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On Polymorphic Sessions and Functions
A Tale of Two (Fully Abstract) Encodings
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This work exploits the logical foundation of session types to determine what kind of type discipline for the

𝜋-calculus can exactly capture, and is captured by, _-calculus behaviours. Leveraging the proof theoretic

content of the soundness and completeness of sequent calculus and natural deduction presentations of linear

logic, we develop the firstmutually inverse and fully abstract processes-as-functions and functions-as-processes
encodings between a polymorphic session 𝜋-calculus and a linear formulation of System F. We are then able

to derive results of the session calculus from the theory of the _-calculus: (1) we obtain a characterisation of

inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our

results to account for value and process passing, entailing strong normalisation.
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1 INTRODUCTION
The 𝜋-calculus is an analytical tool for understanding [interactive] systems – Robin Milner [41]

Encodability is the main traditional method to compare and examine process calculi and their

operators with respect to their expressive power. There are in fact an enormous number of process

calculi for expressing non-determinism, parallelism, distribution, locality, real-time, stochastic phe-

nomena, etc, and each of these aspects can be described in different ways. Encodings not only allow

a comparison of the expressive power of languages but also formalise similarities and differences

between the considered calculi. Thus, they provide a basis for design and implementations of con-

current language primitives and operators into real systems and programming languages [49, 52].

One of the first examples of this is an input-guarded choice encoding in the 𝜋-calculus [44], which

provided a library in the Pict Programming Language [57].

Dating back to Milner’s seminal work [42], encodings of _-calculus into 𝜋-calculus are, in particu-

lar, seen as essential benchmarks to examine expressiveness of various extensions of the 𝜋-calculus.
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2 Bernardo Toninho and Nobuko Yoshida

Milner’s original motivation was to demonstrate the power of link mobility by decomposing higher-

order computations into pure name passing. Another goal was to analyse functional behaviours in

a broad computational universe of concurrency and non-determinism. While operationally correct

encodings of many higher-order constructs exist, it is challenging to obtain encodings that are pre-

cise with respect to behavioural equivalence: the semantic distance between the _-calculus and the

𝜋-calculus typically requires either restricting process behaviours [64] (e.g. via typed equivalences

[8]) or enriching the _-calculus with constants that allow for a suitable characterisation of the term

equivalence induced by the behavioural equivalence on processes [62].

Pierce and Sangiorgi [56], exploring the fact that types for 𝜋-calculi limit the valid contexts

in which processes may interact, observed the semantic consequences of typed equivalences

by showing that the observational congruence induced by IO-subtyping can prove the semantic
correctness of Milner’s encoding [55], which was impossible in the untyped setting. Following

these developments, many works on typed 𝜋-calculi have investigated the correctness of Milner’s

encodings in order to examine the power of proposed typing systems.

Encodings in 𝜋-calculi also gave rise to new typing disciplines: Session types [28, 30], a typing
system that is able to ensure deadlock-freedom for communication protocols between two or more

parties [31], were originally motivated “from process encodings of various data structures in an

asynchronous version of the 𝜋-calculus” [29]. Following this original motivation, session types

have been integrated into mainstream programming languages [1, 21]. A popular technique is to

use “encodings” of session types into linear or functional types to correctly implement structured
communications in programming languages such as Haskell [46], OCaml [32, 34, 48] and Scala

[67, 68] (see Section 6).

Recently, a propositions-as-types correspondence between linear logic and session types [12,

13, 76] has produced several new developments and logically-motivated techniques [11, 37, 70, 76]

to augment both the theory and practice of session-based message-passing concurrency. Notably,

parametric session polymorphism [11] (in the sense of Reynolds [59]) has been proposed and a

corresponding abstraction theorem has been shown.

Our work expands upon the proof theoretic consequences of this propositions-as-types corre-

spondence to address the problem of how to exactly match the behaviours induced by session

𝜋-calculus encodings of the _-calculus with those of the _-calculus. We develop mutually inverse
and fully abstract encodings (up to typed observational congruences) between a polymorphic

session-typed 𝜋-calculus and the polymorphic _-calculus. The encodings arise from the proof

theoretic content of the equivalence between sequent calculus (i.e. the session calculus) and natural

deduction (i.e. the _-calculus) for second-order intuitionistic linear logic, greatly generalising those

for the propositional setting [70]. While fully abstract encodings between _-calculi and 𝜋-calculi

have been proposed (e.g. [8, 62]), our work is the first to consider a two-way, both mutually inverse

and fully abstract embedding between the two calculi by crucially exploiting the linear logic-based

session discipline. This also sheds some definitive light on the nature of concurrency in the (logical)

session calculi, which exhibit “don’t care” forms of non-determinism (e.g. processes may race

on stateless replicated servers) rather than “don’t know” non-determinism (which requires less

harmonious logical features [3]).

In the spirit of Gentzen [22], who established soundness and completeness of his sequent calculus

and natural deduction in order to use the former as a way to study the latter (i.e., to show consistency

and normalisation of natural deduction through cut elimination in the sequent calculus), we use

our encodings as a tool to study non-trivial properties of the session calculus, deriving them

from results in the _-calculus: We show the existence of inductive and coinductive sessions in

the polymorphic session calculus by considering the representation of initial 𝐹 -algebras and final

𝐹 -coalgebras [40] in the polymorphic _-calculus [2, 27] (in a linear setting [10]). By appealing to

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.
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On Polymorphic Sessions and Functions 3

full abstraction, we are able to derive processes that satisfy the necessary algebraic properties

and thus form adequate uniform representations of inductive and coinductive session types. The

derived algebraic properties enable us to reason about standard data structure examples, providing

a logical justification to typed variations of the representations in [43].

We systematically extend our results to a session calculus with _-term and process passing [71],

inspired by Benton’s LNL [6]. By showing that our encodings naturally adapt to this setting, we

prove that it is possible to encode higher-order process passing in the first-order session calculus

fully abstractly, providing a typed and proof-theoretically justified re-envisioning of Sangiorgi’s

encodings of higher-order 𝜋-calculus [65]. In addition, the encoding instantly provides a strong

normalisation property of the higher-order session calculus.

Contributions and Outline. Contributions of our article are as follows:
Section 3.1 develops a functions-as-processes encoding of a linear formulation of System F,

Linear-F, using a logically motivated polymorphic session 𝜋-calculus, Poly𝜋 , and shows that

the encoding is operationally sound and complete.

Section 3.2 develops a processes-as-functions encoding of Poly𝜋 into Linear-F, arising from

the completeness of the sequent calculus wrt natural deduction, also operationally sound

and complete.

Section 3.3 studies the relationship between the two encodings, establishing they aremutually
inverse and fully abstract wrt typed congruence, the first two-way embedding satisfying both
properties.

Section 4 develops a faithful representation of inductive and coinductive session types in

Poly𝜋 via the encoding of initial and final (co)algebras in the polymorphic _-calculus, which

is driven through our encodings to produce processes satisfying the necessary algebraic

properties. We demonstrate a use of these algebraic properties via examples.

Sections 5 and 5.2 study term-passing and process-passing session calculi, extending our

encodings to provide embeddings into the first-order session calculus. As a consequence, we

obtain a proof-theoretically, type-driven reinvisioning of Sangiorgi’s encodings of higher-

order processes into first-order processes. We show that the full abstraction and mutual

inversion results are smoothly extended to these calculi and derive strong normalisation of

the higher-order session calculus from the encoding.

In order to introduce our encodings, we first overview the logically motivated polymorphic session

calculus Poly𝜋 , its typing system and behavioural equivalence (Section 2). We discuss related work

in Section 6 and conclude with future work in Section 7. The appendix includes detailed proofs and

additional lemmas.

Outline. This article revises and extends an earlier version of this work [73] with additional

materials and full proofs. § 2 was extended to include all the necessary formal definitions for the

development of the coming sections, namely the definitions of structural and extended structural

congruence, typed barbed congruence and logical equivalence. We further include the complete set

of typing rules of the system and extended discussion on their relationship with the literature on

linear logic. We further include a more detailed analysis of logical equivalence. Section 3 now details

the operational semantics of Linear-F. Section 3.2 includes the encoding from session 𝜋-calculus

typing derivations to Linear-F typing derivations explicitly. We have also included additional

discussion throughout the section on the relationship with various proof theoretic considerations

and extended the examples, as well as additional discussion on the nature of the encodings with

respect to the operational semantics of Linear-F and potential extensions to effects and non-

divergence. The proofs of the main results of the section, namely of full abstraction (Theorems 3.15

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.
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4 Bernardo Toninho and Nobuko Yoshida

and 3.16) are included in the main article. Proofs of the results in the remainder of the section

can be found in detail in the appendix. Section 4 has been extended with additional discussion,

explanations and proofs. Section 5 has generally been extended with additional results and proofs.

Section 5.2 now includes the development of the strong normalisation result (Theorem 5.24) for the

higher-order process passing calculus via a modification of the encoding presented previously in the

section, which also includes the reestablishment of the properties of operational correspondence,

and the inverse theorem for the reformulated encoding. Finally, Section 6 has been enhanced with

additional discussion of related work, including works that were published after the conference

version of this work [73].

2 POLYMORPHIC SESSION 𝜋-CALCULUS
This section summarises the polymorphic session 𝜋-calculus [11], dubbed Poly𝜋 , arising as a process

assignment to second-order linear logic [23], its typing system and behavioural equivalences.

2.1 Processes and Typing
Syntax. Given an infinite set of names 𝑥,𝑦, 𝑧,𝑢, 𝑣,𝑤 , the grammar of processes 𝑃,𝑄, 𝑅 and session

types 𝐴, 𝐵,𝐶 is defined by:

𝑃,𝑄, 𝑅 ::= 𝑥 ⟨𝑦⟩.𝑃 | 𝑥 (𝑦) .𝑃 | 𝑃 | 𝑄 | (a𝑦)𝑃 | [𝑥 ↔ 𝑦] | 0
| 𝑥 ⟨𝐴⟩.𝑃 | 𝑥 (𝑌 ) .𝑃 | 𝑥 .inl; 𝑃 | 𝑥 .inr; 𝑃 | 𝑥 .case(𝑃,𝑄) | !𝑥 (𝑦).𝑃

𝐴, 𝐵 ::= 1 | 𝐴 ⊸ 𝐵 | 𝐴 ⊗ 𝐵 | 𝐴 & 𝐵 | 𝐴 ⊕ 𝐵 | !𝐴 | ∀𝑋 .𝐴 | ∃𝑋 .𝐴 | 𝑋
𝑥 ⟨𝑦⟩.𝑃 denotes the output of channel 𝑦 on 𝑥 with continuation process 𝑃 ; 𝑥 (𝑦).𝑃 denotes an input

along 𝑥 , bound to 𝑦 in 𝑃 ; 𝑃 | 𝑄 denotes parallel composition; (a𝑦)𝑃 denotes the restriction of name

𝑦 to the scope of 𝑃 ; 0 denotes the inactive process; [𝑥 ↔ 𝑦] denotes the linking of the two channels
𝑥 and 𝑦 (implemented as renaming); 𝑥 ⟨𝐴⟩.𝑃 and 𝑥 (𝑌 ).𝑃 denote the sending and receiving of a type
𝐴 along 𝑥 bound to 𝑌 in 𝑃 of the receiver process; 𝑥 .inl; 𝑃 and 𝑥 .inr; 𝑃 denote the emission of a

selection between the left or right branch of a receiver 𝑥 .case(𝑃,𝑄) process; !𝑥 (𝑦) .𝑃 denotes an

input-guarded replication that spawns replicas upon receiving an input along 𝑥 . We often abbreviate

(a𝑦)𝑥 ⟨𝑦⟩.𝑃 to 𝑥 ⟨𝑦⟩.𝑃 and omit trailing 0 processes. By convention, we range over linear channels

with 𝑥,𝑦, 𝑧 and shared channels with 𝑢, 𝑣,𝑤 .

The syntax of session types is that of (intuitionistic) linear logic propositions which are assigned

to channels according to their usages in processes: 1 denotes the type of a channel along which
no further behaviour occurs; 𝐴 ⊸ 𝐵 denotes a session that waits to receive a channel of type 𝐴

and will then proceed as a session of type 𝐵; dually, 𝐴 ⊗ 𝐵 denotes a session that sends a channel

of type 𝐴 and continues as 𝐵; 𝐴 & 𝐵 denotes a session that offers a choice between proceeding as

behaviours 𝐴 or 𝐵; 𝐴 ⊕ 𝐵 denotes a session that internally chooses to continue as either 𝐴 or 𝐵,

signalling appropriately to the communicating partner; !𝐴 denotes a session offering an unbounded

(but finite) number of behaviours of type 𝐴; ∀𝑋 .𝐴 denotes a polymorphic session that receives

a type 𝐵 and behaves uniformly as 𝐴{𝐵/𝑋 }; dually, ∃𝑋 .𝐴 denotes an existentially typed session,

which emits a type 𝐵 and behaves as 𝐴{𝐵/𝑋 }.

Operational Semantics. The operational semantics of our calculus is presented as a standard

labelled transition system (Fig. 1) in the style of the early system for the 𝜋-calculus [65].

In the remainder of this work we write ≡ for a standard 𝜋-calculus structural congruence

(Def. 2.1) extended with the clause [𝑥 ↔ 𝑦] ≡ [𝑦 ↔ 𝑥]. In order to streamline the presentation of

observational equivalence [11, 50], we write ≡! (Def. 2.2) for structural congruence extended with

the so-called sharpened replication axioms [65], which capture basic equivalences of replicated

processes (and are present in the proof dynamics of the exponential of linear logic).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.
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(out)

𝑥 ⟨𝑦⟩.𝑃
𝑥 ⟨𝑦⟩
→ 𝑃

(in)

𝑥 (𝑦).𝑃
𝑥 (𝑧)
→ 𝑃{𝑧/𝑦}

(outT)

𝑥 ⟨𝐴⟩.𝑃
𝑥 ⟨𝐴⟩
→ 𝑃

(inT)

𝑥 (𝑌 ).𝑃
𝑥 (𝐵)
→ 𝑃{𝐵/𝑌 }

(rout)

𝑥 .inr; 𝑃
𝑥.inr→ 𝑃

(lout)

𝑥 .inl; 𝑃
𝑥.inl→ 𝑃

(id)

(a𝑥) ( [𝑥 ↔ 𝑦] | 𝑃) 𝜏→ 𝑃{𝑦/𝑥}
(rin)

𝑥 .case(𝑃,𝑄) 𝑥.inr→ 𝑄

(lin)

𝑥 .case(𝑃,𝑄) 𝑥.inl→ 𝑃

(rep)

!𝑥 (𝑦).𝑃
𝑥 (𝑧)
→ 𝑃{𝑧/𝑦} |!𝑥 (𝑦).𝑃

(open)

𝑃
𝑥 ⟨𝑦⟩
→ 𝑄

(a𝑦)𝑃
(a𝑦)𝑥 ⟨𝑦⟩
→ 𝑄

(close)

𝑃
(a𝑦)𝑥 ⟨𝑦⟩
→ 𝑃 ′ 𝑄

𝑥 (𝑦)
→ 𝑄 ′

𝑃 | 𝑄 𝜏→ (a𝑦) (𝑃 ′ | 𝑄 ′)

(par)

𝑃
𝛼→ 𝑄

𝑃 | 𝑅 𝛼→ 𝑄 | 𝑅

(com)

𝑃
𝛼→ 𝑃 ′ 𝑄

𝛼→ 𝑄 ′

𝑃 | 𝑄 𝜏→ 𝑃 ′ | 𝑄 ′

(res)

𝑃
𝛼→ 𝑄

(a𝑦)𝑃 𝛼→ (a𝑦)𝑄

Fig. 1. Labelled Transition System.

Definition 2.1 (Structural congruence). (𝑃 ≡ 𝑄), is the least congruence relation generated by the

following laws:

𝑃 | 0 ≡ 𝑃 𝑃 ≡𝛼 𝑄 ⇒ 𝑃 ≡ 𝑄 𝑃 | 𝑄 ≡ 𝑄 | 𝑃 𝑃 | (𝑄 | 𝑅) ≡ (𝑃 | 𝑄) | 𝑅
(a𝑥) (a𝑦)𝑃 ≡ (a𝑦) (a𝑥)𝑃 𝑥 ∉ fn(𝑃) ⇒ 𝑃 | (a𝑥)𝑄 ≡ (a𝑥) (𝑃 | 𝑄) (a𝑥)0 ≡ 0 [𝑥 ↔ 𝑦] ≡ [𝑦 ↔ 𝑥]
Definition 2.2 (Extended Structural Congruence). We write ≡! for the least congruence relation on

processes which results from extending structural congruence ≡ with the following axioms:

(1) (a𝑢) (!𝑢 (𝑧).𝑃 | (a𝑦) (𝑄 | 𝑅)) ≡! (a𝑦) ((a𝑢) (!𝑢 (𝑧).𝑃 | 𝑄) | (a𝑢) (!𝑢 (𝑧).𝑃 | 𝑅))
(2) (a𝑢) (!𝑢 (𝑦).𝑃 | (a𝑣) (!𝑣 (𝑧).𝑄 | 𝑅)) ≡! (a𝑣) ((!𝑣 (𝑧).(a𝑢) (!𝑢 (𝑦).𝑃 | 𝑄)) | (a𝑢) (!𝑢 (𝑦).𝑃 | 𝑅))
(3) (a𝑢) (!𝑢 (𝑦).𝑄 | 𝑃) ≡! 𝑃 if 𝑢 ∉ fn(𝑃)

Axioms (1) and (2) above represent principles for the distribution of shared servers among

processes, while (3) formalises the garbage collection of shared servers which cannot be invoked

by any process. The axioms embody distributivity, contraction and weakening of shared resources

and are sound wrt (typed) observational equivalence [50].

A transition 𝑃
𝛼→ 𝑄 denotes that 𝑃 may evolve to 𝑄 by performing the action represented by

label 𝛼 . An action 𝛼 (𝛼) requires a matching 𝛼 (𝛼) in the environment to enable progress. Labels of

our transition semantics include the silent internal action 𝜏 , output and bound output actions (𝑥 ⟨𝑦⟩
and (a𝑧)𝑥 ⟨𝑧⟩); input action 𝑥 (𝑦); labels pertaining to the binary choice actions (𝑥 .inl, 𝑥 .inl, 𝑥 .inr,
and 𝑥 .inr); and labels describing output and input actions of types (𝑥 ⟨𝐴⟩ and 𝑥 (𝐴)).

Definition 2.3 (Labelled Transition System). The labelled transition relation is defined by the rules

in Fig. 1, subject to the side conditions: in rule (res), we require 𝑦 ∉ fn(𝛼); in rule (par), we require
bn(𝛼) ∩ fn(𝑅) = ∅; in rule (close), we require 𝑦 ∉ fn(𝑄). We omit the symmetric versions of (par),
(com), (id), (close) and closure under 𝛼-conversion.

We write 𝜌1𝜌2 for the composition of relations 𝜌1, 𝜌2. We write → to stand for

𝜏→≡. Weak

transitions are defined as usual: we write =⇒ for the reflexive, transitive closure of→ and→+ for
the transitive closure of→. Given 𝛼 ≠ 𝜏 , notation

𝛼
=⇒ stands for =⇒ 𝛼→=⇒ and

𝜏
=⇒ stands for =⇒.

Typing System. The typing rules of Poly𝜋 are given in Fig. 2, following [11]. The rules define

the judgment Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴, denoting that process 𝑃 offers a session of type 𝐴 along channel

𝑧, using the linear sessions in Δ, (potentially) using the unrestricted or shared sessions in Γ, with

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.
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(1R)
Ω; Γ; · ⊢ 0 :: 𝑧:1

(1L)
Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :1 ⊢ 𝑃 :: 𝑧:𝐶

(⊸R)
Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧 (𝑥).𝑃 :: 𝑧:𝐴 ⊸ 𝐵
(⊗R)

Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑦:𝐴 Ω; Γ;Δ2 ⊢ 𝑄 :: 𝑧:𝐵

Ω; Γ;Δ1,Δ2 ⊢ (a𝑦)𝑧⟨𝑦⟩.(𝑃 | 𝑄) :: 𝑧:𝐴 ⊗ 𝐵

(⊸L)
Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑦:𝐴 Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄) :: 𝑧:𝐶
(⊗L)

Ω; Γ;Δ, 𝑦:𝐴, 𝑥 :𝐵 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑦).𝑃 :: 𝑧:𝐶

(&R)
Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 Ω; Γ;Δ ⊢ 𝑄 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧.case(𝑃,𝑄) :: 𝑧:𝐴 & 𝐵
(&L1)

Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 & 𝐵 ⊢ 𝑥 .inl; 𝑃 :: 𝑧:𝐶

(&L2)
Ω; Γ;Δ, 𝑥 :𝐵 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 & 𝐵 ⊢ 𝑥 .inr; 𝑃 :: 𝑧:𝐶
(⊕R1)

Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ω; Γ;Δ ⊢ 𝑧.inl; 𝑃 :: 𝑧:𝐴 ⊕ 𝐵

(⊕R2)
Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧.inr; 𝑃 :: 𝑧:𝐴 ⊕ 𝐵
(⊕L)

Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶 Ω; Γ;Δ, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊕ 𝐵 ⊢ 𝑥 .case(𝑃,𝑄) :: 𝑧:𝐶

(!R)
Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴

Ω; Γ; · ⊢!𝑧 (𝑥).𝑃 :: 𝑧:!𝐴
(!L)

Ω; Γ, 𝑢:𝐴;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :!𝐴 ⊢ 𝑃{𝑥/𝑢} :: 𝑧:𝐶

(copy)
Ω; Γ, 𝑢:𝐴;Δ, 𝑦:𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ, 𝑢:𝐴;Δ ⊢ (a𝑦)𝑢⟨𝑦⟩.𝑃 :: 𝑧:𝐶

(∀R)
Ω, 𝑋 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ω; Γ;Δ ⊢ 𝑧 (𝑋 ).𝑃 :: 𝑧:∀𝑋 .𝐴
(∀L)

Ω ⊢ 𝐵 type Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑃 :: 𝑧:𝐶

(∃R)
Ω ⊢ 𝐵 type Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴{𝐵/𝑋 }

Ω; Γ;Δ ⊢ 𝑧⟨𝐵⟩.𝑃 :: 𝑧:∃𝑋 .𝐴
(∃L)

Ω, 𝑋 ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∃𝑋 .𝐴 ⊢ 𝑥 (𝑋 ).𝑃 :: 𝑧:𝐶

(id)
Ω; Γ;𝑥 :𝐴 ⊢ [𝑥 ↔ 𝑧] :: 𝑧:𝐴

(cut)
Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃 | 𝑄) :: 𝑧:𝐶

(cut!)
Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ, 𝑢:𝐴;Δ ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥).𝑃 | 𝑄) :: 𝑧:𝐶
Fig. 2. Typing Rules

polymorphic type variables maintained in Ω. We use a well-formedness judgment Ω ⊢ 𝐴 typewhich
states that 𝐴 is well-formed wrt the type variable environment Ω (i.e. fv(𝐴) ⊆ Ω). We often write

𝑇 for the right-hand side typing 𝑧:𝐴, · for the empty context and Δ,Δ′ for the union of contexts Δ
and Δ′, only defined when Δ and Δ′ are disjoint. We write · ⊢ 𝑃 :: 𝑇 for ·; ·; · ⊢ 𝑃 :: 𝑇 .

Moreover, typing treats processes quotiented by structural congruence – given a well-typed

process Ω; Γ;Δ ⊢ 𝑃 :: 𝑇 , subject reduction ensures that for all possible reductions 𝑃
𝜏→ 𝑃 ′, there

exists a process 𝑄 where 𝑃 ′ ≡ 𝑄 such that Ω; Γ;Δ ⊢ 𝑄 :: 𝑇 . Related properties hold wrt general

transitions 𝑃
𝛼→ 𝑃 ′. We refer the reader to [12, 13] for additional details on this matter.
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As in [12, 13, 50, 76], the typing discipline enforces that channel outputs always have as object a

fresh name, in the style of the internal mobility 𝜋-calculus [63]. We clarify a few of the key rules:

Rule id types a linear forwarding between the sole ambient linear session 𝑥 :𝐴 and the offered

session at channel 𝑧 with the same type (the use of a non-empty Γ context embodies weakening

of persistent resources). Rule ∀R defines the meaning of (impredicative) universal quantification

over session types, stating that a session of type ∀𝑋 .𝐴 inputs a type and then behaves uniformly

as 𝐴; dually, to use such a session (rule ∀L), a process must output a type 𝐵 which then warrants

the use of the session as type 𝐴{𝐵/𝑋 }. Rule⊸R captures session input, where a session of type

𝐴 ⊸ 𝐵 expects to receive a session of type 𝐴 which will then be used to produce a session of

type 𝐵. Dually, session output (rule ⊗R) is achieved by producing a fresh session of type 𝐴 (that

uses a disjoint set of sessions to those of the continuation) and outputting the fresh session along

𝑧, which is then a session of type 𝐵. Rule !R types a process offering a session of type !𝐴 along

channel 𝑧, consisting of a replicated input along 𝑧 which may be triggered an arbitrary (but finite)

number of times. To preserve linearity, the replicated process cannot use any linear sessions. We

note that the !R rule is often called the promotion rule in linear logic literature, whereas rule !L
formalises the idea that a channel 𝑢:𝐴 in the persistent context Γ is the same as a channel 𝑥 :!𝐴 in

the linear context Δ. The use of a persistent session is captured by the copy rule: To use a persistent
session 𝑢 of type 𝐴, a process must output along 𝑢 a fresh linear name 𝑦, triggering the replication

and warranting the linear use of 𝑦 as a session of type 𝐴. Proof-theoretically, copy corresponds

to an instance of dereliction followed by contraction. Linear and persistent session composition is

captured by rules cut and cut!, respectively. The former enables a process that offers a session 𝑥 :𝐴

(using linear sessions in Δ1) to be composed with a process that uses that session (amongst others

in Δ2) to offer 𝑧:𝐶 . The latter allows for a process that uses no linear sessions to be replicated and

thus composed with processes that use the offered session in an unrestricted fashion. As shown in

[11], typing entails Subject Reduction, Global Progress, and Termination.

The key properties of the typing system follow. For any 𝑃 , we define live(𝑃) iff 𝑃 ≡ (a�̃�) (𝜋.𝑄 | 𝑅),
for some set of names �̃�, process 𝑅, and non-replicated guarded process 𝜋.𝑄 . We write 𝑃 ⇓ if there
is no infinite reduction sequence starting from 𝑃 .

Theorem 2.4 (Properties of Well-Typed Processes [11]).

Subject Reduction If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then Ω; Γ;Δ ⊢ 𝑄 :: 𝑧:𝐴.
Global Progress If ⊢ 𝑃 :: 𝑧:1 and live(𝑃), there exists 𝑄 such that 𝑃 → 𝑄 .
Termination/Strong Normalisation If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then 𝑃 ⇓.

Observational Equivalences. We briefly summarise the typed congruence and logical equiva-

lence with polymorphism, giving rise to a suitable notion of relational parametricity in the sense of

Reynolds [59], defined as a contextual logical relation on typed processes [11]. The logical relation

is reminiscent of a typed bisimulation. However, extra care is needed to ensure well-foundedness

due to impredicative type instantiation. As a consequence, the logical relation allows us to reason

about process equivalences where type variables are not instantiated with the same, but rather
related types.

Typed Barbed Congruence (�). We use the typed contextual congruence from [11], which

preserves observable actions, called barbs. In untyped process settings, barbed congruence is

typically defined as the largest equivalence relation on processes, closed under all possible process

contexts and internal actions, that preserves some basic notion of observable, called a barb. In our

setting, following [11], we consider a typed variant of barbed congruence in which the notion

of context is typed. Thus, typed barbed congruence is the largest equivalence relation on typed

processes that is type-respecting, 𝜏-closed, barb-preserving and contextual (for a suitable notion of
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8 Bernardo Toninho and Nobuko Yoshida

typed context). We make these four notions precise. Thus, a relation is contextual if it is closed under
any typed process context. A typed process context consists of a process with a typed hole (these

can be mechanically derived from the typing rules by exhaustively considering all possibilities for

typed holes). We omit the full details of defining typed contexts and refer the reader to the work of

[11] for the full development.

Definition 2.5 (Type-respecting Relations [11]). A type-respecting relation over processes, written

{R𝑆 }𝑆 is defined as a family of relations over processes indexed by typing 𝑆 (i.e., 𝑆 lists the left-hand

context and right-hand typing information for processes in the relation). We often writeR to refer to

the whole family, and write Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 to denote Ω; Γ;Δ ⊢ 𝑃,𝑄 :: 𝑇 and (𝑃,𝑄) ∈ RΩ;Γ;Δ⊢𝑇 .

We say that a type-respecting relation is an equivalence if it satisfies the usual properties of

reflexivity, transitivity and symmetry. In the remainder of this development we often omit “type-

respecting”.

Definition 2.6 (𝜏-closed [11]). Relation R is 𝜏-closed if Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 and 𝑃 → 𝑃 ′ imply there

exists a 𝑄 ′ such that 𝑄 =⇒ 𝑄 ′ and Ω; Γ;Δ ⊢ 𝑃 ′R𝑄 ′ :: 𝑇 .
Our definition of basic observable on processes, or barb, is given below.

Definition 2.7 (Barbs [11]). Let 𝑂𝑥 = {𝑥, 𝑥, 𝑥 .inl, 𝑥 .inr, 𝑥 .inl, 𝑥 .inr} be the set of basic observables
under name 𝑥 . Given a well-typed process 𝑃 , we write:

(i) barb(𝑃, 𝑥), if 𝑃
(a𝑦)𝑥 ⟨𝑦⟩
→ 𝑃 ′;

(ii) barb(𝑃, 𝑥), if 𝑃
𝑥 ⟨𝐴⟩
→ 𝑃 ′, for some 𝐴, 𝑃 ′;

(iii) barb(𝑃, 𝑥), if 𝑃
𝑥 (𝐴)
→ 𝑃 ′, for some 𝐴, 𝑃 ′;

(iv) barb(𝑃, 𝑥), if 𝑃
𝑥 (𝑦)
→ 𝑃 ′, for some 𝑦, 𝑃 ′;

(v) barb(𝑃, 𝛼), if 𝑃 𝛼→ 𝑃 ′, for some 𝑃 ′ and 𝛼 ∈ 𝑂𝑥 \ {𝑥, 𝑥}.
Given some 𝑜 ∈ 𝑂𝑥 , we write wbarb(𝑃, 𝑜) if there exists a 𝑃 ′ such that 𝑃 =⇒ 𝑃 ′ and barb(𝑃 ′, 𝑜)
holds.

Definition 2.8 (Barb preserving relation). Relation R is a barb preserving if, for every name 𝑥 ,

Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 and barb(𝑃, 𝑜) imply wbarb(𝑄,𝑜), for any 𝑜 ∈ 𝑂𝑥 .

Definition 2.9 (Contextuality). A relation R is contextual if Ω; Γ;Δ ⊢ 𝑃R𝑄 :: 𝑇 implies Ω; Γ;Δ′ ⊢
C[𝑃] R C[𝑄] :: 𝑇 ′, for every Δ′ 𝑇 ′ and typed context C.
Definition 2.10 (Barbed Congruence). Barbed congruence, noted �, is the largest equivalence on

well-typed processes symmetric type-respecting relation that is 𝜏-closed, barb preserving, and

contextual.

Logical Equivalence (≈L). The definition of logical equivalence is no more than a typed con-

textual bisimulation with the following intuitive reading: given two open processes 𝑃 and 𝑄 (i.e.

processes with non-empty left-hand side typings), we define their equivalence by inductively

closing out the context, composing with equivalent processes offering appropriately typed sessions.

When processes are closed, we have a single distinguished session channel along which we can

perform observations, and proceed inductively on the structure of the offered session type. We can

then show that such an equivalence satisfies the necessary fundamental properties (Theorem 2.13).

The logical relation is defined using the candidates technique of Girard [24]. In this setting,

an equivalence candidate is a relation on typed processes satisfying basic closure conditions: an

equivalence candidate must be compatible with barbed congruence and closed under forward and

converse reduction.
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Definition 2.11 (Equivalence Candidate). An equivalence candidate R at 𝑧:𝐴 and 𝑧:𝐵, noted R ::

𝑧:𝐴⇔𝐵, is a binary relation on processes such that, for every (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵 both · ⊢ 𝑃 :: 𝑧:𝐴

and · ⊢ 𝑄 :: 𝑧:𝐵 hold, together with the following (we often write (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵 as

𝑃 R𝑄 :: 𝑧:𝐴⇔𝐵):

(1) If (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵, · ⊢ 𝑃 � 𝑃 ′ :: 𝑧:𝐴, and · ⊢ 𝑄 � 𝑄 ′ :: 𝑧:𝐵 then (𝑃 ′, 𝑄 ′) ∈ R :: 𝑧:𝐴⇔𝐵.

(2) If (𝑃,𝑄) ∈ R :: 𝑧:𝐴⇔𝐵 then, for all 𝑃0 such that · ⊢ 𝑃0 :: 𝑧:𝐴 and 𝑃0 =⇒ 𝑃 , we have

(𝑃0, 𝑄) ∈ R :: 𝑧:𝐴⇔𝐵. Symmetrically for 𝑄 .

To define the logical relation we rely on some auxiliary notation, pertaining to the treatment of

type variables arising due to impredicative polymorphism. We write 𝜔 : Ω to denote a mapping 𝜔

that assigns a closed type to the type variables in Ω. We write 𝜔 (𝑋 ) for the type mapped by 𝜔 to

variable 𝑋 . Given two mappings 𝜔 : Ω and 𝜔 ′ : Ω, we define an equivalence candidate assignment

[ between 𝜔 and 𝜔 ′ as a mapping of equivalence candidate [ (𝑋 ) :: −:𝜔 (𝑋 )⇔𝜔 ′(𝑋 ) to the type

variables in Ω, where the particular choice of a distinguished right-hand side channel is delayed
(i.e. to be instantiated later on). We write [ (𝑋 ) (𝑧) for the instantiation of the (delayed) candidate

with the name 𝑧. We write [ : 𝜔⇔𝜔 ′ to denote that [ is a candidate assignment between 𝜔 and 𝜔 ′;
and �̂� (𝑃) to denote the application of mapping 𝜔 to 𝑃 .

We define a sequent-indexed family of process relations, that is, a set of pairs of processes (𝑃,𝑄),
written Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[ : 𝜔⇔𝜔 ′], satisfying some conditions, typed under Ω; Γ;Δ ⊢ 𝑇 , with
𝜔 : Ω, 𝜔 ′ : Ω and [ : 𝜔⇔𝜔 ′. Logical equivalence is defined inductively on the size of the typing

contexts and then on the structure of the right-hand side type.

Definition 2.12 (Logical Equivalence). (Base Case) Given a type 𝐴 and mappings 𝜔,𝜔 ′, [, we
define logical equivalence, noted 𝑃 ≈L 𝑄 :: 𝑧:𝐴[[ : 𝜔⇔𝜔 ′], as the smallest symmetric binary relation

containing all pairs of processes (𝑃,𝑄) such that (i) · ⊢ �̂� (𝑃) :: 𝑧:�̂� (𝐴); (ii) · ⊢ �̂� ′(𝑄) :: 𝑧:�̂� ′(𝐴); and
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10 Bernardo Toninho and Nobuko Yoshida

(iii) satisfies the conditions given below we write 𝑃 ̸→ to denote that 𝑃 cannot reduce):

𝑃 ≈L 𝑄 :: 𝑧:𝑋 [[ : 𝜔⇔𝜔 ′] iff (𝑃,𝑄) ∈ [ (𝑋 ) (𝑧)
𝑃 ≈L 𝑄 :: 𝑧:1[[ : 𝜔⇔𝜔 ′] iff ∀𝑃 ′, 𝑄 ′. (𝑃 =⇒ 𝑃 ′ ∧ 𝑃 ′ ̸→ ∧𝑄 =⇒ 𝑄 ′ ∧𝑄 ′ ̸→) ⇒

(𝑃 ′ ≡! 0 ∧𝑄 ′ ≡! 0)
𝑃 ≈L 𝑄 :: 𝑧:𝐴 ⊸ 𝐵 [[ : 𝜔⇔𝜔 ′] iff ∀𝑃 ′, 𝑦. (𝑃

𝑧 (𝑦)
→ 𝑃 ′) ⇒ ∃𝑄 ′.𝑄

𝑧 (𝑦)
=⇒ 𝑄 ′ 𝑠 .𝑡 .

∀𝑅1, 𝑅2. 𝑅1 ≈L 𝑅2 :: 𝑦:𝐴[[ : 𝜔⇔𝜔 ′]
(a𝑦) (𝑃 ′ | 𝑅1) ≈L (a𝑦) (𝑄 ′ | 𝑅2) :: 𝑧:𝐵 [[ : 𝜔⇔𝜔 ′]

𝑃 ≈L 𝑄 :: 𝑧:𝐴 ⊗ 𝐵 [[ : 𝜔⇔𝜔 ′] iff ∀𝑃 ′, 𝑦. (𝑃
(a𝑦)𝑧 ⟨𝑦⟩
→ 𝑃 ′) ⇒ ∃𝑄 ′.𝑄

(a𝑦)𝑧 ⟨𝑦⟩
=⇒ 𝑄 ′ 𝑠 .𝑡 .

∃𝑃1, 𝑃2, 𝑄1, 𝑄2.𝑃
′ ≡! 𝑃1 | 𝑃2 ∧𝑄 ′ ≡! 𝑄1 | 𝑄2

𝑃1 ≈L 𝑄1 :: 𝑦:𝐴[[ : 𝜔⇔𝜔 ′] ∧ 𝑃2 ≈L 𝑄2 :: 𝑧:𝐵 [[ : 𝜔⇔𝜔 ′]
𝑃 ≈L 𝑄 :: 𝑧:!𝐴[[ : 𝜔⇔𝜔 ′] iff ∀𝑃 ′. (𝑃

𝑧 (𝑦)
→ 𝑃 ′) ⇒ ∃𝑄 ′.𝑄

𝑧 (𝑦)
=⇒ 𝑄 ′∧

𝑃 ′ ≈L 𝑄 ′ :: 𝑦:𝐴[[ : 𝜔⇔𝜔 ′]
𝑃 ≈L 𝑄 :: 𝑧:𝐴 & 𝐵 [[ : 𝜔⇔𝜔 ′] iff

(∀𝑃 ′.(𝑃 𝑧.inl→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inl
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[ : 𝜔⇔𝜔 ′])) ∧

(∀𝑃 ′.(𝑃 𝑧.inr→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inr
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐵 [[ : 𝜔⇔𝜔 ′]))

𝑃 ≈L 𝑄 :: 𝑧:𝐴 ⊕ 𝐵 [[ : 𝜔⇔𝜔 ′] iff

(∀𝑃 ′.(𝑃 𝑧.inl→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inl
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[ : 𝜔⇔𝜔 ′])) ∧

(∀𝑃 ′.(𝑃 𝑧.inr→ 𝑃 ′) ⇒ ∃𝑄 ′.(𝑄 𝑧.inr
=⇒ 𝑄 ′ ∧ 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐵 [[ : 𝜔⇔𝜔 ′]))

𝑃 ≈L 𝑄 :: 𝑧:∀𝑋 .𝐴[[ : 𝜔⇔𝜔 ′] iff ∀𝐵1, 𝐵2, 𝑃
′,R :: −:𝐵1⇔𝐵2. (𝑃

𝑧 (𝐵1)→ 𝑃 ′) implies

∃𝑄 ′.𝑄
𝑧 (𝐵2)
=⇒ 𝑄 ′, 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[ [𝑋 ↦→ R] : 𝜔 [𝑋 ↦→ 𝐵1]⇔𝜔 ′[𝑋 ↦→ 𝐵2]]

𝑃 ≈L 𝑄 :: 𝑧:∃𝑋 .𝐴[[ : 𝜔⇔𝜔 ′] iff ∃𝐵1, 𝐵2,R :: −:𝐵1⇔𝐵2 . (𝑃
𝑧 ⟨𝐵1 ⟩→ 𝑃 ′) implies

∃𝑄 ′.𝑄
𝑧 ⟨𝐵2 ⟩
=⇒ 𝑄 ′, 𝑃 ′ ≈L 𝑄 ′ :: 𝑧:𝐴[[ [𝑋 ↦→ R] : 𝜔 [𝑋 ↦→ 𝐵1]⇔𝜔 ′[𝑋 ↦→ 𝐵2]]

(Inductive Case) Let Γ,Δ be non empty. Given Ω; Γ;Δ ⊢ 𝑃 :: 𝑇 and Ω; Γ;Δ ⊢ 𝑄 :: 𝑇 , the binary

relation on processes Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[ : 𝜔⇔𝜔 ′] (with 𝜔,𝜔 ′ : Ω and [ : 𝜔⇔𝜔 ′) is inductively
defined as:

Γ;Δ, 𝑦 : 𝐴 ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[ : 𝜔⇔𝜔 ′] iff ∀𝑅1, 𝑅2. s.t. 𝑅1 ≈L 𝑅2 :: 𝑦:𝐴[[ : 𝜔⇔𝜔 ′],
Γ;Δ ⊢ (a𝑦) (�̂� (𝑃) | �̂� (𝑅1)) ≈L (a𝑦) (�̂� ′(𝑄) | �̂� ′(𝑅2)) :: 𝑇 [[ : 𝜔⇔𝜔 ′]

Γ, 𝑢 : 𝐴;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑇 [[ : 𝜔⇔𝜔 ′] iff ∀𝑅1, 𝑅2. s.t. 𝑅1 ≈L 𝑅2 :: 𝑦:𝐴[[ : 𝜔⇔𝜔 ′],
Γ;Δ ⊢ (a𝑢) (�̂� (𝑃) |!𝑢 (𝑦).�̂� (𝑅1)) ≈L (a𝑢) (�̂� ′(𝑄) |!𝑢 (𝑦).�̂� ′(𝑅2)) :: 𝑇 [[ : 𝜔⇔𝜔 ′]

For the sake of readability we often omit the [ : 𝜔⇔𝜔 ′ portion of ≈L, which is henceforth

implicitly universally quantified. Thus, we write Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴 (or 𝑃 ≈L 𝑄) iff the two

given processes are logically equivalent for all consistent instantiations of its type variables.

It is instructive to inspect the clause for type input (∀𝑋 .𝐴): the two processesmust be able tomatch

inputs of any pair of related types (i.e. types related by a candidate), such that the continuations

are related at the open type 𝐴 with the appropriate type variable instantiations, following Girard

[24]. The power of this style of logical relation arises from a combination of the extensional flavour

of the equivalence and the fact that polymorphic equivalences do not require the same type to

be instantiated in both processes, but rather that the types are related (via a suitable equivalence

candidate relation).

Theorem 2.13 (Properties of Logical Eqivalence [11]).
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Parametricity: If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then, for all 𝜔,𝜔 ′ : Ω and [ : 𝜔⇔𝜔 ′, we have Γ;Δ ⊢
�̂� (𝑃) ≈L 𝜔 ′(𝑃) :: 𝑧:𝐴[[ : 𝜔⇔𝜔 ′].

Soundness: If Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴 then C[𝑃] � C[𝑄] :: 𝑧:𝐴, for any closing C[−].
Completeness: If Ω; Γ;Δ ⊢ 𝑃 � 𝑄 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴.

The contextual nature of logical equivalence (and thus of typed barbed congruence) admits what

may at first seem as exotic equivalences from a concurrency perspective. For instance, the following

can be a valid equivalence: 𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2) ≈L (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑥 (𝑎).𝑃2). To argue why such

prefix commutations are reasonable, we first consider a possible typing for such processes:

·; ·; · ⊢ 𝑃1 :: 𝑏 : 𝐶 ·; ·;𝑎:𝐴, 𝑥 :𝐵 ⊢ 𝑃2 :: 𝑦:𝐷
·; ·;𝑎:𝐴, 𝑥 :𝐵 ⊢ (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2) :: 𝑦:𝐶 ⊗ 𝐷

(⊗R)

·; ·;𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2) :: 𝑦:𝐶 ⊗ 𝐷
(⊗L)

·; ·; · ⊢ 𝑃1 :: 𝑏 : 𝐶

·; ·;𝑎:𝐴, 𝑥 :𝐵 ⊢ 𝑃2 :: 𝑦:𝐷
·; ·;𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑎) .𝑃 :: 𝑦:𝐷

(⊗L)

·; ·;𝑥 :𝐴 ⊗ 𝐵 ⊢ (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑥 (𝑎).𝑃2) :: 𝑦:𝐶 ⊗ 𝐷
(⊗R)

To type the first process we first apply rule ⊗L, receiving on 𝑥 and then rule ⊗R to send on 𝑦

accordingly. To type the second process, we apply the same rules in reverse order. Why is it then

reasonable to equate the two processes through logical equivalence? Both processes are typed

in a context that must provide a session 𝑥 :𝐴 ⊗ 𝐵 so that the processes may offer 𝑦:𝐶 ⊗ 𝐷 . Let us

posit a process 𝑄 :: 𝑥 :𝐴 ⊗ 𝐵, we can compose 𝑄 with the given processes via the cut rule to then

have (a𝑥) (𝑄 | 𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑃2)) and (a𝑥) (𝑄 | (a𝑏)𝑦⟨𝑏⟩.(𝑃1 | 𝑥 (𝑎).𝑃2)), respectively, both
offering 𝑦:𝐶 ⊗𝐷 in the empty context. Now the contextual nature of the equivalence becomes clear:

since both processes are typed in a context requiring 𝑥 :𝐴⊗𝐵, they must be reasoned about as if their

contextual requirements are satisfied. In this setting, the channel 𝑥 is now hidden by the a-binder

and therefore no actions on 𝑥 are visible, only those on 𝑦 (the right-hand side typing). Thus, it is

impossible for any well-typed process (and any well-typed context) to distinguish between the two

processes, and so the equivalence is justified.

We further note that if 𝑃1 ≡ 0 and 𝐶 = 1, we can specialize the equivalence to the seemingly

more exotic 𝑥 (𝑎) .(a𝑏)𝑦⟨𝑏⟩.𝑃2 ≡ (a𝑏)𝑦⟨𝑏⟩.𝑥 (𝑎).𝑃2, or, if 𝐶 = 𝐷 = 1 and 𝑃1 ≡ 0, we can even derive

𝑥 (𝑎).(a𝑏)𝑦⟨𝑏⟩.𝑃2 ≡ (a𝑏)𝑦⟨𝑏⟩.0 | 𝑥 (𝑎).𝑃2. Neither of these are derivable in the general case, albeit

all are perfectly justified given the typed and contextual nature of logical equivalence (and barbed

congruence). A more complete discussion of commuting conversions and their interpretation as

behavioural equivalences can be found in [11, 50, 51].

3 TO LINEAR-F AND BACK
We now develop our mutually inverse and fully abstract encodings between Poly𝜋 and a linear

polymorphic _-calculus [79] that we dub Linear-F. We first introduce the syntax and typing of the

linear _-calculus and then proceed to detail our encodings and their properties (we omit typing

ascriptions from the existential polymorphism constructs for readability).

Definition 3.1 (Linear-F). The syntax of terms𝑀, 𝑁 and types 𝐴, 𝐵 of Linear-F is given below.

𝑀, 𝑁 ::= _𝑥 :𝐴.𝑀 | 𝑀 𝑁 | ⟨𝑀 ⊗ 𝑁 ⟩ | let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 | !𝑀 | let !𝑢 = 𝑀 in𝑁 | Λ𝑋 .𝑀

| 𝑀 [𝐴] | pack𝐴with𝑀 | let (𝑋,𝑦) = 𝑀 in𝑁 | let 1 = 𝑀 in𝑁 | ⟨⟩ | T | F
𝐴, 𝐵 ::= 𝐴 ⊸ 𝐵 | 𝐴 ⊗ 𝐵 | !𝐴 | ∀𝑋 .𝐴 | ∃𝑋 .𝐴 | 𝑋 | 1 | 2
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(var)

Ω; Γ;𝑥 :𝐴 ⊢ 𝑥 :𝐴

(⊸ 𝐼 )

Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑀 : 𝐵

Ω; Γ;Δ ⊢ _𝑥 :𝐴.𝑀 : 𝐴 ⊸ 𝐵

(⊸ 𝐸)

Ω; Γ;Δ ⊢ 𝑀 : 𝐴 ⊸ 𝐵 Ω; Γ;Δ′ ⊢ 𝑁 : 𝐴

Ω; Γ;Δ,Δ′ ⊢ 𝑀 𝑁 : 𝐵

(⊗𝐼 )
Ω; Γ;Δ ⊢ 𝑀 : 𝐴 Ω; Γ;Δ′ ⊢ 𝑁 : 𝐵

Ω; Γ;Δ,Δ′ ⊢ ⟨𝑀 ⊗ 𝑁 ⟩ : 𝐴 ⊗ 𝐵

(⊗𝐸)
Ω; Γ;Δ ⊢ 𝑀 : 𝐴 ⊗ 𝐵 Ω; Γ;Δ′, 𝑥 :𝐴,𝑦:𝐵 ⊢ 𝑁 : 𝐵′

Ω; Γ;Δ,Δ′ ⊢ let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 : 𝐵′

(!𝐼 )
Ω; Γ; · ⊢ 𝑀 : 𝐴

Ω; Γ; · ⊢!𝑀 :!𝐴

(!𝐸)
Ω; Γ;Δ ⊢ 𝑀 :!𝐴 Ω; Γ, 𝑢:𝐴;Δ′ ⊢ 𝑁 : 𝐵

Ω; Γ;Δ,Δ′ ⊢ let !𝑢 = 𝑀 in𝑁 : 𝐵

(uvar)

Ω; Γ, 𝑢:𝐴; · ⊢ 𝑢:𝐴
(∀𝐼 )

Ω, 𝑋 ; Γ;Δ ⊢ 𝑀 : 𝐴

Ω; Γ;Δ ⊢ Λ𝑋 .𝑀 : ∀𝑋 .𝐴

(∀𝐸)
Ω ⊢ 𝐴 type Ω; Γ;Δ ⊢ 𝑀 : ∀𝑋 .𝐵

Ω; Γ;Δ ⊢ 𝑀 [𝐴] : 𝐵{𝐴/𝑋 }
(∃𝐼 )
Ω ⊢ 𝐴 type Ω; Γ;Δ ⊢ 𝑀 : 𝐵{𝐴/𝑋 }
Ω; Γ;Δ ⊢ pack𝐴with𝑀 : ∃𝑋 .𝐵

(∃𝐸)
Ω; Γ;Δ ⊢ 𝑀 : ∃𝑋 .𝐴 Ω, 𝑋 ; Γ;Δ′, 𝑦:𝐴 ⊢ 𝑁 : 𝐵 Ω ⊢ 𝐵 type

Ω; Γ;Δ,Δ′ ⊢ let (𝑋,𝑦) = 𝑀 in𝑁 : 𝐵

(1𝐼 )

Ω; Γ; · ⊢ ⟨⟩ : 1

(1𝐸)
Ω; Γ;Δ ⊢ 𝑀 : 1 Ω; Γ;Δ′ ⊢ 𝑁 : 𝐶

Ω; Γ;Δ,Δ′ ⊢ let 1 = 𝑀 in𝑁 : 𝐶

(2𝐼1)

Ω; Γ; · ⊢ T : 2

(2𝐼2)

Ω; Γ; · ⊢ F : 2

Fig. 3. Linear-F Typing Rules

The syntax of types is that of the multiplicative and exponential fragments of second-order intuition-

istic linear logic. The term assignment is mostly standard: _𝑥 :𝐴.𝑀 denotes linear _-abstractions;

𝑀 𝑁 denotes the application; ⟨𝑀 ⊗ 𝑁 ⟩ denotes the multiplicative pairing of𝑀 and 𝑁 , as reflected

in its elimination form let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 which simultaneously deconstructs the pair𝑀 , binding

its first and second projection to 𝑥 and 𝑦 in 𝑁 , respectively; !𝑀 denotes a term 𝑀 that does not

use any linear variables and so may be used an arbitrary number of times; let !𝑢 = 𝑀 in𝑁 binds

the underlying exponential term of 𝑀 as 𝑢 in 𝑁 ; Λ𝑋 .𝑀 is the type abstraction former; 𝑀 [𝐴]
stands for type application; pack𝐴with𝑀 is the existential type introduction form, where𝑀 is a

term where the existentially typed variable is instantiated with 𝐴; let (𝑋,𝑦) = 𝑀 in𝑁 unpacks an

existential package𝑀 , binding the representation type to 𝑋 and the underlying term to 𝑦 in 𝑁 ; the

multiplicative unit 1 has as introduction form the nullary pair ⟨⟩ and is eliminated by the construct

let 1 = 𝑀 in𝑁 , where 𝑀 is a term of type 1. Booleans (type 2 with values T and F) are the basic
observable.

The typing judgment in Linear-F is given as Ω; Γ;Δ ⊢ 𝑀 : 𝐴, following the DILL formulation

of linear logic [5], stating that term 𝑀 has type 𝐴 in a linear context Δ (i.e. bindings for linear

variables 𝑥 :𝐵), intuitionistic context Γ (i.e. binding for intuitionistic variables 𝑢:𝐵) and type variable

context Ω. The typing rules are given in Figure 3.

The operational semantics of the calculus are the expected call-by-name semantics [39, 79], given

in Figure 4. For conciseness we use a evaluation context to codify the various congruence rules,

where 𝐸 [𝑀] stands for the instantiation of the single hole • in context 𝐸 with the term𝑀 . We write

⇓ for the usual evaluation relation.

We write � for the largest typed congruence that is consistent with the observables of type 2 (i.e.
a so-called Morris-style equivalence as in [8]).
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(_𝑥 :𝐴.𝑀) 𝑁 → 𝑀{𝑁 /𝑥} let !𝑢 = !𝑀 in𝑁 → 𝑁 {𝑀/𝑢}

(Λ𝑋 .𝑀) [𝐴] → 𝑀{𝐴/𝑋 } let𝑥 ⊗ 𝑦 = ⟨𝑀1 ⊗ 𝑀2⟩ in𝑁 → 𝑁 {𝑀1/𝑥,𝑀2/𝑦}

let (𝑋,𝑦) = pack𝐴with𝑀 in𝑁 → 𝑁 {𝐴/𝑋,𝑀/𝑦} let 1 = ⟨⟩ in𝑀 → 𝑀

𝑀 → 𝑀 ′

𝐸 [𝑀] → 𝐸 [𝑀 ′]

𝐸 ::= • | 𝐸 𝑀 | let 1 = 𝐸 in𝑀 | let 1 = 𝑀 in𝐸 | let !𝑢 = 𝑀 in𝐸 | let !𝑢 = 𝐸 in𝑀
| let𝑥 ⊗ 𝑦 = 𝐸 in𝑀 | ⟨𝐸 ⊗ 𝑀⟩ | ⟨𝑀 ⊗ 𝐸⟩

Fig. 4. Operational Semantics of Linear-F

3.1 Encoding Linear-F into Session 𝜋-Calculus
We define a translation from Linear-F to Poly𝜋 generalising the one from [70], accounting for

polymorphism and multiplicative pairs. We translate typing derivations of _-terms to those of

𝜋-calculus terms (we omit the full typing derivation for the sake of readability).

Proof theoretically, the _-calculus corresponds to a proof term assignment for natural deduction

presentations of logic, whereas the session 𝜋-calculus from § 2 corresponds to a proof term assign-

ment for sequent calculus. Thus, we obtain a translation from _-calculus to the session 𝜋-calculus

by considering the proof theoretic content of the constructive proof of soundness of the sequent

calculus wrt natural deduction. Following Gentzen [22], the translation from natural deduction to

sequent calculus maps introduction rules to the corresponding right rules and elimination rules to

a combination of the corresponding left rule, cut and/or identity.

Since typing in the session calculus identifies a distinguished channel along which a process offers

a session, the translation of _-terms is parameterised by a “result” channel alongwhich the behaviour

of the _-term is implemented. Given a _-term𝑀 , the process J𝑀K𝑧 encodes the behaviour of𝑀 along

the session channel 𝑧.We enforce that the type 2 of booleans and its two constructors are consistently
translated to their polymorphic Church encodings before applying the translation to Poly𝜋 . Thus,

type 2 is first translated to∀𝑋 .!𝑋⊸ !𝑋⊸𝑋 , the value T toΛ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑥
and the value F to Λ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑦. Such representations of the booleans

are adequate up to parametricity [10] and suitable for our purposes of relating the session calculus

(which has no primitive notion of value or result type) with the _-calculus precisely due to the

tight correspondence between the two calculi.

Definition 3.2 (From Linear-F to Poly𝜋). JΩK; JΓK; JΔK ⊢ J𝑀K𝑧 :: 𝑧:𝐴 denotes the translation of

contexts, types and terms from Linear-F to the polymorphic session calculus. The translations

on contexts and types are the identity function. Booleans and their values are first translated to

their (typed) Church encodings, that is, type 2 is translated to type ∀𝑋 .!𝑋⊸ !𝑋⊸𝑋 , the value T to

Λ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑥 and value F to Λ𝑋 ._𝑢:!𝑋 ._𝑣 :!𝑋 .let !𝑥 = 𝑢 in let !𝑦 = 𝑣 in𝑦,
as specified above. The translation on _-terms is given below:
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J𝑥K𝑧 ≜ [𝑥 ↔ 𝑧] J𝑀 𝑁 K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | (a𝑦)𝑥 ⟨𝑦⟩.(J𝑁 K𝑦 | [𝑥 ↔ 𝑧]))
J𝑢K𝑧 ≜ (a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧] Jlet !𝑢 = 𝑀 in𝑁 K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧 {𝑥/𝑢})
J_𝑥 :𝐴.𝑀K𝑧 ≜ 𝑧 (𝑥).J𝑀K𝑧 J⟨𝑀 ⊗ 𝑁 ⟩K𝑧 ≜ (a𝑦)𝑧⟨𝑦⟩.(J𝑀K𝑦 | J𝑁 K𝑧)
J!𝑀K𝑧 ≜ !𝑧 (𝑥).J𝑀K𝑥 Jlet𝑥 ⊗ 𝑦 = 𝑀 in𝑁 K𝑧 ≜ (a𝑦) (J𝑀K𝑦 | 𝑦 (𝑥).J𝑁 K𝑧)
JΛ𝑋 .𝑀K𝑧 ≜ 𝑧 (𝑋 ).J𝑀K𝑧 J𝑀 [𝐴]K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝐴⟩.[𝑥 ↔ 𝑧])
Jpack𝐴with𝑀K𝑧 ≜ 𝑧⟨𝐴⟩.J𝑀K𝑧 Jlet (𝑋,𝑦) = 𝑀 in𝑁 K𝑧 ≜ (a𝑦) (J𝑀K𝑦 | 𝑦 (𝑋 ).J𝑁 K𝑧)
J⟨⟩K𝑧 ≜ 0 Jlet 1 = 𝑀 in𝑁 K𝑧 ≜ (a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧)

To translate a (linear) _-abstraction _𝑥 :𝐴.𝑀 , which corresponds to the proof term for the introduc-

tion rule for⊸, we map it to the corresponding⊸R rule, thus obtaining a process 𝑧 (𝑥).J𝑀K𝑧 that
inputs along the result channel 𝑧 a channel 𝑥 which will be used in J𝑀K𝑧 to access the function

argument. To encode the application 𝑀 𝑁 , we compose (i.e. cut) J𝑀K𝑥 , where 𝑥 is a fresh name,

with a process that provides the (encoded) function argument by outputting along 𝑥 a channel 𝑦

which offers the behaviour of J𝑁 K𝑦 . After the output is performed, the type of 𝑥 is now that of the

function’s codomain and thus we conclude by forwarding (i.e. the id rule) between 𝑥 and the result

channel 𝑧.

The encoding for polymorphism follows a similar pattern: To encode the abstraction Λ𝑋 .𝑀 , we

receive along the result channel a type that is bound to 𝑋 and proceed inductively. To encode type

application 𝑀 [𝐴] we encode the abstraction 𝑀 in parallel with a process that sends 𝐴 to it, and

forwards accordingly. Finally, the encoding of the existential package pack𝐴with𝑀 maps to an

output of the type 𝐴 followed by the behaviour J𝑀K𝑧 , with the encoding of the elimination form

let (𝑋,𝑦) = 𝑀 in𝑁 composing the translation of the term of existential type 𝑀 with a process

performing the appropriate type input and proceeding as J𝑁 K𝑧 .
Computation in the _-calculus entails substitution of variables with terms whereas commu-

nication in the 𝜋-calculus substitutes names for names. Thus, we observe that the encoding of

𝑀{𝑁 /𝑥} is identified with (a𝑥) (J𝑀K𝑧 | J𝑁 K𝑥 ). Similarly, the encoding of𝑀{𝑁 /𝑢} corresponds to
(a𝑢) (!𝑢 (𝑥).J𝑁 K𝑥 | J𝑀K𝑧).

Example 3.3 (Encoding of Linear-F). Consider the following _-term corresponding to a polymor-

phic pairing function (recall that we write 𝑧⟨𝑤⟩.𝑃 for (a𝑤)𝑧⟨𝑤⟩.𝑃 ):
𝑀 ≜ Λ𝑋 .Λ𝑌 ._𝑥 :𝑋 ._𝑦:𝑌 .⟨𝑥 ⊗ 𝑦⟩ and 𝑁 ≜ ((𝑀 [𝐴] [𝐵]𝑀1)𝑀2)

Then we have, with 𝑥 = 𝑥1𝑥2𝑥3𝑥4:

J𝑁 K𝑧 ≡ (a𝑥) ( J𝑀K𝑥1 | 𝑥1⟨𝐴⟩.[𝑥1 ↔ 𝑥2] | 𝑥2⟨𝐵⟩.[𝑥2 ↔ 𝑥3] |
𝑥3⟨𝑥⟩.(J𝑀1K𝑥 | [𝑥3 ↔ 𝑥4]) | 𝑥4⟨𝑦⟩.(J𝑀2K𝑦 | [𝑥4 ↔ 𝑧]))

≡ (a𝑥) ( 𝑥1 (𝑋 ).𝑥1 (𝑌 ).𝑥1 (𝑥).𝑥1 (𝑦).𝑥1⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑥1]) | 𝑥1⟨𝐴⟩.[𝑥1 ↔ 𝑥2] |
𝑥2⟨𝐵⟩.[𝑥2 ↔ 𝑥3] | 𝑥3⟨𝑥⟩.(J𝑀1K𝑥 | [𝑥3 ↔ 𝑥4]) | 𝑥4⟨𝑦⟩.(J𝑀2K𝑦 | [𝑥4 ↔ 𝑧]))

We can observe that 𝑁 →+ (((_𝑥 :𝐴._𝑦:𝐵.⟨𝑥 ⊗ 𝑦⟩)𝑀1)𝑀2) →+ ⟨𝑀1 ⊗ 𝑀2⟩. At the process level,
each reduction corresponding to the redex of type application is simulated by two reductions,

obtaining:

J𝑁 K𝑧 →+ (a𝑥3, 𝑥4) ( 𝑥3 (𝑥).𝑥3 (𝑦).𝑥3⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑥3]) |
𝑥3⟨𝑥⟩.(J𝑀1K𝑥 | [𝑥3 ↔ 𝑥4]) | 𝑥4⟨𝑦⟩.(J𝑀2K𝑦 | [𝑥4 ↔ 𝑧])) = 𝑃

The reductions corresponding to the 𝛽-redexes clarify the way in which the encoding repre-

sents substitution of terms for variables via fine-grained name passing. Consider J⟨𝑀1 ⊗𝑀2⟩K𝑧 ≜
𝑧⟨𝑤⟩.(J𝑀1K𝑤 | J𝑀2K𝑧) and

𝑃 →+ (a𝑥,𝑦) (J𝑀1K𝑥 | J𝑀2K𝑦 | 𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]))
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The encoding of the pairing of𝑀1 and𝑀2 outputs a fresh name𝑤 which will denote the behaviour

of (the encoding of)𝑀1, and then the behaviour of the encoding of𝑀2 is offered on 𝑧. The reduct

of 𝑃 outputs a fresh name 𝑤 which is then identified with 𝑥 and thus denotes the behaviour of

J𝑀1K𝑤 . The channel 𝑧 is identified with 𝑦 and thus denotes the behaviour of J𝑀2K𝑧 , making the

two processes listed above equivalent. This informal reasoning exposes the insights that justify the

operational correspondence of the encoding. Proof-theoretically, these equivalences simply map to

commuting conversions which push the processes J𝑀1K𝑥 and J𝑀2K𝑧 under the output on 𝑧.

We note that in Theorem 3.5 (and in the subsequent development) we distinguish between the

soundness and completeness directions of operational correspondence (c.f. [25]).

Lemma 3.4 (Compositionality).

(1) Let Ω; Γ;Δ1, 𝑥 :𝐴 ⊢ 𝑀 : 𝐵 and Ω; Γ;Δ2 ⊢ 𝑁 : 𝐴. We have that Ω; Γ;Δ1,Δ2 ⊢ J𝑀{𝑁 /𝑥}K𝑧 ≈L
(a𝑥) (J𝑀K𝑧 | J𝑁 K𝑥 ) :: 𝑧:𝐵.

(2) LetΩ; Γ, 𝑢:𝐴;Δ ⊢ 𝑀 : 𝐵 andΩ; Γ; · ⊢ 𝑁 : 𝐴. we have thatΩ; Γ;Δ ⊢ J𝑀{𝑁 /𝑢}K𝑧 ≈L (a𝑢) (J𝑀K𝑧 |
!𝑢 (𝑥).J𝑁 K𝑥 ) :: 𝑧:𝐵.

Proof. By induction on the structure of𝑀 , exploiting the fact that commuting conversions and

≡! are sound ≈L equivalences. See Lemma 5.2 for further details. □

Theorem 3.5 (Operational Correspondence). Let Ω; Γ;Δ ⊢ 𝑀 : 𝐴.

Completeness: If𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that J𝑁 K𝑧 ≈L 𝑃
Soundness: If J𝑀K𝑧 → 𝑃 then𝑀 →+ 𝑁 and J𝑁 K𝑧 ≈L 𝑃

3.2 Encoding Session 𝜋-calculus to Linear-F
Just as the proof theoretic content of the soundness of sequent calculus wrt natural deduction

induces a translation from _-terms to session-typed processes, the completeness of the sequent
calculus wrt natural deduction induces a translation from the session calculus to the _-calculus. For

conciseness, we omit the additive types ⊕ and& from the translation, which can be straightforwardly

considered by adding the corresponding additive pairs and sums to Linear-F. This mapping identifies

sequent calculus right rules with the introduction rules of natural deduction and left rules with

elimination rules combined with (type-preserving) substitution. Crucially, the mapping is defined

on typing derivations, enabling us to consistently identify when a process uses a session (i.e. left

rules) or, dually, when a process offers a session (i.e. right rules). The encoding makes use of the

two admissible substitution principles denoted by the following rules:

(subst)

Ω; Γ;Δ1, 𝑥 :𝐵 ⊢ 𝑀 : 𝐴 Ω; Γ;Δ2 ⊢ 𝑁 : 𝐵

Ω; Γ;Δ1,Δ2 ⊢ 𝑀{𝑁 /𝑥} : 𝐴

(subst
!
)

Ω; Γ, 𝑢:𝐵;Δ ⊢ 𝑀 : 𝐴 Ω; Γ; · ⊢ 𝑁 : 𝐵

Ω; Γ;Δ ⊢ 𝑀{𝑁 /𝑢} : 𝐴

Definition 3.6 (From Poly𝜋 to Linear-F). We write LΩM; LΓM; LΔM ⊢ L𝑃M : 𝐴 for the translation from

typing derivations in Poly𝜋 to derivations in Linear-F. The translations on types and contexts

are the identity function. The translation on processes is given below, where the leftmost column

indicates the typing rule at the root of the derivation (Figures 5 and 6 list the translation on typing
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16 Bernardo Toninho and Nobuko Yoshida

derivations, where we write L𝑃MΩ;Γ;Δ⊢𝑧:𝐴 to denote the translation of Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴).

(id) L[𝑥 ↔ 𝑦]M ≜ 𝑥 (copy) L(a𝑥)𝑢⟨𝑥⟩.𝑃M ≜ L𝑃M{𝑢/𝑥}
(1R) L0M ≜ ⟨⟩ (1L) L𝑃M ≜ let 1 = 𝑥 in L𝑃M
(⊸R) L𝑧 (𝑥) .𝑃M ≜ _𝑥 :𝐴.L𝑃M (⊸L) L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄)M ≜ L𝑄M{(𝑥 L𝑃M)/𝑥}
(⊗R) L(a𝑥)𝑧⟨𝑥⟩.(𝑃 | 𝑄)M ≜ ⟨L𝑃M ⊗ L𝑄M⟩ (⊗L) L𝑥 (𝑦).𝑃M ≜ let𝑥 ⊗ 𝑦 = 𝑥 in L𝑃M
(!R) L!𝑧 (𝑥).𝑃M ≜ !L𝑃M (!L) L𝑃{𝑢/𝑥}M ≜ let !𝑢 = 𝑥 in L𝑃M
(∀R) L𝑧 (𝑋 ) .𝑃M ≜ Λ𝑋 .L𝑃M (∀L) L𝑥 ⟨𝐵⟩.𝑃M ≜ L𝑃M{(𝑥 [𝐵])/𝑥}
(∃R) L𝑧⟨𝐵⟩.𝑃M ≜ pack𝐵with L𝑃M (∃L) L𝑥 (𝑌 ).𝑃M ≜ let (𝑌, 𝑥) = 𝑥 in L𝑃M
(cut) L(a𝑥) (𝑃 | 𝑄)M ≜ L𝑄M{L𝑃M/𝑥} (cut!) L(a𝑢) (!𝑢 (𝑥) .𝑃 | 𝑄)M ≜ L𝑄M{L𝑃M/𝑢}

For instance, the encoding of a process 𝑧 (𝑥).𝑃 :: 𝑧:𝐴 ⊸ 𝐵, typed by rule ⊸R, results in the

corresponding⊸ 𝐼 introduction rule in the _-calculus and thus is _𝑥 :𝐴.L𝑃M. To encode the process

(a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄), typed by rule⊸L, we make use of substitution: Given that the sub-process 𝑄 is

typed as Ω; Γ;Δ′, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶 , the encoding of the full process is given by L𝑄M{(𝑥 L𝑃M)/𝑥}. The
term 𝑥 L𝑃M consists of the application of 𝑥 (of function type) to the argument L𝑃M, thus ensuring
that the term resulting from the substitution is of the appropriate type. We note that, for instance,

the encoding of rule ⊗L does not need to appeal to substitution – the _-calculus let style rules can
be mapped directly. Similarly, rule ∀R is mapped to type abstraction, whereas rule ∀L which types

a process of the form 𝑥 ⟨𝐵⟩.𝑃 maps to a substitution of the type application 𝑥 [𝐵] for 𝑥 in L𝑃M. The
encoding of existentials is simpler due to the let-style elimination. We also highlight the encoding

of the cut rule which embodies parallel composition of two processes sharing a linear name, which

clarifies the use/offer duality of the intuitionistic calculus – the process that offers 𝑃 is encoded

and substituted into the encoded user 𝑄 .

Theorem 3.7. If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then LΩM; LΓM; LΔM ⊢ L𝑃M : 𝐴.

Proof. Straightforward induction. The proof follows from the typing derivations of Figures 5

and 6. □

Example 3.8 (Encoding of Poly𝜋 ). Consider the following processes

𝑃 ≜ 𝑧 (𝑋 ).𝑧 (𝑌 ).𝑧 (𝑥).𝑧 (𝑦).𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) 𝑄 ≜ 𝑧⟨1⟩.𝑧⟨1⟩.𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤) .[𝑤 ↔ 𝑟 ]

with ⊢ 𝑃 :: 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗𝑌 and 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗𝑌 ⊢ 𝑄 :: 𝑟 :1, derivable as follows:

𝑋,𝑌 ; ·;𝑥 :𝑋 ⊢ [𝑥 ↔ 𝑤] :: 𝑤 :𝑋 𝑋,𝑌 ; ·;𝑦:𝑌 ⊢ [𝑦 ↔ 𝑧] :: 𝑧:𝑌
𝑋,𝑌 ; ·;𝑥 :𝑋,𝑦:𝑌 ⊢ 𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:𝑋 ⊗ 𝑌

𝑋,𝑌 ; ·;𝑥 :𝑋 ⊢ 𝑧 (𝑦) .𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:𝑌 ⊸ 𝑋 ⊗ 𝑌
𝑋,𝑌 ; ·; · ⊢ 𝑧 (𝑥) .𝑧 (𝑦) .𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌

𝑋 ; ·; · ⊢ 𝑧 (𝑌 ).𝑧 (𝑥).𝑧 (𝑦) .𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌
·; ·; · ⊢ 𝑧 (𝑋 ).𝑧 (𝑌 ) .𝑧 (𝑥) .𝑧 (𝑦) .𝑧⟨𝑤⟩.( [𝑥 ↔ 𝑤] | [𝑦 ↔ 𝑧]) :: 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌

The derivation (read bottom-up) consists of two applications of rule ∀R, two instances of rule⊸R
and one instance of rule ⊗R followed by two uses of the identity rule.
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785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

On Polymorphic Sessions and Functions 17

L(1R)Ω; Γ; · ⊢ 0 :: 𝑧:1 M ≜ (1𝐼 )Ω; Γ; · ⊢ ⟨⟩ : 1

L(1L)Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :1 ⊢ 𝑃 :: 𝑧:𝐶
M ≜ (1𝐸)Ω; Γ;𝑥 :1 ⊢ 𝑥 : 1 Ω; Γ;Δ ⊢ L𝑃MΩ;Γ;Δ⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :1 ⊢ let 1 = 𝑥 in L𝑃MΩ;Γ;Δ⊢𝑧:𝐶 : 𝐶

L(id)Ω; Γ;𝑥 :𝐴 ⊢ [𝑥 ↔ 𝑧 ] :: 𝑧:𝐴 M ≜ (var)Ω; Γ;𝑥 :𝐴 ⊢ 𝑥 :𝐴

L(!R)Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴

Ω; Γ; · ⊢ !𝑧 (𝑥) .𝑃 :: 𝑧:!𝐴
M ≜ (!𝐼 )Ω; Γ; · ⊢ L𝑃MΩ;Γ;·⊢𝑥 :𝐴 : 𝐴

Ω; Γ; · ⊢ !L𝑃MΩ;Γ;·⊢𝑧:!𝐴 :!𝐴

L(⊸R)
Ω; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐵

Ω; Γ;Δ ⊢ 𝑧 (𝑥) .𝑃 :: 𝑧:𝐴 ⊸ 𝐵 M ≜ (⊸ 𝐼 )
Ω; Γ;Δ, 𝑥 :𝐴 ⊢ L𝑃MΩ,Γ;Δ,𝑥 :𝐴⊢𝑧:𝐵 : 𝐵

Ω; Γ;Δ ⊢ _𝑥 :𝐴.L𝑃MΩ,Γ;Δ,𝑥 :𝐴⊢𝑧:𝐵 : 𝐴 ⊸ 𝐵

L(⊸L)
Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑦:𝐴 Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄) :: 𝑧:𝐶 M ≜
(subst)

Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐵⊢𝑧:𝐶 : 𝐶

(⊸ 𝐸)
Ω; Γ;𝑥 :𝐴 ⊸ 𝐵 ⊢ 𝑥 :𝐴 ⊸ 𝐵 Ω; Γ;Δ1 ⊢ L𝑃MΩ;Γ;Δ1⊢𝑦:𝐴 : 𝐴

Ω; Γ;Δ1, 𝑥 :𝐴 ⊸ 𝐵 ⊢ 𝑥 L𝑃MΩ;Γ;Δ1⊢𝑦:𝐴 : 𝐵

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐵⊢𝑧:𝐶 {(𝑥 L𝑃MΩ;Γ;Δ1⊢𝑦:𝐴)/𝑥 } : 𝐶

L(⊗R)Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ;Δ2 ⊢ 𝑄 :: 𝑧:𝐵

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥)𝑧 ⟨𝑥 ⟩.(𝑃 | 𝑄) :: 𝑧:𝐴 ⊗ 𝐵
M ≜ (⊗𝐼 )Ω; Γ;Δ1 ⊢ L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴 : 𝐴 Ω; Γ;Δ2 ⊢ L𝑄MΩ;Γ;Δ2⊢𝑧:𝐵 : 𝐵

Ω; Γ;Δ1,Δ2 ⊢ ⟨L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴⊗L𝑄MΩ;Γ;Δ2⊢𝑧:𝐵 ⟩ : 𝐴 ⊗ 𝐵

L(⊗L)Ω; Γ;Δ, 𝑦:𝐴.𝑥 :𝐵 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑦) .𝑃 :: 𝑧:𝐶
M ≜ (⊗𝐸)Ω; Γ;𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 : 𝐴 ⊗ 𝐵 Ω; Γ;Δ, 𝑦:𝐴,𝑥 :𝐵 ⊢ L𝑃MΩ;Γ;Δ,𝑦:𝐴.𝑥 :𝐵⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :𝐴 ⊗ 𝐵 ⊢ let𝑥 ⊗ 𝑦 = 𝑥 in L𝑃MΩ;Γ;Δ,𝑦:𝐴.𝑥 :𝐵⊢𝑧:𝐶 : 𝐶

Fig. 5. Translation on Typing Derivations from Poly𝜋 to Linear-F (Part 1)
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18 Bernardo Toninho and Nobuko Yoshida

L(!L) Ω; Γ,𝑢:𝐴;Δ ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :!𝐴 ⊢ 𝑃 {𝑥/𝑢 } :: 𝑧:𝐶 M ≜ (!𝐸) Ω; Γ;𝑥 :!𝐴 ⊢ 𝑥 :!𝐴 Ω; Γ,𝑢:𝐴;Δ ⊢ L𝑃MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :!𝐴 ⊢ let !𝑢 = 𝑥 in L𝑃MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 : 𝐶

L(copy) Ω; Γ,𝑢:𝐴;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ,𝑢:𝐴;Δ ⊢ (a𝑥)𝑢 ⟨𝑥 ⟩.𝑃 :: 𝑧:𝐶 M ≜
(subst)

Ω; Γ,𝑢:𝐴;Δ, 𝑥 :𝐴 ⊢ L𝑃MΩ;Γ,𝑢:𝐴;Δ,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶 Ω; Γ,𝑢:𝐴; · ⊢ 𝑢:𝐴
Ω; Γ,𝑢:𝐴;Δ ⊢ L𝑃MΩ;Γ,𝑢:𝐴;Δ,𝑥 :𝐴⊢𝑧:𝐶 {𝑢/𝑥 } : 𝐶

L(∀R) Ω, 𝑋 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ω; Γ;Δ ⊢ 𝑧 (𝑋 ) .𝑃 :: 𝑧:∀𝑋 .𝐴 M ≜ (∀𝐼 ) Ω, 𝑋 ; Γ;Δ ⊢ L𝑃MΩ,𝑋 ;Γ;Δ⊢𝑧:𝐴 : 𝐴

Ω; Γ;Δ ⊢ Λ𝑋 .L𝑃MΩ,𝑋 ;Γ;Δ⊢𝑧:𝐴 : ∀𝑋 .𝐴

L(∀L) Ω ⊢ 𝐵 type Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑃 :: 𝑧:𝐶 M ≜
(subst)

Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ L𝑃MΩ;Γ;Δ,𝑥 :𝐴{𝐵/𝑋 }⊢𝑧:𝐶 : 𝐶
(∀𝐸)

Ω; Γ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 :∀𝑋 .𝐴 Ω ⊢ 𝐵 type

Ω; Γ;𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 [𝐵 ] : 𝐴{𝐵/𝑋 }
Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ L𝑃MΩ;Γ;Δ,𝑥 :𝐴{𝐵/𝑋 }⊢𝑧:𝐶 {(𝑥 [𝐵 ]/𝑥) } : 𝐶

L(∃R) Ω ⊢ 𝐵 type Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴{𝐵/𝑋 }
Ω; Γ;Δ ⊢ 𝑧 ⟨𝐵⟩.𝑃 :: 𝑧:∃𝑋 .𝐴 M ≜ (∃𝐼 ) Ω ⊢ 𝐵 type Ω; Γ;Δ ⊢ L𝑃MΩ;Γ;Δ⊢𝑧:𝐴{𝐵/𝑋 } : 𝐴{𝐵/𝑋 }

Ω; Γ;Δ ⊢ pack𝐵with L𝑃MΩ;Γ;Δ⊢𝑧:𝐴{𝐵/𝑋 } : ∃𝑋 .𝐴

L(∃L) Ω, 𝑌 ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑃 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∃𝑋 .𝐴 ⊢ 𝑥 (𝑌 ) .𝑃 :: 𝑧:𝐶 M ≜
(∃𝐸)

Ω; Γ;𝑥 :∃𝑌 .𝐴 ⊢ 𝑥 :∃𝑌 .𝐴 Ω, 𝑌 ; Γ;Δ, 𝑥 :𝐴 ⊢ L𝑃MΩ,𝑌 ;Γ;Δ,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶

Ω; Γ;Δ, 𝑥 :∃𝑌 .𝐴 ⊢ let (𝑌, 𝑥) = 𝑥 in L𝑃MΩ,𝑌 ;Γ;Δ,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶

L(cut)Ω; Γ;Δ1 ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃 | 𝑄) :: 𝑧:𝐶
M ≜

(subst)

Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐴⊢𝑧:𝐶 : 𝐶 Ω; Γ;Δ1 ⊢ L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴 : 𝐴

Ω; Γ;Δ1,Δ2 ⊢ L𝑄MΩ;Γ;Δ2,𝑥 :𝐴⊢𝑧:𝐶 {L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴/𝑥 } : 𝐶

L(cut!)Ω; Γ; · ⊢ 𝑃 :: 𝑥 :𝐴 Ω; Γ,𝑢:𝐴;Δ ⊢ 𝑄 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥) .𝑃 | 𝑄) :: 𝑧:𝐶
M ≜ (subst!)Ω; Γ,𝑢:𝐴;Δ ⊢ L𝑄MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 : 𝐶 Ω; Γ; · ⊢ L𝑃MΩ;Γ;Δ1⊢𝑥 :𝐴 : 𝐴

Ω; Γ;Δ ⊢ L𝑄MΩ;Γ,𝑢:𝐴;Δ⊢𝑧:𝐶 {L𝑃MΩ;Γ;·⊢𝑥 :𝐴/𝑢 }

Fig. 6. Translation on Typing Derivations from Poly𝜋 to Linear-F (Part 2)
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· ⊢ 1 type
· ⊢ 1 type

·; ·;𝑤 :1 ⊢ [𝑤 ↔ 𝑟 ] :: 𝑟 :1
·; ·;𝑤 :1, 𝑧:1 ⊢ [𝑤 ↔ 𝑟 ] :: 𝑟 :1

·; ·; 𝑧:1 ⊗ 1 ⊢ 𝑧 (𝑤).[𝑤 ↔ 𝑟 ] :: 𝑟 :1
·; ·; 𝑧:1 ⊸ 1 ⊗ 1 ⊢ 𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟 ] :: 𝑟 :1

·; ·; 𝑧:1 ⊸ 1 ⊸ 1 ⊗ 1 ⊢ 𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟 ] :: 𝑟 :1
·; ·; 𝑧:∀𝑌 .1 ⊸ 𝑌 ⊸ 1 ⊗ 𝑌 ⊢ 𝑧⟨1⟩.𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟 ] :: 𝑟 :1

·; ·; 𝑧:∀𝑋 .∀𝑌 .𝑋 ⊸ 𝑌 ⊸ 𝑋 ⊗ 𝑌 ⊢ 𝑧⟨1⟩.𝑧⟨1⟩.𝑧⟨𝑥⟩.𝑧⟨𝑦⟩.𝑧 (𝑤).[𝑤 ↔ 𝑟 ] :: 𝑟 :1

The typing derivation for𝑄 above is dual to that of 𝑃 : two instances of ∀L, followed by two instances
of⊸L, followed by an instance of ⊗L, 1L and the identity rule.

Then: L𝑃M = Λ𝑋 .Λ𝑌 ._𝑥 :𝑋 ._𝑦:𝑌 .⟨𝑥 ⊗ 𝑦⟩ L𝑄M = let𝑥 ⊗ 𝑦 = 𝑧 [1] [1] ⟨⟩ ⟨⟩ in let 1 = 𝑦 in𝑥
L(a𝑧) (𝑃 | 𝑄)M = let𝑥 ⊗ 𝑦 = (Λ𝑋 .Λ𝑌 ._𝑥 :𝑋 ._𝑦:𝑌 .⟨𝑥 ⊗ 𝑦⟩) [1] [1] ⟨⟩ ⟨⟩ in let 1 = 𝑦 in𝑥

By the behaviour of (a𝑧) (𝑃 | 𝑄), which consists of a sequence of cuts, and its encoding, we have

that L(a𝑧) (𝑃 | 𝑄)M→+ ⟨⟩ and (a𝑧) (𝑃 | 𝑄) →+ 0 = L⟨⟩M.

The reader may at this point be wondering what reasonable properties can a translation from

(typed) 𝜋-calculus processes to polymorphic _-terms have, given that the 𝜋-calculus exhibits non-

determinism that is absent from the _-calculus. However, as is made clear by our developments

in Section 3.3, our type-preserving translation from Poly𝜋 to Linear-F is only possible precisely

because the session discipline effectively erases all forms of non-determinism (in the sense of non-

confluent computations) from the 𝜋-calculus. While the operational semantics of Poly𝜋 processes

does contain forms of non-determinism (sometimes dubbed don’t care non-determinism, as opposed

to don’t know non-determinism), the session typing ensures nonetheless confluence and strong

normalisation [51], as is the case with parallel reduction in typed _-calculus.

Note that typing of Poly𝜋 is implicitly modulo structural equivalence, as in previous work

[12, 13].

In general, the translation of Def. 3.6 can introduce some distance between the immediate
operational behaviour of a process and its corresponding _-term, insofar as the translations of

cuts (and left rules to non let-form elimination rules) make use of substitutions that can take

place deep within the resulting term. Consider the process at the root of the following typing

judgment Δ1,Δ2,Δ3 ⊢ (a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑃2 | 𝑤 (𝑧).0)) :: 𝑤 :1 ⊸ 1, derivable through a

cut on session 𝑥 between instances of⊸R and⊸L, where the continuation process𝑤 (𝑧).0 offers
a session 𝑤 :1 ⊸ 1 (and so must use rule 1L on 𝑥). We have that: (a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑃2 |
𝑤 (𝑧).0)) → (a𝑥,𝑦) (𝑃1 | 𝑃2 | 𝑤 (𝑧).0). However, the translation of the process above results in

the term _𝑧:1.let 1 = ((_𝑦:𝐴.L𝑃1M) L𝑃2M) in let 1 = 𝑧 in ⟨⟩, where the redex that corresponds to the

process reduction is present but hidden under the binder for 𝑧 (corresponding to the input along𝑤 ).

In this sense, the encoding of parallel composition through a (meta-level) substitution can indeed

hide some of the computational behaviour of a process under a binder in the corresponding _-term,

(albeit the encoding L(a𝑥,𝑦) (𝑃1 | 𝑃2 | 𝑤 (𝑧).0)M is 𝛽-equivalent to the _-term above). This is justified

proof theoretically by the commuting conversions of sequent calculus and therefore by contextual

equivalence. An alternative would be to consider a let-binder in the _-calculus that would act as the

translation target of all substitution-style rules (the cuts, copy,⊸L and ∀L rules). In this alternate

formulation, the process above would be translated as let𝑥 = _𝑦:𝐴.L𝑃1M in let𝑥 ′ = 𝑥 L𝑃2M in let 1 =

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.
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𝑥 ′ in _𝑧:1.let 1 = 𝑧 in ⟨⟩, which mirrors the process reduction order more explicitly, at the cost of an

extra-logical construct in the _-calculus.

Thus, to establish a more precise form of operational completeness, without adding extra-logical

constructs to the _-calculus, we consider full 𝛽-reduction, denoted by→𝛽 , i.e. enabling 𝛽-reductions

under binders (such an extension is easily obtained by including evaluation context clauses under

all binding sites in the language). We note that, as argued above, operational correspondence

does not require full 𝛽-reduction, but the results can be established more naturally and precisely

(i.e., without an appeal to contextual equivalence and/or by adding extra-logical features to the

_-calculus).

Theorem 3.9 (Operational Completeness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴. If 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M.

In order to study the soundness direction it is instructive to consider typed process 𝑥 :1 ⊸ 1 ⊢
𝑥 ⟨𝑦⟩.(a𝑧) (𝑧 (𝑤).0 | 𝑧⟨𝑤⟩.0) :: 𝑣 :1 and its translation:

L𝑥 ⟨𝑦⟩.(a𝑧) (𝑧 (𝑤) .0 | 𝑧⟨𝑤⟩.0)M = L(a𝑧) (𝑧 (𝑤).0 | 𝑧⟨𝑤⟩.0)M{(𝑥 ⟨⟩)/𝑥}
= let 1 = (_𝑤 :1.let 1 = 𝑤 in ⟨⟩) ⟨⟩ in let 1 = 𝑥 ⟨⟩ in ⟨⟩

The process above cannot reduce due to the output prefix on 𝑥 , which cannot synchronise with a

corresponding input action since there is no provider for 𝑥 (i.e. the channel is in the left-hand side

context). However, its encoding can exhibit the 𝛽-redex corresponding to the synchronisation along

𝑧, hidden by the prefix on 𝑥 . The corresponding reductions hidden under prefixes in the encoding

can be soundly exposed in the session calculus by appealing to the commuting conversions of linear

logic (e.g. in the process above, the instance of rule⊸L corresponding to the output on 𝑥 can be

commuted with the cut on 𝑧).

As shown in [50], commuting conversions are sound wrt observational equivalence, and thus we

formulate operational soundness through a notion of extended process reduction, which extends

process reduction with the reductions that are induced by commuting conversions. Such a relation

was also used for similar purposes in [8] and in [37], in a classical linear logic setting. For conciseness,

we define extended reduction as a relation on typed processes modulo ≡.

Definition 3.10 (Extended Reduction [8]). We define ↦→ as the type preserving relations on typed

processes modulo ≡ generated by:

(1) C[(a𝑦)𝑥 ⟨𝑦⟩.𝑃] | 𝑥 (𝑦).𝑄 ↦→ C[(a𝑦) (𝑃 | 𝑄)];
(2) C[(a𝑦)𝑥 ⟨𝑦⟩.𝑃] | !𝑥 (𝑦).𝑄 ↦→ C[(a𝑦) (𝑃 | 𝑄)] | !𝑥 (𝑦).𝑄 ; and (3) (a𝑥) (!𝑥 (𝑦) .𝑄) ↦→ 0

where C is a (typed) process context which does not capture the bound name 𝑦.

We highlight that clause (3) above is exactly the reduction of a cut between promotion and

weakening in linear logic.

Theorem 3.11 (Operational Soundness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M → 𝑀 , there exists 𝑄
such that 𝑃 ↦→∗ 𝑄 and L𝑄M =𝛼 𝑀 .

Before addressing the more semantic properties that are detailed in the following sections, it

is important to consider the general landscape of our encodings: Both Poly𝜋 and Linear-F are

extremely proof-theoretically well-behaved, satisfying confluence and strong normalization. In

this sense, our encodings are greatly simplified and inherit significant intrinsic correctness from

typing alone, seeing as the main differences between the two calculi lie in those between natural

deduction and sequent calculi style systems themselves. This is made manifest in our encodings

by the accounting of commutting conversions via behavioural equivalence or full 𝛽-reduction

(alternatively, as discussed above, by considering an extension of the _-calculus with a general

let-binder).
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Any extensions of either system that would weaken their proof-theoretic robustness, e.g. diver-

gence or other forms of effects, would require careful revision of the encodings and their operational

properties. In terms of divergence, a revision of the encoding along the lines detailed above with a

let-binder (and the appropriate recursive constructs) would likely suffice. To consider more general

effects, a framework along the lines of the work [47] would need to be considered, likely foregoing

the logical correspondence. In such a setting, operational correctness can be reestablished although

the status of the semantic properties of Section 3.3 (and subsequent sections) is unclear.

3.3 Inversion and Full Abstraction
Having established the operational preciseness of the encodings to-and-from Poly𝜋 and Linear-F,

we establish our main results for the encodings. Specifically, we show that the encodings are

mutually inverse up-to behavioural equivalence (with fullness as its corollary), which then enables

us to establish full abstraction for both encodings.

Theorem 3.12 (Inverse).

• If Ω; Γ;Δ ⊢ 𝑀 : 𝐴 then Ω; Γ;Δ ⊢ LJ𝑀K𝑧M � 𝑀 : 𝐴

• If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ JL𝑃MK𝑧 ≈L 𝑃 :: 𝑧:𝐴

Corollary 3.13 (Fullness).

• Given Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴, there exists 𝑀 such that Ω; Γ;Δ ⊢ 𝑀 : 𝐴 and Ω; Γ;Δ ⊢ J𝑀K𝑧 ≈L 𝑃 ::

𝑧:𝐴.
• Given Ω; Γ;Δ ⊢ 𝑀 : 𝐴, there exists 𝑃 such that Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and Ω; Γ;Δ ⊢ L𝑃M � 𝑀 : 𝐴.

We now state our full abstraction results. Given two Linear-F terms of the same type, equivalence

in the image of the J−K𝑧 translation can be used as a proof technique for contextual equivalence in

Linear-F. This is called the soundness direction of full abstraction in the literature [26] and proved

by showing the relation generated by J𝑀K𝑧 ≈L J𝑁 K𝑧 forms �; we then establish the completeness
direction by contradiction, using fullness (see Appendix A.2).

Lemma 3.14. Let · ⊢ 𝑀 : 2.𝑀 ⇓ T iff J𝑀K𝑧 ≈L JTK𝑧 :: 𝑧:J2K

Proof. By operational correspondence. □

Theorem 3.15 (Full Abstraction). Ω; Γ;Δ ⊢ 𝑀 � 𝑁 : 𝐴 iff Ω; Γ;Δ ⊢ J𝑀K𝑧 ≈L J𝑁 K𝑧 :: 𝑧:𝐴.

Proof. (Soundness, ⇐) Since � is the largest consistent congruence compatible with the

booleans, let𝑀R𝑁 iff J𝑀K𝑧 ≈L J𝑁 K𝑧 . We show that R is one such relation.

(1) (Congruence) Since ≈L is a congruence, R is a congruence.

(2) (Reduction-closed) Let𝑀 → 𝑀 ′ and J𝑀K𝑧 ≈L J𝑁 K𝑧 . Then we have by operational correspon-

dence (Theorem 3.5) that J𝑀K𝑧 →∗ 𝑃 such that 𝑃 ≈L J𝑀 ′K𝑧 hence J𝑀 ′K𝑧 ≈L J𝑁 K𝑧 , thus R is

reduction closed.

(3) (Compatible with the booleans) Follows from Lemma 3.14.

(Completeness,⇒) Assume to the contrary that𝑀 � 𝑁 : 𝐴 and J𝑀K𝑧 ̸≈L J𝑁 K𝑧 :: 𝑧:𝐴.
Thismeanswe can find a distinguishing context𝑅 such that (a𝑧, 𝑥) (J𝑀K𝑧 | 𝑅) ≈L JTK𝑦 :: 𝑦:J2K and
(a𝑧, 𝑥) (J𝑁 K𝑧 | 𝑅) ≈L JFK𝑦 :: 𝑦:J2K. By Fullness (Theorem 3.13), we have that there exists some 𝐿 such

that J𝐿K𝑦 ≈L 𝑅, thus: (a𝑧, 𝑥) (J𝑀K𝑧 | J𝐿K𝑦) ≈L JTK𝑦 :: 𝑦:J2K and (a𝑧, 𝑥) (J𝑁 K𝑧 | J𝐿K𝑦) ≈L JFK𝑦 :: 𝑦:J2K.
By Theorem 3.15 (Soundness), we have that 𝐿[𝑀] � T and 𝐿[𝑁 ] � F and thus 𝐿[𝑀] � 𝐿[𝑁 ] which
contradicts𝑀 � 𝑁 : 𝐴. □

We can straightforwardly combine the above full abstraction with Theorem 3.12 to obtain full

abstraction of the L−M translation.
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Theorem 3.16 (Full Abstraction). Ω; Γ;Δ ⊢ 𝑃 ≈L 𝑄 :: 𝑧:𝐴 iff Ω; Γ;Δ ⊢ L𝑃M � L𝑄M : 𝐴.

Proof. (Soundness,⇐) Let𝑀 = L𝑃M and 𝑁 = L𝑄M. By Theorem 3.15 (Completeness) we have

J𝑀K𝑧 ≈L J𝑁 K𝑧 . Thus by Theorem 3.12 we have: J𝑀K𝑧 = JL𝑃MK𝑧 ≈L 𝑃 and J𝑁 K𝑧 = JL𝑄MK𝑧 ≈L 𝑄 . By
compatibility with observational equivalence we have 𝑃 ≈L 𝑄 :: 𝑧:𝐴.

(Completeness, ⇒) From 𝑃 ≈L 𝑄 :: 𝑧:𝐴, Theorem 3.12 and compatibility with observational

equivalence we have JL𝑃MK𝑧 ≈L JL𝑄MK𝑧 :: 𝑧:𝐴. Let L𝑃M = 𝑀 and L𝑄M = 𝑁 . We have by Theorem 3.15

(Soundness) that𝑀 � 𝑁 : 𝐴 and thus L𝑃M ≈L L𝑄M : 𝐴. □

4 INDUCTIVE AND COINDUCTIVE SESSION TYPES
In this section we study inductive and coinductive sessions, arising through encodings of initial

𝐹 -algebras and final 𝐹 -coalgebras in the polymorphic _-calculus.

The study of polymorphism in the _-calculus [2, 10, 27, 58] has shown that parametric polymor-

phism is expressive enough to encode both inductive and coinductive types in a precise way, through

a faithful representation of initial and final (co)algebras [40], without extending the language of

terms nor the semantics of the calculus, giving a logical justification to the Church encodings of

inductive datatypes such as lists and natural numbers.

The polymorphic session typing framework of the previous sections allows us to express fairly

intricate communication behaviours, being able to specify generic protocols through both existential

and universal polymorphism (i.e. protocols that are parametric in their sub-protocols). However, it

is often the case that protocols are expressed in terms of recursive behaviours (e.g., a client iterates

over a buy list with a server, a server that repeats a sequence of interactions with a client an arbitrary

number of times until the client chooses to terminate, etc) which are seemingly unavailable in

the framework of Section 2. The introduction of recursive behaviours in the logical-based session

typing framework has been addressed through the introduction of explicit inductive and coinductive

session types [37, 72] and the corresponding process constructs, preserving the good properties of

the framework such as strong normalisation and absence of deadlocks.

However, the study of polymorphism in the _-calculus [2, 10, 27, 58] has shown that parametric

polymorphism is expressive enough to encode both inductive and coinductive types in a precise

way, through a faithful representation of initial and final (co)algebras [40], without extending the

language of terms nor the semantics of the calculus.

Given the logical foundation of the polymorphic session calculus it is natural to wonder if such a

result holds for inductive and coinductive sessions. In this section we answer this question positively
by using our fully abstract encodings of (linear) polymorphic _-calculus to show that session

polymorphism is expressive enough to encode inductive and coinductive sessions, “importing” the

results for the _-calculus through the encodings. The development of this section is a particular

instance of the benefits of our encodings which enable us to import non-trivial results from the

_-calculus to our process setting for free. We first provide a brief recap of the representation of

inductive and coinductive types using polymorphism in System F.

Inductive and Coinductive Types in System F. Exploring an algebraic interpretation of

polymorphism where types are interpreted as functors, it can be shown that given a type 𝐹 with a

free variable 𝑋 that occurs only positively (i.e., occurrences of 𝑋 are on the left-hand side of an

even number of function arrows), the polymorphic type ∀𝑋 .((𝐹 (𝑋 ) → 𝑋 ) → 𝑋 ) forms an initial

𝐹 -algebra [2, 60] (we write 𝐹 (𝑋 ) to denote that 𝑋 may occur in 𝐹 ). This enables the representation

of inductively defined structures using an algebraic or categorical justification. For instance, the

natural numbers can be seen as the initial 𝐹 -algebra of 𝐹 (𝑋 ) = 1 + 𝑋 (where 1 is the unit type

and + is the coproduct), and are thus already present in System F, in a precise sense, as the type

∀𝑋 .((1 + 𝑋 ) → 𝑋 ) → 𝑋 (noting that both 1 and + can also be encoded in System F). A similar
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𝐹 (𝑇𝑖 )
𝐹 (fold[𝐴] (𝑓 ))- 𝐹 (𝐴)

𝑇𝑖

in

? fold[𝐴] (𝑓 ) - 𝐴

𝑓

?

(a)

𝐴
unfold[𝐴] (𝑓 ) - 𝑇𝑓

𝐹 (𝐴)

𝑓

?
𝐹 (unfold[𝐴] (𝑓 ))- 𝐹 (𝑇𝑓 )

out

?

(b)

Fig. 7. Diagrams for Initial 𝐹 -algebras and Final 𝐹 -coalgebras

story can be told for coinductively defined structures, which correspond to final 𝐹 -coalgebras and

are representable with the polymorphic type ∃𝑋 .(𝑋 → 𝐹 (𝑋 )) × 𝑋 , where × is a product type. In

the remainder of this section we assume the positivity requirement on 𝐹 mentioned above.

While the complete formal development of the representation of inductive and coinductive types

in System F would lead us too far astray, we summarise here the key concepts as they apply to the

_-calculus (the interested reader can refer to [27] for the full categorical details).

To show that the polymorphic type 𝑇𝑖 ≜ ∀𝑋 .((𝐹 (𝑋 ) → 𝑋 ) → 𝑋 ) is an initial 𝐹 -algebra, one

exhibits a pair of _-terms, often dubbed fold and in, such that the diagram in Fig. 7(a) commutes

(for any 𝐴, where 𝐹 (𝑓 ), where 𝑓 is a _-term, denotes the functorial action of 𝐹 applied to 𝑓 ), and,

crucially, that fold is unique. When these conditions hold, we are justified in saying that𝑇𝑖 is a least

fixed point of 𝐹 . Through a fairly simple calculation, we have that:

fold ≜ Λ𝑋 ._𝑓 :𝐹 (𝑋 ) → 𝑋 ._𝑡 :𝑇𝑖 .𝑡 [𝑋 ] (𝑓 )
in ≜ _𝑥 :𝐹 (𝑇𝑖 ) .Λ𝑋 ._𝑓 :𝐹 (𝑋 ) → 𝑋 .𝑓 (𝐹 (fold[𝑋 ] (𝑥)) (𝑥))

satisfy the necessary equalities. To show uniqueness one appeals to parametricity, which allows

us to prove that any function of the appropriate type is equivalent to fold. This property is often

dubbed initiality or universality.

The construction of final 𝐹 -coalgebras and their justification as greatest fixed points is dual.

Assuming products in the calculus and taking 𝑇𝑓 ≜ ∃𝑋 .(𝑋 → 𝐹 (𝑋 )) × 𝑋 , we produce the _-terms

unfold ≜ Λ𝑋 ._𝑓 :𝑋 → 𝐹 (𝑋 )._𝑥 :𝑇𝑓 .pack𝑋 with (𝑓 , 𝑥)
out ≜ _𝑡 : 𝑇𝑓 .let (𝑋, (𝑓 , 𝑥)) = 𝑡 in 𝐹 (unfold[𝑋 ] (𝑓 )) (𝑓 (𝑥))

such that the diagram in Fig. 7(b) commutes and unfold is unique (again, up to parametricity).

While the argument above applies to System F, a similar development can be made in Linear-F [10]

by considering 𝑇𝑖 ≜ ∀𝑋 .!(𝐹 (𝑋 ) ⊸ 𝑋 ) ⊸ 𝑋 and 𝑇𝑓 ≜ ∃𝑋 .!(𝑋 ⊸ 𝐹 (𝑋 )) ⊗ 𝑋 . Reusing the same

names for the sake of conciseness, the associated linear _-terms are:

fold ≜ Λ𝑋 ._𝑢:!(𝐹 (𝑋 ) ⊸ 𝑋 )._𝑦:𝑇𝑖 .(𝑦 [𝑋 ] 𝑢) : ∀𝑋 .!(𝐹 (𝑋 ) ⊸ 𝑋 ) ⊸ 𝑇𝑖 ⊸ 𝑋

in ≜ _𝑥 :𝐹 (𝑇𝑖 ) .Λ𝑋 ._𝑦:!(𝐹 (𝑋 ) ⊸ 𝑋 ).let !𝑢 = 𝑦 in𝑘 (𝐹 (fold[𝑋 ] (!𝑢)) (𝑥)) : 𝐹 (𝑇𝑖 ) ⊸ 𝑇𝑖
unfold ≜ Λ𝑋 ._𝑢:!(𝑋 ⊸ 𝐹 (𝑋 )) ._𝑥 :𝑋 .pack𝑋 with ⟨𝑢 ⊗ 𝑥⟩ : ∀𝑋 .!(𝑋 ⊸ 𝐹 (𝑋 )) ⊸ 𝑋 ⊸ 𝑇𝑓

out ≜ _𝑡 : 𝑇𝑓 .let (𝑋, (𝑢, 𝑥)) = 𝑡 in let !𝑓 = 𝑢 in 𝐹 (unfold[𝑋 ] (!𝑓 )) (𝑓 (𝑥)) : 𝑇𝑓 ⊸ 𝐹 (𝑇𝑓 )

Inductive and Coinductive Sessions for Free. As a consequence of full abstraction we may

appeal to the J−K𝑧 encoding to derive representations of fold and unfold that satisfy the necessary

algebraic properties. The derived processes are (recall that we write 𝑥 ⟨𝑦⟩.𝑃 for (a𝑦)𝑥 ⟨𝑦⟩.𝑃 ):

JfoldK𝑧 ≜ 𝑧 (𝑋 ).𝑧 (𝑢).𝑧 (𝑦).(a𝑤) ((a𝑥) ( [𝑦 ↔ 𝑥] | 𝑥 ⟨𝑋 ⟩.[𝑥 ↔ 𝑤]) | 𝑤 ⟨𝑣⟩.( [𝑢 ↔ 𝑣] | [𝑤 ↔ 𝑧]))
JunfoldK𝑧 ≜ 𝑧 (𝑋 ).𝑧 (𝑢).𝑧 (𝑥).𝑧⟨𝑋 ⟩.𝑧⟨𝑦⟩.( [𝑢 ↔ 𝑦] | [𝑥 ↔ 𝑧])
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We can then show universality of the two constructions. We write 𝑃𝑢𝑥,𝑦 to single out that 𝑥 and 𝑦

and 𝑢 are free in 𝑃 and 𝑃 𝑣
𝑧,𝑤 to denote the result of employing capture-avoiding substitution on 𝑃 ,

substituting 𝑥,𝑦,𝑢 by 𝑧,𝑤, 𝑣 , respectively. Let:

foldP(𝐴)𝑢𝑦1,𝑦2 ≜ (a𝑥) (JfoldK𝑥 | 𝑥 ⟨𝐴⟩.𝑥 ⟨𝑣⟩.(𝑢⟨𝑦⟩.[𝑦 ↔ 𝑣] | 𝑥 ⟨𝑧⟩.( [𝑧 ↔ 𝑦1] | [𝑥 ↔ 𝑦2])))
unfoldP(𝐴)𝑢𝑦1,𝑦2 ≜ (a𝑥) (JunfoldK𝑥 | 𝑥 ⟨𝐴⟩.𝑥 ⟨𝑣⟩.(𝑢⟨𝑦⟩.[𝑦 ↔ 𝑣] | 𝑥 ⟨𝑧⟩.( [𝑧 ↔ 𝑦1] | [𝑥 ↔ 𝑦2])))

where foldP(𝐴)𝑢𝑦1,𝑦2 corresponds to the application of fold to an 𝐹 -algebra 𝐴 with the associated

morphism 𝐹 (𝐴) ⊸ 𝐴 available on the shared channel 𝑢, consuming an ambient session 𝑦1:𝑇𝑖 and

offering 𝑦2:𝐴. Similarly, unfoldP(𝐴)𝑢𝑦1,𝑦2 corresponds to the application of unfold to an 𝐹 -coalgebra

𝐴 with the associated morphism 𝐴 ⊸ 𝐹 (𝐴) available on the shared channel 𝑢, consuming an

ambient session 𝑦1:𝐴 and offering 𝑦2:𝑇𝑓 .

Theorem 4.1 (Universality of foldP). Let 𝑄 be a well-typed process such that

𝑋 ;𝑢:𝐹 (𝑋 ) ⊸ 𝑋 ;𝑦1:𝑇𝑖 ⊢ 𝑄 :: 𝑦2:𝑋

for some functor 𝐹 and channels 𝑦1, 𝑦2. We have that:

𝑋 ;𝑢:𝐹 (𝑋 ) ⊸ 𝑋 ;𝑦1:𝑇𝑖 ⊢ 𝑄 ≈L foldP(𝑋 )𝑢𝑦1,𝑦2 :: 𝑦2:𝑋

Proof. By universality of fold we have that fold[𝑋 ] (𝑢) � 𝑀 where 𝑢 :!(𝐹 (𝑋 ) ⊸ 𝑋 ), for any𝑀
of the appropriate type. In particular we have that fold[𝑋 ] (𝑢) � LfoldP(𝑋 )𝑦1,𝑦2M. By full abstraction
(Theorem 3.15) and transitivity we have that Jfold[𝑋 ] (𝑢)K𝑦2 ≈L JLfoldP(𝑋 )𝑢𝑦1,𝑦2MK𝑦2 ≈L J𝑀K𝑦2 . By
the inverse theorem (Theorem 3.12) it follows that foldP(𝑋 )𝑢𝑦1,𝑦2 ≈L J𝑀K𝑦2 . Since the reasoning
holds for any such𝑀 we can conclude by Fullness of the encoding (Corollary 3.13). □

Theorem 4.2 (Universality of unfoldP). Let 𝑄 be a well-typed process 𝐴 an 𝐹 -coalgebra such
that:

·; ·;𝑦1:𝐴 ⊢ 𝑄 :: 𝑦2:𝑇𝑓

we have that
·;𝑢:𝐴 ⊸ 𝐹 (𝐴);𝑦1:𝐴 ⊢ 𝑄 ≈L unfoldP(𝐴)𝑢𝑦1,𝑦2 :: 𝑦2 :: 𝑇𝑓

Proof. By universality of unfold we have that unfold[𝐴] (𝑢) � 𝑀 where 𝑢:!(𝐴 ⊸ 𝐹 (𝐴)),
for any 𝑀 of the appropriate type. We thus have that unfold[𝐴] (𝑢) � LunfoldP(𝐴)𝑢𝑦1,𝑦2M, since
LunfoldP(𝐴)𝑢𝑦1,𝑦2M is one such𝑀 . By full abstraction (Theorem 3.15) and transitivity we have that

Junfold[𝐴] (𝑢)K𝑦2 ≈L JLunfoldP(𝐴)𝑢𝑦1,𝑦2MK𝑦2 ≈L J𝑀K𝑦2 . By the inverse theorem (Theorem 3.12) it

then follows that unfoldP(𝐴)𝑢𝑦1,𝑦2 ≈L J𝑀K𝑦2 . Since the reasoning holds for any such 𝑀 we can

conclude by Fullness of the encoding (Corollary 3.13). □

Example 4.3 (Natural Numbers). We show how to represent the natural numbers as an inductive

session type using 𝐹 (𝑋 ) = 1 ⊕ 𝑋 , making use of in:

zero𝑥 ≜ (a𝑧) (𝑧.inl; 0 | Jin(𝑧)K𝑥 ) succ𝑦,𝑥 ≜ (a𝑠) (𝑠 .inr; [𝑦 ↔ 𝑠] | Jin(𝑠)K𝑥 )

with Nat ≜ ∀𝑋 .!((1 ⊕ 𝑋 ) ⊸ 𝑋 ) ⊸ 𝑋 where ⊢ zero𝑥 :: 𝑥 :Nat and 𝑦:Nat ⊢ succ𝑦,𝑥 :: 𝑥 :Nat encode
the representation of 0 and successor, respectively. The natural 1 would thus be represented by

one𝑥 ≜ (a𝑦) (zero𝑦 | succ𝑦,𝑥 ). The behaviour of type Nat can be seen as a that of a sequence of

internal choices of arbitrary (but finite) length. We can then observe that the foldP process acts as

a recursor. For instance consider:

stepDec𝑑 ≜ 𝑑 (𝑛).𝑛.case(zero𝑑 , [𝑛 ↔ 𝑑]) dec𝑥,𝑧 ≜ (a𝑢) (!𝑢 (𝑑).stepDec𝑑 | foldP(Nat)𝑢𝑥,𝑧)
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with stepDec𝑑 :: 𝑑 :(1 ⊕ Nat) ⊸ Nat and 𝑥 :Nat ⊢ dec𝑥,𝑧 :: 𝑧:Nat, where dec decrements a given

natural number session on channel 𝑥 . We have that:

(a𝑥) (one𝑥 | dec𝑥,𝑧) ≡ (a𝑥,𝑦,𝑢) (zero𝑦 | succ𝑦,𝑥 !𝑢 (𝑑).stepDec𝑑 | foldP(Nat)𝑢𝑥,𝑧) ≈L zero𝑧

We note that the resulting encoding is reminiscent of the encoding of lists of [43] (where zero
is the empty list and succ the cons cell). The main differences in the encodings arise due to our

primitive notions of labels and forwarding, as well as due to the generic nature of in and fold.

Example 4.4 (Streams). We build on Example 4.3 by representing streams of natural numbers

as a coinductive session type. We encode infinite streams of naturals with 𝐹 (𝑋 ) = Nat ⊗ 𝑋 . Thus:

NatStream ≜ ∃𝑋 .!(𝑋 ⊸ (Nat ⊗ 𝑋 )) ⊗ 𝑋 . The behaviour of a session of type NatStream amounts

to an infinite sequence of outputs of channels of type Nat. Such an encoding enables us to construct

the stream of all naturals nats (and the stream of all non-zero naturals oneNats):

genHdNext𝑧 ≜ 𝑧 (𝑛).𝑧⟨𝑦⟩.(𝑛⟨𝑛′⟩.[𝑛′↔ 𝑦] | !𝑧 (𝑤).𝑛⟨𝑛′⟩.succ𝑛′,𝑤)
nats𝑦 ≜ (a𝑥,𝑢) (zero𝑥 | !𝑢 (𝑧).genHdNext𝑧 | unfoldP(!Nat)𝑢𝑥,𝑦)
oneNats𝑦 ≜ (a𝑥,𝑢) (one𝑥 | !𝑢 (𝑧).genHdNext𝑧 | unfoldP(!Nat)𝑢𝑥,𝑦)

with genHdNext𝑧 :: 𝑧:!Nat ⊸ Nat⊗!Nat and both nats𝑦 and oneNats :: 𝑦:NatStream. genHdNext𝑧
consists of a helper that generates the current head of a stream and the next element. As expected,

the following process implements a session that “unrolls” the stream once, providing the head of

the stream and then behaving as the rest of the stream (recall that out : 𝑇𝑓 ⊸ 𝐹 (𝑇𝑓 )).
(a𝑥) (nats𝑥 | Jout(𝑥)K𝑦) :: 𝑦:Nat ⊗ NatStream

We note a peculiarity of the interaction of linearity with the stream encoding: a process that

begins to deconstruct a stream has no way of “bottoming out” and stopping. One cannot, for

instance, extract the first element of a stream of naturals and stop unrolling the stream in a well-

typed way. We can, however, easily encode a “terminating” stream of all natural numbers via

𝐹 (𝑋 ) = (Nat⊗!𝑋 ) by replacing the genHdNext𝑧 with the generator given as:

genHdNextTer𝑧 ≜ 𝑧 (𝑛).𝑧⟨𝑦⟩.(𝑛⟨𝑛′⟩.[𝑛′↔ 𝑦] | !𝑧 (𝑤).!𝑤 (𝑤 ′).𝑛⟨𝑛′⟩.succ𝑛′,𝑤′)

It is then easy to see that a usage of Jout(𝑥)K𝑦 results in a session of type Nat⊗!NatStream,

enabling us to discard the stream as needed. One can replay this argument with the operator

𝐹 (𝑋 ) = (!Nat ⊗ 𝑋 ) to enable discarding of stream elements. Assuming such modifications, we can

then show:

(a𝑦) ((a𝑥) (nats𝑥 | Jout(𝑥)K𝑦) | 𝑦 (𝑛).[𝑦 ↔ 𝑧]) ≈L oneNats𝑧 :: 𝑧:NatStream

5 COMMUNICATING VALUES
We now study encodings for an extension of the core session calculus with term passing (i.e.,

sending and receiving typed _-terms). The core calculus drops polymorphism from Poly𝜋 .

Using the development of term passing (Section 5.1) as a stepping stone, we generalise the

encodings to a higher-order session calculus (Section 5.2), where processes can send, receive and

execute other processes. To obtain such a calculus process passing, you extend the term-passing

fragment with a monadic embedding of processes [71]. Proof theoretically, this calculus is inspired

by Benton’s LNL [6]. We show full abstraction and mutual inversion theorems for the encodings

from higher-order to first-order. As a consequence, we can straightforwardly derive a strong

normalisation property for the higher-order process-passing calculus.
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5.1 Session Processes with Term Passing – Sess𝜋_
We consider a session calculus extended with a data layer obtained from a _-calculus (whose terms

are ranged over by𝑀, 𝑁 and types by 𝜏, 𝜎). We dub this calculus Sess𝜋_.

𝑃,𝑄 ::= · · · | 𝑥 ⟨𝑀⟩.𝑃 | 𝑥 (𝑦).𝑃
𝑀, 𝑁 ::= _𝑥 :𝜏 .𝑀 | 𝑀 𝑁 | 𝑥

𝐴, 𝐵 ::= · · · | 𝜏 ∧𝐴 | 𝜏 ⊃ 𝐴

𝜏, 𝜎 ::= · · · | 𝜏 → 𝜎

Without loss of generality, we consider the data layer to be simply-typed, with a call-by-name

semantics, satisfying the usual type safety properties. The typing judgment for this calculus is

Ψ ⊢ 𝑀 : 𝜏 . We omit session polymorphism for the sake of conciseness, restricting processes to

communication of data and (session) channels. The typing judgment for processes is thus modified

to Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴, where Ψ is an intuitionistic context that accounts for variables in the data layer.

The rules for the relevant process constructs are (all other rules simply propagate the Ψ context

from conclusion to premises):

Ψ ⊢ 𝑀 : 𝜏 Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ψ; Γ;Δ ⊢ 𝑧⟨𝑀⟩.𝑃 :: 𝑧:𝜏 ∧𝐴 (∧R)
Ψ, 𝑦:𝜏 ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ψ; Γ;Δ, 𝑥 :𝜏 ∧𝐴 ⊢ 𝑥 (𝑦).𝑄 :: 𝑧:𝐶
(∧L)

Ψ, 𝑥 :𝜏 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴

Ψ; Γ;Δ ⊢ 𝑧 (𝑥).𝑃 :: 𝑧:𝜏 ⊃ 𝐴
(⊃R)

Ψ ⊢ 𝑀 : 𝜏 Ψ; Γ;Δ, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ψ; Γ;Δ, 𝑥 :𝜏 ⊃ 𝐴 ⊢ 𝑥 ⟨𝑀⟩.𝑄 :: 𝑧:𝐶
(⊃L)

With the reduction rule given by:
1 𝑥 ⟨𝑀⟩.𝑃 | 𝑥 (𝑦).𝑄 → 𝑃 | 𝑄{𝑀/𝑦}. With a simple extension to

our encodings we may eliminate the data layer by encoding the data objects as processes, showing

that from an expressiveness point of view, data communication is orthogonal to the framework.

We note that the data language we are considering is not linear, and the usage discipline of data in

processes is itself also not linear. For instance, the following is a valid typing derivation:

𝑥 :𝜏 ⊢ 𝑥 : 𝜏

𝑥 :𝜏,𝑦:𝜎 ⊢ 𝑥 :𝜏
𝑥 :𝜏 ⊢ _𝑦:𝜎.𝑥 : 𝜎 → 𝜏 𝑥 :𝜏 ; ·; · ⊢ 0 :: 𝑧:1 1R

𝑥 :𝜏 ; ·; · ⊢ 𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 :: 𝑧:(𝜎 → 𝜏) ∧ 1 ∧R

𝑥 :𝜏 ; ·; · ⊢ 𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 :: 𝑧:𝜏 ∧ ((𝜎 → 𝜏) ∧ 1) ∧R

·; ·; · ⊢ 𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 :: 𝑧:𝜏 ⊃ (𝜏 ∧ ((𝜎 → 𝜏) ∧ 1)) ⊃R (1)

The process at the root of the typing derivation above receives a data element of type 𝜏 bound to 𝑥

and uses it in the two subsequent outputs. The first is a simple forwarding of the received term,

whereas the second is that of a non-linear function that discards its argument and returns 𝑥 .

To First-Order Processes. We now introduce our encoding from Sess𝜋_ to Sess𝜋 (the core

calculus without value passing) via an encoding from Lin_ (the simply-typed linear lambda-calculus)

to Sess𝜋 . The encodings are defined inductively on session types, processes, types and _-terms (we

omit the purely inductive cases on session types and processes for conciseness).

The encoding on processes J−K from Sess𝜋_ to Sess𝜋 , is defined on typing derivations, where we
indicate the typing rule at the root of the typing derivation. The encoding J−K𝑧 , from Lin_ to Sess𝜋 ,

follows the same pattern of Section 3.1.

J𝜏 ∧𝐴K ≜!J𝜏K ⊗ J𝐴K J𝜏 ⊃ 𝐴K ≜!J𝜏K ⊸ J𝐴K J𝜏 → 𝜎K ≜!J𝜏K ⊸ J𝜎K

(∧R) J𝑧⟨𝑀⟩.𝑃K ≜ 𝑧⟨𝑥⟩.(!𝑥 (𝑦).J𝑀K𝑦 | J𝑃K) (∧L) J𝑥 (𝑦) .𝑃K ≜ 𝑥 (𝑦).J𝑃K
(⊃R) J𝑧 (𝑥).𝑃K ≜ 𝑧 (𝑥).J𝑃K (⊃L) J𝑥 ⟨𝑀⟩.𝑃K ≜ 𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃K)

J𝑥K𝑧 ≜ 𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧] J_𝑥 :𝜏 .𝑀K𝑧 ≜ 𝑧 (𝑥).J𝑀K𝑧
J𝑀 𝑁 K𝑧 ≜ (a𝑦) (J𝑀K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑁 K𝑤 | [𝑦 ↔ 𝑧]))

1
For simplicity, in this section, we define the process semantics through a reduction relation.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

On Polymorphic Sessions and Functions 27

The encoding addresses the non-linear usage of data elements in processes by encoding the types

𝜏 ∧𝐴 and 𝜏 ⊃ 𝐴 as !J𝜏K ⊗ J𝐴K and !J𝜏K ⊸ J𝐴K, respectively. Thus, sending and receiving of data is

codified as the sending and receiving of channels of type !, which therefore can be used non-linearly.

Moreover, since data terms are themselves non-linear, the 𝜏 → 𝜎 type is encoded as !J𝜏K ⊸ J𝜎K,
following Girard’s embedding of intuitionistic logic in linear logic [23].

At the level of processes, offering a session of type 𝜏 ∧𝐴 (i.e. a process of the form 𝑧⟨𝑀⟩.𝑃 ) is
encoded according to the translation of the type: we first send a fresh name 𝑥 which will be used

to access the encoding of the term 𝑀 . Since 𝑀 can be used an arbitrary number of times by the

receiver, we guard the encoding of𝑀 with a replicated input, proceeding with the encoding of 𝑃

accordingly. Using a session of type 𝜏 ⊃ 𝐴 follows the same principle. The input cases (and the rest

of the process constructs) are completely homomorphic.

The encoding of _-terms follows Girard’s decomposition of the intuitionistic function space [70].

The _-abstraction is translated as input. Since variables in a _-abstraction may be used non-linearly,

the case for variables and application is slightly more intricate: to encode the application 𝑀 𝑁

we compose𝑀 in parallel with a process that will send the “reference” to the function argument

𝑁 which will be encoded using replication, in order to handle the potential for 0 or more usages

of variables in a function body. Respectively, a variable is encoded by performing an output to

trigger the replication and forwarding accordingly. Without loss of generality, we assume variable

names and their corresponding replicated counterparts match, which can be achieved through

𝛼-conversion before applying the translation. We exemplify our encoding as follows:

J𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0K = 𝑧 (𝑥).𝑧⟨𝑤⟩.(!𝑤 (𝑢) .J𝑥K𝑢 | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).J_𝑦:𝜎.𝑥K𝑖 | 0))
= 𝑧 (𝑥).𝑧⟨𝑤⟩.(!𝑤 (𝑢).𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑢] | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).𝑖 (𝑦).𝑥 ⟨𝑡⟩.[𝑡 ↔ 𝑖] | 0))

Properties of the Encoding. We discuss the correctness of our encoding. We can straightfor-

wardly establish that the encoding preserves typing.

Lemma 5.1 (Type Soundness of J−K𝑧 Encoding).
(1) If Ψ ⊢ 𝑀 : 𝜏 then JΨK; · ⊢ J𝑀K𝑧 :: 𝑧:J𝜏K
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JΨK, JΓK; JΔK ⊢ J𝑃K :: 𝑧:J𝐴K

Proof. Straightforward induction on the given typing derivations. □

To show that our encoding is operationally sound and complete, we capture the interaction

between substitution on _-terms and the encoding into processes through logical equivalence.

Consider the following reduction of a process:

(a𝑧) (𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 | 𝑧⟨_𝑤 :𝜏0 .𝑤⟩.𝑃)
→ (a𝑧) (𝑧⟨_𝑤 :𝜏0.𝑤⟩.𝑧⟨(_𝑦:𝜎._𝑤 :𝜏0.𝑤)⟩.0 | 𝑃) (2)

Given that substitution in the target session 𝜋-calculus amounts to renaming, whereas in the

_-calculus we replace a variable for a term, the relationship between the encoding of a substitution

𝑀{𝑁 /𝑥} and the encodings of𝑀 and 𝑁 corresponds to the composition of the encoding of𝑀 with

that of 𝑁 , but where the encoding of 𝑁 is guarded by a replication, codifying a form of explicit

non-linear substitution. We note the contrast with the notions of compositionality for the linear

setting (Lemma 3.4), where we separate shared variable usage, which requires replication, from

linear variable usage, which does not.

Lemma 5.2 (Compositionality). Let Ψ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎 and Ψ ⊢ 𝑁 : 𝜏 . We have that J𝑀{𝑁 /𝑥}K𝑧 ≈L
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦)

Proof. See Appendix A.3.1. □
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Revisiting the process to the left of the arrow in Equation 2 we have:

J(a𝑧) (𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0 | 𝑧⟨_𝑤 :𝜏0 .𝑤⟩.𝑃)K
= (a𝑧) (J𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0K𝑧 | 𝑧⟨𝑥⟩.(!𝑥 (𝑏).J_𝑤 :𝜏0.𝑤K𝑏 | J𝑃K))
→ (a𝑧, 𝑥) (𝑧⟨𝑤⟩.(!𝑤 (𝑢).𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑢] | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).J_𝑦:𝜎.𝑥K𝑖 | 0) | !𝑥 (𝑏).J_𝑤 :𝜏0.𝑤K𝑏 | J𝑃K))

whereas the process to the right of the arrow is encoded as:

J(a𝑧) (𝑧⟨_𝑤 :𝜏0.𝑤⟩.𝑧⟨(_𝑦:𝜎._𝑤 :𝜏0.𝑤)⟩.0 | 𝑃)K
= (a𝑧) (𝑧⟨𝑤⟩.(!𝑤 (𝑢).J_𝑤 :𝜏0.𝑤K𝑢 | 𝑧⟨𝑣⟩.(!𝑣 (𝑖).J_𝑦:𝜎._𝑤 :𝜏0.𝑤K𝑖 | J𝑃K)))

While the reduction of the encoded process and the encoding of the reduct differ syntactically, they

are observationally equivalent – the latter inlines the replicated process behaviour that is accessible

in the former on 𝑥 . Having characterised substitution, we can establish operational soundness and

completeness for the encoding (see Appendix A.3.1 for proofs of Theorems 5.3 and 5.4 below).

Theorem 5.3 (Operational Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Theorem 5.4 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

The process equivalence in Theorems 5.3 and 5.4 above need not be extended to account for data

(although it would be relatively simple to do so), since the processes in the image of the encoding

are fully erased of any data elements.

Back to _-Terms. We extend our encoding of processes to _-terms to Sess𝜋_. Our extended

translation maps Sess𝜋_ processes to Lin_-terms, with the session type 𝜏 ∧𝐴 interpreted as a pair

type where the first component is replicated. Dually, 𝜏 ⊃ 𝐴 is interpreted as a function type where

the domain type is replicated. The remaining session constructs are translated as in Section 3.2. By

a slight abuse of notation, the translation L−M is overloaded, taking Sess𝜋_ processes and types to

Lin_-terms and types, respectively, but also translating the simply-typed _-calculus fragment of

Sess𝜋_ to Lin_.

L𝜏 ∧𝐴M ≜ !L𝜏M ⊗ L𝐴M L𝜏 ⊃ 𝐴M ≜ !L𝜏M ⊸ L𝐴M L𝜏 → 𝜎M ≜ !L𝜏M ⊸ L𝜎M

(∧L) L𝑥 (𝑦).𝑃M ≜ let𝑦 ⊗ 𝑥 = 𝑥 in let !𝑦 = 𝑦 in L𝑃M (∧R) L𝑧⟨𝑀⟩.𝑃M ≜ ⟨!L𝑀M ⊗ L𝑃M⟩
(⊃R) L𝑥 (𝑦).𝑃M ≜ _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑃M (⊃L) L𝑥 ⟨𝑀⟩.𝑃M ≜ L𝑃M{(𝑥 !L𝑀M)/𝑥}

L_𝑥 :𝜏 .𝑀M ≜ _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑀M L𝑀 𝑁 M ≜ L𝑀M !L𝑁 M L𝑥M ≜ 𝑥

The treatment of non-linear components of processes is identical to our previous encoding:

non-linear functions 𝜏 → 𝜎 are translated to linear functions of type !𝜏 ⊸ 𝜎 ; a process offering a

session of type 𝜏 ∧ 𝐴 (i.e. a process of the form 𝑧⟨𝑀⟩.𝑃 , typed by rule ∧R) is translated to a pair

where the first component is the encoding of𝑀 prefixed with ! so that it may be used non-linearly,

and the second is the encoding of 𝑃 . Non-linear variables are handled at the respective binding

sites: a process using a session of type 𝜏 ∧𝐴 is encoded using the elimination form for the pair and

the elimination form for the exponential; similarly, a process offering a session of type 𝜏 ⊃ 𝐴 is

encoded as a _-abstraction where the bound variable is of type !L𝜏M. Thus, we use the elimination

form for the exponential, ensuring that the typing is correct. We illustrate our encoding:

L𝑧 (𝑥).𝑧⟨𝑥⟩.𝑧⟨(_𝑦:𝜎.𝑥)⟩.0M = _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in ⟨!𝑥 ⊗ ⟨!L_𝑦:𝜎.𝑥M ⊗ ⟨⟩⟩⟩
= _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in ⟨!𝑥 ⊗ ⟨!(_𝑦:!L𝜎M.let !𝑦 = 𝑦 in𝑥) ⊗ ⟨⟩⟩⟩
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Properties of the Encoding. Unsurprisingly due to the logical correspondence between natural
deduction and sequent calculus presentations of logic, our encoding satisfies both type soundness

and operational correspondence (c.f. Theorems 3.7, 3.9, and 3.11).

Lemma 5.5 (Type Soundness of L−M Encoding).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then LΨM, LΓM; LΔM ⊢ L𝑃M : L𝐴M
(2) If Ψ ⊢ 𝑀 : 𝜏 then LΨM; · ⊢ L𝑀M : L𝜏M

Proof. Straightforward induction on the given typing derivation. □

As before, we establish operational soundness and completeness of the encoding by appealing to

a notion of compositionality wrt substitution.

Lemma 5.6 (Compositionality).

(1) If Ψ, 𝑥 :𝜏 ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐵 and and Ψ ⊢ 𝑀 : 𝜏 then L𝑃{𝑀/𝑥}M =𝛼 L𝑃M{L𝑀M/𝑥}
(2) If Ψ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎 and Ψ ⊢ 𝑁 : 𝜏 then L𝑀{𝑁 /𝑥}M =𝛼 L𝑀M{L𝑁 M/𝑥}

Proof. By induction on the structure of the given process and term with free variable 𝑥 . □

Mirroring the development of Section 3.2, we make use of extended reduction ↦→ for processes

and full 𝛽-reduction→𝛽 for _-terms (see Appendix A.3.2 for proofs of Theorems 5.7 and 5.8).

Theorem 5.7 (Operational Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+

𝛽
𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Theorem 5.8 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M.
Relating the Two Encodings. We prove the two encodings are mutually inverse and preserve

the full abstraction properties (we write =𝛽 and =𝛽[ for 𝛽- and 𝛽[-equivalence, respectively).

Theorem 5.9 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M.

Proof. We prove the two statements separately in Appendix A.3.3 (Theorems A.3 and A.4,

respectively). □

The equivalences above are formulated between the composition of the encodings applied to 𝑃

(resp.𝑀) and the process (resp. _-term) after applying the translation embedding the non-linear

components into their linear counterparts. This formulation matches more closely that of § 3.3,

which applies to linear calculi for which the target languages of this section are a strict subset

(and avoids the formalisation of process equivalence with terms). We also note that in this setting,

observational equivalence and 𝛽[-equivalence coincide [5, 45]. Moreover, the extensional flavour

of ≈L includes [-like principles at the process level.

Lemma 5.10. Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑉 : 𝜏 with 𝑉 ̸→. J𝑀K𝑧 ≈L J𝑉 K𝑧 iff L𝑀M→∗𝛽[ L𝑉 M

Theorem 5.11 (Full Abstraction).

Let:
(a) · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 ;
(b) · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴.

We have that L𝑀M =𝛽[ L𝑁 M iff J𝑀K𝑧 ≈L J𝑁 K𝑧 and J𝑃K ≈L J𝑄K iff L𝑃M =𝛽[ L𝑄M.
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Proof. Following the development of previous sections, we prove the two statements separately

in Theorems A.5 and A.6, respectively, in Appendix A.3.3. The proof of Theorem A.5 relies on

Lemma 5.10. □

We establish full abstraction for the encoding of _-terms into processes (Theorem 5.11 (1)) in two

steps: The completeness direction (i.e. from left-to-right) follows from operational completeness

and strong normalisation of the _-calculus. The soundness direction uses operational soundness.

The proof of Theorem 5.11(2) uses the same strategy of Theorem 3.16, appealing to the inverse

theorems.

5.2 Higher-Order Session Processes – Sess𝜋_+

We extend the value-passing framework of the previous section, accounting for process-passing

(i.e. the higher-order) in a session-typed setting. As shown in previous work [71], we achieve this

by adding to the data layer a contextual monad that encapsulates (open) session-typed processes

as data values, with a corresponding elimination form in the process layer. We dub this calculus

Sess𝜋_+.

𝑃,𝑄 ::= · · · | 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄 𝑀.𝑁 ::= · · · | {𝑥 ← 𝑃 ← 𝑦𝑖 :𝐴𝑖 }
𝜏, 𝜎 ::= · · · | {𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴}

The type {𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴} is the type of a term which encapsulates an open process that uses the linear

channels 𝑥 𝑗 :𝐴 𝑗 and offers 𝐴 along channel 𝑧. This formulation has the added benefit of formalising

the integration of session-typed processes in a functional language and forms the basis for the

concurrent programming language SILL [53, 71]. The typing rules for the new constructs are (for

simplicity we assume no shared channels in process monads):

Ψ; ·;𝑥𝑖 :𝐴𝑖 ⊢ 𝑃 :: 𝑧:𝐴

Ψ ⊢ {𝑧 ← 𝑃 ← 𝑥𝑖 :𝐴𝑖 } : {𝑥𝑖 :𝐴𝑖 ⊢ 𝑧:𝐴}
{}𝐼

Ψ ⊢ 𝑀 : {𝑥𝑖 :𝐴𝑖 ⊢ 𝑥 :𝐴} Δ1 = 𝑦𝑖 :𝐴𝑖 Ψ; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑄 :: 𝑧:𝐶

Ψ; Γ;Δ1,Δ2 ⊢ 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄 :: 𝑧:𝐶
{}𝐸

Rule {}𝐼 embeds processes in the term language by essentially quoting an open process that

is well-typed according to the type specification in the monadic type. Dually, rule {}𝐸 allows

for processes to use monadic values through composition that consumes some of the ambient

channels in order to provide the monadic term with the necessary context (according to its type).

These constructs are discussed in substantial detail in [71]. The reduction semantics of the process

construct is given by (we tacitly assume that the names 𝑦 and 𝑐 do not occur in 𝑃 and omit the

congruence case):

(𝑐 ← {𝑧 ← 𝑃 ← 𝑥𝑖 :𝐴𝑖 } ← 𝑦𝑖 ;𝑄) → (a𝑐) (𝑃{𝑦/𝑥𝑖 {𝑐/𝑧}} | 𝑄)

The semantics allows for the underlying monadic term𝑀 to evaluate to a (quoted) process 𝑃 . The

process 𝑃 is then executed in parallel with the continuation 𝑄 , sharing the linear channel 𝑐 for

subsequent interactions. We illustrate the higher-order extension with following typed process (we

write {𝑥 ← 𝑃} when 𝑃 does not depend on any linear channels and assume ⊢ 𝑄 :: 𝑑 :Nat ∧ 1):

𝑃 ≜ (a𝑐) (𝑐 ⟨{𝑑 ← 𝑄}⟩.𝑐 (𝑥).0 | 𝑐 (𝑦).𝑑 ← 𝑦;𝑑 (𝑛).𝑐 ⟨𝑛⟩.0) (3)

Process 𝑃 above gives an abstract view of a communication idiom where a process (the left-hand

side of the parallel composition) sends another process 𝑄 which potentially encapsulates some

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

On Polymorphic Sessions and Functions 31

complex computation. The receiver then spawns the execution of the received process and inputs

from it a result value that is sent back to the original sender. An execution of 𝑃 is given by:

𝑃 → (a𝑐) (𝑐 (𝑥).0 | 𝑑 ← {𝑑 ← 𝑄};𝑑 (𝑛).𝑐 ⟨𝑛⟩.0) → (a𝑐) (𝑐 (𝑥).0 | (a𝑑) (𝑄 | 𝑑 (𝑛).𝑐 ⟨𝑛⟩.0))
→+ (a𝑐) (𝑐 (𝑥).0 | 𝑐 ⟨42⟩.0) → 0

Given the seminal work of Sangiorgi [65], such a representation naturally begs the question of

whether or not we can develop a typed encoding of higher-order processes into the first-order

setting. Indeed, we can achieve such an encoding with a fairly simple extension of the encoding of

§ 5 to Sess𝜋_+ by observing that monadic values are processes that need to be potentially provided

with extra sessions in order to be executed correctly. For instance, a term of type {𝑥 :𝐴 ⊢ 𝑦:𝐵}
denotes a process that given a session 𝑥 of type𝐴 will then offer 𝑦:𝐵. Exploiting this observation we

encode this type as the session 𝐴 ⊸ 𝐵, ensuring subsequent usages of such a term are consistent

with this interpretation.

J{𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴}K ≜ J𝐴 𝑗 K ⊸ J𝐴K

J{𝑥 ← 𝑃 ← 𝑦𝑖 }K𝑧 ≜ 𝑧 (𝑦0). . . . .𝑧 (𝑦𝑛) .J𝑃{𝑧/𝑥}K (𝑧 ∉ fn(𝑃))
J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K ≜ (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . . ))

To encode the monadic type {𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑧:𝐴}, denoting the type of process 𝑃 that is typed by

𝑥 𝑗 :𝐴 𝑗 ⊢ 𝑃 :: 𝑧:𝐴, we require that the session in the image of the translation specifies a sequence of

channel inputs with behaviours 𝐴 𝑗 that make up the linear context. After the contextual aspects of

the type are encoded, the session will then offer the (encoded) behaviour of 𝐴. Thus, the encoding

of the monadic type is J𝐴0K ⊸ . . . ⊸ J𝐴𝑛K ⊸ J𝐴K, which we write as J𝐴 𝑗 K ⊸ J𝐴K. The encoding
of monadic expressions adheres to this behaviour, first performing the necessary sequence of

inputs and then proceeding inductively. Finally, the encoding of the elimination form for monadic

expressions behaves dually, composing the encoding of the monadic expression with a sequence

of outputs that instantiate the consumed names accordingly (via forwarding). The encoding of

process 𝑃 from Equation 3 is thus:

J𝑃K = (a𝑐) (J𝑐 ⟨{𝑑 ← 𝑄}⟩.𝑐 (𝑥).0K | J𝑐 (𝑦).𝑑 ← 𝑦;𝑑 (𝑛).𝑐 ⟨𝑛⟩.0K)
= (a𝑐) (𝑐 ⟨𝑤⟩.(!𝑤 (𝑑).J𝑄K | 𝑐 (𝑥).0)𝑐 (𝑦).(a𝑑) (𝑦⟨𝑏⟩.[𝑏 ↔ 𝑑] | 𝑑 (𝑛).𝑐 ⟨𝑚⟩.(𝑛⟨𝑒⟩.[𝑒 ↔𝑚] | 0)))

Properties of the Encoding. As in our previous development, we can show that our encoding

for Sess𝜋_+ is type sound and satisfies operational correspondence (c.f. Appendix A.4.1).

Lemma 5.12 (Type Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 then JΨK; · ⊢ J𝑀K𝑧 :: 𝑧:J𝜏K
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JΨK, JΓK; JΔK ⊢ J𝑃K :: 𝑧:J𝐴K

Proof. By induction on the given typing derivation. □

Theorem 5.13 (Operational Soundness – J−K𝑧 ).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Theorem 5.14 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K
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Back to _-Terms. We encode Sess𝜋_+ into _-terms, extending § 5 with:

L{𝑥𝑖 :𝐴𝑖 ⊢ 𝑧:𝐴}M ≜ L𝐴𝑖M ⊸ L𝐴M
L𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄M ≜ L𝑄M{(L𝑀M𝑦𝑖 )/𝑥} L{𝑥 ← 𝑃 ← 𝑤𝑖 }M ≜ _𝑤0. . . . ._𝑤𝑛 .L𝑃M

The encoding translates the monadic type {𝑥𝑖 :𝐴𝑖 ⊢ 𝑧:𝐴} as a linear function L𝐴𝑖M ⊸ L𝐴M, which
captures the fact that the underlying value must be provided with terms satisfying the requirements

of the linear context. At the level of terms, the encoding for the monadic term constructor follows

its type specification, generating a nesting of _-abstractions that closes the term and proceeding

inductively. For the process encoding, we translate the monadic application construct analogously

to the translation of a linear cut, but applying the appropriate variables to the translated monadic

term (which is of function type). We remark the similarity between our encoding and that of the

previous section, where monadic terms are translated to a sequence of inputs (here a nesting of

_-abstractions). Our encoding satisfies type soundness and operational correspondence, as usual.

Lemma 5.15 (Type Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then LΨM, LΓM; LΔM ⊢ L𝑃M : L𝐴M
(2) If Ψ ⊢ 𝑀 : 𝜏 then LΨM; · ⊢ L𝑀M : L𝜏M

Proof. By induction on the give typing derivation. □

The proofs of operational soundness and completeness are given in Appendix A.4.2. As in the

corresponding encoding from Poly𝜋 to Linear-F, we use full 𝛽-reduction to make the results more

precise and without needing to appeal to extra-logical features such as a general let-binder.

Theorem 5.16 (Operational Soundness – L−M ).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+𝛽 𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Theorem 5.17 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M

As before, we establish that the two encodings are mutually inverse and fully abstract (see

Appendix A.4.3).

Theorem 5.18 (Inverse Encodings). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. Also, if Ψ ⊢ 𝑀 : 𝜏

then LJ𝑀K𝑧M =𝛽 L𝑀M.

Theorem 5.19 (Full Abstraction – Terms). Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 . L𝑀M =𝛽[ L𝑁 M iff
J𝑀K𝑧 ≈L J𝑁 K𝑧 .

Theorem 5.20 (Full Abstraction – Processes). Let · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴. J𝑃K ≈L J𝑄K iff
L𝑃M =𝛽[ L𝑄M.

Further showcasing the applications of our development, we obtain a novel strong normalisation

result for this higher-order session-calculus “for free”, through encoding to the _-calculus.

To achieve this, we rely on a slight modification of the encoding from processes to _-terms by

considering the encoding of derivations ending with the copy rule as follows (we write L−M+ for
this revised encoding):

L(a𝑥)𝑢⟨𝑥⟩.𝑃M+ ≜ let 1 = ⟨⟩ in L𝑃M+{𝑢/𝑥}
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All other cases of the encoding are as before. We now show that the revised encoding preserves all

the desirable properties of the previous sections and then show how we can use it to prove strong

normalisation.

It is immediate that the revised encoding preserves typing. The revised encoding allows us to

formulate a tighter version of operational completeness, where process moves are matched by one

or more 𝛽-reduction steps (as opposed to zero or more):

Theorem 5.21 (Operational Completeness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M+ →+𝛽
L𝑄M+

Proof. See Appendix A.5. □

We remark that with this revised encoding, operational soundness becomes:

Theorem 5.22 (Operational Soundness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M+ → 𝑀 then 𝑃 ↦→∗ 𝑄 such
that L𝑄M→∗ 𝑀 .

Proof. See Appendix A.5. □

The revised encoding remains mutually inverse with the J−K𝑧 encoding.

Theorem 5.23 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃M+K𝑧 ≈L J𝑃K

Having established the key properties of the encoding, we now show strong normalisation.

Theorem 5.24 (Strong Normalisation). Let Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴. There is no infinite reduction
sequence starting from 𝑃 .

Proof. The result follows from the operational completeness result above (Lemma 5.21), which

requires every process reduction to be matched with one or more reductions in the _-calculus. We

can thus prove our result via strong normalisation of→𝛽 : Assume an infinite reduction sequence

𝑃 → 𝑃 ′ → 𝑃 ′′ → . . . , by completeness this implies that there must exist an infinite sequence

L𝑃M→+𝛽 L𝑃 ′M→+𝛽 L𝑃 ′′M→+𝛽 . . . , deriving a contradiction. □

6 RELATEDWORK
Process Encodings of Functions. Toninho et al. [70] study encodings of the simply-typed

_-calculus in a logically motivated session 𝜋-calculus, via encodings to the linear _-calculus, as

a means to explicate various operational semantics. Our work differs since they do not study

polymorphism nor encodings of processes as functions. Moreover, we provide deeper insights

through our applications of the encodings. Full abstraction or inverse properties are not studied.

Sangiorgi [62] uses a fully abstract compilation from the higher-order 𝜋-calculus (HO𝜋 ) to the

𝜋-calculus to study full abstraction for Milner’s encodings of the _-calculus. The work shows that

Milner’s encoding of the lazy _-calculus can be recovered by restricting the semantic domain of

processes (the so-called restrictive approach) or by enriching the _-calculus with suitable constants.

This work was later refined in [64], which does not use HO𝜋 and considers an operational equiva-

lence on _-terms called open applicative bisimulationwhich coincides with Lévy-Longo tree equality.
The work [66] studies general conditions under which encodings of the _-calculus in the 𝜋-calculus

are fully abstract wrt Lévy-Longo and Böhm Trees, which are then applied to several encodings of

(call-by-name) _-calculus. The works above deal with untyped calculi, and so reverse encodings are

unfeasible. In a broader sense, our approach takes the restrictive approach using linear logic-based

session typing and the induced observational equivalence. We use a _-calculus with booleans as

observables and reason with a Morris-style equivalence instead of tree equalities. It would be an

interesting future work to apply the conditions in [66] in our typed setting.
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Recently, Balzer et al. [4] study the problem of encoding untyped asynchronous communication

in a session-typed 𝜋-calculus based on intuitionistic linear logic with manifest sharing by means of

a universal (recursive) session type, akin to that used to encode the untyped _-calculus in typed

_-calculus with recursive types. Their work considers properties of the encoding up-to contextual

closure but does not develop typed behavioral equivalences as we do, leaving open the problems of

full abstraction or completeness. Their work does not develop encodings to or from _-calculi. It

would be interesting to study notions of typed behavioural equivalences in settings with sharing

and recursive types and see the status of their encoding up-to behavioural equivalence. A natural

follow-up of their work would be to study what substructural _-calculus [54, Chapter 1] can

faithfully encode their session typed language.

Wadler [76] shows a correspondence between a linear functional language with session types

GV and a session-typed process calculus with polymorphism based on classical linear logic CP.

Along the lines of this work, Lindley and Morris [37], in an exploration of inductive and coinductive

session types through the addition of least and greatest fixed points to CP and GV, develop an

encoding from a linear _-calculus with session primitives (Concurrent `GV) to a pure linear _-

calculus (Functional `GV) via a CPS transformation. They also develop translations between `CP

and Concurrent `GV, extending [36]. Mapping to the terminology used in our work [25], their

encodings are shown to be operationally complete, but no results are shown for the operational

soundness directions and neither full abstraction nor inverse properties are studied. In addition,

their operational characterisations do not compose across encodings. For instance, while strong

normalisation of Functional `GV implies the same property for Concurrent `GV through their

operationally complete encoding, the encoding from `CP to `GV does not necessarily preserve

this property.

Types for 𝜋-calculi delineate sequential behaviours by restricting composition and name usages,

limiting the contexts in which processes can interact. Therefore typed equivalences offer a coarser
semantics than untyped semantics. Pierce and Sangiorgi [56] first observed semantic consequences

of typed equivalences, demonstrating that the observational congruence under the IO-subtyping

can prove correctness of the optimal version of Milner’s _-encoding. This was impossible in the

𝜋-calculus without controlling IO channel usages by types. After [56], many works on typed 𝜋-

calculi have investigated correctness of Milner’s encodings in order to examine powers of proposed

typing systems.

As an alternative approach, Berger et al. [7] study an affine typing system of the 𝜋-calculus and

examine its expressiveness, showing encodings of call-by-value/name PCFs to be fully abstract. This

work was extended to encode the _-calculus with sum and product types into linear causal types

[78]. Berger et al. [8] further study an encoding of System F in a polymorphic linear 𝜋-calculus,

showing it to be fully abstract. Their typing systems and proofs are much more complex due to

the fine-grained constraints from game semantics. Moreover, none of their work studies a reverse

encoding.

Orchard and Yoshida [47] develop embeddings to-and-from PCF with parallel effects and a

session-typed 𝜋-calculus, but only develop operational correspondence and semantic soundness

results, leaving the full abstraction problem open.

Polymorphism and Typed Behavioural Semantics. The work of [11] studies parametric

session polymorphism for the intuitionistic setting, developing a behavioural equivalence that

captures parametricity, which is used (denoted as ≈L) in our paper. Their work does not address

inductive or coinductive types, which we obtain for free by virtue of our mutually inverse encodings.

The work [56] introduces a typed bisimilarity for polymorphism in the 𝜋-calculus. Their bisimilarity

is of an intensional flavour, whereas the one used in our work follows the extensional style of
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Reynolds [59]. Their typing discipline (originally from [75], which also develops type-preserving

encodings of polymorphic _-calculus into polymorphic 𝜋-calculus) differs significantly from the

linear logic-based session typing of our work (e.g. theirs does not ensure deadlock-freedom). A

key observation in their work is the coarser nature of typed equivalences with polymorphism (in

analogy to those for IO-subtyping [55]) and their interaction with channel aliasing, suggesting

a use of typed semantics and encodings of the 𝜋-calculus for fine-grained analyses of program

behaviour.

In the higher-order process setting, Sangiorgi [61] was the first to propose encodings of process-

passing as channel-passing. Higher-order session calculi and their encodings have been studied in

[35]. Termination for higher-order processes has been studied in [17, 18].

F-Algebras and Linear-F. The use of initial and final (co)algebras to give a semantics to induc-

tive and coinductive types dates back to Mendler [40], with their strong definability in System F

appearing in [2] and [27] (for the parametric PER model of System F in the former and classes

of models in the latter). The definability of inductive and coinductive types using parametricity

also appears in [58] in the context of a logic for parametric polymorphism and later in [10] in a

linear variant of such a logic. The work of [79] studies parametricity for the polymorphic linear

_-calculus of this work, developing encodings of a few inductive types but not the initial (or final)

algebraic encodings in their full generality. Inductive and coinductive session types in a logical

process setting appear in [72] and [37]. Both works consider a calculus with built-in recursion – the

former in an intuitionistic setting where a process that offers a (co)inductive protocol is composed

with another that consumes the (co)inductive protocol and the latter in a classical framework where

composed recursive session types are dual each other.

Recently, Toninho and Yoshida [74] developed a direct encoding of inductive and coinductive

session types in the polymorphic session calculus, justified using the theory of initial algebras and

final co-algebras in a processes-as-morphisms viewpoint. Their work is an alternative formulation

of the development of § 4, where instead of deriving inductive and coinductive session types and

their associated combinators from encodings from System F, inductive and coinductive sessions are

constructed directly in the process language using an algebraic approach, with the construction

being validated through semantic reasoning.

Encoding-Based Programming Language Implementations of Session Types. Encodings
of session types or session 𝜋-calculi have been used to implement session primitives in mainstream

programming languages. See a recent survey in Haskell [46].

In the area of linear logic-based session calculi, we highlight the work [70], which employs

Girard’s original encodings of intuitionistic logic in linear logic to study evaluation strategies in

the _-calculus, giving a logically motivated account of futures. We also highlight the encodings

of Lindley and Morris [36] between a functional language with session primitives (Wadler’s GV)

and a process algebra with sessions, effectively providing a semantics to Wadler’s GV through

the encoding. This, combined with the subsequent encodings of fixed-points [37], can be seen as

the semantic foundation for the works extending the web-based programming language Links

with session types [19, 20, 38]. We further note the addition of session-based concurrency to the

language C0 [69, 77], drawing upon the semantic foundation provided by the encodings for the

intuitionistic setting [70, 73].

In a wider context of session types, Scalas and Yoshida [68] use an encoding of the binary session

calculus into the linear 𝜋-calculus [16] to implement binary session types in Scala. This work is

extended by Scalas et al. [67] to implement multiparty session types in Scala based on the encoding

of the multiparty session 𝜋-calculus into the linear 𝜋-calculus. The encoding of binary session types

in an effect system is used to design a session-typed library in Haskell [47]. In OCaml, Padovani

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Bernardo Toninho and Nobuko Yoshida

[48] implements context free session types providing two kinds of encodings from context free

session types into functional data structures. A different approach is taken in the work of Imai

et al. [34] where session types are encoded leveraging parametric polymorphism in OCaml to

statically ensure linear usage of channels. Extending this approach, Imai et al. [32] propose a library

for global combinators, which are a set of functions for writing and verifying multiparty protocols

in OCaml. By encoding a set of local types to a data structure called a channel vector, local types
are automatically inferred from a global combinator, statically providing linear channel usage in

end-point processes.

7 CONCLUSION AND FUTUREWORK
This work answers the question of what kind of type discipline of the 𝜋-calculus can exactly capture

and is captured by _-calculus behaviours, dating back to Milner [42] who asks “how to exactlymatch

the behavioural semantics induced upon the encodings of the _-calculus with that of the _-calculus”.

Our answer is given by showing the first mutually inverse and fully abstract encodings between two

calculi with polymorphism, one being the Poly𝜋 session calculus based on intuitionistic linear logic,

and the other (a linear) System F. This further demonstrates that the original linear logic-based

articulation of sessions [12] (and subsequent studies e.g. [11, 13, 36, 50, 71, 72, 76]) provides a clear

and applicable tool for a wide range of session-based interactions. By exploiting the proof theoretic

equivalences between natural deduction and sequent calculus we develop mutually inverse and

fully abstract encodings, which naturally extend to more intricate settings such as process passing

(in the sense of HO𝜋 ). Our encodings also enable us to derive properties of the 𝜋-calculi “for

free”. Specifically, we show how to obtain adequate representations of least and greatest fixed

points in Poly𝜋 through the encoding of initial and final (co)algebras in the _-calculus. We also

straightforwardly derive a strong normalisation result for the higher-order session calculus, which

otherwise involves non-trivial proof techniques [8, 11, 17, 18, 50]. Future work includes extensions

to the classical linear logic-based framework, including multiparty session types [14, 15].

Our work thus shows that the session-based interpretation of linear logic is fully compatible with

the standard semantics of (typed) lambda-calculus, allowing us to uniformly represent value passing

and even higher-order process passing. Such results can be seen has both positive and negative: on

one hand, session types in this logically-grounded sense can be seen to be fundamentally not about

non-determinism (in the sense of non-confluent computation) but rather about the well-structuring

of confluent interactive programs, as made clear by full abstraction; on the other hand, our results

show that a functional language with session types based on the session interpretation of linear

logic, e.g. SILL [53, 71]) can include higher-order processes either as primitive or through encoding,

and remain semantically well-behaved.

Following the line of work on shallow embeddings of session types [32–34, 46, 48, 67, 68], we

plan to develop encoding-based implementations of this work as embedded DSLs. This would

potentially enable an exploration of algebraic constructs beyond initial and final co-algebras in a

session programming setting. Exploring a processes-as-morphisms viewpoint, recent work [74]

investigates a direct encodinging of inductive and coinductive session types, justified via the theory

of initial algebras and final co-algebras. The correctness of the encoding (i.e. universality) relies

crucially on parametricity and the associated relational lifting of sessions. We plan to further study

the meaning of functors, natural transformations and related constructions [9] in a session-typed

setting, both from a more fundamental viewpoint but also in terms of programming patterns.
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A APPENDIX
A.1 Proofs for § 3.2 – Encoding from Poly𝜋 to Linear-F

Theorem 3.9 (Operational Completeness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴. If 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M.

Proof. Induction on typing and case analysis on the possibility of reduction.

Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃1 | 𝑃2) :: 𝑧:𝐶
where 𝑃1 → 𝑃 ′

1
or 𝑃2 → 𝑃 ′

2
.

L(a𝑥) (𝑃1 | 𝑃2)M = L𝑃2M{L𝑃1M/𝑥} by definition

Subcase: 𝑃1 → 𝑃 ′
1

(a𝑥) (𝑃1 | 𝑃2) → (a𝑥) (𝑃 ′1 | 𝑃2)
L𝑃1M→∗𝛽 L𝑃 ′

1
M by i.h.

L𝑃2M{L𝑃1M/𝑥} →∗𝛽 L𝑃2M{L𝑃 ′1M/𝑥} by definition

L(a𝑥) (𝑃 ′
1
| 𝑃2)M = L𝑃2M{L𝑃 ′1M/𝑥} by definition

Subcase: 𝑃2 → 𝑃 ′
2

(a𝑥) (𝑃1 | 𝑃2) → (a𝑥) (𝑃1 | 𝑃 ′2)
L𝑃2M→∗𝛽 L𝑃 ′

2
M by i.h.

L𝑃2M{L𝑃1M/𝑥} →∗𝛽 L𝑃 ′
2
M{L𝑃1M/𝑥} by definition

L(a𝑥) (𝑃1 | 𝑃 ′2)M = L𝑃 ′
2
M{L𝑃1M/𝑥} by definition

Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑥 (𝑦).𝑃1 :: 𝑥 :𝐴 ⊸ 𝐵 Ω; Γ;Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2) :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2)) :: 𝑧:𝐶
(a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2)) → (a𝑥) ((a𝑦) (𝑄1 | 𝑃1) | 𝑄2) by reduction

L(a𝑥) (𝑥 (𝑦).𝑃1 | (a𝑦)𝑥 ⟨𝑦⟩.(𝑄1 | 𝑄2))M = (L𝑄2M{(𝑥 L𝑄1M)/𝑥}){(_𝑦.L𝑃1M)/𝑥} by definition

(L𝑄2M{(𝑥 L𝑄1M)/𝑥}){(_𝑦.L𝑃1M)/𝑥} = L𝑄2M{((_𝑦.L𝑃1M) L𝑄1M)/𝑥}
L(a𝑥) ((a𝑦) (𝑄1 | 𝑃1) | 𝑄2)M = L𝑄2M{(L𝑃1M{L𝑄1M/𝑦})/𝑥} by definition

L𝑄2M{((_𝑦.L𝑃1M) L𝑄1M)/𝑥} →𝛽 L𝑄2M{(L𝑃1M{L𝑄1M/𝑦})/𝑥} redex

L(a𝑥) ((a𝑦) (𝑄1 | 𝑃1) | 𝑄2) →∗𝛽 L𝑄2M{(L𝑃1M{L𝑄1M/𝑦})/𝑥} by definition

Case:

(cut)
Ω; Γ;Δ1 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) :: 𝑥 :𝐴 ⊗ 𝐵 Ω; Γ;Δ2, 𝑥 :𝐴 ⊗ 𝐵 ⊢ 𝑥 (𝑦) .𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) ((a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) | 𝑥 (𝑦).𝑄1) :: 𝑧:𝐶
(a𝑥) ((a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) | 𝑥 (𝑦).𝑄1) → (a𝑥) (𝑃2 | (a𝑦) (𝑃1 | 𝑄1)) by reduction

L(a𝑥) ((a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) | 𝑥 (𝑦) .𝑄1)M = let𝑥 ⊗ 𝑦 = ⟨L𝑃2M ⊗ L𝑃1M⟩ in L𝑄1M
L(a𝑥) (𝑃2 | (a𝑦) (𝑃1 | 𝑄1))M = L𝑄1M{L𝑃2M/𝑥}{L𝑃1M/𝑦} by def.

let𝑥 ⊗ 𝑦 = ⟨L𝑃2M ⊗ L𝑃1M⟩ in L𝑄1M→ L𝑄1M{L𝑃2M/𝑥}{L𝑃1M/𝑦}

Case:

(cut!)
Ω; Γ; · ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ, 𝑢:𝐴;Δ ⊢ (a𝑥)𝑢⟨𝑥⟩.𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥)𝑢⟨𝑥⟩.𝑄1) :: 𝑧:𝐶
(a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥)𝑢⟨𝑥⟩.𝑄1) → (a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥) (𝑃1 | 𝑄1)) by reduction

L(a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥)𝑢⟨𝑥⟩.𝑄1)M = L𝑄1M{𝑢/𝑥}{L𝑃1M/𝑢}
= L𝑄1M{L𝑃1M/𝑥, L𝑃1M/𝑢} by def.
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L(a𝑢) (!𝑢 (𝑥).𝑃1 | (a𝑥) (𝑃1 | 𝑄1))M = (L𝑄1M{L𝑃1M/𝑥}){L𝑃1M/𝑢}

Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑥 (𝑌 ).𝑃1 :: 𝑥 :∀𝑌 .𝐴 Ω; Γ;Δ2, 𝑥 :∀𝑌 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑥 (𝑌 ).𝑃1 | 𝑥 ⟨𝐵⟩.𝑄1) :: 𝑧:𝐶
(a𝑥) (𝑥 (𝑌 ).𝑃1 | 𝑥 ⟨𝐵⟩.𝑄1) → (a𝑥) (𝑃1{𝐵1/𝑌 } | 𝑄1) by reduction

L(a𝑥) (𝑥 (𝑌 ).𝑃1 | 𝑥 ⟨𝐵⟩.𝑄1)M = (L𝑄1M{𝑥 [𝐵]/𝑥}){(Λ𝑌 .L𝑃1M)/𝑥}
= L𝑄1M{(Λ𝑌 .L𝑃1M[𝐵])/𝑥} →𝛽 L𝑄1M{L𝑃1M{𝐵1/𝑌 }/𝑥} by definition

L(a𝑥) (𝑃1{𝐵1/𝑌 } | 𝑄1)M = L𝑄1M{L𝑃1M{𝐵1/𝑌 }/𝑥}
Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑥 ⟨𝐵⟩.𝑃1 :: 𝑥 :∃𝑌 .𝐴 Ω; Γ;Δ2, 𝑥 :∃𝑌 .𝐴 ⊢ 𝑥 (𝑌 ).𝑄1 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑥 ⟨𝐵⟩.𝑃1 | 𝑥 (𝑌 ).𝑄1) :: 𝑧:𝐶
(a𝑥) (𝑥 ⟨𝐵⟩.𝑃1 | 𝑥 (𝑌 ).𝑄1) → (a𝑥) (𝑃1 | 𝑄1{𝐵/𝑌 }) by reduction

L(a𝑥) (𝑥 ⟨𝐵⟩.𝑃1 | 𝑥 (𝑌 ).𝑄1)M = let (𝑌, 𝑥) = pack𝐵with L𝑃1M in L𝑄1M by def.

(pack𝐵with L𝑃1ML𝑄1M→𝛽 L𝑄1M{L𝑃1M/𝑥, 𝐵/𝑌 }
L(a𝑥) (𝑃1 | 𝑄1{𝐵/𝑌 })M = L𝑄1M{𝐵/𝑌 }){L𝑃1M/𝑥}

□

Theorem 3.11 (Operational Soundness). Let Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M → 𝑀 , there exists 𝑄
such that 𝑃 ↦→∗ 𝑄 and L𝑄M =𝛼 𝑀 .

Proof. By induction on typing.

Case:

(⊸L)
Ω; Γ;Δ1 ⊢ 𝑃1 :: 𝑦:𝐴 Ω; Γ;Δ2, 𝑥 :𝐵 ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2, 𝑥 :𝐴 ⊸ 𝐵 ⊢ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) :: 𝑧:𝐶
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2)M = L𝑃2M{(𝑥 L𝑃1M)/𝑥} with L𝑃2M{(𝑥 L𝑃1M)/𝑥} = 𝑀 → 𝑀 ′

by assumption

Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃1M
L𝑃1M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M ≡𝛼 𝑀0 by i.h.

(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) ↦→∗ (a𝑦)𝑥 ⟨𝑦⟩.(𝑄0 | 𝑃2) by compatibility of ↦→
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑄0 | 𝑃2)M = L𝑃2M{(𝑥 L𝑄0M)/𝑥} = L𝑃2M{(𝑥 𝑀0)/𝑥}
Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃2M
L𝑃2M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃2 ↦→∗ 𝑄0 and L𝑄0M = 𝑀0 by i.h

(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑃2) ↦→∗ (a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑄0) by compatibility of ↦→
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃1 | 𝑄0)M = L𝑄0M{(𝑥 L𝑃1M)/𝑥} = 𝑀0{𝑥 L𝑃1M)/𝑥}

Case:

(copy)
Ω; Γ, 𝑢:𝐴;Δ, 𝑥 :𝐴 ⊢ 𝑃1 :: 𝑧:𝐶

Ω; Γ, 𝑢:𝐴;Δ ⊢ (a𝑥)𝑢⟨𝑥⟩.𝑃1 :: 𝑧:𝐶
L(a𝑥)𝑢⟨𝑥⟩.𝑃1M = L𝑃1M{𝑢/𝑥} = 𝑀 → 𝑀 ′ by assumption

L𝑃1M→ 𝑀0 by inversion on→
∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

(a𝑥)𝑢⟨𝑥⟩.𝑃1 ↦→∗ (a𝑥)𝑢⟨𝑥⟩.𝑄0 by compatibility

L(a𝑥)𝑢⟨𝑥⟩.𝑄0M = L𝑄0M{𝑢/𝑥} = 𝑀0{𝑢/𝑥}
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Case:

(∀L)
Ω ⊢ 𝐵 type Ω; Γ;Δ, 𝑥 :𝐴{𝐵/𝑋 } ⊢ 𝑃1 :: 𝑧:𝐶

Ω; Γ;Δ, 𝑥 :∀𝑋 .𝐴 ⊢ 𝑥 ⟨𝐵⟩.𝑃1 :: 𝑧:𝐶
L𝑥 ⟨𝐵⟩.𝑃1M = L𝑃1M{𝑥 [𝐵]/𝑥} with L𝑃1M{𝑥 [𝐵]/𝑥} → 𝑀 by assumption

L𝑃1M→ 𝑀0 by inversion

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

𝑥 ⟨𝐵⟩.𝑃1 ↦→∗ 𝑥 ⟨𝐵⟩.𝑄0 by compatibility

L𝑥 ⟨𝐵⟩.𝑄0M = L𝑄0M{𝑥 [𝐵]/𝑥} = 𝑀0{𝑥 [𝐵]/𝑥}
Case:

(cut)
Ω; Γ;Δ1 ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ;Δ2, 𝑥 :𝐴 ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ1,Δ2 ⊢ (a𝑥) (𝑃1 | 𝑃2) :: 𝑧:𝐶
L(a𝑥) (𝑃1 | 𝑃2)M = L𝑃2M{L𝑃1M/𝑥} with L𝑃2M{L𝑃1M/𝑥} = 𝑀 → 𝑀 ′ by assumption

Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃1M
L𝑃1M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

(a𝑥) (𝑃1 | 𝑃2) ↦→∗ (a𝑥) (𝑄0 | 𝑃2) by reduction

L(a𝑥) (𝑄0 | 𝑃2)M = L𝑃2M{L𝑄0M/𝑥} = L𝑃2M{𝑀0/𝑥}
Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃2M
L𝑃2M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃2 ↦→∗ 𝑄0 and L𝑄0M = 𝑀0 by i.h.

(a𝑥) (𝑃1 | 𝑃2) ↦→∗ (a𝑥) (𝑄0 | 𝑃2) by compatibility

L(a𝑥) (𝑃1 | 𝑄0)M = L𝑄0M{L𝑃1M/𝑥} = 𝑀0{L𝑃1M/𝑥}
Subcase:𝑀 → 𝑀 ′ where the redex arises due to the substitution of L𝑃1M for 𝑥
Subsubcase: Last rule of deriv. of 𝑃2 is a left rule on 𝑥 :

In all cases except !L, a top-level process reduction is exposed (viz. Theorem 3.9).

If last rule is !L, then either 𝑥 does not occur in 𝑃2 and we conclude by ↦→.

Subsubcase: Last rule of deriv. of 𝑃2 is not a left rule on 𝑥 :

For rule (id) we have a process reduction immediately. In all other cases either

there is no possible 𝛽-redex or we can conclude via compatibility of ↦→.

Case:

(cut!)
Ω; Γ; · ⊢ 𝑃1 :: 𝑥 :𝐴 Ω; Γ, 𝑢:𝐴;Δ ⊢ 𝑃2 :: 𝑧:𝐶

Ω; Γ;Δ ⊢ (a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑃2) :: 𝑧:𝐶
L(a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑃2)M = L𝑃2M{L𝑃1M/𝑢} with L𝑃2M{L𝑃1M/𝑢} → 𝑀 by assumption

Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃1M
L𝑃1M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃1 ↦→∗ 𝑄0 and L𝑄0M =𝛼 𝑀0 by i.h.

(a𝑢) (!𝑢 (𝑥) .𝑃1 | 𝑃2) ↦→∗ (a𝑢) (!𝑢 (𝑥).𝑄0 | 𝑃2) by compatibility

L(a𝑢) (!𝑢 (𝑥).𝑄0 | 𝑃2)M = L𝑃2M{L𝑄0M/𝑢} = L𝑃2M{𝑀0/𝑢}
Subcase:𝑀 → 𝑀 ′ due to redex in L𝑃2M
L𝑃2M→ 𝑀0 by assumption

∃𝑄0 such that 𝑃2 ↦→∗ 𝑄0 and L𝑄0M = 𝑀0 by i.h.

(a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑃2) ↦→∗ (a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑄0) by compatibility

L(a𝑢) (!𝑢 (𝑥).𝑃1 | 𝑄0)M = L𝑄0M{L𝑃1M/𝑢} = 𝑀0{L𝑃1M/𝑢}
Subcase:𝑀 → 𝑀 ′ where the redex arises due to the substitution of L𝑃1M for 𝑢
If last rule in deriv. of 𝑃2 is copy then we have = terms in 0 process reductions.

Otherwise, the result follows by compatibility of ↦→.
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In all other cases the _-term in the image of the translation does not reduce.

□

A.2 Proofs for § 3.3 – Inversion and Full Abstraction
The proofs below rely on the fact that all commuting conversions of linear logic are sound observa-

tional equivalences in the sense of ≈L.

Theorem 3.12 (Inverse).

• If Ω; Γ;Δ ⊢ 𝑀 : 𝐴 then Ω; Γ;Δ ⊢ LJ𝑀K𝑧M � 𝑀 : 𝐴

• If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ JL𝑃MK𝑧 ≈L 𝑃 :: 𝑧:𝐴

We prove (1) and (2) above separately.

Theorem A.1. If Ω; Γ;Δ ⊢ 𝑀 : 𝐴 then Ω; Γ;Δ ⊢ LJ𝑀K𝑧M � 𝑀 : 𝐴

Proof. By induction on the given typing derivation.

Case: Linear variable
LJ𝑥K𝑧M = 𝑥 � 𝑥

Case: Unrestricted variable

J𝑢K𝑧 = (a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧] by def.

L(a𝑥) (𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧])M = 𝑢 � 𝑢

Case: _-abstraction
J_𝑥 .𝑀K𝑧 = 𝑧 (𝑥) .J𝑀K𝑧 by def.

L𝑧 (𝑥) .J𝑀K𝑧M = _𝑥.LJ𝑀K𝑧M � _𝑥.𝑀 by i.h. and congruence

Case: Application
J𝑀 𝑁 K𝑧 = (a𝑥) (J𝑀K𝑥 | (a𝑦)𝑥 ⟨𝑦⟩.(J𝑁 K𝑦 | [𝑥 ↔ 𝑧])) by def.

L(a𝑥) (J𝑀K𝑥 | (a𝑦)𝑥 ⟨𝑦⟩.(J𝑁 K𝑦 | [𝑥 ↔ 𝑧]))M = LJ𝑀K𝑥 M LJ𝑁 K𝑦M by def.

LJ𝑀K𝑥 M LJ𝑁 K𝑦M � 𝑀 𝑁 by i.h. and congruence

Case: Exponential
J!𝑀K𝑧 =!𝑧 (𝑥).J𝑀K𝑥 by def.

L!𝑧 (𝑥).J𝑀K𝑥 M =!LJ𝑀K𝑥 M � LJ!𝑀K𝑧M by def, i.h. and congruence

Case: Exponential elim.

Jlet !𝑢 = 𝑀 in𝑁 K𝑧 = (a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧{𝑥/𝑢}) by def.

L(a𝑥) (J𝑀K𝑥 | J𝑁 K𝑧{𝑥/𝑢})M = let !𝑢 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M by def.

let !𝑢 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M � let !𝑢 = 𝑀 in𝑁 by congruence and i.h.

Case: Multiplicative Pairing

J⟨𝑀 ⊗ 𝑁 ⟩K𝑧 = (a𝑦)𝑧⟨𝑦⟩.(J𝑀K𝑦 | J𝑁 K𝑧) by def.

L(a𝑦)𝑧⟨𝑦⟩.(J𝑀K𝑦 | J𝑁 K𝑧)M = ⟨LJ𝑀K𝑦M ⊗ LJ𝑁 K𝑧M⟩ by def.

⟨LJ𝑀K𝑦M ⊗ LJ𝑁 K𝑧M⟩ � ⟨𝑀 ⊗ 𝑁 ⟩ by i.h. and congruence

Case: Mult. Pairing Elimination
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Jlet𝑥 ⊗ 𝑦 = 𝑀 in𝑁 K𝑧 = (a𝑦) (J𝑀K𝑥 | 𝑥 (𝑦).J𝑁 K𝑧) by def.

L(a𝑦) (J𝑀K𝑥 | 𝑥 (𝑦).J𝑁 K𝑧)M = let𝑥 ⊗ 𝑦 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M by def.

let𝑥 ⊗ 𝑦 = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M � let𝑥 ⊗ 𝑦 = 𝑀 in𝑁 by i.h. and congruence

Case: Λ-abstraction
LJΛ𝑋 .𝑀K𝑧M = Λ𝑋 .LJ𝑀K𝑧M � Λ𝑋 .𝑀 by i.h. and congruence

Case: Type application
LJ𝑀 [𝐴]K𝑧M = LJ𝑀K𝑧M[𝐴] � 𝑀 [𝐴] by i.h. and congruence

Case: Existential Intro.
LJpack𝐴with𝑀K𝑧M = pack𝐴with LJ𝑀K𝑧M � pack𝐴with𝑀 by i.h. and congruence

Case: Existential Elim.

LJlet (𝑋,𝑦) = 𝑀 in𝑁 K𝑧M = let (𝑋,𝑦) = LJ𝑀K𝑥 M in LJ𝑁 K𝑧M � let (𝑋,𝑦) = 𝑀 in𝑁
by i.h. and congruence

□

Theorem A.2. If Ω; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then Ω; Γ;Δ ⊢ JL𝑃MK𝑧 ≈L 𝑃 :: 𝑧:𝐴

Proof. By induction on the given typing derivation.

Case: (id) or any right rule

Immediate by definition in the case of (id) and by i.h. and congruence in all other cases.

Case: ⊸L
L(a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄)M = L𝑄M{(𝑥 L𝑃M)/𝑥} by def.

JL𝑄M{(𝑥 L𝑃M))/𝑥}K𝑧 ≈L (a𝑎) (J(𝑥 L𝑃M)K𝑎 | JL𝑄MK𝑧{𝑎/𝑥}) by Lemma 3.4, with 𝑎 fresh

= (a𝑎) ((a𝑤) ( [𝑥 ↔ 𝑤] | (a𝑦)𝑤 ⟨𝑦⟩.(JL𝑃MK𝑦 | [𝑤 ↔ 𝑎])) | JL𝑄MK𝑧{𝑎/𝑥}) by def.

→ (a𝑎) ((a𝑦)𝑥 ⟨𝑦⟩.(JL𝑃MK𝑦 | [𝑥 ↔ 𝑎]) | JL𝑄MK𝑧{𝑎/𝑥}) by reduction

≈L (a𝑦)𝑥 ⟨𝑦⟩.(JL𝑃MK𝑦 | JL𝑄MK𝑧) commuting conversion + reduction

≈L (a𝑦)𝑥 ⟨𝑦⟩.(𝑃 | 𝑄) by i.h. + congruence

Case: ⊗L
L𝑥 (𝑦).𝑃M = let𝑥 ⊗ 𝑦 = 𝑥 in L𝑃M by def.

Jlet𝑥 ⊗ 𝑦 = 𝑥 in L𝑃MK𝑧 = (a𝑤) ( [𝑥 ↔ 𝑤] | 𝑤 (𝑦).JL𝑃MK𝑧) by def.

→ 𝑥 (𝑦).JL𝑃MK𝑧 ≈L 𝑥 (𝑦).𝑃 by i.h. and congruence

Case: !L
L𝑃{𝑥/𝑢}M = let !𝑢 = 𝑥 in L𝑃M by def.

Jlet !𝑢 = 𝑥 in L𝑃MK𝑧 = (a𝑤) ( [𝑥 ↔ 𝑤] | JL𝑃MK𝑧{𝑤/𝑢}) by def.

→ JL𝑃MK𝑧{𝑥/𝑢} ≈L 𝑃{𝑥/𝑢} by i.h.

Case: copy
L(a𝑥)𝑢⟨𝑥⟩.𝑃M = L𝑃M{𝑢/𝑥} by def.

JL𝑃M{𝑢/𝑥}K𝑧 ≈L (a𝑥) (𝑢⟨𝑤⟩.[𝑤 ↔ 𝑥] | JL𝑃MK𝑧) by Lemma 3.4

≈L (a𝑥) (𝑢⟨𝑤⟩.[𝑤 ↔ 𝑥] | 𝑃) by i.h. and congruence

≈L (a𝑥)𝑢⟨𝑥⟩.𝑃 by definition of ≈L for open processes

(i.e. closing for 𝑢:𝐴 and observing that no actions on 𝑧 are blocked)
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Case: ∀L
L𝑥 ⟨𝐵⟩.𝑃M = L𝑃M{(𝑥 [𝐵])/𝑥} by def.

JL𝑃M{(𝑥 [𝐵])/𝑥}K𝑧 ≈L (a𝑎) (J𝑥 [𝐵]K𝑎 | JL𝑃MK𝑧{𝑎/𝑥}) by Lemma 3.4, with 𝑎 fresh

(a𝑎) ((a𝑤) ( [𝑥 ↔ 𝑤] | 𝑤 ⟨𝐵⟩.[𝑤 ↔ 𝑎]) | JL𝑃MK𝑧{𝑎/𝑥}) by def.

→ (a𝑎) (𝑥 ⟨𝐵⟩.[𝑥 ↔ 𝑎] | JL𝑃MK𝑧{𝑎/𝑥})
≈L 𝑥 ⟨𝐵⟩.JL𝑃MK𝑧 commuting conversion + reduction

≈L 𝑥 ⟨𝐵⟩.𝑃 by i.h. + congruence

Case: ∃L
L𝑥 (𝑌 ).𝑃M = let (𝑌, 𝑥) = 𝑥 in L𝑃M by def.

Jlet (𝑌, 𝑥) = 𝑥 in L𝑃MK𝑧 = (a𝑦) ( [𝑥 ↔ 𝑦] | 𝑦 (𝑌 ).JL𝑃MK𝑧) by def.

→ 𝑥 (𝑌 ).JL𝑃MK𝑧{𝑦/𝑥}) by reduction

≈L 𝑥 (𝑌 ).𝑃 by i.h. + congruence

Case: cut
L(a𝑥) (𝑃 | 𝑄)M = L𝑄M{L𝑃M/𝑥} by definition

JL𝑄M{L𝑃M/𝑥}K𝑧 ≈L (a𝑦) (JL𝑃MK𝑦 | JL𝑄MK𝑧{𝑦/𝑥}) by Lemma 3.4, with 𝑦 fresh

≡ (a𝑥) (𝑃 | 𝑄) by i.h. + congruence and ≡𝛼
Case: cut!

L((a𝑢) (!𝑢 (𝑥).𝑃 | 𝑄))M = L𝑄M{L𝑃M/𝑢} by definition

JL𝑄M{L𝑃M/𝑢}K𝑧 ≈L (a𝑢) (!𝑢 (𝑥).JL𝑃MK𝑥 | JL𝑄MK𝑧{𝑣/𝑢}) by Lemma 3.4

≈L (a𝑢) (!𝑢 (𝑥).𝑃 | 𝑄) by i.h. + congruence and ≡𝛼
□

A.3 Proofs for § 5 – Communicating Values
A.3.1 Proofs of Encoding from _ to Sess𝜋_.

Lemma 5.2 (Compositionality). Let Ψ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎 and Ψ ⊢ 𝑁 : 𝜏 . We have that J𝑀{𝑁 /𝑥}K𝑧 ≈L
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦)

Proof. By induction on the typing for𝑀 . We make use of the fact that ≈L includes ≡!.
Case: 𝑀 = 𝑦 with 𝑦 = 𝑥

J𝑀{𝑁 /𝑥}K𝑧 = J𝑁 K𝑧
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) (𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧] |!𝑥 (𝑦).J𝑁 K𝑦) by definition

→+ (a𝑥) (J𝑁 K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) by the reduction semantics

≈L J𝑁 K𝑧 by ≡!, since 𝑥 ∉ fn(J𝑁 K𝑧)
Case: 𝑀 = 𝑦 with 𝑦 ≠ 𝑥

J𝑀{𝑁 /𝑥}K𝑧 = J𝑦K𝑧 = 𝑦⟨𝑤⟩.[𝑤 ↔ 𝑧]
(a𝑥) (J𝑀K |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) (𝑦⟨𝑤⟩.[𝑤 ↔ 𝑧] |!𝑥 (𝑦).J𝑁 K𝑦) by definition

≈L 𝑦⟨𝑤⟩.[𝑤 ↔ 𝑧] by ≡!
Case: 𝑀 = 𝑀1𝑀2

J𝑀1𝑀2{𝑁 /𝑥}K𝑧 = J𝑀1{𝑁 /𝑥}𝑀2{𝑁 /𝑥}K𝑧 =
(a𝑦) (J𝑀1{𝑁 /𝑥}K𝑦 | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀2{𝑁 /𝑥}K𝑤 | [𝑦 ↔ 𝑧]) by definition

(a𝑥) (J𝑀1𝑀2K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) ((a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) |!𝑥 (𝑦).J𝑁 K𝑦))
by definition

J𝑀1{𝑁 /𝑥}K𝑦 ≈L (a𝑥) (J𝑀1K𝑦 |!𝑥 (𝑎).J𝑁 K𝑎) by i.h.

J𝑀2{𝑁 /𝑥}K𝑤 ≈L (a𝑥) (J𝑀2K𝑤 |!𝑥 (𝑎).J𝑁 K𝑎) by i.h.

J𝑀1𝑀2{𝑁 /𝑥}K𝑧 ≈L (a𝑦) ((a𝑥) (J𝑀1K𝑦 |!𝑥 (𝑎).J𝑁 K𝑎) | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀2{𝑁 /𝑥}K𝑤 | [𝑦 ↔ 𝑧]))
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by congruence

≈L (a𝑦) ((a𝑥) (J𝑀1K𝑦 |!𝑥 (𝑎).J𝑁 K𝑎) | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).(a𝑥) (J𝑀2K𝑤 |!𝑥 (𝑎).J𝑁 K𝑎) | [𝑦 ↔ 𝑧]))
by congruence

≈L (a𝑥) (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑢⟩.(!𝑢 (𝑤).J𝑀K𝑤 | [𝑦 ↔ 𝑧] |!𝑥 (𝑎).J𝑁 K𝑎)) by ≡!
Case: 𝑀 = _𝑦:𝜏0 .𝑀

′

J_𝑦:𝜏0.𝑀 ′{𝑁 /𝑥}K𝑧 = 𝑧 (𝑦).J𝑀 ′{𝑁 /𝑥}K𝑧
(a𝑥) (J𝑀K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) = (a𝑥) (𝑧 (𝑦).J𝑀 ′K𝑧 |!𝑥 (𝑦).J𝑁 K𝑦) by definition

J𝑀 ′{𝑁 /𝑥}K𝑧 ≈L (a𝑥) (J𝑀K𝑧 |!𝑥 (𝑤).J𝑁 K𝑤) by i.h.

J_𝑦:𝜏0.𝑀 ′{𝑁 /𝑥}K𝑧 ≈L 𝑧 (𝑦).(a𝑥) (J𝑀 ′K𝑧 |!𝑥 (𝑤).J𝑁 K𝑤) by congruence

≈L (a𝑥) (𝑧 (𝑦).J𝑀 ′K𝑧 |!𝑥 (𝑤).J𝑁 K𝑤) by commuting conversion

□

Theorem 5.3 (Operational Soundness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Proof. By induction on the given derivation and case analysis on the reduction step.

Case: 𝑀 = 𝑀1𝑀2 with J𝑀1K𝑦 → 𝑅

J𝑀1𝑀2K𝑧 = (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by definition

→ (a𝑦) (𝑅 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤) .J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by reduction semantics

𝑀1 →+ 𝑀 ′1 with J𝑀 ′
1
K𝑦 ≈L 𝑅 by i.h.

𝑀1𝑀2 →+ 𝑀 ′1𝑀2 by the operational semantics

J𝑀 ′
1
𝑀2K𝑧 = (a𝑦) (J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by definition

≈L (a𝑦) (𝑅 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤) .J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by congruence

Case: 𝑀 = 𝑀1𝑀2 with (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) → (a𝑦, 𝑥) (𝑅 |!𝑥 (𝑤).J𝑀2K𝑤 |
[𝑦 ↔ 𝑧])
J𝑀1K𝑦 ≡ (a𝑎) (𝑦 (𝑥).𝑅1 | 𝑅2) by the reduction semantics, for some 𝑅1, 𝑅2 and 𝑎

Ψ ⊢ 𝑀1 : 𝜏0 → 𝜏1 by inversion

Subcase:𝑀1 = 𝑦, for some 𝑦 ∈ Ψ
Impossible reduction.

Subcase:𝑀1 = _𝑥 :𝜏0.𝑀
′
1

(_𝑥 :𝜏0 .𝑀 ′1)𝑀2 → 𝑀 ′
1
{𝑀2/𝑥} by operational semantics

J𝑀 ′
1
{𝑀2/𝑥}K𝑧 ≈L (a𝑥) (J𝑀 ′1K𝑧 |!𝑥 (𝑤).J𝑀2K𝑤) by Lemma 5.2

J(_𝑥 :𝜏0.𝑀 ′1)𝑀2K𝑧 = (a𝑦) (𝑦 (𝑥).J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧])) by definition

𝑅 = J𝑀 ′
1
K𝑦 by inversion

(a𝑦, 𝑥) (𝑅 |!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) ≈L (a𝑥) (J𝑀 ′1K𝑧 |!𝑥 (𝑤).J𝑀2K𝑤) by reduction closure

Subcase:𝑀1 = 𝑁1 𝑁2, for some 𝑁1 and 𝑁2

J𝑁1 𝑁2K𝑦 = (a𝑎) (J𝑁1K𝑎 | 𝑎⟨𝑏⟩.(!𝑏 (𝑑).J𝑁2K𝑑 | [𝑎 ↔ 𝑦])) by definition

Impossible reduction.

Case: 𝑃 = (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑥 (𝑦).𝑃2)
J𝑃K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | 𝑥 (𝑦).J𝑃2K) by definition

J𝑃K→ (a𝑥,𝑦) (!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K | J𝑃2K) by reduction semantics

𝑃 → (a𝑥) (𝑃1 | 𝑃2{𝑀/𝑦}) by reduction semantics

J(a𝑥) (𝑃1 | 𝑃2{𝑀/𝑦})K ≈L (a𝑥,𝑦) (J𝑃1K | J𝑃2K |!𝑦 (𝑤).J𝑀K𝑤) by Lemma 5.2 and congruence

Case: 𝑃 = (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑃2)
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J𝑃K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | J𝑃2K) by definition

J𝑃K→ (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | 𝑅) assumption, with J𝑃2K→ 𝑅

𝑃2 →+ 𝑃 ′2 with J𝑃 ′
2
K ≈L 𝑅 by i.h.

𝑃 →+ (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑃 ′2) by reduction semantics

J(a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑃 ′2)K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | J𝑃 ′2K) by definition

≈L (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃1K) | 𝑅) by congruence

All other process reductions follow straightforwardly from the inductive hypothesis.

□

Theorem 5.4 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

Proof. We proceed by induction on the given derivation and case analysis on the reduction.

Case: 𝑀 = (_𝑥 :𝜏 .𝑀 ′) 𝑁 ′ with𝑀 → 𝑀 ′{𝑁 ′/𝑥}
J𝑀K𝑧 = (a𝑦) (J_𝑥 :𝜏 .𝑀 ′K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑁 ′K𝑤 | [𝑦 ↔ 𝑧]) =
(a𝑦) (𝑦 (𝑥).J𝑀 ′K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑁 ′K𝑤 | [𝑦 ↔ 𝑧]) by definition of J−K
→+ (a𝑥) (J𝑀 ′K𝑧 | !𝑥 (𝑤).J𝑁 ′K𝑤) by the reduction semantics

≈L J𝑀 ′{𝑁 ′/𝑥}K𝑧 by Lemma 5.2

Case: 𝑀 = 𝑀1𝑀2 with𝑀 → 𝑀 ′
1
𝑀2 by𝑀1 → 𝑀 ′

1

J𝑀1𝑀2K𝑧 = (a𝑦) (J𝑀1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by definition

J𝑀 ′
1
𝑀2K𝑧 = (a𝑦) (J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by definition

J𝑀1K𝑦 =⇒ 𝑃 ′
1
such that 𝑃 ′

1
≈L J𝑀 ′

1
K𝑦 by i.h.

J𝑀1𝑀2K𝑧 =⇒ (a𝑦) (𝑃 ′1 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by reduction semantics

≈L (a𝑦) (J𝑀 ′1K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀2K𝑤 | [𝑦 ↔ 𝑧]) by congruence

Case: 𝑃 = (a𝑥) (𝑥 ⟨𝑀⟩.𝑃 ′ | 𝑥 (𝑦).𝑄 ′) with 𝑃 → (a𝑥) (𝑃 ′ | 𝑄 ′{𝑀/𝑦})
J𝑃K = (a𝑥) (𝑥 ⟨𝑦⟩.(!𝑦 (𝑤).J𝑀K𝑤 | J𝑃 ′K) | 𝑥 (𝑦).J𝑄 ′K) by definition

J𝑃K→ (a𝑥,𝑦) (!𝑦 (𝑤) .J𝑀K𝑤 | J𝑃 ′K | J𝑄 ′K) by the reduction semantics

J(a𝑥) (𝑃 ′ | 𝑄 ′{𝑀/𝑦})K = (a𝑥) (J𝑃 ′K | J𝑄 ′{𝑀/𝑦}K) by definition

≈L (a𝑥,𝑦) (J𝑃 ′K | J𝑄 ′K |!𝑦 (𝑤).J𝑀K𝑤) by Lemma 5.2 and congruence

All remaining cases follow straightforwardly by induction.

□

A.3.2 Proofs of Encoding from Sess𝜋_to _.

Theorem 5.7 (Operational Soundness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+

𝛽
𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Proof. We proceed by induction on the given reduction and case analysis on typing.

Case: L𝑃0M{(𝑥 !L𝑀0M)/𝑥} → 𝑀

L𝑃0M{(𝑥 !L𝑀0M)/𝑥} → 𝑀 ′{(𝑥 !L𝑀0M)/𝑥} by operational semantics

𝑃0 ↦→ 𝑃 ′
0
with 𝑃 ′

0
=𝛽 𝑀 ′ by i.h.

𝑥 ⟨𝑀0⟩.𝑃0 ↦→ 𝑥 ⟨𝑀0⟩.𝑃 ′0 by extended reduction

L𝑥 ⟨𝑀0⟩.𝑃 ′0M = L𝑃 ′
0
M{(𝑥 !L𝑀0M)/𝑥} by definition

=𝛼 𝑀 ′{(𝑥 !L𝑀0M)/𝑥} by congruence

The other cases are covered by our previous result for the reverse encoding of processes.
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Case: L𝑀0M !L𝑀1M→ 𝑀 ′
0
!L𝑀1M

L𝑀0M→ 𝑀 ′
0

by inversion

𝑀0 →+𝛽 𝑀 ′′
0
such that𝑀 ′

0
=𝛼 L𝑀 ′′

0
M by i.h.

𝑀0𝑀1 →+𝛽 𝑀 ′′
0
𝑀1 by operational semantics

L𝑀 ′′
0
𝑀1M = L𝑀 ′′

0
M !L𝑀1M =𝛼 𝑀 ′

0
!L𝑀1M by definition and by congruence

Case: (_𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑀0M) !L𝑀1M→ let !𝑥 =!L𝑀1M in L𝑀0M
(_𝑥 :𝜏0 .𝑀0)𝑀1 → 𝑀0{𝑀1/𝑥} by inversion and operational semantics

let !𝑥 =!L𝑀1M in L𝑀0M→ L𝑀0M{L𝑀1M/𝑥} by operational semantics

=𝛼 L𝑀0{𝑀1/𝑥}M by Lemma 5.6

□

Theorem 5.8 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M.

Proof. We proceed by induction on the given reduction.

Case: (a𝑥) (𝑥 ⟨𝑀⟩.𝑃1 | 𝑥 (𝑦).𝑃2) → (a𝑥) (𝑃1 | 𝑃2{𝑀/𝑥}) with 𝑃 typed via cut of ∧R and ∧L
L𝑃M = let𝑦 ⊗ 𝑥 = ⟨!L𝑀M ⊗ L𝑃1M⟩ in let !𝑦 = 𝑦 in L𝑃2M by definition

→ let !𝑦 =!L𝑀M in L𝑃2M{L𝑃1M/𝑥} by operational semantics

→ L𝑃2M{L𝑃1M/𝑥}{L𝑀M/𝑥} by operational semantics

L(a𝑥) (𝑃1 | 𝑃2{𝑀/𝑥})M = L𝑃2{𝑀/𝑥}M{L𝑃1M/𝑥} by definition

=𝛼 L𝑃2M{L𝑃1M/𝑥}{L𝑀M/𝑥} by Lemma 5.6

Case: (a𝑥) (𝑥 (𝑦).𝑃1 | 𝑥 ⟨𝑀⟩.𝑃2) → (a𝑥) (𝑃1{𝑀/𝑥} | 𝑃2) with 𝑃 typed via cut of ⊃R and ⊃L
L𝑃M = L𝑃2M{(_𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑃1M) !L𝑀M/𝑥} by definition

→+𝛽 L𝑃2M{(L𝑃1M{L𝑀M/𝑥})/𝑥} by 𝛽 conversion

L(a𝑥) (𝑃1{𝑀/𝑥} | 𝑃2)M = L𝑃2M{L𝑃1{𝑀/𝑥}M/𝑥} by definition

=𝛼 L𝑃2M{(L𝑃1M{L𝑀M/𝑥})/𝑥} by Lemma 5.6

The remaining process cases follow by induction.

Case: (_𝑥 :𝜏0.𝑀0)𝑀1 → 𝑀0{𝑀1/𝑥}
L𝑀M = (_𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑀0M) !L𝑀1M by definition

→+ L𝑀0M{L𝑀1M/𝑥} =𝛼 L𝑀0{𝑀1/𝑥}M by operational semantics and Lemma 5.6

Case: 𝑀0𝑀1 → 𝑀 ′
0
𝑀1 by𝑀0 → 𝑀 ′

0

L𝑀0𝑀1M = L𝑀0M !L𝑀1M by definition

L𝑀 ′
0
𝑀1M = L𝑀 ′

0
M !L𝑀1M by definition

L𝑀0 →+ L𝑀 ′
0
M by i.h.

L𝑀0M !L𝑀1M→+ L𝑀 ′
0
M !L𝑀1M by operational semantics

□

A.3.3 Proofs of Inverse Theorem and Full Abstraction in Sess𝜋_.

Theorem 5.9 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M.

We establish the proofs of the two statements separately:

Theorem A.3 (Inverse – Processes). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K

Proof. By induction on typing.
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Case: ∧R
𝑃 = 𝑧⟨𝑀⟩.𝑃0 by assumption

L𝑃M = ⟨!L𝑀M ⊗ L𝑃0M⟩ by definition

J⟨!L𝑀M ⊗ L𝑃0M⟩K𝑧 = 𝑧⟨𝑥⟩.(!𝑥 (𝑢).JL𝑀MK𝑢 | JL𝑃0MK𝑧) by definition

J𝑧⟨𝑀⟩.𝑃0K = 𝑧⟨𝑥⟩.(!𝑥 (𝑢).J𝑀K𝑢 | J𝑃0K) by definition

≈L 𝑧⟨𝑥⟩.(!𝑥 (𝑢).JL𝑀MK𝑢 | JL𝑃0MK𝑧) by i.h. and congruence

Case: ∧L
𝑃 = 𝑥 (𝑦).𝑃0 by assumption

L𝑃M = let𝑦 ⊗ 𝑥 = 𝑥 in let !𝑦 = 𝑦 in L𝑃0M by definition

Jlet𝑦 ⊗ 𝑥 = 𝑥 in let !𝑦 = 𝑦 in L𝑃0MK𝑧 = 𝑥 (𝑦).JL𝑃0MK𝑧 by definition

J𝑥 (𝑦).𝑃0K = 𝑥 (𝑦).J𝑃0K by definition

≈L 𝑥 (𝑦).JL𝑃0MK𝑧 by i.h. and congruence

Case: ⊃R
𝑃 = 𝑥 (𝑦).𝑃0 by assumption

L𝑃M = _𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑃0M by definition

J_𝑥 :!L𝜏M.let !𝑥 = 𝑥 in L𝑃0MK𝑧 = 𝑥 (𝑦).JL𝑃0MK𝑧 by definition

J𝑥 (𝑦).𝑃0K = 𝑥 (𝑦).J𝑃0K by definition

≈L 𝑥 (𝑦).JL𝑃0MK𝑧 by i.h. and congruence

Case: ⊃L
𝑃 = 𝑥 ⟨𝑀⟩.𝑃0 by assumption

L𝑃M = L𝑃0M{(𝑥 !L𝑀M)/𝑥} by definition

JL𝑃0M{(𝑥 !L𝑀M)/𝑥}K𝑧 = (a𝑎) (J𝑥 !L𝑀MK𝑎 | JL𝑃0MK𝑧{𝑎/𝑥}) by Lemma 3.4

= (a𝑎) ((a𝑏) (J𝑥K𝑏 | 𝑏⟨𝑐⟩.(J!L𝑀MK𝑐 | [𝑏 ↔ 𝑎]) | JL𝑃0MK𝑧{𝑎/𝑥}) by definition

= (a𝑎) ((a𝑏) ( [𝑥 ↔ 𝑏] | 𝑏⟨𝑐⟩.(!𝑐 (𝑤).JL𝑀MK𝑤 | [𝑏 ↔ 𝑎]) | JL𝑃0MK𝑧{𝑎/𝑥})) by definition

→ (a𝑎) (𝑥 ⟨𝑐⟩.(!𝑐 (𝑤).JL𝑀MK𝑤 | [𝑥 ↔ 𝑎]) | JL𝑃0MK𝑧{𝑎/𝑥}) by reduction semantics

≈L 𝑥 ⟨𝑐⟩.(!𝑐 (𝑤).JL𝑀MK𝑤 | JL𝑃0MK𝑧) by commuting conversion and reduction

≈L J𝑃K = 𝑥 ⟨𝑦⟩.(!𝑦 (𝑢).J𝑀K𝑢 | J𝑃0K) by i.h. and congruence

□

Theorem A.4 (Inverse Encodings – _-terms). If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M

Proof. By induction on typing.

Case: Variable
J𝑀K𝑧 = 𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧] by definition

L𝑥 ⟨𝑦⟩.[𝑦 ↔ 𝑧]M = 𝑥 by definition

Case: _-abstraction
J_𝑥 :𝜏0.𝑀0K𝑧 = 𝑧 (𝑥).J𝑀0K𝑧 by definition

L𝑧 (𝑥).J𝑀0K𝑧M = _𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in LJ𝑀0K𝑧M by definition

=𝛽 L_𝑥 :𝜏0.𝑀0M = _𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑀0M by i.h. and congruence

Case: Application
J𝑀0𝑀1K𝑧 = (a𝑦) (J𝑀0K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀1K𝑤 | [𝑦 ↔ 𝑧]) by definition

L(a𝑦) (J𝑀0K𝑦 | 𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀1K𝑤 | [𝑦 ↔ 𝑧])M = L𝑦⟨𝑥⟩.(!𝑥 (𝑤).J𝑀1K𝑤 | [𝑦 ↔ 𝑧])M{LJ𝑀0K𝑦M/𝑦}
by definition

= LJ𝑀0K𝑦M !LK𝑀1K𝑤M by definition
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=𝛽 L𝑀0𝑀1M = L𝑀0M !L𝑀1M by i.h. and congruence

□

Lemma 5.10. Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑉 : 𝜏 with 𝑉 ̸→. J𝑀K𝑧 ≈L J𝑉 K𝑧 iff L𝑀M→∗𝛽[ L𝑉 M
Proof.

(⇐)
L𝑀M→∗𝛽[ L𝑉 M by assumption

If L𝑀M = L𝑉 M then J𝑉 K𝑧 ≈L J𝑉 K𝑧 by reflexivity

If L𝑀M→+𝛽[ L𝑉 M then J𝑀K𝑧 =⇒ 𝑃 ≈L J𝑉 K𝑧 by Lemma 5.4

J𝑀K𝑧 ≈L J𝑉 K𝑧 by closure under reduction

(⇒)
𝑉 =𝛼 _𝑥 :𝜏0.𝑉0 by inversion

L𝑉 M = _𝑥 :!L𝜏0M.let !𝑥 = 𝑥 in L𝑉0M by definition

J𝑉 K𝑧 = 𝑧 (𝑥).J𝑉0K𝑧 by definition

𝑀 : 𝜏0 → 𝜏1 by inversion

L𝑀M→∗𝛽[ 𝑉 ′ ̸→ by strong normalisation

We proceed by induction on the length 𝑛 of the (strong) reduction:

Subcase: 𝑛 = 0

L𝑀M = _𝑥 :𝜏0 .𝑀0 by inversion

𝑀0 = 𝑉0 by uniqueness of normal forms

Subcase: 𝑛 = 𝑛′ + 1
L𝑀M→𝛽[ 𝑀 ′ by assumption

J𝑀K𝑧 =⇒ 𝑃 ≈L J𝑀 ′K𝑧 by Lemma 5.4

J𝑀 ′K𝑧 ≈L J𝑉 K𝑧 by closure under reduction

L𝑀 ′M→∗𝛽[ L𝑉 M by i.h.

L𝑀M→∗𝛽[ L𝑉 M by transitive closure

□

Theorem 5.11 (Full Abstraction).

Let:
(a) · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 ;
(b) · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴.

We have that L𝑀M =𝛽[ L𝑁 M iff J𝑀K𝑧 ≈L J𝑁 K𝑧 and J𝑃K ≈L J𝑄K iff L𝑃M =𝛽[ L𝑄M.

We establish the proof of the two statements separately.

Theorem A.5. Let · ⊢ 𝑀 : 𝜏 and · ⊢ 𝑁 : 𝜏 . We have that L𝑀M =𝛽[ L𝑁 M iff J𝑀K𝑧 ≈L J𝑁 K𝑧
Proof.

Completeness (⇒)
L𝑀M =𝛽[ L𝑁 M iff ∃𝑆.L𝑀M→∗𝛽[ 𝑆 and L𝑁 M→∗𝛽[ 𝑆

Assume→∗ is of length 0, then: L𝑀M =𝛼 L𝑁 M, J𝑀K𝑧 ≡ J𝑁 K𝑧 and thus J𝑀K ≈L J𝑁 K𝑧
Assume→+ is of some length > 0:

L𝑀M→+𝛽[ 𝑆 and L𝑁 M→+𝛽[ 𝑆 , for some 𝑆 by assumption

J𝑀K𝑧 →+ 𝑃 ≈L J𝑆K𝑧 and J𝑁 K𝑧 →+ 𝑄 ≈L J𝑆K𝑧 by Theorem 5.4

J𝑀K𝑧 ≈L J𝑆K𝑧 and J𝑁 K𝑧 ≈L J𝑆K𝑧 by closure under reduction

J𝑀K𝑧 ≈L J𝑁 K𝑧 by transitivity

Soundness (⇐)
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J𝑀K𝑧 ≈L J𝑁 K𝑧 by assumption

Suffices to show: ∃𝑆.L𝑀M→∗𝛽[ 𝑆 and L𝑁 M→∗𝛽[ 𝑆

L𝑁 M→∗𝛽[ 𝑆 ′ ̸→ by strong normalisation

We proceed by induction on the length 𝑛 of the reduction:

Subcase: 𝑛 = 0

J𝑀K𝑧 ≈L J𝑆 ′K𝑧 by assumption

L𝑀M→∗𝛽[ L𝑁 M by Lemma 5.10

Subcase: 𝑛 = 𝑛′ + 1
L𝑁 M→𝛽[ 𝑆 ′ by assumption

J𝑁 K𝑧 → 𝑃 ≈L J𝑆 ′K𝑧 by Theorem 5.4

J𝑀K𝑧 ≈L J𝑆 ′K𝑧 by closure under reduction

L𝑀M =𝛽[ L𝑆 ′M by i.h.

L𝑀M =𝛽[ L𝑁 M by transitivity

□

Theorem A.6. Let · ⊢ 𝑃 :: 𝑧:𝐴 and · ⊢ 𝑄 :: 𝑧:𝐴. We have that J𝑃K ≈L J𝑄K iff L𝑃M =𝛽[ L𝑄M
Proof.

(⇐)
Let𝑀 = L𝑃M and 𝑁 = L𝑄M:
J𝑀K𝑧 ≈L J𝑁 K𝑧 by Theorem A.5 (⇒)

J𝑀K𝑧 = JL𝑃MK𝑧 ≈L J𝑃K and J𝑁 K𝑧 = JL𝑄MK𝑧 ≈L J𝑄K by Theorem 5.9

J𝑃K ≈L J𝑄K by compatibility of logical equivalence

(⇒)
JL𝑃MK𝑧 ≈L JL𝑄MK𝑧 by Theorem 3.12 and compatibility of logical equivalence

L𝑃M =𝛽[ L𝑄M by Theorem A.5 (⇐)

□

A.4 Proofs of § 5.2 – Higher-Order Session Processes
A.4.1 Proofs for Encoding of _ into Sess𝜋_+.

Theorem 5.13 (Operational Soundness – J−K𝑧 ).
(1) If Ψ ⊢ 𝑀 : 𝜏 and J𝑀K𝑧 → 𝑄 then𝑀 →+ 𝑁 such that J𝑁 K𝑧 ≈L 𝑄
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and J𝑃K→ 𝑄 then 𝑃 →+ 𝑃 ′ such that J𝑃 ′K ≈L 𝑄

Proof. By induction on the given reduction.

Case: (a𝑥) (𝑃0 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) . . . )) → (a𝑥) (𝑃 ′
0
|

𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) . . . ))
𝑃 = 𝑥 ← 𝑀0 ← 𝑦𝑖 ; 𝑃2 with J𝑀0K𝑥 = 𝑃0 and J𝑃1K = 𝑃2 by inversion

𝑀0 →+ 𝑀 ′0 with J𝑀 ′
0
K𝑥 ≈L 𝑃 ′0 by i.h.

(𝑥 ← 𝑀0 ← 𝑦𝑖 ; 𝑃2) →+ (𝑥 ← 𝑀 ′
0
← 𝑦𝑖 ; 𝑃2) by reduction semantics

J𝑥 ← 𝑀 ′
0
← 𝑦; 𝑃2K = (a𝑥) (J𝑀0K𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) . . . ))

by definition

≈L (a𝑥) (𝑃 ′0 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) by congruence

Case: (a𝑥) (𝑥 (𝑎0). . . . .𝑥 (𝑎𝑛).𝑃0 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) →
(a𝑥, 𝑎0) (𝑥 (𝑎1). . . . .𝑥 (𝑎𝑛).𝑃0 | [𝑎0 ↔ 𝑦0] | 𝑥 ⟨𝑎1⟩.( [𝑎1 ↔ 𝑦1] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | 𝑃1) =
𝑄
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𝑃 = 𝑥 ← {𝑥 ← 𝑃2 ← 𝑎𝑖 } ← 𝑦𝑖 ; 𝑃3 with J𝑃3K = 𝑃1 and J𝑃2K = 𝑃0 by inversion

𝑥 ← {𝑥 ← 𝑃2 ← 𝑎𝑖 } ← 𝑦𝑖 ; 𝑃3 → (a𝑥) (𝑃2{𝑦𝑖/𝑎𝑖 } | 𝑃3) by reduction semantics

𝑄 →+ (a𝑥) (𝑃0{𝑦𝑖/𝑎𝑖 } | 𝑃1) = (a𝑥) (J𝑃2K{𝑦𝑖/𝑎𝑖 } | J𝑃3K) by reduction semantics and definition

□

Theorem 5.14 (Operational Completeness – J−K𝑧).
(1) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then J𝑀K𝑧 =⇒ 𝑃 such that 𝑃 ≈L J𝑁 K𝑧
(2) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then J𝑃K→+ 𝑅 with 𝑅 ≈L J𝑄K

Proof. By induction on the reduction semantics.

Case: 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄 → 𝑥 ← 𝑀 ′← 𝑦𝑖 ;𝑄 from𝑀 → 𝑀 ′

J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K = (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . . ))
by definition

J𝑀K𝑥 =⇒ 𝑅0 with 𝑅0 ≈L J𝑀 ′K𝑥 by i.h.

J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K =⇒ (a𝑥) (𝑅0 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . . ))
by reduction semantics

≈L J𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑄K = (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . . ))
by congruence

Case: 𝑥 ← {𝑥 ← 𝑃0 ← 𝑤𝑖 } ← 𝑦𝑖 ;𝑄 → (a𝑥) (𝑃0{𝑦𝑖/𝑤𝑖 } | 𝑄)
J𝑥 ← {𝑥 ← 𝑃0 ← 𝑤𝑖 } ← 𝑦𝑖 ;𝑄K =

(a𝑥) (𝑥 (𝑤0). . . . .𝑥 (𝑤𝑛).J𝑃0K | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . . ))
by definition

→+ (a𝑥) (J𝑃0K{𝑦𝑖/𝑤𝑖 } | J𝑄K) by reduction semantics

≈L (a𝑥) (J𝑃0{𝑦𝑖/𝑤𝑖 }K | J𝑄K)
□

A.4.2 Proofs for Encoding of Sess𝜋_+ into _.

Theorem 5.16 (Operational Soundness – L−M ).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M→ 𝑀 then 𝑃 ↦→∗ 𝑄 such that𝑀 =𝛼 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and L𝑀M→ 𝑁 then𝑀 →+𝛽 𝑀 ′ such that 𝑁 =𝛼 L𝑀 ′M

Proof. By induction on the given reduction.

Case: L𝑃0M{(L𝑀M𝑦𝑖 )/𝑥} → 𝑁 {(L𝑀M𝑦𝑖 )/𝑥}
𝑃 = 𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0 by inversion

𝑃0 ↦→∗ 𝑅 with 𝑁 =𝛼 L𝑅M by i.h.

𝑃 ↦→∗ 𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑅 by definition of ↦→
L𝑥 ← 𝑀 ← 𝑦𝑖 ;𝑅M = L𝑅M{(L𝑀M𝑦𝑖 )/𝑥} by definition

=𝛼 𝑁 {(L𝑀M𝑦𝑖 )/𝑥} by congruence

Case: L𝑃0M{(L𝑀M𝑦𝑖 )/𝑥} → L𝑃0M{𝑀 ′/𝑥}
𝑃 = 𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0 by inversion

Subcase: L𝑀M𝑦𝑖 → 𝑁 𝑦𝑖
𝑀 →+𝛽 𝑀 ′′ with 𝑁 =𝛼 L𝑀 ′′M by i.h.

𝑃 ↦→+ 𝑥 ← 𝑀 ′′← 𝑦𝑖 ; 𝑃0 by reduction semantics

L𝑥 ← 𝑀 ′′← 𝑦𝑖 ; 𝑃0M = L𝑃0M{(L𝑀 ′′M𝑦𝑖 )/𝑥} by definition

=𝛼 L𝑃0M{𝑀 ′/𝑥} by congruence

Subcase: L𝑀M𝑦𝑖 → (_𝑦1. . . . .𝑦𝑛 .𝑀0) 𝑦1 . . . 𝑦𝑛
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𝑀 = {𝑥 ← 𝑄 ← 𝑦𝑖 } with L𝑄M = 𝑀0 by inversion

𝑃 = 𝑥 ← {𝑥 ← 𝑄 ← 𝑦𝑖 } ← 𝑦𝑖 ; 𝑃0 by inversion

𝑃 → (a𝑥) (𝑄 | 𝑃0) by reduction semantics

L(a𝑥) (𝑄 | 𝑃0)M = L𝑃0M{L𝑄M/𝑥} by definition

(_𝑦1. . . . .𝑦𝑛 .𝑀0) 𝑦1 . . . 𝑦𝑛 →+ 𝑀0 by operational semantics

□

Theorem 5.17 (Operational Completeness – L−M).
(1) If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M→∗𝛽 L𝑄M
(2) If Ψ ⊢ 𝑀 : 𝜏 and𝑀 → 𝑁 then L𝑀M→+ L𝑁 M

Proof. By induction on the given reduction

Case: (𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0) → (𝑥 ← 𝑀 ′← 𝑦𝑖 ; 𝑃0) with𝑀 → 𝑀 ′

L𝑥 ← 𝑀 ← 𝑦𝑖 ; 𝑃0M = L𝑃0M{L𝑀M𝑦𝑖/𝑥} by definition

L𝑀M→∗ L𝑀 ′M by i.h.

L𝑥 ← 𝑀 ′← 𝑦𝑖 ; 𝑃0M = L𝑃0M{L𝑀 ′M𝑦𝑖/𝑥} by definition

L𝑃0M{L𝑀M𝑦𝑖/𝑥} →∗𝛽 L𝑃0M{L𝑀 ′M𝑦𝑖/𝑥} by congruence

Case: (𝑥 ← {𝑥 ← 𝑄 ← 𝑦𝑖 } ← 𝑦𝑖 ; 𝑃0) → (a𝑥) (𝑄 | 𝑃0)
L𝑥 ← {𝑥 ← 𝑄 ← 𝑦𝑖 } ← 𝑦𝑖 ; 𝑃0M = L𝑃0M{((_𝑦0 . . . . ._𝑦𝑛 .L𝑄M) 𝑦0 . . . 𝑦𝑛)/𝑥} by definition

→+𝛽 L𝑃0M{L𝑄M/𝑥} by congruence and transitivity

L(a𝑥) (𝑄 | 𝑃0)M = L𝑃0M{L𝑄M/𝑥} by definition

□

A.4.3 Proofs of Inverse Theorem and Full Abstraction for Sess𝜋_+.

Theorem 5.18 (Inverse Encodings). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K. Also, if Ψ ⊢ 𝑀 : 𝜏

then LJ𝑀K𝑧M =𝛽 L𝑀M.

We prove each case as a separate theorem.

Theorem A.7 (Inverse Encodings – Processes). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃MK𝑧 ≈L J𝑃K

Proof. By induction on the given typing derivation. We show the new cases.

Case: Rule {}𝐸
𝑃 = 𝑥 ← 𝑀 ← 𝑦;𝑄 by inversion

L𝑃M = L𝑄M{(L𝑀M𝑦)/𝑥} by definition

JL𝑄M{(L𝑀M𝑦)/𝑥}K𝑧 = (a𝑎) (JL𝑀M𝑦K𝑎 | JL𝑄MK𝑧{𝑎/𝑥}) by Lemma 5.2

= (a𝑎, 𝑥) (JL𝑀MK𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | JL𝑄MK{𝑎/𝑥}) . . . )) by definition

≡ (a𝑥) (JL𝑀MK𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | JL𝑄MK) . . . ))
J𝑃K = (a𝑥) (J𝑀K𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | J𝑄K) . . . )) by definition

≈L (a𝑥) (JL𝑀MK𝑥 | 𝑥 ⟨𝑎0⟩.( [𝑎0 ↔ 𝑦0] | · · · | 𝑥 ⟨𝑎𝑛⟩.( [𝑎𝑛 ↔ 𝑦𝑛] | JL𝑄MK) . . . )) by i.h.

□

Theorem A.8 (Inverse Encodings – _-terms). If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M =𝛽 L𝑀M

Proof. By induction on the given typing derivation. We show the new cases.

Case: Rule {}𝐼

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

On Polymorphic Sessions and Functions 55

𝑀 = {𝑥 ← 𝑃 ← 𝑦𝑖 } by inversion

J𝑀K𝑧 = 𝑧 (𝑦0). . . . .𝑧 (𝑦𝑛).J𝑃{𝑧/𝑥}K by definition

L𝑧 (𝑦0) . . . . .𝑧 (𝑦𝑛).J𝑃{𝑧/𝑥}KM = _𝑦0. . . . ._𝑦𝑛 .LJ𝑃{𝑧/𝑥}KM by definition

J𝑀K = _𝑦0. . . . ._𝑦𝑛 .L𝑃M by definition

=𝛽 _𝑦0. . . . ._𝑦𝑛 .LJ𝑃{𝑧/𝑥}KM by i.h.

□

A.5 Strong Normalisation for Higher-Order Sessions
Theorem 5.21 (Operational Completeness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and 𝑃 → 𝑄 then L𝑃M+ →+𝛽

L𝑄M+
Proof.

Case: (a𝑢) (!𝑢 (𝑥) .𝑃0 | 𝑢⟨𝑥⟩.𝑃1) → (a𝑢) (!𝑢 (𝑥).𝑃0 | (a𝑥) (𝑃0 | 𝑃1))
L(a𝑢) (!𝑢 (𝑥).𝑃0 | 𝑢⟨𝑥⟩.𝑃1)M+ = let 1 = ⟨⟩ in L𝑃1M+{𝑢/𝑥}{L𝑃0M+/𝑢}
= let 1 = ⟨⟩ in L𝑃1M+{L𝑃0M+/𝑥}{L𝑃0M+/𝑢} by definition

→ L𝑃1M+{L𝑃0M+/𝑥}{L𝑃0M+/𝑢} by operational semantics

L(a𝑢) (!𝑢 (𝑥).𝑃0 | (a𝑥) (𝑃0 | 𝑃1))M+ = L𝑃1M+{L𝑃0M+/𝑥}{L𝑃0M+/𝑢} by definition

Other cases are unchanged.

□

Theorem 5.22 (Operational Soundness). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 and L𝑃M+ → 𝑀 then 𝑃 ↦→∗ 𝑄 such
that L𝑄M→∗ 𝑀 .
Proof.

Case: L𝑃M+ = let 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥} with L𝑃M+ → L𝑃0M+{𝑢/𝑥}
L𝑃M+ = let 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥} → L𝑃0M+{𝑢/𝑥} by operational semantics, as needed.

Remaining cases are fundamentally unchanged.

□

Theorem 5.23 (Inverse). If Ψ; Γ;Δ ⊢ 𝑃 :: 𝑧:𝐴 then JL𝑃M+K𝑧 ≈L J𝑃K
Proof.

Case: copy rule

L𝑃M+ = let 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥} by definition

Jlet 1 = ⟨⟩ in L𝑃0M+{𝑢/𝑥}K𝑧 = (a𝑦) (0 | JL𝑃0M+{𝑢/𝑥}K𝑧) by definition

≡ JL𝑃0M+{𝑢/𝑥}K𝑧 by structural congruence

≈L (a𝑥) (𝑢⟨𝑤⟩.[𝑤 ↔ 𝑥] | JL𝑃0M+K𝑧) by compositionality

≈L J𝑃K by i.h. + congruence + definition of ≈L for open processes

□

Lemma A.9. If Ψ ⊢ 𝑀 : 𝜏 then LJ𝑀K𝑧M+ =𝛽 L𝑀M+
Proof.

Case: uvar rule
J𝑢K𝑧 = (a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧] by definition

L(a𝑥)𝑢⟨𝑥⟩.[𝑥 ↔ 𝑧]M+ = let 1 = ⟨⟩ in𝑢 =𝛽 𝑢

□
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