On the Expressiveness of Asynchronous Multiparty Session Types

Romain Demangeon - Nobuko Yoshida

UPMC (Paris) - Imperial College (London)

Séminaire APR / GdT Prog. - 10/12/2015
Motivation

Background

- Asynchronous networks of distributed applications,
 - existence of buffers storing exchanged messages,
- Verification of multiparty protocols.
- Sessions as behavioural types for applications.
- Rich formalism:
 - parallel composition,
 - sequence subtyping (flexibility),
 - interruptible blocks, ...

- Expressiveness of asynchronous multiparty sessions.
 - How to give a denotational semantics to sessions ?
 - How buffers affects semantics ?
 - Are flexible and interruptible sessions more expressive ?
Non-centralised Protocols

- Three independent applications (client, agent, instrument):
 - written in different languages,
 - with local compilers and libraries,
 - message-passing communication.

- No global control.

- Goal: enforcing interaction success.
 - Message layer soundness.
 - Method: session types.
Non-centralised Protocols

- Three independent applications (client, agent, instrument):
 - written in different languages,
 - with local compilers and libraries,
 - message-passing communication.

- No global control.

- Goal: enforcing interaction success.
 - Message layer soundness.
 - Method: session types.
Non-centralised Protocols

- Three independent applications (client, agent, instrument):
 - written in different languages,
 - with local compilers and libraries,
 - message-passing communication.
- No global control.
- Goal: enforcing interaction success.
 - Message layer soundness.
 - Method: session types.
Non-centralised Protocols

- Three independent applications (client, agent, instrument):
 - written in different languages,
 - with local compilers and libraries,
 - message-passing communication.

- No global control.
- Goal: enforcing interaction success.
 - Message layer soundness.
 - Method: session types.
Session Types

- **Behavioural Types.**
 - characterise operational semantics properties.

- Historically: **binary sessions**, *Languages Primitives and Type Discipline for Structured Communication-Based Programming*, Honda, Kubo, Vasconcelos, ESOP 1998
 - Domain: process algebras (π-calculi): messages-passing agents communicating on channels.
 - Motivation: build types to guide interactions between two agents on a same channel.

- **Principles:**
 - Formally describing interactions between two agents (a *session*) on a single channel *s*.
 - Using communication (directed choice, label), choice, recursion, session end.
 - Dividing the session in two endpoint types (similar to CCS processes).
 - Validation, (type system) of each participant w.r.t. its type.

- Use sequence inside π types:
 - simple types for π: $a : \#^i((\text{Nat}, \#^o(\text{Bool})))$.
 - session types: $s : ?(\text{Nat}); !(\text{Bool})$.
Binary Sessions - Example

- **Global type / session:**
 \[G = p \rightarrow q : \text{price} \cdot q \rightarrow p \begin{cases} \text{KO.end} \\ \text{OK} \cdot p \rightarrow q : \text{order.end} \end{cases} \]

- **Local types / end points:**
 \[T_p : \text{!price.} \begin{cases} \text{KO.end} \\ \text{OK.} \text{!order.end} \end{cases} \]
 \[T_q : \text{?price.} \begin{cases} \text{KO.end} \\ \text{OK.} \text{?order.end} \end{cases} \]

- **Candidate processes (π):**
 - \(s_{\text{price}}(x) \cdot (\overline{\text{OK}} \cdot s_{\text{order}}(o) + \overline{\text{KO}}) : \)
Binary Sessions - Example

- **Global type / session:**
 \[G = p \rightarrow q : \text{price}.q \rightarrow p \begin{cases}
 \text{KO}.\text{end} \\
 \text{OK}.p \rightarrow q : \text{order}.\text{end}
\end{cases} \]

- **Local types / end points:**
 \[T_p : !\text{price}.? \begin{cases}
 \text{KO}.\text{end} \\
 \text{OK}.!\text{order}.\text{end}
\end{cases} \]
 \[T_q : ?\text{price}.! \begin{cases}
 \text{KO}.\text{end} \\
 \text{OK}.?\text{order}.\text{end}
\end{cases} \]

- **Candidate processes (\(\pi\)):**
 - \(s_{\text{price}}(x).(\overline{s}_{\text{OK}}.s_{\text{order}}(o) + \overline{s}_{\text{KO}}) : \text{good } q\).
 - \(s_{\text{price}}(x).\overline{s}_{\text{KO}} : \)
 Binary Sessions - Example

- **Global type / session:**
 \[G = p \rightarrow q : \text{price} . q \rightarrow p \begin{cases} \text{KO.end} \\ \text{OK.p} \rightarrow q : \text{order.end} \end{cases} \]

- **Local types / end points:**
 \[T_p : !\text{price} . ? \begin{cases} \text{KO.end} \\ \text{OK!order.end} \end{cases} \]
 \[T_q : ?\text{price} . ! \begin{cases} \text{KO.end} \\ \text{OK.?order.end} \end{cases} \]

- **Candidate processes (\(\pi \)):**
 - \(s_{\text{price}}(x) . (\bar{s}_{\text{OK}} . s_{\text{order}}(o) + \bar{s}_{\text{KO}}) : \text{good q.} \)
 - \(s_{\text{price}}(x) . \bar{s}_{\text{KO}} : \text{good q.} \)
 - \(\bar{s}_{\text{price}}(100 \text{ Fr}) . s_{\text{KO}} : \)
Global type / session:

\[G = p \rightarrow q : \text{price.q} \rightarrow p \begin{cases} \text{KO.end} \\ \text{OK.p} \rightarrow q : \text{order.end} \end{cases} \]

Local types / end points:

\[T_p : \text{!!price.?} \begin{cases} \text{KO.end} \\ \text{OK.!order.end} \end{cases} \]
\[T_q : \text{?!price.!} \begin{cases} \text{KO.end} \\ \text{OK.?order.end} \end{cases} \]

Candidate processes (\(\pi\)):

- \(s_{\text{price}}(x).(\overline{s}_{\text{OK}}.s_{\text{order}}(o) + \overline{s}_{\text{KO}}) : \text{good q.} \)
- \(s_{\text{price}}(x).\overline{s}_{\text{KO}} : \text{good q.} \)
- \(\overline{s}_{\text{price}}(100 \text{ Fr}).s_{\text{KO}} : \text{bad p.} \)
Multiparty Session Types

- Sessions with (at least) 3 participants [Honda Y. Carbone 08].
- Same principles (projection).
- Symmetry is lost.

Example

| G = r → q : m, q → p : m₁, r → p : m₂.end |
| Tₚ : q?m₁.r?m₂.end |
| Tₗ : r?m.p!m₁.end |
| Tᵣ : q!m.p!m₂.end |

Semantics:

- Let A, B be applications s.t. $\vdash A : Tᵣ$ and $\vdash B : Tₗ$
- A can send message m and B can receive it (giving A', B').
- $\vdash A' : p!m₂.end$ and $\vdash B' : p!m₁.end$
- At type level, reduction semantics:

 $\vdash q!m.p!m₂.end \mid r?m.p!m₁.end \to p!m₂.end \mid p!m₁.end$
MPST as a Verification Method

- Verification of **networks** of services and applications:
 - **non-centralised** networks
 - message-passing communication,
 - no global control.
 - **specification**: global interaction choreographies between several participants.
 - **Theorem**: local type enforcement
 \[\Rightarrow \text{global progress} \] (according to the specification).
 - **Session refinement**: enforcing other **properties** (security, state).

- **Endpoint verification**:
 - **validation**: static analysis of the program (typechecker).
 - **monitoring**: runtime analysis of I/O.

Scribble language: algorithm for projection and monitor generation.
MPST as a Verification Method (II)

(from Monitoring Networks through Multiparty Session Types)
Asynchronous Networks

$.ajax({
 dataType: "jsonp",
 jsonpCallback: "callback",
 success: "store_price"}
}

$.ajax({
 dataType: "jsonp",
 jsonpCallback: "callback",
 success: "store_price"}
}

- **Asynchronous** calls through the web.
- **Verification:**
 - monitors intercepting HTTP requests and responses.
 - local type: p!price.p?answer.q!price.q?answer.end
Asynchronous Networks

$.ajax({
 dataType: "jsonp",
 jsonpCallback: "callback",
 success: "store_price" }
})

$.ajax({
 dataType: "jsonp",
 jsonpCallback: "callback",
 success: "store_price" }
})

- **Asynchronous** calls through the web.
- **Verification:**
 - monitors intercepting HTTP requests and responses.
 - local type: p!price.p?answer.q!price.q?answer.end
- **Asynchrony:** answer from q can arrive before answer from p.
Asynchronous Networks

$.ajax({
 dataType: "jsonp",
 jsonpCallback: "callback",
 success: "store_price"
})

$.ajax({
 dataType: "jsonp",
 jsonpCallback: "callback",
 success: "store_price"
})

▶ Asynchronous calls through the web.
▶ Verification:
 ▶ monitors intercepting HTTP requests and responses.
 ▶ local type: p!price.p?answer.q!price.q?answer.end
▶ Asynchrony: answer from q can arrive before answer from p.
▶ p!price.p?answer || q!price.q?answer ?
 ▶ sending order is lost,
 ▶ implementation of ||.
Asynchronous Multiparty Session Types

- Messages "take time" to reach their destination.
- Queues are used to model travelling messages.
 - input queues: inbox storing arriving messages.
 - output queues: buffer storing messages to be sent.
- Order of arriving messages can change.
 - order between messages with same source and same target is preserved.

Example

\[G = r \rightarrow q : m, q \rightarrow p : m_1, r \rightarrow p : m_2.\text{end} \]

- with asynchronous semantics \(m_2 \) can arrive before \(m_1 \).
AMST Basic Syntax

\[G ::= \text{end} \mid \mu t. G \mid t \mid r_1 \rightarrow r_2 \{ m_i \cdot G_i \}_{i \in I} \]
\[T ::= \text{end} \mid \mu t. T \mid t \mid p? \{ m_i \cdot T_i \}_{i \in I} \mid p! \{ m_i \cdot T_i \}_{i \in I} \]

- Simple presentation:
 - directed choice inside communication,
 - recursion.
- Projection divides communication into input and output.

AMST Semantics

How to give an asynchronous operational semantics to types?

- usage of queues (store) at different places in the network.
- queues are order-preserving.
We compare the expressiveness of several type systems:

- Models with input and/or output queues,
- Sequence subtyping (switching interaction order at type level),
- Parallel composition.
- Interruptible sessions (encoding ?).

Queue models

Different models used in literature:

- **input** queues storing arriving messages:
 - none: participants consume messages from the network,
 - one: each participant has one inbox for all incoming messages,
 - several: each participant has one inbox for each other participant,
- same choices for **output** queue design.
- yields 9 different queue policy \((0, 0), (1, 0), (M, 1), \ldots\)
Example: One input queue

<table>
<thead>
<tr>
<th>Initial</th>
<th>Ongoing</th>
<th>Deadlock</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r : q!m.p!m_2.end$</td>
<td>$r : end$</td>
<td>$r : end$</td>
</tr>
<tr>
<td>$p : q?m_1.r?m_2.end$</td>
<td>$p : q?m_1.r?m_2.end$</td>
<td>$p : q?m_1.r?m_2.end$</td>
</tr>
</tbody>
</table>

- **Single input queue**: one inbox per participant.
- **Asynchrony** let m_2 arrive before m_1.
 - p expects to receive m_1 first.
- System is **deadlocked**.
Example: One input queue

<table>
<thead>
<tr>
<th>Initial</th>
<th>Ongoing</th>
<th>Deadlock</th>
</tr>
</thead>
<tbody>
<tr>
<td>r: q!m.p!m_2.end</td>
<td>r: end</td>
<td>r: end</td>
</tr>
<tr>
<td>rIMENTH</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>q: r?m.p!m_1.end</td>
<td>q: r?m!m_1end</td>
<td>q: end</td>
</tr>
<tr>
<td>qIMENTH</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>p: q?m_1.r?m_2.end</td>
<td>p: q?m_1.r?m_2.end</td>
<td>p: q?m_1.r?m_2.end</td>
</tr>
<tr>
<td>pIMENTH</td>
<td>ε</td>
<td>⟨m⟩</td>
</tr>
<tr>
<td>⟨m⟩</td>
<td>⟨m_2⟩</td>
<td>⟨m_2⟩ ⟨m_1⟩</td>
</tr>
</tbody>
</table>

- Single input queue: one inbox per participant.
- Asynchrony let m_2 arrive before m_1.
 - p expects to receive m_1 first.
- System is deadlocked.
- Single input queues → wrong semantics.
Example: Multiple input queues

- **Initial**
 - \(r : q!m.p.m_2.\text{end} \)
 - \(q : r?m.p!m_1.\text{end} \)
 - \(p : q?m_1.r?m_2.\text{end} \)

- **Ongoing**
 - \(r : \text{end} \)
 - \(q : r?m.p!m_1.\text{end} \)
 - \(p : q?m_1.r?m_2.\text{end} \)

- **No Deadlock**
 - \(r : \text{end} \)
 - \(q : \text{end} \)
 - \(p : q?m_1.r?m_2.\text{end} \)

- **Multiple input queues**: one inbox per pair of participants.
- **Asynchrony** let \(m_2 \) arrive before \(m_1 \).
 - \(p \) expects to receive \(m_1 \) first.
- **System can progress** because \(m_1 \) is available in one input queue.
- **Multiple input queues semantics is safe.**
Configuration Semantics

\[\Delta ::= \emptyset \mid p : T, \Delta \mid Q, \Delta \]
\[Q ::= (p \leftarrow q : h) \mid (p \rightarrow q : h) \mid (p \leftarrow h) \mid (p \rightarrow h) \]

- Configuration: composition of participants (local types) and queues,
- Input \(\leftarrow \) and output \(\rightarrow \) queues.
- Single \(p \leftarrow \) and multiple \(p \leftarrow q \) queues.
- Global type \(G \rightarrow \) initial configuration (projection and empty queues).
- Rules enforces message transfer.

Rule (OutOut)

- \(q : p?m. T_q \)
- \(q \rightarrow \ldots \)
- \(q \leftarrow r \ldots q \leftarrow p \ldots \)
- \(p : q!m. T_p \)
- \(p \rightarrow \ldots \)
- \(p \leftarrow r \ldots p \leftarrow q \ldots \)

Rule (Transit)

- \(q : p?m. T_q \)
- \(q \rightarrow \ldots \)
- \(q \leftarrow r \ldots q \leftarrow p \ldots \)
- \(p : T_p \)
- \(p \rightarrow \ldots \)
- \(p \leftarrow r \ldots p \leftarrow q \ldots \)

Rule (InIn)

- \(q : p?m. T_q \)
- \(q \rightarrow \ldots \)
- \(q \leftarrow r \ldots q \leftarrow p \langle m \rangle \ldots \)
- \(p : T_p \)
- \(p \rightarrow \ldots \)
- \(p \leftarrow r \ldots p \leftarrow q \ldots \)
Queue policy guides the semantics rules.

(p ≪ q : h) stands for either (p ⩾ q : h) or (p ⩾: h).
Trace Denotations

- **Configuration traces** as a measure for expressiveness.

- A trace \(\sigma \) is a **mapping** from participants to **sequence of events**.
 - An **event** is either sending or receiving a message.
 - There is **no order** between events of different participants.
 - Order is **kept** between events of a same participant.
 - Transit of messages (from queue to queue) is **not observable**.

- A trace \(\sigma \) is **terminated** w.r.t. a type \(G \) if the initial configuration of \(G \) cannot progress after \(\sigma \).
 - Captures **deadlocks**.
 - Depends on the queue **policy**.

- A trace \(\sigma \) is **completed** w.r.t. a type \(G \) if the initial configuration of \(G \) reaches **happy termination** after \(\sigma \).
 - After \(\sigma \) participants reaches end and queues are empty.
Example

- **Global type:**
 \[r \to q : m, q \to p : m_1, r \to p : m_2. \text{end} \]

- **Initial configuration for \((0, 0)\):**
 \[r : q!m.p!m_2, \ q : r?m.p!m_1, \ p : q?m_1.r?m_2, \]

- **Initial configuration for \((M, 1)\):**
 \[r : q!m.p!m_2, \ q : r?m.p!m_1, \ p : q?m_1.r?m_2, \]
 \((p \rhd: \epsilon), (q \rhd: \epsilon), (r \rhd: \epsilon), (p \blacklozenge q : \epsilon), (p \blacklozenge r : \epsilon), \)
 \((q \blacklozenge p : \epsilon), (q \blacklozenge r : \epsilon), (r \blacklozenge p : \epsilon), (r \blacklozenge q : \epsilon). \]

- **Trace \(\sigma_e\):**
 \[
 \begin{align*}
 r & \mapsto q!m.p!m_2 \\
 q & \mapsto r?m.p!m_1 \\
 p & \mapsto q?m_1.r!m_2 \\
 \end{align*}
 \]
 is completed for both semantics.

- **Trace \(\sigma_t\):**
 \[
 \begin{align*}
 p & \mapsto q!m \\
 q & \mapsto \epsilon \\
 r & \mapsto \epsilon \\
 \end{align*}
 \]
 is a valid (uncompleted) trace for \((M, 1)\) and not for \((0, 0)\).

- **Trace \(\sigma_d\):**
 \[
 \begin{align*}
 r & \mapsto q!m.p!m_2 \\
 q & \mapsto r?m.p!m_1 \\
 p & \mapsto \epsilon \\
 \end{align*}
 \]
 is terminated for \((1, 0)\) but not for \((0, M)\).
Expressiveness Results

- \(\mathbf{D}(G, \phi) \), the **denotation** of \(G \) under semantics (queue policy) \(\phi \) is the set of all terminated traces from \(G \) according to \(\phi \).
- the **expressive power** of a session calculus (syntax + semantics) is defined as the **language** of all completed traces for all well-formed types.

Results

- **Single input** queue policy \((1, 0), (1, 1), (1, M)\) are **unsafe**.
 - they do not ensure **progress**.
 - all other semantics are **safe**.
- All safe semantics yield the same **denotations**.
- The expressive power of safe semantics is **regular**.

Intuition: Local actions are constrained by type.
Flexibility

- Real applications often have mechanisms to accept messages in different order.
 - unordered data structures, threads, . . .
- At the level of local type, modeled with flexibility subtyping:
 - exists in literature,
 - rules allow to switch consecutive actions.
 - 6 subtyping policies ($\emptyset, II, OO, IO, IO, IO/OI$)

Example (II)-flexibility

- $p?m_1.q?m_2.p!m_3.end$ switches to $q?m_2.p?m_1.p!m_3.end$.
Flexibility

- Real applications often have mechanisms to accept messages in different order.
 - unordered data structures, threads, ...
- At the level of local type, modeled with flexibility subtyping:
 - exists in literature,
 - rules allow to switch consecutive actions.
 - 6 subtyping policies (\emptyset, II, OO, IO, OI, IO/OI)

Example (II)-flexibility

- $p?m_1.q?m_2.p!m_3.end$ switches to $q?m_2.p?m_1.p!m_3.end$.
- $p? \begin{cases} m_{11}.q?m_2.p!m_3.end \\ m_{12}.q?m_2.p!m_4.end \end{cases}$ switches to $q?m_2.p? \begin{cases} m_{11}.p!m_3.end \\ m_{12}.p!m_4.end \end{cases}$
Subtyping Rules

\[C_i^q ::= [] \mid p?\{m_i.C_i^q\}_{i \in I} \ (p \neq q) \]
\[C_{1O}^q ::= [] \mid p?\{m_i.C_{1O}^q\}_{i \in I} \mid r!\{m_i.C_{1O}^q\}_{i \in I} \ (r \neq q) \]
\[C_0^q ::= [] \mid q!\{m_i.C_0^q\}_{i \in I} \ (p \neq q) \]
\[C_{0I}^q ::= [] \mid p!\{m_i.C_{0I}^q\}_{i \in I} \ (p \neq q) \mid r?\{m_i.C_{0I}^q\}_{i \in I} \]

\[\forall (i, k), T_i \leq q?m_k.C_i^p[T_i'] \quad q \neq p \]
\[p?\{m_i.T_i\}_{i \in I} \leq q\{m_k.C_i^p[p?\{T_i'\}_{i \in I}]\}_{k \in K} \]

(II)

\[\forall (i, k), T_i \leq q!m_k.C_0^p[T_i'] \quad q \neq p \]
\[p!\{m_i.T_i\}_{i \in I} \leq q\{m_k.C_0^p[p!\{T_i'\}_{i \in I}]\}_{k \in K} \]

(OO)

\[\forall (i, k), T_i \leq q!m_k.C_{1O}^p[T_i'] \quad q \neq p \]
\[p!\{m_i.T_i\}_{i \in I} \leq q\{m_k.C_{1O}^p[p!\{T_i'\}_{i \in I}]\}_{k \in K} \]

(IO)

\[\forall (i, k), T_i \leq q!m_k.C_{0I}^p[T_i'] \quad q \neq p \]
\[p?\{m_i.T_i\}_{i \in I} \leq q\{m_k.C_{0I}^p[p?\{T_i'\}_{i \in I}]\}_{k \in K} \]

(OI)

▶ Formal definition of flexibility through subtyping.
Subtyping Rules

\[C^q_i ::= \left[\right] \mid p?\{m_i.C^q_i\}_{i \in I} \quad (p \neq q) \]

\[C^q_{IO} ::= \left[\right] \mid p?\{m_i.C^q_{IO}\}_{i \in I} \mid r!\{m_i.C^q_{IO}\}_{i \in I} \quad (r \neq q) \]

\[C^q_o ::= \left[\right] \mid q!\{m_i.C^q_o\}_{i \in I} \quad (p \neq q) \]

\[C^q_{OI} ::= \left[\right] \mid p!\{m_i.C^q_{OI}\}_{i \in I} \quad (p \neq q) \mid r?\{m_i.C^q_{OI}\}_{i \in I} \]

\[\forall (i, k), T_i \leq q?m_k.C^q_i[T'_i] \quad q \neq p \]

\[p?\{m_i.T_i\}_{i \in I} \leq q?\{m_k.C^q_i[p?\{T'_i\}_{i \in I}]\}_{k \in K} \quad \text{(II)} \]

\[\forall (i, k), T_i \leq q!m_k.C^p_o[T'_i] \quad q \neq p \]

\[p!\{m_i.T_i\}_{i \in I} \leq q!\{m_k.C^q_o[p!\{T'_i\}_{i \in I}]\}_{k \in K} \quad \text{(OO)} \]

\[\forall (i, k), T_i \leq q!m_k.C^p_{IO}[T'_i] \quad q \neq p \]

\[p!\{m_i.T_i\}_{i \in I} \leq q!\{m_k.C^q_{IO}[p!\{T'_i\}_{i \in I}]\}_{k \in K} \quad \text{(IO)} \]

\[\forall (i, k), T_i \leq q!m_k.C^p_{OI}[T'_i] \quad q \neq p \]

\[p?\{m_i.T_i\}_{i \in I} \leq q!\{m_k.C^q_{OI}[p?\{T'_i\}_{i \in I}]\}_{k \in K} \quad \text{(OI)} \]

- Formal definition of flexibility through subtyping.
- An input action bypassing an output action can create deadlocks.
 - binary interaction: !price.?OK \leq_{oi} ?OK.!price
Expressiveness of Flexibility

Results

- **Safe** flexible semantics (queue policy + subtyping policy) are given below.
- The **expressive power** of flexible session is **strictly greater** than the one of standard session.
 - **Intuition**: local type $\mu t. q! \{ m_1.r!m.t \begin{cases} m_2.end \\ \mbox{yields the shuffling of } (q!m_1)^n \mbox{ and } (r!m)^n \mbox{ for all } n.} \end{cases}$

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(0, D)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
<th>(1, D)</th>
<th>(D, 0)</th>
<th>(D, 1)</th>
<th>(D, D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Π</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\Omega\Omega$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\Pi\Omega$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\Omega\Pi$</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$\Pi, \Omega\Pi$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Some session language in literature uses **parallel composition**.

Parallel composition makes explicit **unordered set** of actions:

\[q!m_1.r!m_2 \text{ compared to } q!m_1 || r!m_2 \]

- introduces flexibility at **type level**.

Result

Parallel sessions have a **strictly greater** expressive power than flexible sessions.

- **Intuition**: Parallel composition can be used to **simulate** subtyping rules.
Expressiveness of Interruptible Sessions

- **Interruptions**: describe interactions involving exceptional behaviours [D. Honda Hu Neykova Y. 2015].
- Adds scope constructions: ${G}^c(\langle l \text{ by } r \rangle; G')$
- Notification of interruption (broadcast) is handled via messages.
 - interactions from an interrupted scope proceed until notification is received.
- ${[r \rightarrow p : m. (\mu t.p \rightarrow q : m_1.q \rightarrow p : m_2.t)]}^c(\langle i \text{ by } r \rangle; q \rightarrow r : a. \text{end}}$
 - loop of messages between p and q,
 - scope c can be interrupted anytime by r.
 - after being notified of the interruption, q continues by sending a message to r.
- Can interruptions be encoded using standard sessions constructs?

Result

Interruptible sessions have different expressive power compared to parallel and flexible sessions.

- **Intuition**: nested scopes with recursion yield $q!^n.q?^k$ with $k \leq n$
Conclusion

- **Trace-based (denotational) models of session types to compare expressiveness of sessions.**
- **Safety results for different asychrony policies.**
- **No encoding from interruptible to ”standard sessions”.**
- **Comparison of expressive power:**

```
Parallel ← Interruptible + Parallel

Flexible

Interruptible

Standard
```