove the two statements separately in Appendix A.3.3 (Theorems A.3 and A.4,

respectively). □

The equivalences above are formulated between the composition of the encodings applied to 𝑃

(resp.𝑀) and the process (resp. _-term) after applying the translation embedding the non-linear

components into their linear counterparts. This formulation matches more closely that of § 3.3,

which applies to linear calculi for which the target languages of this section are a strict subset

(and avoids the formalisation of process equivalence with terms). We also note that in this setting,

observational equivalence and 𝛽[-equivalence coincide [5, 45]. Moreover, the extensional flavour

of ≈L includes [-like principles at the process level.

Lemma 5.10. Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑉 : 𝜏 with 𝑉 ̸→. J𝑀K𝑧 ≈L J𝑉 K𝑧 iff L𝑀M→∗𝛽[L𝑉 M

Theorem 5.11 (Full Abstraction).

Let:
(a) · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 ;
(b) · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴.

We have that L𝑀M =𝛽[L𝑁 M iff J𝑀K𝑧 ≈L J𝑁 K𝑧 and J𝑃K ≈L J𝑄K iff L𝑃M =𝛽[L𝑄M.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Bernardo Toninho and Nobuko Yoshida

Proof. Following the development of previous sections, we prove the two statements separately

in Theorems A.5 and A.6, respectively, in Appendix A.3.3. The proof of Theorem A.5 relies on

Lemma 5.10. □

We establish full abstraction for the encoding of _-terms into processes (Theorem 5.11 (1)) in two

steps: The completeness direction (i.e. from left-to-right) follows from operational completeness

and strong normalisation of the _-calculus. The soundness direction uses operational soundness.

The proof of Theorem 5.11(2) uses the same strategy of Theorem 3.16, appealing to the inverse

theorems.

5.2 Higher-Order Session Processes – Sess𝜋_+

We extend the value-passing framework of the previous section, accounting for process-passing

(i.e. the higher-order) in a session-typed setting. As shown in previous work [71], we achieve this

by adding to the data layer a contextual monad that encapsulates (open) session-typed processes

as data values, with a corresponding elimination form in the process layer. We dub this calculus

Sess𝜋_+.

𝑃,𝑄 ::= · · · | 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄 𝑀.𝑁 ::= · · · | {𝑥 ← 𝑃 ← 𝑦𝑖 :𝐴𝑖 }
𝜏, 𝜎 ::= · · · | {𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴}

The type {𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴} is the type of a term which encapsulates an open process that uses the linear

channels 𝑥 𝑗 :𝐴 𝑗 and offers 𝐴 along channel 𝑧. This formulation has the added benefit of formalising

the integration of session-typed processes in a functional language and forms the basis for the

concurrent programming language SILL [53, 71]. The typing rules for the new constructs are (for

simplicity we assume no shared channels in process monads):

Ψ; ·;𝑥𝑖 :𝐴𝑖 ⊢ 𝑃 :: 𝑧:𝐴

Ψ ⊢ {𝑧 ← 𝑃 ← 𝑥𝑖 :𝐴𝑖 } : {𝑥𝑖 :𝐴𝑖 ⊢ 𝑧:𝐴}
{}𝐼

Ψ ⊢ 𝑀 : {𝑥𝑖 :𝐴𝑖 ⊢ 𝑥 :𝐴} Δ1 = 𝑦𝑖 :𝐴𝑖 Ψ; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ψ; Γ;Δ1,Δ2 ⊢ 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄 :: 𝑧:𝐶
{}𝐸

Rule {}𝐼 embeds processes in the term language by essentially quoting an open process that

is well-typed according to the type specification in the monadic type. Dually, rule {}𝐸 allows

for processes to use monadic values through composition that consumes some of the ambient

channels in order to provide the monadic term with the necessary context (according to its type).

These constructs are discussed in substantial detail in [71]. The reduction semantics of the process

construct is given by (we tacitly assume that the names 𝑦 and 𝑐 do not occur in 𝑃 and omit the

congruence case):

(𝑐 ← {𝑧 ← 𝑃 ← 𝑥𝑖 :𝐴𝑖 } ← 𝑦𝑖 ;𝑄) → (a𝑐) (𝑃{𝑦/𝑥𝑖 {𝑐/𝑧}} | 𝑄)

The semantics allows for the underlying monadic term𝑀 to evaluate to a (quoted) process 𝑃 . The

process 𝑃 is then executed in parallel with the continuation 𝑄 , sharing the linear channel 𝑐 for

subsequent interactions. We illustrate the higher-order extension with following typed process (we

write {𝑥 ← 𝑃} when 𝑃 does not depend on any linear channels and assume ⊢ 𝑄 :: 𝑑 :Nat ∧ 1):

𝑃 ≜ (a𝑐) (𝑐 ⟨{𝑑 ← 𝑄}⟩.𝑐 (𝑥).0 | 𝑐 (𝑦).𝑑 ← 𝑦;𝑑 (𝑛).𝑐 ⟨𝑛⟩.0) (3)

Process 𝑃 above gives an abstract view of a communication idiom where a process (the left-hand

side of the parallel composition) sends another process 𝑄 which potentially encapsulates some

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

On Polymorphic Sessions and Functions 31

complex computation. The receiver then spawns the execution of the received process and inputs

from it a result value that is sent back to the original sender. An execution of 𝑃 is given by:

𝑃 → (a𝑐) (𝑐 (𝑥).0 | 𝑑 ← {𝑑 ← 𝑄};𝑑 (𝑛).𝑐 ⟨𝑛⟩.0) → (a𝑐) (𝑐 (𝑥).0 | (a𝑑) (𝑄 | 𝑑 (𝑛).𝑐 ⟨𝑛⟩.0))
→+ (a𝑐) (𝑐 (𝑥).0 | 𝑐 ⟨42⟩.0) → 0

Given the seminal work of Sangiorgi [65], such a representation naturally begs the question of

whether or not we can develop a typed encoding of higher-order processes into the first-order

setting. Indeed, we can achieve such an encoding with a fairly simple extension of the encoding of

§ 5 to Sess𝜋_+ by observing that monadic values are processes that need to be potentially provided

with extra sessions in order to be executed correctly. For instance, a term of type {𝑥 :𝐴 ⊢ 𝑦:𝐵}
denotes a process that given a session 𝑥 of type𝐴 will then offer 𝑦:𝐵. Exploiting this observation we

encode this type as the session 𝐴 ⊸ 𝐵, ensuring subsequent usages of such a term are consistent

with this interpretation.

J{𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴}K ≜ J𝐴 𝑗 K ⊸ J𝐴K

J{𝑥 ← 𝑃 ← 𝑦𝑖 }K𝑧 ≜ 𝑧 (𝑦0).𝑧 (𝑦𝑛) .J𝑃{𝑧/𝑥}K (𝑧 ∉ fn(𝑃))
J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K ≜ (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . .))

To encode the monadic type {𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴}, denoting the type of process 𝑃 that is typed by

𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑃 :: 𝑧:𝐴, we require that the session in the image of the translation specifies a sequence of

channel inputs with behaviours 𝐴 𝑗 that make up the linear context. After the contextual aspects of

the type are encoded, the session will then offer the (encoded) behaviour of 𝐴. Thus, the encoding

of the monadic type is J𝐴0K ⊸ . . . ⊸ J𝐴𝑛K ⊸ J𝐴K, which we write as J𝐴 𝑗 K ⊸ J𝐴K. The encoding
of monadic expressions adheres to this behaviour, first performing the necessary sequence of

inputs and then proceeding inductively. Finally, the encoding of the elimination form for monadic

expressions behaves dually, composing the encoding of the monadic expression with a sequence

of outputs that instantiate the consumed names accordingly (via forwarding). The encoding of

process 𝑃 from Equation 3 is thus:

J𝑃K = (a𝑐) (J𝑐 ⟨{𝑑 ← 𝑄}⟩.𝑐 (𝑥).0K | J𝑐 (𝑦).𝑑 ← 𝑦;𝑑 (𝑛).𝑐 ⟨𝑛⟩.0K)
= (a𝑐) (𝑐 ⟨𝑤⟩.(!𝑤 (𝑑).J𝑄K | 𝑐 (𝑥).0)𝑐 (𝑦).(a𝑑) (𝑦⟨𝑏⟩.[𝑏 ↔ 𝑑] | 𝑑 (𝑛).𝑐 ⟨𝑚⟩.(𝑛⟨𝑒⟩.[𝑒 ↔𝑚] | 0)))

Properties of the Encoding. As in our previous development, we can show that our encoding

for Sess𝜋_+ is type sound and satisfies operational correspondence (c.f. Appendix A.4.1).

Lemma 5.12 (Type Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 then JΨK; · ⊢ J𝑀K𝑧 :: 𝑧:J𝜏K
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JΨK, JΓK; JΔK ⊢ J𝑃K :: 𝑧:J𝐴K

Proof. By induction on the given typing derivation. □

Theorem 5.13 (Operational Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Theorem 5.14 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Bernardo Toninho and Nobuko Yoshida

Back to _-Terms. We encode Sess𝜋_+ into _-terms, extending § 5 with:

L{𝑥𝑖 :𝐴𝑖 ⊢ 𝑧:𝐴}M ≜ L𝐴𝑖M ⊸ L𝐴M
L𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄M ≜ L𝑄M{(L𝑀M𝑦𝑖)/𝑥} L{𝑥 ← 𝑃 ← 𝑤𝑖 }M ≜ _𝑤0._𝑤𝑛 .L𝑃M

The encoding translates the monadic type {𝑥𝑖 :𝐴𝑖 ⊢ 𝑧:𝐴} as a linear function L𝐴𝑖M ⊸ L𝐴M, which
captures the fact that the underlying value must be provided with terms satisfying the requirements

of the linear context. At the level of terms, the encoding for the monadic term constructor follows

its type specification, generating a nesting of _-abstractions that closes the term and proceeding

inductively. For the process encoding, we translate the monadic application construct analogously

to the translation of a linear cut, but applying the appropriate variables to the translated monadic

term (which is of function type). We remark the similarity between our encoding and that of the

previous section, where monadic terms are translated to a sequence of inputs (here a nesting of

_-abstractions). Our encoding satisfies type soundness and operational correspondence, as usual.

Lemma 5.15 (Type Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then LΨM, LΓM; LΔM ⊢ L𝑃M : L𝐴M
(2) If Ψ ⊢ 𝑀 : 𝜏 then LΨM; · ⊢ L𝑀M : L𝜏M

Proof. By induction on the give typing derivation. □

The proofs of operational soundness and completeness are given in Appendix A.4.2. As in the

corresponding encoding from Poly𝜋 to Linear-F, we use full 𝛽-reduction to make the results more

precise and without needing to appeal to extra-logical features such as a general let-binder.

Theorem 5.16 (Operational Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+𝛽 𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Theorem 5.17 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M

As before, we establish that the two encodings are mutually inverse and fully abstract (see

Appendix A.4.3).

Theorem 5.18 (Inverse Encodings). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. Also, if Ψ ⊢ 𝑀 : 𝜏

then LJ𝑀K𝑧M =𝛽 L𝑀M.

Theorem 5.19 (Full Abstraction – Terms). Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 . L𝑀M =𝛽[L𝑁 M iff
J𝑀K𝑧 ≈L J𝑁 K𝑧 .

Theorem 5.20 (Full Abstraction – Processes). Let · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴. J𝑃K ≈L J𝑄K iff
L𝑃M =𝛽[L𝑄M.

Further showcasing the applications of our development, we obtain a novel strong normalisation

result for this higher-order session-calculus “for free”, through encoding to the _-calculus.

To achieve this, we rely on a slight modification of the encoding from processes to _-terms by

considering the encoding of derivations ending with the copy rule as follows (we write L−M+ for
this revised encoding):

L(a𝑥)𝑢⟨𝑥⟩.𝑃M+ ≜ let 1 = ⟨⟩ in L𝑃M+{𝑢/𝑥}

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

On Polymorphic Sessions and Functions 33

All other cases of the encoding are as before. We now show that the revised encoding preserves all

the desirable properties of the previous sections and then show how we can use it to prove strong

normalisation.

It is immediate that the revised encoding preserves typing. The revised encoding allows us to

formulate a tighter version of operational completeness, where process moves are matched by one

or more 𝛽-reduction steps (as opposed to zero or more):

Theorem 5.21 (Operational Completeness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M+ →+𝛽
L𝑄M+

Proof. See Appendix A.5. □

We remark that with this revised encoding, operational soundness becomes:

Theorem 5.22 (Operational Soundness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M+ → 𝑀 then 𝑃 ↦→∗ 𝑄 such
that L𝑄M→∗ 𝑀 .

Proof. See Appendix A.5. □

The revised encoding remains mutually inverse with the J−K𝑧 encoding.

Theorem 5.23 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃M+K𝑧 ≈L J𝑃K

Having established the key properties of the encoding, we now show strong normalisation.

Theorem 5.24 (Strong Normalisation). Let Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴. There is no infinite reduction
sequence starting from 𝑃 .

Proof. The result follows from the operational completeness result above (Lemma 5.21), which

requires every process reduction to be matched with one or more reductions in the _-calculus. We

can thus prove our result via strong normalisation of→𝛽 : Assume an infinite reduction sequence

𝑃 → 𝑃 ′ → 𝑃 ′′ → . . . , by completeness this implies that there must exist an infinite sequence

L𝑃M→+𝛽 L𝑃 ′M→+𝛽 L𝑃 ′′M→+𝛽 . . . , deriving a contradiction. □

6 RELATEDWORK
Process Encodings of Functions. Toninho et al. [70] study encodings of the simply-typed

_-calculus in a logically motivated session 𝜋-calculus, via encodings to the linear _-calculus, as

a means to explicate various operational semantics. Our work differs since they do not study

polymorphism nor encodings of processes as functions. Moreover, we provide deeper insights

through our applications of the encodings. Full abstraction or inverse properties are not studied.

Sangiorgi [62] uses a fully abstract compilation from the higher-order 𝜋-calculus (HO𝜋) to the

𝜋-calculus to study full abstraction for Milner’s encodings of the _-calculus. The work shows that

Milner’s encoding of the lazy _-calculus can be recovered by restricting the semantic domain of

processes (the so-called restrictive approach) or by enriching the _-calculus with suitable constants.

This work was later refined in [64], which does not use HO𝜋 and considers an operational equiva-

lence on _-terms called open applicative bisimulationwhich coincides with Lévy-Longo tree equality.
The work [66] studies general conditions under which encodings of the _-calculus in the 𝜋-calculus

are fully abstract wrt Lévy-Longo and Böhm Trees, which are then applied to several encodings of

(call-by-name) _-calculus. The works above deal with untyped calculi, and so reverse encodings are

unfeasible. In a broader sense, our approach takes the restrictive approach using linear logic-based

session typing and the induced observational equivalence. We use a _-calculus with booleans as

observables and reason with a Morris-style equivalence instead of tree equalities. It would be an

interesting future work to apply the conditions in [66] in our typed setting.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Bernardo Toninho and Nobuko Yoshida

Recently, Balzer et al. [4] study the problem of encoding untyped asynchronous communication

in a session-typed 𝜋-calculus based on intuitionistic linear logic with manifest sharing by means of

a universal (recursive) session type, akin to that used to encode the untyped _-calculus in typed

_-calculus with recursive types. Their work considers properties of the encoding up-to contextual

closure but does not develop typed behavioral equivalences as we do, leaving open the problems of

full abstraction or completeness. Their work does not develop encodings to or from _-calculi. It

would be interesting to study notions of typed behavioural equivalences in settings with sharing

and recursive types and see the status of their encoding up-to behavioural equivalence. A natural

follow-up of their work would be to study what substructural _-calculus [54, Chapter 1] can

faithfully encode their session typed language.

Wadler [76] shows a correspondence between a linear functional language with session types

GV and a session-typed process calculus with polymorphism based on classical linear logic CP.

Along the lines of this work, Lindley and Morris [37], in an exploration of inductive and coinductive

session types through the addition of least and greatest fixed points to CP and GV, develop an

encoding from a linear _-calculus with session primitives (Concurrent `GV) to a pure linear _-

calculus (Functional `GV) via a CPS transformation. They also develop translations between `CP

and Concurrent `GV, extending [36]. Mapping to the terminology used in our work [25], their

encodings are shown to be operationally complete, but no results are shown for the operational

soundness directions and neither full abstraction nor inverse properties are studied. In addition,

their operational characterisations do not compose across encodings. For instance, while strong

normalisation of Functional `GV implies the same property for Concurrent `GV through their

operationally complete encoding, the encoding from `CP to `GV does not necessarily preserve

this property.

Types for 𝜋-calculi delineate sequential behaviours by restricting composition and name usages,

limiting the contexts in which processes can interact. Therefore typed equivalences offer a coarser
semantics than untyped semantics. Pierce and Sangiorgi [56] first observed semantic consequences

of typed equivalences, demonstrating that the observational congruence under the IO-subtyping

can prove correctness of the optimal version of Milner’s _-encoding. This was impossible in the

𝜋-calculus without controlling IO channel usages by types. After [56], many works on typed 𝜋-

calculi have investigated correctness of Milner’s encodings in order to examine powers of proposed

typing systems.

As an alternative approach, Berger et al. [7] study an affine typing system of the 𝜋-calculus and

examine its expressiveness, showing encodings of call-by-value/name PCFs to be fully abstract. This

work was extended to encode the _-calculus with sum and product types into linear causal types

[78]. Berger et al. [8] further study an encoding of System F in a polymorphic linear 𝜋-calculus,

showing it to be fully abstract. Their typing systems and proofs are much more complex due to

the fine-grained constraints from game semantics. Moreover, none of their work studies a reverse

encoding.

Orchard and Yoshida [47] develop embeddings to-and-from PCF with parallel effects and a

session-typed 𝜋-calculus, but only develop operational correspondence and semantic soundness

results, leaving the full abstraction problem open.

Polymorphism and Typed Behavioural Semantics. The work of [11] studies parametric

session polymorphism for the intuitionistic setting, developing a behavioural equivalence that

captures parametricity, which is used (denoted as ≈L) in our paper. Their work does not address

inductive or coinductive types, which we obtain for free by virtue of our mutually inverse encodings.

The work [56] introduces a typed bisimilarity for polymorphism in the 𝜋-calculus. Their bisimilarity

is of an intensional flavour, whereas the one used in our work follows the extensional style of

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

On Polymorphic Sessions and Functions 35

Reynolds [59]. Their typing discipline (originally from [75], which also develops type-preserving

encodings of polymorphic _-calculus into polymorphic 𝜋-calculus) differs significantly from the

linear logic-based session typing of our work (e.g. theirs does not ensure deadlock-freedom). A

key observation in their work is the coarser nature of typed equivalences with polymorphism (in

analogy to those for IO-subtyping [55]) and their interaction with channel aliasing, suggesting

a use of typed semantics and encodings of the 𝜋-calculus for fine-grained analyses of program

behaviour.

In the higher-order process setting, Sangiorgi [61] was the first to propose encodings of process-

passing as channel-passing. Higher-order session calculi and their encodings have been studied in

[35]. Termination for higher-order processes has been studied in [17, 18].

F-Algebras and Linear-F. The use of initial and final (co)algebras to give a semantics to induc-

tive and coinductive types dates back to Mendler [40], with their strong definability in System F

appearing in [2] and [27] (for the parametric PER model of System F in the former and classes

of models in the latter). The definability of inductive and coinductive types using parametricity

also appears in [58] in the context of a logic for parametric polymorphism and later in [10] in a

linear variant of such a logic. The work of [79] studies parametricity for the polymorphic linear

_-calculus of this work, developing encodings of a few inductive types but not the initial (or final)

algebraic encodings in their full generality. Inductive and coinductive session types in a logical

process setting appear in [72] and [37]. Both works consider a calculus with built-in recursion – the

former in an intuitionistic setting where a process that offers a (co)inductive protocol is composed

with another that consumes the (co)inductive protocol and the latter in a classical framework where

composed recursive session types are dual each other.

Recently, Toninho and Yoshida [74] developed a direct encoding of inductive and coinductive

session types in the polymorphic session calculus, justified using the theory of initial algebras and

final co-algebras in a processes-as-morphisms viewpoint. Their work is an alternative formulation

of the development of § 4, where instead of deriving inductive and coinductive session types and

their associated combinators from encodings from System F, inductive and coinductive sessions are

constructed directly in the process language using an algebraic approach, with the construction

being validated through semantic reasoning.

Encoding-Based Programming Language Implementations of Session Types. Encodings
of session types or session 𝜋-calculi have been used to implement session primitives in mainstream

programming languages. See a recent survey in Haskell [46].

In the area of linear logic-based session calculi, we highlight the work [70], which employs

Girard’s original encodings of intuitionistic logic in linear logic to study evaluation strategies in

the _-calculus, giving a logically motivated account of futures. We also highlight the encodings

of Lindley and Morris [36] between a functional language with session primitives (Wadler’s GV)

and a process algebra with sessions, effectively providing a semantics to Wadler’s GV through

the encoding. This, combined with the subsequent encodings of fixed-points [37], can be seen as

the semantic foundation for the works extending the web-based programming language Links

with session types [19, 20, 38]. We further note the addition of session-based concurrency to the

language C0 [69, 77], drawing upon the semantic foundation provided by the encodings for the

intuitionistic setting [70, 73].

In a wider context of session types, Scalas and Yoshida [68] use an encoding of the binary session

calculus into the linear 𝜋-calculus [16] to implement binary session types in Scala. This work is

extended by Scalas et al. [67] to implement multiparty session types in Scala based on the encoding

of the multiparty session 𝜋-calculus into the linear 𝜋-calculus. The encoding of binary session types

in an effect system is used to design a session-typed library in Haskell [47]. In OCaml, Padovani

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Bernardo Toninho and Nobuko Yoshida

[48] implements context free session types providing two kinds of encodings from context free

session types into functional data structures. A different approach is taken in the work of Imai

et al. [34] where session types are encoded leveraging parametric polymorphism in OCaml to

statically ensure linear usage of channels. Extending this approach, Imai et al. [32] propose a library

for global combinators, which are a set of functions for writing and verifying multiparty protocols

in OCaml. By encoding a set of local types to a data structure called a channel vector, local types
are automatically inferred from a global combinator, statically providing linear channel usage in

end-point processes.

7 CONCLUSION AND FUTUREWORK
This work answers the question of what kind of type discipline of the 𝜋-calculus can exactly capture

and is captured by _-calculus behaviours, dating back to Milner [42] who asks “how to exactlymatch

the behavioural semantics induced upon the encodings of the _-calculus with that of the _-calculus”.

Our answer is given by showing the first mutually inverse and fully abstract encodings between two

calculi with polymorphism, one being the Poly𝜋 session calculus based on intuitionistic linear logic,

and the other (a linear) System F. This further demonstrates that the original linear logic-based

articulation of sessions [12] (and subsequent studies e.g. [11, 13, 36, 50, 71, 72, 76]) provides a clear

and applicable tool for a wide range of session-based interactions. By exploiting the proof theoretic

equivalences between natural deduction and sequent calculus we develop mutually inverse and

fully abstract encodings, which naturally extend to more intricate settings such as process passing

(in the sense of HO𝜋). Our encodings also enable us to derive properties of the 𝜋-calculi “for

free”. Specifically, we show how to obtain adequate representations of least and greatest fixed

points in Poly𝜋 through the encoding of initial and final (co)algebras in the _-calculus. We also

straightforwardly derive a strong normalisation result for the higher-order session calculus, which

otherwise involves non-trivial proof techniques [8, 11, 17, 18, 50]. Future work includes extensions

to the classical linear logic-based framework, including multiparty session types [14, 15].

Our work thus shows that the session-based interpretation of linear logic is fully compatible with

the standard semantics of (typed) lambda-calculus, allowing us to uniformly represent value passing

and even higher-order process passing. Such results can be seen has both positive and negative: on

one hand, session types in this logically-grounded sense can be seen to be fundamentally not about

non-determinism (in the sense of non-confluent computation) but rather about the well-structuring

of confluent interactive programs, as made clear by full abstraction; on the other hand, our results

show that a functional language with session types based on the session interpretation of linear

logic, e.g. SILL [53, 71]) can include higher-order processes either as primitive or through encoding,

and remain semantically well-behaved.

Following the line of work on shallow embeddings of session types [32–34, 46, 48, 67, 68], we

plan to develop encoding-based implementations of this work as embedded DSLs. This would

potentially enable an exploration of algebraic constructs beyond initial and final co-algebras in a

session programming setting. Exploring a processes-as-morphisms viewpoint, recent work [74]

investigates a direct encodinging of inductive and coinductive session types, justified via the theory

of initial algebras and final co-algebras. The correctness of the encoding (i.e. universality) relies

crucially on parametricity and the associated relational lifting of sessions. We plan to further study

the meaning of functors, natural transformations and related constructions [9] in a session-typed

setting, both from a more fundamental viewpoint but also in terms of programming patterns.

Acknowledgements. We thank TOPLAS reviewers for their helpful comments and suggestions.

We thank Domenico Ruoppolo for his detailed comments on the first version of this article; and

Uwe Nestmann and Kristin Peters for their suggestions for the literature of expressiveness. The

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

On Polymorphic Sessions and Functions 37

work is supported by NOVA LINCS (UIDB/04516/2020), EPSRC EP/N028201/1, EP/K034413/1,

EP/K011715/1, EP/L00058X/1, EP/N027833/1, EP/T006544/1, EP/T014709/1 and EP/V000462/1, and

EPSRC/NCSC/GCHQ VeTSS.

REFERENCES
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J.

Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio

Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral

Types in Programming Languages. Foundations and Trends in Programming Languages 3, 2-3 (2016), 95–230. https:

//doi.org/10.1561/2500000031

[2] E. S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. 1990. Functorial Polymorphism. Theor. Comput. Sci.
70, 1 (1990), 35–64. https://doi.org/10.1016/0304-3975(90)90151-7

[3] Stephanie Balzer and Frank Pfenning. 2017. Manifest sharing with session types. PACMPL 1, ICFP (2017), 37:1–37:29.

https://doi.org/10.1145/3110281

[4] Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. 2018. A Universal Session Type for Untyped Asynchronous

Communication. In 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing,
China. 30:1–30:18. https://doi.org/10.4230/LIPIcs.CONCUR.2018.30

[5] Andrew Barber. 1996. Dual Intuitionistic Linear Logic. Technical Report ECS-LFCS-96-347. School of Informatics,

University of Edinburgh.

[6] P. N. Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In Computer
Science Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers. 121–135.
https://doi.org/10.1007/BFb0022251

[7] Martin Berger, Kohei Honda, and Nobuko Yoshida. 2001. Sequentiality and the 𝜋-Calculus. In Proc. TLCA’01 (LNCS),
Vol. 2044. 29–45.

[8] Martin Berger, Kohei Honda, and Nobuko Yoshida. 2005. Genericity and the pi-calculus. Acta Inf. 42, 2-3 (2005), 83–141.
https://doi.org/10.1007/s00236-005-0175-1

[9] Richard Bird and Oege De Moor. 1997. The Algebra of Programming. Prentice Hall.
[10] Lars Birkedal, Rasmus Ejlers Møgelberg, and Rasmus Lerchedahl Petersen. 2006. Linear Abadi and Plotkin Logic.

Logical Methods in Computer Science 2, 5 (2006). https://doi.org/10.2168/LMCS-2(5:2)2006

[11] Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral Polymorphism and Parametricity

in Session-Based Communication. In Programming Languages and Systems - 22nd European Symposium on Programming,
ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings. 330–349. https://doi.org/10.1007/978-3-642-37036-6_19

[12] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. InCONCUR 2010 - Concurrency
Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings (Lecture
Notes in Computer Science), Paul Gastin and François Laroussinie (Eds.), Vol. 6269. Springer, 222–236. https://doi.org/

10.1007/978-3-642-15375-4_16

[13] Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear logic propositions as session types. Mathematical
Structures in Computer Science 26, 3 (2016), 367–423.

[14] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence Generalises

Duality: A Logical Explanation of Multiparty Session Types. In 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23-26, 2016, Québec City, Canada. 33:1–33:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

[15] Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2015. Multiparty Session Types as

Coherence Proofs. In 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4,
2015. 412–426. https://doi.org/10.4230/LIPIcs.CONCUR.2015.412

[16] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session Types Revisited. In PPDP ’12: Proceedings
of the 14th Symposium on Principles and Practice of Declarative Programming. ACM, New York, NY, USA, 139–150.

https://doi.org/10.1145/2370776.2370794

[17] Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi. 2009. Mobile Processes and Termination. In Semantics
and Algebraic Specification. 250–273.

[18] Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi. 2010. Termination in higher-order concurrent calculi.

J. Log. Algebr. Program. 79, 7 (2010), 550–577.
[19] Simon Fowler. 2020. Model-View-Update-Communicate: Session Types Meet the Elm Architecture. In 34th European

Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual Conference)
(LIPIcs), Robert Hirschfeld and Tobias Pape (Eds.), Vol. 166. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

14:1–14:28. https://doi.org/10.4230/LIPIcs.ECOOP.2020.14

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1016/0304-3975(90)90151-7
https://doi.org/10.1145/3110281
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/s00236-005-0175-1
https://doi.org/10.2168/LMCS-2(5:2)2006
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.412
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.4230/LIPIcs.ECOOP.2020.14

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Bernardo Toninho and Nobuko Yoshida

[20] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional asynchronous session types: session

types without tiers. Proc. ACM Program. Lang. 3, POPL (2019), 28:1–28:29. https://doi.org/10.1145/3290341

[21] Simon Gay and Antonio Ravara (Eds.). 2017. Behavioural Types: from Theory to Tools. River Publishers.
[22] Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39 (1935), 176–210.
[23] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102. https://doi.org/10.1016/0304-3975(87)90045-4
[24] Jean-Yves Girard, Yves Lafont, and Paul Taylor. 1989. Proofs and Types. Cambridge University Press.

[25] Daniele Gorla. 2010. Towards a unified approach to encodability and separation results for process calculi. Inf. Comput.
208, 9 (2010), 1031–1053.

[26] Daniele Gorla and Uwe Nestmann. 2016. Full abstraction for expressiveness: history, myths and facts. Mathematical
Structures in Computer Science 26, 4 (2016), 639–654.

[27] Ryu Hasegawa. 1994. Categorical Data Types in Parametric Polymorphism. Mathematical Structures in Computer
Science 4, 1 (1994), 71–109. https://doi.org/10.1017/S0960129500000372

[28] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings. 509–523. https://doi.org/10.1007/3-540-57208-2_35

[29] Kohei Honda. 2012. Session Types and Distributed Computing. In Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II. 23. https://doi.org/10.1007/978-

3-642-31585-5_4

[30] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In Programming Languages and Systems - ESOP’98, 7th European
Symposium on Programming, Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. 122–138. https://doi.org/10.1007/BFb0053567

[31] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008. 273–284. https://doi.org/10.1145/1328438.1328472

[32] Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. 2020. Multiparty Session Programming with Global

Protocol Combinators. In 34th European Conference on Object-Oriented Programming. 9:1–9:30. https://doi.org/10.4230/

LIPIcs.ECOOP.2020.9

[33] Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2017. Session-ocaml: A Session-Based Library with Polarities and Lenses.

In Coordination Models and Languages - 19th IFIP WG 6.1 International Conference, COORDINATION 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland,
June 19-22, 2017, Proceedings. 99–118. https://doi.org/10.1007/978-3-319-59746-1_6

[34] Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-Ocaml: a Session-based Library with Polarities and Lenses.

scico (2019), 1–50.
[35] Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. 2016. On the Relative Expressiveness of Higher-Order Session

Processes. In Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. 446–475. https://doi.org/10.1007/978-3-662-49498-1_18

[36] Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 560–584. https://doi.org/10.1007/978-

3-662-46669-8_23

[37] Sam Lindley and J. Garrett Morris. 2016. Talking bananas: structural recursion for session types. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016.
434–447. https://doi.org/10.1145/2951913.2951921

[38] Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types. In Behavioural Types: from Theory to
Tools. River Publishers.

[39] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. 1999. Call-by-name, Call-by-value, Call-by-need and

the Linear lambda Calculus. Theor. Comput. Sci. 228, 1-2 (1999), 175–210. https://doi.org/10.1016/S0304-3975(98)00358-2
[40] N. P. Mendler. 1987. Recursive Types and Type Constraints in Second-Order Lambda Calculus. In Proceedings of the

Symposium on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22-25, 1987. 30–36.
[41] Robin Miler. 2001. Speech on receiving an Honorary Degree from the University of Bologna. www.cs.unibo.it/icalp/

Lauree_milner.html.

[42] Robin Milner. 1992. Functions as Processes. Mathematical Structures in Computer Science 2, 2 (1992), 119–141.

https://doi.org/10.1017/S0960129500001407

[43] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I and II. Inf. Comput. 100, 1
(1992), 1–77.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1145/3290341
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129500000372
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-31585-5_4
https://doi.org/10.1007/978-3-642-31585-5_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1007/978-3-319-59746-1_6
https://doi.org/10.1007/978-3-662-49498-1_18
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1016/S0304-3975(98)00358-2
www.cs.unibo.it/icalp/Lauree_milner.html
www.cs.unibo.it/icalp/Lauree_milner.html
https://doi.org/10.1017/S0960129500001407

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

On Polymorphic Sessions and Functions 39

[44] Uwe Nestmann and Benjamin C. Pierce. 2000. Decoding Choice Encodings. Information and Computation 163, 1 (2000),

1 – 59. https://doi.org/10.1006/inco.2000.2868

[45] Yo Ohta and Masahito Hasegawa. 2006. A Terminating and Confluent Linear Lambda Calculus. In Term Rewriting
and Applications, 17th International Conference, RTA 2006, Seattle, WA, USA, August 12-14, 2006, Proceedings. 166–180.
https://doi.org/10.1007/11805618_13

[46] Dominic Orchard and Nobuko Yoshida. 2017. Session types with linearity in Haskell. In Behavioural Types: from
Theory to Tools. River Publishers.

[47] Dominic A. Orchard and Nobuko Yoshida. 2016. Effects as sessions, sessions as effects. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. 568–581. https://doi.org/10.1145/2837614.2837634

[48] Luca Padovani. 2017. Context-Free Session Type Inference. In Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. 804–830. https://doi.org/10.1007/978-3-662-54434-1_30

[49] Joachim Parrow. 2008. Expressiveness of Process Algebras. Electronic Notes in Theoretical Computer Science 209 (2008),
173 – 186. https://doi.org/10.1016/j.entcs.2008.04.011 Proceedings of the LIX Colloquium on Emerging Trends in

Concurrency Theory (LIX 2006).

[50] Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2012. Linear Logical Relations for Session-Based

Concurrency. In Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings. 539–558. https://doi.org/10.1007/978-3-642-28869-2_27

[51] Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear logical relations and observational

equivalences for session-based concurrency. Inf. Comput. 239 (2014), 254–302. https://doi.org/10.1016/j.ic.2014.08.001

[52] Kirstin Peters. 2019. Comparing Process Calculi Using Encodings. In Proceedings Combined 26th International Workshop
on Expressiveness in Concurrency and 16th Workshop on Structural Operational Semantics, EXPRESS/SOS 2019, Amsterdam,
The Netherlands, 26th August 2019 (EPTCS), Jorge A. Pérez and Jurriaan Rot (Eds.), Vol. 300. 19–38. https://doi.org/10.

4204/EPTCS.300.2

[53] Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In Foundations of Software Science and
Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 3–22. https://doi.org/10.1007/978-
3-662-46678-0_1

[54] Benjamin C. Pierce. 2004. Advanced Topics in Types and Programming Languages. The MIT Press.

[55] Benjamin C. Pierce and Davide Sangiorgi. 1996. Typing and Subtyping for Mobile Processes. Mathematical Structures
in Computer Science 6, 5 (1996), 409–453.

[56] Benjamin C. Pierce and Davide Sangiorgi. 2000. Behavioral equivalence in the polymorphic pi-calculus. J. ACM 47, 3

(2000), 531–584. https://doi.org/10.1145/337244.337261

[57] Benhamin C. Pierce and David N. Turner. 1990. Pict Programming Language homepage. https://www.cis.upenn.edu/

~bcpierce/papers/pict/Html/Pict.html.

[58] Gordon D. Plotkin and Martín Abadi. 1993. A Logic for Parametric Polymorphism. In Typed Lambda Calculi and
Applications, International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands,
March 16-18, 1993, Proceedings. 361–375. https://doi.org/10.1007/BFb0037118

[59] John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of
the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983. 513–523.

[60] John C. Reynolds and Gordon D. Plotkin. 1993. On Functors Expressible in the Polymorphic Typed Lambda Calculus.

Inf. Comput. 105, 1 (1993), 1–29. https://doi.org/10.1006/inco.1993.1037

[61] Davide Sangiorgi. 1993. From pi-Calculus to Higher-Order pi-Calculus - and Back. In TAPSOFT’93: Theory and Practice of
Software Development, International Joint Conference CAAP/FASE, Orsay, France, April 13-17, 1993, Proceedings. 151–166.
https://doi.org/10.1007/3-540-56610-4_62

[62] Davide Sangiorgi. 1993. An Investigation into Functions as Processes. In Mathematical Foundations of Programming
Semantics, 9th International Conference, New Orleans, LA, USA, April 7-10, 1993, Proceedings. 143–159. https://doi.org/

10.1007/3-540-58027-1_7

[63] Davide Sangiorgi. 1996. Pi-Calculus, Internal Mobility, and Agent-Passing Calculi. Theor. Comput. Sci. 167, 1&2 (1996),
235–274.

[64] Davide Sangiorgi. 2000. Lazy functions and mobile processes. In Proof, Language, and Interaction, Essays in Honour of
Robin Milner. 691–720.

[65] Davide Sangiorgi and David Walker. 2001. The Pi-Calculus - a theory of mobile processes. Cambridge University Press.

[66] Davide Sangiorgi and Xian Xu. 2014. Trees from Functions as Processes. In CONCUR 2014 - Concurrency Theory - 25th
International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings. 78–92. https://doi.org/10.1007/978-

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1006/inco.2000.2868
https://doi.org/10.1007/11805618_13
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1007/978-3-662-54434-1_30
https://doi.org/10.1016/j.entcs.2008.04.011
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.4204/EPTCS.300.2
https://doi.org/10.4204/EPTCS.300.2
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1145/337244.337261
https://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html
https://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html
https://doi.org/10.1007/BFb0037118
https://doi.org/10.1006/inco.1993.1037
https://doi.org/10.1007/3-540-56610-4_62
https://doi.org/10.1007/3-540-58027-1_7
https://doi.org/10.1007/3-540-58027-1_7
https://doi.org/10.1007/978-3-662-44584-6_7
https://doi.org/10.1007/978-3-662-44584-6_7

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Bernardo Toninho and Nobuko Yoshida

3-662-44584-6_7

[67] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty

Sessions for Safe Distributed Programming. In 31st European Conference on Object-Oriented Programming, ECOOP 2017,
June 19-23, 2017, Barcelona, Spain. 24:1–24:31. https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

[68] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In 30th European Conference on
Object-Oriented Programming (LIPIcs). Dagstuhl, 21:1–21:28. https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

[69] Miguel Silva, Mário Florido, and Frank Pfenning. 2016. Non-Blocking Concurrent Imperative Programming with

Session Types. In Proceedings Fourth International Workshop on Linearity, LINEARITY 2016, Porto, Portugal, 25 June 2016
(EPTCS), Iliano Cervesato and Maribel Fernández (Eds.), Vol. 238. 64–72. https://doi.org/10.4204/EPTCS.238.7

[70] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2012. Functions as Session-Typed Processes. In Foundations
of Software Science and Computational Structures - 15th International Conference, FOSSACS 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings. 346–360. https://doi.org/10.1007/978-3-642-28729-9_23

[71] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings. 350–369. https://doi.org/10.1007/978-3-642-37036-6_20

[72] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2014. Corecursion and Non-divergence in Session-Typed Processes.

In Trustworthy Global Computing - 9th International Symposium, TGC 2014, Rome, Italy, September 5-6, 2014. Revised
Selected Papers. 159–175. https://doi.org/10.1007/978-3-662-45917-1_11

[73] Bernardo Toninho and Nobuko Yoshida. 2018. On Polymorphic Sessions and Functions - A Tale of Two (Fully Abstract)

Encodings. In Programming Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings. 827–855. https://doi.org/10.1007/978-3-319-89884-1_29

[74] Bernardo Toninho and Nobuko Yoshida. 2019. Polymorphic Session Processes as Morphisms. In The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and Privacy - Essays Dedicated to Catuscia
Palamidessi on the Occasion of Her 60th Birthday. 101–117. https://doi.org/10.1007/978-3-030-31175-9_7

[75] David Turner. 1996. The Polymorphic Pi-Calculus: Theory and Implementation. Technical Report ECS-LFCS-96-345.
School of Informatics, University of Edinburgh.

[76] Philip Wadler. 2014. Propositions as sessions. J. Funct. Program. 24, 2-3 (2014), 384–418.
[77] Max Willsey, Rokhini Prabhu, and Frank Pfenning. 2016. Design and Implementation of Concurrent C0. In Proceedings

Fourth International Workshop on Linearity, LINEARITY 2016, Porto, Portugal, 25 June 2016 (EPTCS), Iliano Cervesato

and Maribel Fernández (Eds.), Vol. 238. 73–82. https://doi.org/10.4204/EPTCS.238.8

[78] Nobuko Yoshida, Martin Berger, and Kohei Honda. 2004. Strong normalisation in the pi-calculus. Inf. Comput. 191, 2
(2004), 145–202.

[79] Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. 2010. Relational Parametricity for a Polymorphic Linear Lambda

Calculus. In Programming Languages and Systems - 8th Asian Symposium, APLAS 2010, Shanghai, China, November 28 -
December 1, 2010. Proceedings. 344–359. https://doi.org/10.1007/978-3-642-17164-2_24

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1007/978-3-662-44584-6_7
https://doi.org/10.1007/978-3-662-44584-6_7
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4204/EPTCS.238.7
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1007/978-3-030-31175-9_7
https://doi.org/10.4204/EPTCS.238.8
https://doi.org/10.1007/978-3-642-17164-2_24

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

On Polymorphic Sessions and Functions 41

A APPENDIX
A.1 Proofs for § 3.2 – Encoding from Poly𝜋 to Linear-F

Theorem 3.9 (Operational Completeness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴. If 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M.

Proof. Induction on typing and case analysis on the possibility of reduction.

Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃1 | 𝑃2) :: 𝑧:𝐶
where 𝑃1 → 𝑃 ′

1
or 𝑃2 → 𝑃 ′

2
.

L(a𝑥) (𝑃1 | 𝑃2)M = L𝑃2M{L𝑃1M/𝑥} by definition

Subcase: 𝑃1 → 𝑃 ′
1

(a𝑥) (𝑃1 | 𝑃2) → (a𝑥) (𝑃 ′1 | 𝑃2)
L𝑃1M→∗𝛽 L𝑃 ′

1
M by i.h.

L𝑃2M{L𝑃1M/𝑥} →∗𝛽 L𝑃2M{L𝑃 ′1M/𝑥} by definition

L(a𝑥) (𝑃 ′
1
| 𝑃2)M = L𝑃2M{L𝑃 ′1M/𝑥} by definition

Subcase: 𝑃2 → 𝑃 ′
2

(a𝑥) (𝑃1 | 𝑃2) → (a𝑥) (𝑃1 | 𝑃 ′2)
L𝑃2M→∗𝛽 L𝑃 ′

2
M by i.h.

L𝑃2M{L𝑃1M/𝑥} →∗𝛽 L𝑃 ′
2
M{L𝑃1M/𝑥} by definition

L(a𝑥) (𝑃1 | 𝑃 ′2)M = L𝑃 ′
2
M{L𝑃1M/𝑥} by definition

Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑥 (𝑦).𝑃1 :: 𝑥 :𝐴 ⊸ 𝐵 Ω; Γ;Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2) :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2)) :: 𝑧:𝐶
(a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2)) → (a𝑥) ((a𝑦) (𝑄1 | 𝑃1) | 𝑄2) by reduction

L(a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2))M = (L𝑄2M{(𝑥 L𝑄1M)/𝑥}){(_𝑦.L𝑃1M)/𝑥} by definition

(L𝑄2M{(𝑥 L𝑄1M)/𝑥}){(_𝑦.L𝑃1M)/𝑥} = L𝑄2M{((_𝑦.L𝑃1M) L𝑄1M)/𝑥}
L(a𝑥) ((a𝑦) (𝑄1 | 𝑃1) | 𝑄2)M = L𝑄2M{(L𝑃1M{L𝑄1M/𝑦})/𝑥} by definition

L𝑄2M{((_𝑦.L𝑃1M) L𝑄1M)/𝑥} →𝛽 L𝑄2M{(L𝑃1M{L𝑄1M/𝑦})/𝑥} redex

L(a𝑥) ((a𝑦) (𝑄1 | 𝑃1) | 𝑄2) →∗𝛽 L𝑄2M{(L𝑃1M{L𝑄1M/𝑦})/𝑥} by definition

Case:

(cut)
Ω; Γ;Δ1 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) :: 𝑥 :𝐴 ⊗ 𝐵 Ω; Γ;Δ2, 𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑦) .𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) ((a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) | 𝑥 (𝑦).𝑄1) :: 𝑧:𝐶
(a𝑥) ((a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) | 𝑥 (𝑦).𝑄1) → (a𝑥) (𝑃2 | (a𝑦) (𝑃1 | 𝑄1)) by reduction

L(a𝑥) ((a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) | 𝑥 (𝑦) .𝑄1)M = let𝑥 ⊗ 𝑦 = ⟨L𝑃2M ⊗ L𝑃1M⟩ in L𝑄1M
L(a𝑥) (𝑃2 | (a𝑦) (𝑃1 | 𝑄1))M = L𝑄1M{L𝑃2M/𝑥}{L𝑃1M/𝑦} by def.

let𝑥 ⊗ 𝑦 = ⟨L𝑃2M ⊗ L𝑃1M⟩ in L𝑄1M→ L𝑄1M{L𝑃2M/𝑥}{L𝑃1M/𝑦}

Case:

(cut!)
Ω; Γ; · ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ, 𝑢:𝐴;Δ ⊢ (a𝑥)𝑢⟨𝑥⟩.𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥)𝑢⟨𝑥⟩.𝑄1) :: 𝑧:𝐶
(a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥)𝑢⟨𝑥⟩.𝑄1) → (a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥) (𝑃1 | 𝑄1)) by reduction

L(a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥)𝑢⟨𝑥⟩.𝑄1)M = L𝑄1M{𝑢/𝑥}{L𝑃1M/𝑢}
= L𝑄1M{L𝑃1M/𝑥, L𝑃1M/𝑢} by def.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Bernardo Toninho and Nobuko Yoshida

L(a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥) (𝑃1 | 𝑄1))M = (L𝑄1M{L𝑃1M/𝑥}){L𝑃1M/𝑢}

Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑥 (𝑌).𝑃1 :: 𝑥 :∀𝑌 .𝐴 Ω; Γ;Δ2, 𝑥 :∀𝑌 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑥 (𝑌).𝑃1 | 𝑥 ⟨𝐵⟩.𝑄1) :: 𝑧:𝐶
(a𝑥) (𝑥 (𝑌).𝑃1 | 𝑥 ⟨𝐵⟩.𝑄1) → (a𝑥) (𝑃1{𝐵1/𝑌 } | 𝑄1) by reduction

L(a𝑥) (𝑥 (𝑌).𝑃1 | 𝑥 ⟨𝐵⟩.𝑄1)M = (L𝑄1M{𝑥 [𝐵]/𝑥}){(Λ𝑌 .L𝑃1M)/𝑥}
= L𝑄1M{(Λ𝑌 .L𝑃1M[𝐵])/𝑥} →𝛽 L𝑄1M{L𝑃1M{𝐵1/𝑌 }/𝑥} by definition

L(a𝑥) (𝑃1{𝐵1/𝑌 } | 𝑄1)M = L𝑄1M{L𝑃1M{𝐵1/𝑌 }/𝑥}
Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑥 ⟨𝐵⟩.𝑃1 :: 𝑥 :∃𝑌 .𝐴 Ω; Γ;Δ2, 𝑥 :∃𝑌 .𝐴 ⊢ 𝑥 (𝑌).𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑥 ⟨𝐵⟩.𝑃1 | 𝑥 (𝑌).𝑄1) :: 𝑧:𝐶
(a𝑥) (𝑥 ⟨𝐵⟩.𝑃1 | 𝑥 (𝑌).𝑄1) → (a𝑥) (𝑃1 | 𝑄1{𝐵/𝑌 }) by reduction

L(a𝑥) (𝑥 ⟨𝐵⟩.𝑃1 | 𝑥 (𝑌).𝑄1)M = let (𝑌, 𝑥) = pack𝐵with L𝑃1M in L𝑄1M by def.

(pack𝐵with L𝑃1ML𝑄1M→𝛽 L𝑄1M{L𝑃1M/𝑥, 𝐵/𝑌 }
L(a𝑥) (𝑃1 | 𝑄1{𝐵/𝑌 })M = L𝑄1M{𝐵/𝑌 }){L𝑃1M/𝑥}

□

Theorem 3.11 (Operational Soundness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M → 𝑀 , there exists 𝑄
such that 𝑃 ↦→∗ 𝑄 and L𝑄M =𝛼 𝑀 .

Proof. By induction on typing.

Case:

(⊸L)
Ω; Γ;Δ1 ⊢ 𝑃1 :: 𝑦:𝐴 Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) :: 𝑧:𝐶
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2)M = L𝑃2M{(𝑥 L𝑃1M)/𝑥} with L𝑃2M{(𝑥 L𝑃1M)/𝑥} = 𝑀 → 𝑀 ′

by assumption

Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃1M
L𝑃1M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M ≡𝛼 𝑀0 by i.h.

(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) ↦→∗ (a𝑦)𝑥 ⟨𝑦⟩.(𝑄0 | 𝑃2) by compatibility of ↦→
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑄0 | 𝑃2)M = L𝑃2M{(𝑥 L𝑄0M)/𝑥} = L𝑃2M{(𝑥 𝑀0)/𝑥}
Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃2M
L𝑃2M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃2 ↦→∗ 𝑄0 and L𝑄0M = 𝑀0 by i.h

(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) ↦→∗ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑄0) by compatibility of ↦→
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑄0)M = L𝑄0M{(𝑥 L𝑃1M)/𝑥} = 𝑀0{𝑥 L𝑃1M)/𝑥}

Case:

(copy)
Ω; Γ, 𝑢:𝐴;Δ, 𝑥 :𝐴 ⊢ 𝑃1 :: 𝑧:𝐶

Ω; Γ, 𝑢:𝐴;Δ ⊢ (a𝑥)𝑢⟨𝑥⟩.𝑃1 :: 𝑧:𝐶
L(a𝑥)𝑢⟨𝑥⟩.𝑃1M = L𝑃1M{𝑢/𝑥} = 𝑀 → 𝑀 ′ by assumption

L𝑃1M→ 𝑀0 by inversion on→
∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

(a𝑥)𝑢⟨𝑥⟩.𝑃1 ↦→∗ (a𝑥)𝑢⟨𝑥⟩.𝑄0 by compatibility

L(a𝑥)𝑢⟨𝑥⟩.𝑄0M = L𝑄0M{𝑢/𝑥} = 𝑀0{𝑢/𝑥}

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

On Polymorphic Sessions and Functions 43

Case:

(∀L)
Ω ⊢ 𝐵 type Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ 𝑃1 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑃1 :: 𝑧:𝐶
L𝑥 ⟨𝐵⟩.𝑃1M = L𝑃1M{𝑥 [𝐵]/𝑥} with L𝑃1M{𝑥 [𝐵]/𝑥} → 𝑀 by assumption

L𝑃1M→ 𝑀0 by inversion

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

𝑥 ⟨𝐵⟩.𝑃1 ↦→∗ 𝑥 ⟨𝐵⟩.𝑄0 by compatibility

L𝑥 ⟨𝐵⟩.𝑄0M = L𝑄0M{𝑥 [𝐵]/𝑥} = 𝑀0{𝑥 [𝐵]/𝑥}
Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃1 | 𝑃2) :: 𝑧:𝐶
L(a𝑥) (𝑃1 | 𝑃2)M = L𝑃2M{L𝑃1M/𝑥} with L𝑃2M{L𝑃1M/𝑥} = 𝑀 → 𝑀 ′ by assumption

Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃1M
L𝑃1M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

(a𝑥) (𝑃1 | 𝑃2) ↦→∗ (a𝑥) (𝑄0 | 𝑃2) by reduction

L(a𝑥) (𝑄0 | 𝑃2)M = L𝑃2M{L𝑄0M/𝑥} = L𝑃2M{𝑀0/𝑥}
Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃2M
L𝑃2M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃2 ↦→∗ 𝑄0 and L𝑄0M = 𝑀0 by i.h.

(a𝑥) (𝑃1 | 𝑃2) ↦→∗ (a𝑥) (𝑄0 | 𝑃2) by compatibility

L(a𝑥) (𝑃1 | 𝑄0)M = L𝑄0M{L𝑃1M/𝑥} = 𝑀0{L𝑃1M/𝑥}
Subcase:𝑀 → 𝑀 ′ where the redex arises due to the substitution of L𝑃1M for 𝑥
Subsubcase: Last rule of deriv. of 𝑃2 is a left rule on 𝑥 :

In all cases except !L, a top-level process reduction is exposed (viz. Theorem 3.9).

If last rule is !L, then either 𝑥 does not occur in 𝑃2 and we conclude by ↦→.

Subsubcase: Last rule of deriv. of 𝑃2 is not a left rule on 𝑥 :

For rule (id) we have a process reduction immediately. In all other cases either

there is no possible 𝛽-redex or we can conclude via compatibility of ↦→.

Case:

(cut!)
Ω; Γ; · ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ, 𝑢:𝐴;Δ ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑃2) :: 𝑧:𝐶
L(a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑃2)M = L𝑃2M{L𝑃1M/𝑢} with L𝑃2M{L𝑃1M/𝑢} → 𝑀 by assumption

Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃1M
L𝑃1M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

(a𝑢) (!𝑢 (𝑥) .𝑃1 | 𝑃2) ↦→∗ (a𝑢) (!𝑢 (𝑥).𝑄0 | 𝑃2) by compatibility

L(a𝑢) (!𝑢 (𝑥).𝑄0 | 𝑃2)M = L𝑃2M{L𝑄0M/𝑢} = L𝑃2M{𝑀0/𝑢}
Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃2M
L𝑃2M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃2 ↦→∗ 𝑄0 and L𝑄0M = 𝑀0 by i.h.

(a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑃2) ↦→∗ (a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑄0) by compatibility

L(a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑄0)M = L𝑄0M{L𝑃1M/𝑢} = 𝑀0{L𝑃1M/𝑢}
Subcase:𝑀 → 𝑀 ′ where the redex arises due to the substitution of L𝑃1M for 𝑢
If last rule in deriv. of 𝑃2 is copy then we have = terms in 0 process reductions.

Otherwise, the result follows by compatibility of ↦→.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Bernardo Toninho and Nobuko Yoshida

In all other cases the _-term in the image of the translation does not reduce.

□

A.2 Proofs for § 3.3 – Inversion and Full Abstraction
The proofs below rely on the fact that all commuting conversions of linear logic are sound observa-

tional equivalences in the sense of ≈L.

Theorem 3.12 (Inverse).

• If Ω; Γ;Δ ⊢ 𝑀 : 𝐴 then Ω; Γ;Δ ⊢ LJ𝑀K𝑧M � 𝑀 : 𝐴

• If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ JL𝑃MK𝑧 ≈L 𝑃 :: 𝑧:𝐴

We prove (1) and (2) above separately.

Theorem A.1. If Ω; Γ;Δ ⊢ 𝑀 : 𝐴 then Ω; Γ;Δ ⊢ LJ𝑀K𝑧M � 𝑀 : 𝐴

Proof. By induction on the given typing derivation.

Case: Linear variable
LJ𝑥K𝑧M = 𝑥 � 𝑥

Case: Unrestricted variable

J𝑢K𝑧 = (a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧] by def.

L(a𝑥) (𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧])M = 𝑢 � 𝑢

Case: _-abstraction
J_𝑥 .𝑀K𝑧 = 𝑧 (𝑥) .J𝑀K𝑧 by def.

L𝑧 (𝑥) .J𝑀K𝑧M = _𝑥.LJ𝑀K𝑧M � _𝑥.𝑀 by i.h. and congruence

Case: Application
J𝑀 𝑁 K𝑧 = (a𝑥) (J𝑀K𝑥 | (a𝑦)𝑥 ⟨𝑦⟩.(J𝑁 K𝑦 | [𝑥 ↔ 𝑧])) by def.

L(a𝑥) (J𝑀K𝑥 | (a𝑦)𝑥 ⟨𝑦⟩.(J𝑁 K𝑦 | [𝑥 ↔ 𝑧]))M = LJ𝑀K𝑥 M LJ𝑁 K𝑦M by def.

LJ𝑀K𝑥 M LJ𝑁 K𝑦M � 𝑀 𝑁 by i.h. and congruence

Case: Exponential
J!𝑀K𝑧 =!𝑧 (𝑥).J𝑀K𝑥 by def.

L!𝑧 (𝑥).J𝑀K𝑥 M =!LJ𝑀K𝑥 M � LJ!𝑀K𝑧M by def, i.h. and congruence

Case: Exponential elim.

Jlet !𝑢 = 𝑀 in𝑁 K𝑧 = (a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧{𝑥/𝑢}) by def.

L(a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧{𝑥/𝑢})M = let !𝑢 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M by def.

let !𝑢 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M � let !𝑢 = 𝑀 in𝑁 by congruence and i.h.

Case: Multiplicative Pairing

J⟨𝑀 ⊗ 𝑁 ⟩K𝑧 = (a𝑦)𝑧⟨𝑦⟩.(J𝑀K𝑦 | J𝑁 K𝑧) by def.

L(a𝑦)𝑧⟨𝑦⟩.(J𝑀K𝑦 | J𝑁 K𝑧)M = ⟨LJ𝑀K𝑦M ⊗ LJ𝑁 K𝑧M⟩ by def.

⟨LJ𝑀K𝑦M ⊗ LJ𝑁 K𝑧M⟩ � ⟨𝑀 ⊗ 𝑁 ⟩ by i.h. and congruence

Case: Mult. Pairing Elimination

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

On Polymorphic Sessions and Functions 45

Jlet𝑥 ⊗ 𝑦 = 𝑀 in𝑁 K𝑧 = (a𝑦) (J𝑀K𝑥 | 𝑥 (𝑦).J𝑁 K𝑧) by def.

L(a𝑦) (J𝑀K𝑥 | 𝑥 (𝑦).J𝑁 K𝑧)M = let𝑥 ⊗ 𝑦 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M by def.

let𝑥 ⊗ 𝑦 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M � let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 by i.h. and congruence

Case: Λ-abstraction
LJΛ𝑋 .𝑀K𝑧M = Λ𝑋 .LJ𝑀K𝑧M � Λ𝑋 .𝑀 by i.h. and congruence

Case: Type application
LJ𝑀 [𝐴]K𝑧M = LJ𝑀K𝑧M[𝐴] � 𝑀 [𝐴] by i.h. and congruence

Case: Existential Intro.
LJpack𝐴with𝑀K𝑧M = pack𝐴with LJ𝑀K𝑧M � pack𝐴with𝑀 by i.h. and congruence

Case: Existential Elim.

LJlet (𝑋,𝑦) = 𝑀 in𝑁 K𝑧M = let (𝑋,𝑦) = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M � let (𝑋,𝑦) = 𝑀 in𝑁
by i.h. and congruence

□

Theorem A.2. If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ JL𝑃MK𝑧 ≈L 𝑃 :: 𝑧:𝐴

Proof. By induction on the given typing derivation.

Case: (id) or any right rule

Immediate by definition in the case of (id) and by i.h. and congruence in all other cases.

Case: ⊸L
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄)M = L𝑄M{(𝑥 L𝑃M)/𝑥} by def.

JL𝑄M{(𝑥 L𝑃M))/𝑥}K𝑧 ≈L (a𝑎) (J(𝑥 L𝑃M)K𝑎 | JL𝑄MK𝑧{𝑎/𝑥}) by Lemma 3.4, with 𝑎 fresh

= (a𝑎) ((a𝑤) ([𝑥 ↔ 𝑤] | (a𝑦)𝑤 ⟨𝑦⟩.(JL𝑃MK𝑦 | [𝑤 ↔ 𝑎])) | JL𝑄MK𝑧{𝑎/𝑥}) by def.

→ (a𝑎) ((a𝑦)𝑥 ⟨𝑦⟩.(JL𝑃MK𝑦 | [𝑥 ↔ 𝑎]) | JL𝑄MK𝑧{𝑎/𝑥}) by reduction

≈L (a𝑦)𝑥 ⟨𝑦⟩.(JL𝑃MK𝑦 | JL𝑄MK𝑧) commuting conversion + reduction

≈L (a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄) by i.h. + congruence

Case: ⊗L
L𝑥 (𝑦).𝑃M = let𝑥 ⊗ 𝑦 = 𝑥 in L𝑃M by def.

Jlet𝑥 ⊗ 𝑦 = 𝑥 in L𝑃MK𝑧 = (a𝑤) ([𝑥 ↔ 𝑤] | 𝑤 (𝑦).JL𝑃MK𝑧) by def.

→ 𝑥 (𝑦).JL𝑃MK𝑧 ≈L 𝑥 (𝑦).𝑃 by i.h. and congruence

Case: !L
L𝑃{𝑥/𝑢}M = let !𝑢 = 𝑥 in L𝑃M by def.

Jlet !𝑢 = 𝑥 in L𝑃MK𝑧 = (a𝑤) ([𝑥 ↔ 𝑤] | JL𝑃MK𝑧{𝑤/𝑢}) by def.

→ JL𝑃MK𝑧{𝑥/𝑢} ≈L 𝑃{𝑥/𝑢} by i.h.

Case: copy
L(a𝑥)𝑢⟨𝑥⟩.𝑃M = L𝑃M{𝑢/𝑥} by def.

JL𝑃M{𝑢/𝑥}K𝑧 ≈L (a𝑥) (𝑢⟨𝑤⟩.[𝑤 ↔ 𝑥] | JL𝑃MK𝑧) by Lemma 3.4

≈L (a𝑥) (𝑢⟨𝑤⟩.[𝑤 ↔ 𝑥] | 𝑃) by i.h. and congruence

≈L (a𝑥)𝑢⟨𝑥⟩.𝑃 by definition of ≈L for open processes

(i.e. closing for 𝑢:𝐴 and observing that no actions on 𝑧 are blocked)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Bernardo Toninho and Nobuko Yoshida

Case: ∀L
L𝑥 ⟨𝐵⟩.𝑃M = L𝑃M{(𝑥 [𝐵])/𝑥} by def.

JL𝑃M{(𝑥 [𝐵])/𝑥}K𝑧 ≈L (a𝑎) (J𝑥 [𝐵]K𝑎 | JL𝑃MK𝑧{𝑎/𝑥}) by Lemma 3.4, with 𝑎 fresh

(a𝑎) ((a𝑤) ([𝑥 ↔ 𝑤] | 𝑤 ⟨𝐵⟩.[𝑤 ↔ 𝑎]) | JL𝑃MK𝑧{𝑎/𝑥}) by def.

→ (a𝑎) (𝑥 ⟨𝐵⟩.[𝑥 ↔ 𝑎] | JL𝑃MK𝑧{𝑎/𝑥})
≈L 𝑥 ⟨𝐵⟩.JL𝑃MK𝑧 commuting conversion + reduction

≈L 𝑥 ⟨𝐵⟩.𝑃 by i.h. + congruence

Case: ∃L
L𝑥 (𝑌).𝑃M = let (𝑌, 𝑥) = 𝑥 in L𝑃M by def.

Jlet (𝑌, 𝑥) = 𝑥 in L𝑃MK𝑧 = (a𝑦) ([𝑥 ↔ 𝑦] | 𝑦 (𝑌).JL𝑃MK𝑧) by def.

→ 𝑥 (𝑌).JL𝑃MK𝑧{𝑦/𝑥}) by reduction

≈L 𝑥 (𝑌).𝑃 by i.h. + congruence

Case: cut
L(a𝑥) (𝑃 | 𝑄)M = L𝑄M{L𝑃M/𝑥} by definition

JL𝑄M{L𝑃M/𝑥}K𝑧 ≈L (a𝑦) (JL𝑃MK𝑦 | JL𝑄MK𝑧{𝑦/𝑥}) by Lemma 3.4, with 𝑦 fresh

≡ (a𝑥) (𝑃 | 𝑄) by i.h. + congruence and ≡𝛼
Case: cut!

L((a𝑢) (!𝑢 (𝑥).𝑃 | 𝑄))M = L𝑄M{L𝑃M/𝑢} by definition

JL𝑄M{L𝑃M/𝑢}K𝑧 ≈L (a𝑢) (!𝑢 (𝑥).JL𝑃MK𝑥 | JL𝑄MK𝑧{𝑣/𝑢}) by Lemma 3.4

≈L (a𝑢) (!𝑢 (𝑥).𝑃 | 𝑄) by i.h. + congruence and ≡𝛼
□

A.3 Proofs for § 5 – Communicating Values
A.3.1 Proofs of Encoding from _ to Sess𝜋_.

Lemma 5.2 (Compositionality). Let Ψ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎 and Ψ ⊢ 𝑁 : 𝜏 . We have that J𝑀{𝑁 /𝑥}K𝑧 ≈L
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦)

Proof. By induction on the typing for𝑀 . We make use of the fact that ≈L includes ≡!.
Case: 𝑀 = 𝑦 with 𝑦 = 𝑥

J𝑀{𝑁 /𝑥}K𝑧 = J𝑁 K𝑧
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) (𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧] |!𝑥 (𝑦).J𝑁 K𝑦) by definition

→+ (a𝑥) (J𝑁 K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) by the reduction semantics

≈L J𝑁 K𝑧 by ≡!, since 𝑥 ∉ fn(J𝑁 K𝑧)
Case: 𝑀 = 𝑦 with 𝑦 ≠ 𝑥

J𝑀{𝑁 /𝑥}K𝑧 = J𝑦K𝑧 = 𝑦⟨𝑤⟩.[𝑤 ↔ 𝑧]
(a𝑥) (J𝑀K |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) (𝑦⟨𝑤⟩.[𝑤 ↔ 𝑧] |!𝑥 (𝑦).J𝑁 K𝑦) by definition

≈L 𝑦⟨𝑤⟩.[𝑤 ↔ 𝑧] by ≡!
Case: 𝑀 = 𝑀1𝑀2

J𝑀1𝑀2{𝑁 /𝑥}K𝑧 = J𝑀1{𝑁 /𝑥}𝑀2{𝑁 /𝑥}K𝑧 =
(a𝑦) (J𝑀1{𝑁 /𝑥}K𝑦 | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀2{𝑁 /𝑥}K𝑤 | [𝑦 ↔ 𝑧]) by definition

(a𝑥) (J𝑀1𝑀2K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) ((a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) |!𝑥 (𝑦).J𝑁 K𝑦))
by definition

J𝑀1{𝑁 /𝑥}K𝑦 ≈L (a𝑥) (J𝑀1K𝑦 |!𝑥 (𝑎).J𝑁 K𝑎) by i.h.

J𝑀2{𝑁 /𝑥}K𝑤 ≈L (a𝑥) (J𝑀2K𝑤 |!𝑥 (𝑎).J𝑁 K𝑎) by i.h.

J𝑀1𝑀2{𝑁 /𝑥}K𝑧 ≈L (a𝑦) ((a𝑥) (J𝑀1K𝑦 |!𝑥 (𝑎).J𝑁 K𝑎) | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀2{𝑁 /𝑥}K𝑤 | [𝑦 ↔ 𝑧]))

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

On Polymorphic Sessions and Functions 47

by congruence

≈L (a𝑦) ((a𝑥) (J𝑀1K𝑦 |!𝑥 (𝑎).J𝑁 K𝑎) | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).(a𝑥) (J𝑀2K𝑤 |!𝑥 (𝑎).J𝑁 K𝑎) | [𝑦 ↔ 𝑧]))
by congruence

≈L (a𝑥) (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀K𝑤 | [𝑦 ↔ 𝑧] |!𝑥 (𝑎).J𝑁 K𝑎)) by ≡!
Case: 𝑀 = _𝑦:𝜏0 .𝑀

′

J_𝑦:𝜏0.𝑀 ′{𝑁 /𝑥}K𝑧 = 𝑧 (𝑦).J𝑀 ′{𝑁 /𝑥}K𝑧
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) (𝑧 (𝑦).J𝑀 ′K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) by definition

J𝑀 ′{𝑁 /𝑥}K𝑧 ≈L (a𝑥) (J𝑀K𝑧 |!𝑥 (𝑤).J𝑁 K𝑤) by i.h.

J_𝑦:𝜏0.𝑀 ′{𝑁 /𝑥}K𝑧 ≈L 𝑧 (𝑦).(a𝑥) (J𝑀 ′K𝑧 |!𝑥 (𝑤).J𝑁 K𝑤) by congruence

≈L (a𝑥) (𝑧 (𝑦).J𝑀 ′K𝑧 |!𝑥 (𝑤).J𝑁 K𝑤) by commuting conversion

□

Theorem 5.3 (Operational Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Proof. By induction on the given derivation and case analysis on the reduction step.

Case: 𝑀 = 𝑀1𝑀2 with J𝑀1K𝑦 → 𝑅

J𝑀1𝑀2K𝑧 = (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by definition

→ (a𝑦) (𝑅 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤) .J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by reduction semantics

𝑀1 →+ 𝑀 ′1 with J𝑀 ′
1
K𝑦 ≈L 𝑅 by i.h.

𝑀1𝑀2 →+ 𝑀 ′1𝑀2 by the operational semantics

J𝑀 ′
1
𝑀2K𝑧 = (a𝑦) (J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by definition

≈L (a𝑦) (𝑅 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤) .J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by congruence

Case: 𝑀 = 𝑀1𝑀2 with (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) → (a𝑦, 𝑥) (𝑅 |!𝑥 (𝑤).J𝑀2K𝑤 |
[𝑦 ↔ 𝑧])
J𝑀1K𝑦 ≡ (a𝑎) (𝑦 (𝑥).𝑅1 | 𝑅2) by the reduction semantics, for some 𝑅1, 𝑅2 and 𝑎

Ψ ⊢ 𝑀1 : 𝜏0 → 𝜏1 by inversion

Subcase:𝑀1 = 𝑦, for some 𝑦 ∈ Ψ
Impossible reduction.

Subcase:𝑀1 = _𝑥 :𝜏0.𝑀
′
1

(_𝑥 :𝜏0 .𝑀 ′1)𝑀2 → 𝑀 ′
1
{𝑀2/𝑥} by operational semantics

J𝑀 ′
1
{𝑀2/𝑥}K𝑧 ≈L (a𝑥) (J𝑀 ′1K𝑧 |!𝑥 (𝑤).J𝑀2K𝑤) by Lemma 5.2

J(_𝑥 :𝜏0.𝑀 ′1)𝑀2K𝑧 = (a𝑦) (𝑦 (𝑥).J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by definition

𝑅 = J𝑀 ′
1
K𝑦 by inversion

(a𝑦, 𝑥) (𝑅 |!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) ≈L (a𝑥) (J𝑀 ′1K𝑧 |!𝑥 (𝑤).J𝑀2K𝑤) by reduction closure

Subcase:𝑀1 = 𝑁1 𝑁2, for some 𝑁1 and 𝑁2

J𝑁1 𝑁2K𝑦 = (a𝑎) (J𝑁1K𝑎 | 𝑎⟨𝑏⟩.(!𝑏 (𝑑).J𝑁2K𝑑 | [𝑎 ↔ 𝑦])) by definition

Impossible reduction.

Case: 𝑃 = (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑥 (𝑦).𝑃2)
J𝑃K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | 𝑥 (𝑦).J𝑃2K) by definition

J𝑃K→ (a𝑥,𝑦) (!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K | J𝑃2K) by reduction semantics

𝑃 → (a𝑥) (𝑃1 | 𝑃2{𝑀/𝑦}) by reduction semantics

J(a𝑥) (𝑃1 | 𝑃2{𝑀/𝑦})K ≈L (a𝑥,𝑦) (J𝑃1K | J𝑃2K |!𝑦 (𝑤).J𝑀K𝑤) by Lemma 5.2 and congruence

Case: 𝑃 = (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑃2)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Bernardo Toninho and Nobuko Yoshida

J𝑃K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | J𝑃2K) by definition

J𝑃K→ (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | 𝑅) assumption, with J𝑃2K→ 𝑅

𝑃2 →+ 𝑃 ′2 with J𝑃 ′
2
K ≈L 𝑅 by i.h.

𝑃 →+ (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑃 ′2) by reduction semantics

J(a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑃 ′2)K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | J𝑃 ′2K) by definition

≈L (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | 𝑅) by congruence

All other process reductions follow straightforwardly from the inductive hypothesis.

□

Theorem 5.4 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

Proof. We proceed by induction on the given derivation and case analysis on the reduction.

Case: 𝑀 = (_𝑥 :𝜏 .𝑀 ′) 𝑁 ′ with𝑀 → 𝑀 ′{𝑁 ′/𝑥}
J𝑀K𝑧 = (a𝑦) (J_𝑥 :𝜏 .𝑀 ′K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑁 ′K𝑤 | [𝑦 ↔ 𝑧]) =
(a𝑦) (𝑦 (𝑥).J𝑀 ′K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑁 ′K𝑤 | [𝑦 ↔ 𝑧]) by definition of J−K
→+ (a𝑥) (J𝑀 ′K𝑧 | !𝑥 (𝑤).J𝑁 ′K𝑤) by the reduction semantics

≈L J𝑀 ′{𝑁 ′/𝑥}K𝑧 by Lemma 5.2

Case: 𝑀 = 𝑀1𝑀2 with𝑀 → 𝑀 ′
1
𝑀2 by𝑀1 → 𝑀 ′

1

J𝑀1𝑀2K𝑧 = (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by definition

J𝑀 ′
1
𝑀2K𝑧 = (a𝑦) (J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by definition

J𝑀1K𝑦 =⇒ 𝑃 ′
1
such that 𝑃 ′

1
≈L J𝑀 ′

1
K𝑦 by i.h.

J𝑀1𝑀2K𝑧 =⇒ (a𝑦) (𝑃 ′1 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by reduction semantics

≈L (a𝑦) (J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by congruence

Case: 𝑃 = (a𝑥) (𝑥 ⟨𝑀⟩.𝑃 ′ | 𝑥 (𝑦).𝑄 ′) with 𝑃 → (a𝑥) (𝑃 ′ | 𝑄 ′{𝑀/𝑦})
J𝑃K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃 ′K) | 𝑥 (𝑦).J𝑄 ′K) by definition

J𝑃K→ (a𝑥,𝑦) (!𝑦 (𝑤) .J𝑀K𝑤 | J𝑃 ′K | J𝑄 ′K) by the reduction semantics

J(a𝑥) (𝑃 ′ | 𝑄 ′{𝑀/𝑦})K = (a𝑥) (J𝑃 ′K | J𝑄 ′{𝑀/𝑦}K) by definition

≈L (a𝑥,𝑦) (J𝑃 ′K | J𝑄 ′K |!𝑦 (𝑤).J𝑀K𝑤) by Lemma 5.2 and congruence

All remaining cases follow straightforwardly by induction.

□

A.3.2 Proofs of Encoding from Sess𝜋_to _.

Theorem 5.7 (Operational Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+

𝛽
𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Proof. We proceed by induction on the given reduction and case analysis on typing.

Case: L𝑃0M{(𝑥 !L𝑀0M)/𝑥} → 𝑀

L𝑃0M{(𝑥 !L𝑀0M)/𝑥} → 𝑀 ′{(𝑥 !L𝑀0M)/𝑥} by operational semantics

𝑃0 ↦→ 𝑃 ′
0
with 𝑃 ′

0
=𝛽 𝑀 ′ by i.h.

𝑥 ⟨𝑀0⟩.𝑃0 ↦→ 𝑥 ⟨𝑀0⟩.𝑃 ′0 by extended reduction

L𝑥 ⟨𝑀0⟩.𝑃 ′0M = L𝑃 ′
0
M{(𝑥 !L𝑀0M)/𝑥} by definition

=𝛼 𝑀 ′{(𝑥 !L𝑀0M)/𝑥} by congruence

The other cases are covered by our previous result for the reverse encoding of processes.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

On Polymorphic Sessions and Functions 49

Case: L𝑀0M !L𝑀1M→ 𝑀 ′
0
!L𝑀1M

L𝑀0M→ 𝑀 ′
0

by inversion

𝑀0 →+𝛽 𝑀 ′′
0
such that𝑀 ′

0
=𝛼 L𝑀 ′′

0
M by i.h.

𝑀0𝑀1 →+𝛽 𝑀 ′′
0
𝑀1 by operational semantics

L𝑀 ′′
0
𝑀1M = L𝑀 ′′

0
M !L𝑀1M =𝛼 𝑀 ′

0
!L𝑀1M by definition and by congruence

Case: (_𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑀0M) !L𝑀1M→ let !𝑥 =!L𝑀1M in L𝑀0M
(_𝑥 :𝜏0 .𝑀0)𝑀1 → 𝑀0{𝑀1/𝑥} by inversion and operational semantics

let !𝑥 =!L𝑀1M in L𝑀0M→ L𝑀0M{L𝑀1M/𝑥} by operational semantics

=𝛼 L𝑀0{𝑀1/𝑥}M by Lemma 5.6

□

Theorem 5.8 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M.

Proof. We proceed by induction on the given reduction.

Case: (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑥 (𝑦).𝑃2) → (a𝑥) (𝑃1 | 𝑃2{𝑀/𝑥}) with 𝑃 typed via cut of ∧R and ∧L
L𝑃M = let𝑦 ⊗ 𝑥 = ⟨!L𝑀M ⊗ L𝑃1M⟩ in let !𝑦 = 𝑦 in L𝑃2M by definition

→ let !𝑦 =!L𝑀M in L𝑃2M{L𝑃1M/𝑥} by operational semantics

→ L𝑃2M{L𝑃1M/𝑥}{L𝑀M/𝑥} by operational semantics

L(a𝑥) (𝑃1 | 𝑃2{𝑀/𝑥})M = L𝑃2{𝑀/𝑥}M{L𝑃1M/𝑥} by definition

=𝛼 L𝑃2M{L𝑃1M/𝑥}{L𝑀M/𝑥} by Lemma 5.6

Case: (a𝑥) (𝑥 (𝑦).𝑃1 | 𝑥 ⟨𝑀⟩.𝑃2) → (a𝑥) (𝑃1{𝑀/𝑥} | 𝑃2) with 𝑃 typed via cut of ⊃R and ⊃L
L𝑃M = L𝑃2M{(_𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑃1M) !L𝑀M/𝑥} by definition

→+𝛽 L𝑃2M{(L𝑃1M{L𝑀M/𝑥})/𝑥} by 𝛽 conversion

L(a𝑥) (𝑃1{𝑀/𝑥} | 𝑃2)M = L𝑃2M{L𝑃1{𝑀/𝑥}M/𝑥} by definition

=𝛼 L𝑃2M{(L𝑃1M{L𝑀M/𝑥})/𝑥} by Lemma 5.6

The remaining process cases follow by induction.

Case: (_𝑥 :𝜏0.𝑀0)𝑀1 → 𝑀0{𝑀1/𝑥}
L𝑀M = (_𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑀0M) !L𝑀1M by definition

→+ L𝑀0M{L𝑀1M/𝑥} =𝛼 L𝑀0{𝑀1/𝑥}M by operational semantics and Lemma 5.6

Case: 𝑀0𝑀1 → 𝑀 ′
0
𝑀1 by𝑀0 → 𝑀 ′

0

L𝑀0𝑀1M = L𝑀0M !L𝑀1M by definition

L𝑀 ′
0
𝑀1M = L𝑀 ′

0
M !L𝑀1M by definition

L𝑀0 →+ L𝑀 ′
0
M by i.h.

L𝑀0M !L𝑀1M→+ L𝑀 ′
0
M !L𝑀1M by operational semantics

□

A.3.3 Proofs of Inverse Theorem and Full Abstraction in Sess𝜋_.

Theorem 5.9 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M.

We establish the proofs of the two statements separately:

Theorem A.3 (Inverse – Processes). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K

Proof. By induction on typing.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 Bernardo Toninho and Nobuko Yoshida

Case: ∧R
𝑃 = 𝑧⟨𝑀⟩.𝑃0 by assumption

L𝑃M = ⟨!L𝑀M ⊗ L𝑃0M⟩ by definition

J⟨!L𝑀M ⊗ L𝑃0M⟩K𝑧 = 𝑧⟨𝑥⟩.(!𝑥 (𝑢).JL𝑀MK𝑢 | JL𝑃0MK𝑧) by definition

J𝑧⟨𝑀⟩.𝑃0K = 𝑧⟨𝑥⟩.(!𝑥 (𝑢).J𝑀K𝑢 | J𝑃0K) by definition

≈L 𝑧⟨𝑥⟩.(!𝑥 (𝑢).JL𝑀MK𝑢 | JL𝑃0MK𝑧) by i.h. and congruence

Case: ∧L
𝑃 = 𝑥 (𝑦).𝑃0 by assumption

L𝑃M = let𝑦 ⊗ 𝑥 = 𝑥 in let !𝑦 = 𝑦 in L𝑃0M by definition

Jlet𝑦 ⊗ 𝑥 = 𝑥 in let !𝑦 = 𝑦 in L𝑃0MK𝑧 = 𝑥 (𝑦).JL𝑃0MK𝑧 by definition

J𝑥 (𝑦).𝑃0K = 𝑥 (𝑦).J𝑃0K by definition

≈L 𝑥 (𝑦).JL𝑃0MK𝑧 by i.h. and congruence

Case: ⊃R
𝑃 = 𝑥 (𝑦).𝑃0 by assumption

L𝑃M = _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑃0M by definition

J_𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑃0MK𝑧 = 𝑥 (𝑦).JL𝑃0MK𝑧 by definition

J𝑥 (𝑦).𝑃0K = 𝑥 (𝑦).J𝑃0K by definition

≈L 𝑥 (𝑦).JL𝑃0MK𝑧 by i.h. and congruence

Case: ⊃L
𝑃 = 𝑥 ⟨𝑀⟩.𝑃0 by assumption

L𝑃M = L𝑃0M{(𝑥 !L𝑀M)/𝑥} by definition

JL𝑃0M{(𝑥 !L𝑀M)/𝑥}K𝑧 = (a𝑎) (J𝑥 !L𝑀MK𝑎 | JL𝑃0MK𝑧{𝑎/𝑥}) by Lemma 3.4

= (a𝑎) ((a𝑏) (J𝑥K𝑏 | 𝑏⟨𝑐⟩.(J!L𝑀MK𝑐 | [𝑏 ↔ 𝑎]) | JL𝑃0MK𝑧{𝑎/𝑥}) by definition

= (a𝑎) ((a𝑏) ([𝑥 ↔ 𝑏] | 𝑏⟨𝑐⟩.(!𝑐 (𝑤).JL𝑀MK𝑤 | [𝑏 ↔ 𝑎]) | JL𝑃0MK𝑧{𝑎/𝑥})) by definition

→ (a𝑎) (𝑥 ⟨𝑐⟩.(!𝑐 (𝑤).JL𝑀MK𝑤 | [𝑥 ↔ 𝑎]) | JL𝑃0MK𝑧{𝑎/𝑥}) by reduction semantics

≈L 𝑥 ⟨𝑐⟩.(!𝑐 (𝑤).JL𝑀MK𝑤 | JL𝑃0MK𝑧) by commuting conversion and reduction

≈L J𝑃K = 𝑥 ⟨𝑦⟩.(!𝑦 (𝑢).J𝑀K𝑢 | J𝑃0K) by i.h. and congruence

□

Theorem A.4 (Inverse Encodings – _-terms). If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M

Proof. By induction on typing.

Case: Variable
J𝑀K𝑧 = 𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧] by definition

L𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧]M = 𝑥 by definition

Case: _-abstraction
J_𝑥 :𝜏0.𝑀0K𝑧 = 𝑧 (𝑥).J𝑀0K𝑧 by definition

L𝑧 (𝑥).J𝑀0K𝑧M = _𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in LJ𝑀0K𝑧M by definition

=𝛽 L_𝑥 :𝜏0.𝑀0M = _𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑀0M by i.h. and congruence

Case: Application
J𝑀0𝑀1K𝑧 = (a𝑦) (J𝑀0K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀1K𝑤 | [𝑦 ↔ 𝑧]) by definition

L(a𝑦) (J𝑀0K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀1K𝑤 | [𝑦 ↔ 𝑧])M = L𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀1K𝑤 | [𝑦 ↔ 𝑧])M{LJ𝑀0K𝑦M/𝑦}
by definition

= LJ𝑀0K𝑦M !LK𝑀1K𝑤M by definition

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

On Polymorphic Sessions and Functions 51

=𝛽 L𝑀0𝑀1M = L𝑀0M !L𝑀1M by i.h. and congruence

□

Lemma 5.10. Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑉 : 𝜏 with 𝑉 ̸→. J𝑀K𝑧 ≈L J𝑉 K𝑧 iff L𝑀M→∗𝛽[L𝑉 M
Proof.

(⇐)
L𝑀M→∗𝛽[L𝑉 M by assumption

If L𝑀M = L𝑉 M then J𝑉 K𝑧 ≈L J𝑉 K𝑧 by reflexivity

If L𝑀M→+𝛽[L𝑉 M then J𝑀K𝑧 =⇒ 𝑃 ≈L J𝑉 K𝑧 by Lemma 5.4

J𝑀K𝑧 ≈L J𝑉 K𝑧 by closure under reduction

(⇒)
𝑉 =𝛼 _𝑥 :𝜏0.𝑉0 by inversion

L𝑉 M = _𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑉0M by definition

J𝑉 K𝑧 = 𝑧 (𝑥).J𝑉0K𝑧 by definition

𝑀 : 𝜏0 → 𝜏1 by inversion

L𝑀M→∗𝛽[𝑉 ′ ̸→ by strong normalisation

We proceed by induction on the length 𝑛 of the (strong) reduction:

Subcase: 𝑛 = 0

L𝑀M = _𝑥 :𝜏0 .𝑀0 by inversion

𝑀0 = 𝑉0 by uniqueness of normal forms

Subcase: 𝑛 = 𝑛′ + 1
L𝑀M→𝛽[𝑀 ′ by assumption

J𝑀K𝑧 =⇒ 𝑃 ≈L J𝑀 ′K𝑧 by Lemma 5.4

J𝑀 ′K𝑧 ≈L J𝑉 K𝑧 by closure under reduction

L𝑀 ′M→∗𝛽[L𝑉 M by i.h.

L𝑀M→∗𝛽[L𝑉 M by transitive closure

□

Theorem 5.11 (Full Abstraction).

Let:
(a) · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 ;
(b) · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴.

We have that L𝑀M =𝛽[L𝑁 M iff J𝑀K𝑧 ≈L J𝑁 K𝑧 and J𝑃K ≈L J𝑄K iff L𝑃M =𝛽[L𝑄M.

We establish the proof of the two statements separately.

Theorem A.5. Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 . We have that L𝑀M =𝛽[L𝑁 M iff J𝑀K𝑧 ≈L J𝑁 K𝑧
Proof.

Completeness (⇒)
L𝑀M =𝛽[L𝑁 M iff ∃𝑆.L𝑀M→∗𝛽[𝑆 and L𝑁 M→∗𝛽[𝑆

Assume→∗ is of length 0, then: L𝑀M =𝛼 L𝑁 M, J𝑀K𝑧 ≡ J𝑁 K𝑧 and thus J𝑀K ≈L J𝑁 K𝑧
Assume→+ is of some length > 0:

L𝑀M→+𝛽[𝑆 and L𝑁 M→+𝛽[𝑆 , for some 𝑆 by assumption

J𝑀K𝑧 →+ 𝑃 ≈L J𝑆K𝑧 and J𝑁 K𝑧 →+ 𝑄 ≈L J𝑆K𝑧 by Theorem 5.4

J𝑀K𝑧 ≈L J𝑆K𝑧 and J𝑁 K𝑧 ≈L J𝑆K𝑧 by closure under reduction

J𝑀K𝑧 ≈L J𝑁 K𝑧 by transitivity

Soundness (⇐)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

52 Bernardo Toninho and Nobuko Yoshida

J𝑀K𝑧 ≈L J𝑁 K𝑧 by assumption

Suffices to show: ∃𝑆.L𝑀M→∗𝛽[𝑆 and L𝑁 M→∗𝛽[𝑆

L𝑁 M→∗𝛽[𝑆 ′ ̸→ by strong normalisation

We proceed by induction on the length 𝑛 of the reduction:

Subcase: 𝑛 = 0

J𝑀K𝑧 ≈L J𝑆 ′K𝑧 by assumption

L𝑀M→∗𝛽[L𝑁 M by Lemma 5.10

Subcase: 𝑛 = 𝑛′ + 1
L𝑁 M→𝛽[𝑆 ′ by assumption

J𝑁 K𝑧 → 𝑃 ≈L J𝑆 ′K𝑧 by Theorem 5.4

J𝑀K𝑧 ≈L J𝑆 ′K𝑧 by closure under reduction

L𝑀M =𝛽[L𝑆 ′M by i.h.

L𝑀M =𝛽[L𝑁 M by transitivity

□

Theorem A.6. Let · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴. We have that J𝑃K ≈L J𝑄K iff L𝑃M =𝛽[L𝑄M
Proof.

(⇐)
Let𝑀 = L𝑃M and 𝑁 = L𝑄M:
J𝑀K𝑧 ≈L J𝑁 K𝑧 by Theorem A.5 (⇒)

J𝑀K𝑧 = JL𝑃MK𝑧 ≈L J𝑃K and J𝑁 K𝑧 = JL𝑄MK𝑧 ≈L J𝑄K by Theorem 5.9

J𝑃K ≈L J𝑄K by compatibility of logical equivalence

(⇒)
JL𝑃MK𝑧 ≈L JL𝑄MK𝑧 by Theorem 3.12 and compatibility of logical equivalence

L𝑃M =𝛽[L𝑄M by Theorem A.5 (⇐)

□

A.4 Proofs of § 5.2 – Higher-Order Session Processes
A.4.1 Proofs for Encoding of _ into Sess𝜋_+.

Theorem 5.13 (Operational Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Proof. By induction on the given reduction.

Case: (a𝑥) (𝑃0 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) . . .)) → (a𝑥) (𝑃 ′
0
|

𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) . . .))
𝑃 = 𝑥 ← 𝑀0 ← 𝑦𝑖 ; 𝑃2 with J𝑀0K𝑥 = 𝑃0 and J𝑃1K = 𝑃2 by inversion

𝑀0 →+ 𝑀 ′0 with J𝑀 ′
0
K𝑥 ≈L 𝑃 ′0 by i.h.

(𝑥 ← 𝑀0 ← 𝑦𝑖 ; 𝑃2) →+ (𝑥 ← 𝑀 ′
0
← 𝑦𝑖 ; 𝑃2) by reduction semantics

J𝑥 ← 𝑀 ′
0
← 𝑦; 𝑃2K = (a𝑥) (J𝑀0K𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) . . .))

by definition

≈L (a𝑥) (𝑃 ′0 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) by congruence

Case: (a𝑥) (𝑥 (𝑎0).𝑥 (𝑎𝑛).𝑃0 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) →
(a𝑥, 𝑎0) (𝑥 (𝑎1).𝑥 (𝑎𝑛).𝑃0 | [𝑎0 ↔ 𝑦0] | 𝑥 ⟨𝑎1⟩.([𝑎1 ↔ 𝑦1] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) =
𝑄

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

On Polymorphic Sessions and Functions 53

𝑃 = 𝑥 ← {𝑥 ← 𝑃2 ← 𝑎𝑖 } ← 𝑦𝑖 ; 𝑃3 with J𝑃3K = 𝑃1 and J𝑃2K = 𝑃0 by inversion

𝑥 ← {𝑥 ← 𝑃2 ← 𝑎𝑖 } ← 𝑦𝑖 ; 𝑃3 → (a𝑥) (𝑃2{𝑦𝑖/𝑎𝑖 } | 𝑃3) by reduction semantics

𝑄 →+ (a𝑥) (𝑃0{𝑦𝑖/𝑎𝑖 } | 𝑃1) = (a𝑥) (J𝑃2K{𝑦𝑖/𝑎𝑖 } | J𝑃3K) by reduction semantics and definition

□

Theorem 5.14 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

Proof. By induction on the reduction semantics.

Case: 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄 → 𝑥 ← 𝑀 ′← 𝑦𝑖 ;𝑄 from𝑀 → 𝑀 ′

J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K = (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . .))
by definition

J𝑀K𝑥 =⇒ 𝑅0 with 𝑅0 ≈L J𝑀 ′K𝑥 by i.h.

J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K =⇒ (a𝑥) (𝑅0 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . .))
by reduction semantics

≈L J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K = (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . .))
by congruence

Case: 𝑥 ← {𝑥 ← 𝑃0 ← 𝑤𝑖 } ← 𝑦𝑖 ;𝑄 → (a𝑥) (𝑃0{𝑦𝑖/𝑤𝑖 } | 𝑄)
J𝑥 ← {𝑥 ← 𝑃0 ← 𝑤𝑖 } ← 𝑦𝑖 ;𝑄K =

(a𝑥) (𝑥 (𝑤0).𝑥 (𝑤𝑛).J𝑃0K | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . .))
by definition

→+ (a𝑥) (J𝑃0K{𝑦𝑖/𝑤𝑖 } | J𝑄K) by reduction semantics

≈L (a𝑥) (J𝑃0{𝑦𝑖/𝑤𝑖 }K | J𝑄K)
□

A.4.2 Proofs for Encoding of Sess𝜋_+ into _.

Theorem 5.16 (Operational Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+𝛽 𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Proof. By induction on the given reduction.

Case: L𝑃0M{(L𝑀M𝑦𝑖)/𝑥} → 𝑁 {(L𝑀M𝑦𝑖)/𝑥}
𝑃 = 𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0 by inversion

𝑃0 ↦→∗ 𝑅 with 𝑁 =𝛼 L𝑅M by i.h.

𝑃 ↦→∗ 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑅 by definition of ↦→
L𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑅M = L𝑅M{(L𝑀M𝑦𝑖)/𝑥} by definition

=𝛼 𝑁 {(L𝑀M𝑦𝑖)/𝑥} by congruence

Case: L𝑃0M{(L𝑀M𝑦𝑖)/𝑥} → L𝑃0M{𝑀 ′/𝑥}
𝑃 = 𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0 by inversion

Subcase: L𝑀M𝑦𝑖 → 𝑁 𝑦𝑖
𝑀 →+𝛽 𝑀 ′′ with 𝑁 =𝛼 L𝑀 ′′M by i.h.

𝑃 ↦→+ 𝑥 ← 𝑀 ′′← 𝑦𝑖 ; 𝑃0 by reduction semantics

L𝑥 ← 𝑀 ′′← 𝑦𝑖 ; 𝑃0M = L𝑃0M{(L𝑀 ′′M𝑦𝑖)/𝑥} by definition

=𝛼 L𝑃0M{𝑀 ′/𝑥} by congruence

Subcase: L𝑀M𝑦𝑖 → (_𝑦1.𝑦𝑛 .𝑀0) 𝑦1 . . . 𝑦𝑛

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

54 Bernardo Toninho and Nobuko Yoshida

𝑀 = {𝑥 ← 𝑄 ← 𝑦𝑖 } with L𝑄M = 𝑀0 by inversion

𝑃 = 𝑥 ← {𝑥 ← 𝑄 ← 𝑦𝑖 } ← 𝑦𝑖 ; 𝑃0 by inversion

𝑃 → (a𝑥) (𝑄 | 𝑃0) by reduction semantics

L(a𝑥) (𝑄 | 𝑃0)M = L𝑃0M{L𝑄M/𝑥} by definition

(_𝑦1.𝑦𝑛 .𝑀0) 𝑦1 . . . 𝑦𝑛 →+ 𝑀0 by operational semantics

□

Theorem 5.17 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M

Proof. By induction on the given reduction

Case: (𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0) → (𝑥 ← 𝑀 ′← 𝑦𝑖 ; 𝑃0) with𝑀 → 𝑀 ′

L𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0M = L𝑃0M{L𝑀M𝑦𝑖/𝑥} by definition

L𝑀M→∗ L𝑀 ′M by i.h.

L𝑥 ← 𝑀 ′← 𝑦𝑖 ; 𝑃0M = L𝑃0M{L𝑀 ′M𝑦𝑖/𝑥} by definition

L𝑃0M{L𝑀M𝑦𝑖/𝑥} →∗𝛽 L𝑃0M{L𝑀 ′M𝑦𝑖/𝑥} by congruence

Case: (𝑥 ← {𝑥 ← 𝑄 ← 𝑦𝑖 } ← 𝑦𝑖 ; 𝑃0) → (a𝑥) (𝑄 | 𝑃0)
L𝑥 ← {𝑥 ← 𝑄 ← 𝑦𝑖 } ← 𝑦𝑖 ; 𝑃0M = L𝑃0M{((_𝑦0_𝑦𝑛 .L𝑄M) 𝑦0 . . . 𝑦𝑛)/𝑥} by definition

→+𝛽 L𝑃0M{L𝑄M/𝑥} by congruence and transitivity

L(a𝑥) (𝑄 | 𝑃0)M = L𝑃0M{L𝑄M/𝑥} by definition

□

A.4.3 Proofs of Inverse Theorem and Full Abstraction for Sess𝜋_+.

Theorem 5.18 (Inverse Encodings). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. Also, if Ψ ⊢ 𝑀 : 𝜏

then LJ𝑀K𝑧M =𝛽 L𝑀M.

We prove each case as a separate theorem.

Theorem A.7 (Inverse Encodings – Processes). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K

Proof. By induction on the given typing derivation. We show the new cases.

Case: Rule {}𝐸
𝑃 = 𝑥 ← 𝑀 ← 𝑦;𝑄 by inversion

L𝑃M = L𝑄M{(L𝑀M𝑦)/𝑥} by definition

JL𝑄M{(L𝑀M𝑦)/𝑥}K𝑧 = (a𝑎) (JL𝑀M𝑦K𝑎 | JL𝑄MK𝑧{𝑎/𝑥}) by Lemma 5.2

= (a𝑎, 𝑥) (JL𝑀MK𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | JL𝑄MK{𝑎/𝑥}) . . .)) by definition

≡ (a𝑥) (JL𝑀MK𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | JL𝑄MK) . . .))
J𝑃K = (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . .)) by definition

≈L (a𝑥) (JL𝑀MK𝑥 | 𝑥 ⟨𝑎0⟩.([𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.([𝑎𝑛 ↔ 𝑦𝑛] | JL𝑄MK) . . .)) by i.h.

□

Theorem A.8 (Inverse Encodings – _-terms). If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M

Proof. By induction on the given typing derivation. We show the new cases.

Case: Rule {}𝐼

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

On Polymorphic Sessions and Functions 55

𝑀 = {𝑥 ← 𝑃 ← 𝑦𝑖 } by inversion

J𝑀K𝑧 = 𝑧 (𝑦0).𝑧 (𝑦𝑛).J𝑃{𝑧/𝑥}K by definition

L𝑧 (𝑦0)𝑧 (𝑦𝑛).J𝑃{𝑧/𝑥}KM = _𝑦0._𝑦𝑛 .LJ𝑃{𝑧/𝑥}KM by definition

J𝑀K = _𝑦0._𝑦𝑛 .L𝑃M by definition

=𝛽 _𝑦0._𝑦𝑛 .LJ𝑃{𝑧/𝑥}KM by i.h.

□

A.5 Strong Normalisation for Higher-Order Sessions
Theorem 5.21 (Operational Completeness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M+ →+𝛽

L𝑄M+
Proof.

Case: (a𝑢) (!𝑢 (𝑥) .𝑃0 | 𝑢⟨𝑥⟩.𝑃1) → (a𝑢) (!𝑢 (𝑥).𝑃0 | (a𝑥) (𝑃0 | 𝑃1))
L(a𝑢) (!𝑢 (𝑥).𝑃0 | 𝑢⟨𝑥⟩.𝑃1)M+ = let 1 = ⟨⟩ in L𝑃1M+{𝑢/𝑥}{L𝑃0M+/𝑢}
= let 1 = ⟨⟩ in L𝑃1M+{L𝑃0M+/𝑥}{L𝑃0M+/𝑢} by definition

→ L𝑃1M+{L𝑃0M+/𝑥}{L𝑃0M+/𝑢} by operational semantics

L(a𝑢) (!𝑢 (𝑥).𝑃0 | (a𝑥) (𝑃0 | 𝑃1))M+ = L𝑃1M+{L𝑃0M+/𝑥}{L𝑃0M+/𝑢} by definition

Other cases are unchanged.

□

Theorem 5.22 (Operational Soundness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M+ → 𝑀 then 𝑃 ↦→∗ 𝑄 such
that L𝑄M→∗ 𝑀 .
Proof.

Case: L𝑃M+ = let 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥} with L𝑃M+ → L𝑃0M+{𝑢/𝑥}
L𝑃M+ = let 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥} → L𝑃0M+{𝑢/𝑥} by operational semantics, as needed.

Remaining cases are fundamentally unchanged.

□

Theorem 5.23 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃M+K𝑧 ≈L J𝑃K
Proof.

Case: copy rule

L𝑃M+ = let 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥} by definition

Jlet 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥}K𝑧 = (a𝑦) (0 | JL𝑃0M+{𝑢/𝑥}K𝑧) by definition

≡ JL𝑃0M+{𝑢/𝑥}K𝑧 by structural congruence

≈L (a𝑥) (𝑢⟨𝑤⟩.[𝑤 ↔ 𝑥] | JL𝑃0M+K𝑧) by compositionality

≈L J𝑃K by i.h. + congruence + definition of ≈L for open processes

□

Lemma A.9. If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M+ =𝛽 L𝑀M+
Proof.

Case: uvar rule
J𝑢K𝑧 = (a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧] by definition

L(a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧]M+ = let 1 = ⟨⟩ in𝑢 =𝛽 𝑢

□

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.

	Abstract
	1 Introduction
	2 Polymorphic Session -Calculus
	2.1 Processes and Typing

	3 To Linear-F and Back
	3.1 Encoding Linear-F into Session -Calculus
	3.2 Encoding Session -calculus to Linear-F
	3.3 Inversion and Full Abstraction

	4 Inductive and Coinductive Session Types
	5 Communicating Values
	5.1 Session Processes with Term Passing – Sess
	5.2 Higher-Order Session Processes – Sess+

	6 Related Work
	7 Conclusion and Future Work
	References
	A Appendix
	A.1 Proofs for § 3.2 – Encoding from Poly to Linear-F
	A.2 Proofs for § 3.3 – Inversion and Full Abstraction
	A.3 Proofs for § 5 – Communicating Values
	A.4 Proofs of § 5.2 – Higher-Order Session Processes
	A.5 Strong Normalisation for Higher-Order Sessions

