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Abstract The rigorous and comprehensive verification of communication-based software
is an important engineering challenge in distributed systems. Drawn from our industrial col-
laborations [40,34] on Scribble, a choreography description language based on multiparty
session types, and its theoretical foundations [20], this article proposes a dynamic verifica-
tion framework for structured interruptible conversation programming. We first present our
extension of Scribble to support the specification of asynchronously interruptible conversa-
tions. We then implement a concise API for conversation programming with interrupts in
Python that enables session types properties to be dynamically verified for distributed pro-
cesses. Finally, we expose the underlying theory of our interrupt mechanism, studying its
syntax and semantics, its integration in MPST theory and proving the correctness of our de-
sign. Our framework ensures the global safety of a system in the presence of asynchronous
interrupts through independent runtime monitoring of each endpoint, checking the confor-
mance of the local execution trace to the specified protocol. The usability of our framework
for describing and verifying choreographic communications has been tested by integration
into the large scientific cyberinfrastructure developed by the Ocean Observatories Initiative.
Asynchronous interrupts have proven expressive enough to represent and verify their main
classes of communication patterns, including asynchronous streaming and various timeout-
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based protocols, without introducing any implicit synchronisations. Benchmarks show con-
versation programming and monitoring can be realised with little overhead.

Keywords session types, runtime monitoring, python, distributed systems

1 Introduction

Two of the most important elements of software development are finding suitable specifica-
tions to model the range of states exhibited by a system, and ensuring that these specifica-
tions are followed by the implementation. In distributed systems, the rigorous specification
and verification of communication protocols is particularly crucial: a protocol is the interface
to which the components should be separately implementable, such that their composition
as a concurrent, asynchronous system is still ensured to be correct as a whole. Multiparty
session types (MPST) [20,6] is a type theory for communication-oriented programming,
originating from works on types for the π-calculus, towards tackling these challenges. In
the original MPST setting, protocols are expressed as types, and static type checking veri-
fies that the system of processes engaged in a communication session (also referred to as a
conversation) conforms to a globally agreed protocol. The properties enjoyed by well-typed
processes are communication safety (no unexpected messages or races during the execution
of the conversation) and deadlock-freedom.

This article presents two main contributions towards the application of MPST theory to
current engineering practices, developed from our collaborations with industry partners [40,
34]. The first is the design and implementation of a framework for dynamic, distributed
verification of MPST message passing protocols using session endpoint monitors. We have
been motivated to adapt MPST to dynamic verification for several reasons:

– Session type checking is typically designed for languages with first-class communica-
tion and concurrency primitives, whereas our collaborations use mainstream engineering
languages such as Python and Java. These languages either lack the features required to
make static session typing tractable, or, in the case of dynamically typed languages like
Python, may simply be unsuited to this approach. Certain programming techniques can
further complicate static analysis; for example, the obfuscation of control flow in event-
driven programming, a common paradigm in distributed systems.

– Distributed systems are often heterogeneous in nature, meaning that a range of languages
and platforms may be involved in the implementation of a given system, as well as
third-party components or services for which the source code is unavailable for static
type checking. Dynamic verification by communications monitoring allows us to verify
MPST safety properties directly for mainstream languages in a more scalable way.

– Certain protocol specification features, such as assertions on specific message values,
can be evaluated precisely at runtime, whereas static treatments would often be more
conservative.

This article secondly presents the implementation and formalisation of a new construct
for verifying asynchronous multiparty session interrupts, motivated by use cases from our
collaborations. Asynchronous session interrupts express communication patterns in which
the behaviour of the roles following the default flow through a protocol segment may be
overruled by one or more other roles concurrently raising asynchronous interrupt messages.
Previous attempts at incorporating exception-like constructs into session type theory have
been limited in their practical application and cannot express our use case patterns: [13] is
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Fig. 1: Scribble methodology from global specification to local runtime verification

restricted to binary session types, [13,12] do not support nested interrupts or continuations,
and [11], although multiparty, relies on synchronous exception flags which are not feasible
in general distributed systems.

Extending MPST with asynchronous interrupts is challenging because the inherent “com-
munication race conditions” that may arise conflict with the MPST safety properties. Taking
a continuous stream of messages from a producer to a consumer as a simple example: if the
consumer sends an interrupt message to the producer to pause or end the stream, stream
messages (those already in transit or subsequently dispatched before the interrupt arrives at
the producer) may well continue arriving at the consumer for some time after the interrupt is
dispatched. This scenario is in contrast to the patterns permitted by standard session types,
where the safety properties guarantee that no message is ever lost or redundant by virtue of
disallowing all protocols with potential races.

This article introduces a novel approach based on reifying the concept of scopes within
a protocol at the runtime level when an instance of the protocol is executed. A scope des-
ignates a sub-region of the protocol, derived from its syntactic structure, on which certain
communication actions, such as interrupts, may act on the region as a whole. At run-time,
every message identifies the scope to which it belongs as part of its meta data. From this
information and by tracking the local progress in the protocol, the runtime at each end-
point in the session is able to resolve discrepancies in protocol state by discarding incoming
messages that have become irrelevant due to an asynchronous interrupt. This mechanism is
transparent to the user process, and although performed independently by each distributed
endpoint, preserves global safety for the session. Note that tracking the local protocol state is
a core function of the session monitors for dynamic MPST, forming an underlying technical
connection between these two topics.

Framework overview. Figure 1 illustrates the methodology of our framework. The develop-
ment of a communication-oriented application starts with the specification of the intended
interactions (the choreography) as a global protocol using the Scribble protocol description
language [41], an engineering incarnation of formal MPST types. The core features of Scrib-
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ble include multicast message passing and constructs for branching (choice), recursive and
parallel conversations. These features support the specification of a wide range of protocols,
from domains such as standard Internet applications [21], parallel algorithms [33] and Web
services [14].

Our toolchain validates that the global protocol satisfies MPST well-formedness prop-
erties, such as coherent branches (no ambiguity between participants about which branch
to follow) and deadlock-freedom (between parallel flows). From a well-formed global pro-
tocol, the toolchain mechanically generates a Scribble local protocol (called a projection)
for each participant (abstracted as a role) that is involved. A local protocol is essentially a
view of the global protocol from the perspective of one role, and provides a more direct and
focused specification for endpoint implementation than the global protocol.

As a session is conducted at run-time, the monitor at each endpoint uses a finite state
machine (FSM) representation of the local communication behaviour, generated from the
local protocol for its role, to track its progress in the session. In our implementation, the
FSM generation is an extension of the correspondence between MPST and communication
automata in [16] to support interruptible protocol scopes and optimised to avoid parallel
state explosion. The monitor validates the communication actions performed by the local
endpoint, and the messages that arrive from the other endpoints, against the transitions per-
mitted by the FSM. Each monitor thus works to protect both the endpoint from invalid
actions by the network environment, and the network from bad endpoints. Interestingly, we
treat both interruptible scopes and parallel subprotocols by generating nested FSM struc-
tures. In the case of scopes that may be entered multiple times by recursive protocols, we
use dynamic FSM nesting (conceptually, a new sub-FSM is created each time the scope is
entered) corresponding to the generation of fresh scope names in the syntactic model.

Our dynamic MPST framework is designed in this way to ensure, from the decentralised
monitoring of each local endpoint, that the progress of the session as a whole conforms
to the original global protocol [7], and that unsafe actions by a bad endpoint cannot cor-
rupt the protocol state of other compliant endpoints. We have integrated our framework
into the Python-based runtime platform developed by the Ocean Observatories Initiative
(OOI) [34]. The OOI is a project to establish a cyberinfrastructure for the delivery, man-
agement and analysis of scientific data from a large network of ocean sensor systems. Their
architecture relies on the combination of high-level protocol specifications of network ser-
vices (expressed as Scribble protocols [36]) and distributed runtime monitoring to regulate
the behaviour of third-party applications within the system [37]. Although this work is in
collaboration with the OOI, our implementation can be used orthogonally as a standalone
monitoring framework for distributed Python applications.

Contributions and summary. In summary, this article demonstrates the application of multi-
party session types, through the Scribble protocol language, to industry practice by present-
ing:

– the implementation of an MPST-based dynamic, distrubuted protocol verification that
offers the same global safety guarantees as static session type checking;

– and a use case motivated extension of Scribble to support a new MPST construct for the
verification of asynchronous multiparty session interrupts.

This article is an expansion of the initial presentation of our dynamic MPST framework
and implementation of monitors for interruptible sessions in [22]. Apart from the expanded
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introduction and related work, this article presents the full formalisation and proof of cor-
rectness of our extension of MPST with the new interruptible construct and scope mecha-
nism for resolving the protocol race conditions that arise from asynchronous interrupts. We
also give an additional event-driven implementation of the main example, to demonstrate
our Python Conversation API for event-driven sessions and the benefit of dynamic MPST
verification to support flexible implementations that would otherwise be difficult to statically
verify.

The OOI use cases motivating this work include a variety of RPC-based service calls
(request-reply) with timeout interrupts, and publish-subscribe applications where the con-
sumer or other parties can interrupt to pause, resume and stop remotely driven sensor feeds;
we use the latter for the main running example in this article. Although the existing features
of Scribble (i.e. those previously established in MPST theory) are sufficiently expressive for
many practical protocols, we observed that these important patterns could not be directly or
naturally represented without interrupts.

We outline the structure of this article, summarising the contributions of each part:

§ 2 explains an OOI use case for the extension of Scribble with asynchronous session in-
terrupts. This is a new feature for MPST, giving the first general mechanism for nested,
multiparty interrupts. We discuss why adding this feature is a challenge in session types.

§ 3 discusses the Python implementation of our dynamic MPST framework that we have
integrated into the OOI project, and demonstrates the global-to-local projection of in-
terruptible Scribble protocols, endpoint implementations, and local FSM generation for
monitoring. § 3.1 demonstrates the Python API for conversation programming in Python,
including event-driven conversations. The API decorates conversation messages with
the run-time MPST information required by the monitors to perform the dynamic ver-
ification. § 3.2 discusses the monitor implementation, focusing on the key architectural
requirements of our framework and the treatment of asynchronous interrupts.

§ 4 evaluates the performance of our monitor implementation through a collection of bench-
marks. The results show that conversation programming and run-time monitoring can be
realised with low overhead.

§ 5 presents the supporting theory for asynchronous session interrupts. We show the sound-
ness of our framework by proving session fidelity, asserting that the decentralised veri-
fication of a system always conforms to its global specification.

The source code of our Scribble toolchain, conversation runtime and monitor, perfor-
mance benchmarks and further resources are available from the project page [42].

2 Communication protocols with asynchronous interrupts

This section expands on why and how we extend Scribble to support the specification and
verification of asynchronous session interrupts, henceforth referred to as just interrupts. Our
running example is based on an OOI project use case, which we have distilled to focus
on session interrupts. Using this example, we outline the technical challenges of extending
Scribble with interrupts.

Resource Access Control (RAC) use case. As is common practice in industry, the cyberin-
frastructure team of the OOI project [34] manages communication protocol specifications
through a combination of informal sequence diagrams and prose descriptions. Figure 2 (left)
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1 global protocol ResourceAccessControl(role User as U,
2 role Controller as C, role Agent as A) {
3 req(duration:int) from U to C;
4 // U requests the device for some duration
5 start() from C to A;
6 interruptible { // U, C and A in scope
7 rec X {
8 interruptible { // U and A in scope
9 rec Y {

10 data() from A to U;
11 continue Y;
12 }
13 } with { // Interrupts A in Y
14 pause() by U;
15 }
16 resume() from U to A;
17 continue X;
18 }
19 } with { // Interrupts A and C/U in X
20 stop() by U; // Any time within the duration
21 timeout() by C; // Duration is up
22 }
23 }

Fig. 2: Sequence diagram (left) and Scribble protocol (right) for the RAC use case

gives an abridged version of a sequence diagram given in the OOI documentation for the Re-
source Access Control use case [36], regarding access control of users to sensor devices in
the ION cyberinfrastucture for data acquisition. In the ION setting, a User interacts with a
sensor device via its Agent proxy (which interacts with the device via a separate protocol
outside of this example). ION Controller agents manage concerns such as authentication of
users and metering of service usage.

For brevity, we omit from the diagram some of the data types to be carried in the mes-
sages and focus on the structure of the protocol. The depicted interaction can be summarised
as follows. The protocol starts at the top of the left-hand diagram. User sends Controller a
request message to use a sensor for a certain amount of time (the int in parentheses), and
Controller sends a start to Agent. The protocol then enters a phase (denoted by the horizon-
tal line) that we label (1), in which Agent streams data messages (acquired from the sensor)
to User. The vertical dots signify that Agent produces the stream of data freely under its own
control, i.e. without application-level control from User. User and Controller, however, have
the option at any point in phase (1) to move the protocol to the phase labelled (2), below.

Phase (2) comprises three alternatives, separated by dashed lines. In the upper case, User
interrupts the stream from Agent by sending Agent a pause message. At some subsequent
point, User sends a resume and the protocol returns to phase (1). In the middle case, User
interrupts the stream, sending both Agent and Controller a stop message. This is the case
where User does not want any more sensor data, and ends the protocol for all three par-
ticipants. Finally, in the lower case, Controller interrupts the stream by sending a timeout

message to User and Agent. This is the case where, from Controller’s view, the session has
exceeded the requested duration, so Controller interrupts the other two participants to end
the protocol. Note this diagram actually intends that stop (and timeout) can arise anytime
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after (1), e.g. between pause and resume (a notational ambiguity that is compensated by
additional prose comments in the specification).

Interruptible multiparty session types. Figure 2 (right) shows a Scribble protocol that for-
mally captures the structure of interaction in the Resource Access Control use case and
demonstrates the uses of our new extension for asynchronous interrupts. Besides the for-
mal foundations, we find the Scribble specification is more explicit and precise, particularly
regarding the combination of compound constructs such as choice and recursion, than the
sequence diagram format, and provides firmer implementation guidelines for the program-
mer (demonstrated in § 3.1).

A Scribble protocol starts with a header declaring the protocol name (in Figure 2,
ResourceAccessControl) and role names for the participants (three roles, aliased in the scope
of this protocol definition as U, C and A). Lines 3 and 5 straightforwardly correspond to the
first two communications in the sequence diagram. The Scribble syntax for message sig-
natures, e.g. req(duration:int), means a message with operator (i.e. header, or label) req,
carrying a payload int annotated as duration. The start() message signature means oper-
ator start with an empty payload.

We now come to “phase” (1) of the sequence diagram. The new interruptible construct
captures the informal usage of protocol phases in disciplined manner, making explicit the
interrupt messages and the scope in which they apply. Although the syntax has been de-
signed to be readable and familiar to programmers, interruptible is an advanced construct
that encapsulates several aspects of asynchronous interaction, which we discuss at the end
of this section.

The intended communication protocol in our example is clarified in Scribble as two
nested interruptible statements. The outer statement, on lines 6–22, corresponds to the
options for User and Controller to end the protocol via the stop and timeout interrupts.
An interruptible consists of a main body of protocol actions, here lines 7–18, and a set
of interrupt message signatures, lines 19–22. The statement stipulates that each participant
behaves by either (a) following the protocol specified in the body until finished for their
role, or (b) raising or detecting a specified interrupt at any point during (a) and exiting the
statement. Thus, the outer interruptible states that U can interrupt the body (and end the
protocol) by a stop() message, and C by a timeout().

The body of the outer interruptible is a labelled recursion statement with label X. The
continue X; inside the recursion (line 17) causes the flow of the protocol to return to the
top of the recursion (line 7). This recursion corresponds to the loop implied by the sequence
diagram that allows User to pause and resume repeatedly. Since the recursion body always
leads to the continue, Scribble protocols of this form state that the loop should be driven
indefinitely by one role, until one of the interrupts is raised by another role. This communi-
cation pattern cannot be expressed in multiparty session types without interruptible.

The body of the X-recursion is the inner interruptible, which corresponds to the option
for User to pause the stream. The stream itself is specified by the Y-recursion, in which
A continuously sends data() messages to U. The inner interruptible specifies that U may
interrupt the Y-recursion by a pause() message, which is followed by the resume() message
from U before the protocol returns to the top of the X-recursion.

Challenges of asynchronous interrupts in MPST. The following summarises our observa-
tions from the extension and usage of MPST with asynchronous interrupts. We find the
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1 // Well-formed, but incorrect semantics:
2 // the recursion cannot be stopped
3 par {
4 rec Y {
5 data() from A to U;
6 continue Y; }
7 } and {
8 // Does not stop the recursion
9 pause() from U to A;

10 }
11 resume() from U to A;

1 // Naive mixed-choice is not well-formed
2 choice at A {
3 // A should make the choice..
4 rec Y {
5 data() from A to U;
6 continue Y; }
7 } or {
8 // ..not U
9 pause() from U to A;

10 }
11 resume() from U to A;

Fig. 3: Naive, incorrect interruptible encoding attempts using parallel (left) and choice
(right)

basic operational meaning of interruptible, as illustrated in the above example, is read-
ily understood by architects and developers, which is a primary consideration in the de-
sign of Scribble. The challenges in this extension are in the design of the supporting run-
time and verification techniques to preserve the desired safety properties in the presence
of interruptible. The challenges stem from the fact that interruptible combines several
tricky, from a session typing view, aspects of communication behaviours that session type
systems traditionally aim to prohibit, in order to prevent communication races and thereby
ensure the desired safety properties.

A key aspect, due to asynchrony, is that an interrupt may occur in parallel to the actions
of the roles being interrupted (e.g. pause by U to A while A is streaming data to U). Although
standard MPST (and Scribble) support parallel protocol flows, the interesting point here is
that the nature of an interrupt is to preclude further actions in another parallel flow under the
control of a different role, whereas the basic MPST parallel does not permit such interfer-
ence. Figure 3 (left) is a naively incorrect attempt to express this aspect without interruptible:
the second parallel path is never able to intefere with the first to actually stop the recursion.

Another aspect is that of mixed choice in the protocol, in terms of both communication
direction (e.g. U may choose to either receive the next data or send a stop), and between
different roles (e.g. U and C independently, and possibly concurrently, interrupt the protocol)
due to multiparty. Moreover, the implicit interrupt choice is truly optional in the sense that
it may never be selected at runtime. The basic choice in standard MPST (e.g. as defined in
[20,16]) is inadequate because it is designed to safely identify a single role as the decision
maker, who communicates exactly one of a set of message choices unambiguously to all
relevant roles. Figure 3 (right) demonstrates a naive mixed choice that is not well-formed (it
breaks the unique sender condition in [16]).

Due to the asynchronous setting, it is also important that interruptible does not require
implicit synchronisations to preserve communication safety. The underlying mechanisms
are formalised and the correctness of our extension is proved in § 5.

3 Runtime verification

This section discusses implementation details of our monitoring framework and the accom-
panying Python API (Conversation API) for writing monitorable, distributed MPST pro-
grams. This work is the first implementation of the theory in [7] in practice, and is the first
(theory or practice) to support a general, asynchronous MPST interrupt mechanism in the
protocol language and API for endpoint implementation.
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Conversation API operation Purpose
create(protocol name, invitation config.yml) Initiate conversation, send invitations
join(self, role, principal name) Accept invitation
send(role, op, payload) Send message with operation and payload
recv(role) Receive message from role
recv async(self, role, callback) Asynchronous receive
scope(msg) Create a conversation scope
close() Close the connection to the conversation

Fig. 4: The core Python Conversation API operations

We first outline the verification methodology of our framework to clarify the purpose
of the main components. Developers write endpoint programs in native Python using the
Conversation API, an MPST-based message passing library that supports the core MPST
primitives for communication programming. The execution of these operations at each end-
point is performed by the local conversation library runtime. The full runtime includes in-
frastructure for inline monitoring of conversation actions, while the lightweight version is
used with an outline (i.e. externally hosted) monitor. In both cases, the API enables MPST
verification of message exchanges by the monitor by embedding a small amount of MPST
meta data (e.g. conversation identifier, message kind and operator, source and destination
roles), based on the actions and current state of the endpoint, into the message payload. For
each conversation initiated or joined by an endpoint, the monitor generates an FSM from the
local protocol for the role of the endpoint. The monitor uses the FSM to track the progress
of this conversation according to the protocol, validating each message (via the meta data)
as it is sent or received.

3.1 Conversation API

The Python Conversation API offers a high-level interface for safe conversation program-
ming, mapping the interaction primitives of session types to lower-level communication
actions on concrete transports. Our current implementation is built over an AMQP [2] trans-
port. In summary, the API provides the functionality for (1) session initiation and joining, (2)
basic send/receive and (3) conversation scope management for handling interrupt messages.
Figure 4 lists the core API operations. The invitation operations (create and join) have not
been captured in standard MPST systems, but have formal counterparts in the literature in
formalisms such as [13].

We demonstrate the usage of the API in a Python implementation of the local protocol
projected for the User role. Figure 5 gives the local protocol and its implementation.

Conversation initiation. First, the create method of the Conversation API (line 6, right)
initiates a new conversation instance of the ResourceAccessControl protocol (Figure 2), and
returns a token that can be used to join the conversation locally. The config.yml file spec-
ifies which network principals will play which roles in this session and the runtime sends
invitation messages to each. The join method confirms that the endpoint is joining the con-
versation as the principal alice playing the role User, and returns a conversation channel
object for performing the subsequent communication operations. Once the invitations are
sent and accepted (via Conversation.join), the conversation is established and the intended
message exchanges can proceed. As a result of the initiation procedure, the runtime at every
participant has a mapping (conversation table) between each role and their AMQP addresses.
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1 local protocol ResourceAccessControl
2 at User as U (role Controller as C,
3 role Agent as A) {
4 req(duration:int) to C;
5 interruptible {
6 rec X {
7 interruptible {
8 rec Y {
9 data() from A;

10 continue Y;
11 }
12 } with {
13 pause() by U;
14 }
15 resume() to A;
16 continue X;
17 }
18 } with {
19 stop() by U;
20 timeout() by C;
21 }
22 }

1 class UserApp(BaseApp):
2 user, controller, agent =
3 [’User’, ’Controller’, ’Agent’]
4 def start(self):
5 self.buffer = buffer(MAX_SIZE)
6 conv = Conversation.create(
7 ’RACProtocol’, ’config.yml’)
8 c = conv.join(user, ’alice’)
9 # request 1 hour access

10 c.send(controller, ’req’, 3600)
11 with c.scope(’timeout’, ’stop’) as c_x:
12 while not self.should_stop():
13 with c_x.scope(’pause’) as c_y:
14 while not self.buffer.is_full():
15 data = c_y.recv(agent)
16 self.buffer.append(data)
17 c_y.send_interrupt(’pause’)
18 use_data(self.buffer)
19 self.buffer.clear()
20 c_x.send(agent, ’resume’)
21 c_x.send_interrupt(’stop’)
22 c.close()

Fig. 5: Scribble local protocol (left) and Python implementation (right) for the User role

Conversation message passing. Following its local protocol, the User program sends a re-
quest to the controller, stating the duration for which it requires access to agent. The send

method called on the conversation channel c takes, in this order, the destination role, message
operator and payload values as arguments. This information is embedded into the message
payload as part of the conversation meta data, and is later used by the monitor in the runtime
verification. The recv method can take the source role as a single argument, or addition-
ally the operator of the desired message. Send is asynchronous, meaning that the operation
does not block on the corresponding receive; however, the basic receive does block until the
complete message has been received.

Interrupt handling via conversation scopes. This example demonstrates a way of handling
conversation interrupts by combining conversation scopes with the Python with statement
(an enhanced try-finally construct). We use with to conveniently capture interruptible con-
versation flows and the nesting of interruptible scopes, as well as automatic close of inter-
rupted channels in the standard manner, as follows. The API provides the c.scope() method,
as in line 11, to create and enter the scope of an interruptible Scribble block (here, the outer
interruptible of the RAC protocol). The timeout and stop arguments associate these message
signatures as interrupts to this scope. The conversation channel c x returned by scope is a
wrapper of the parent channel c that (1) records the current scope of every message sent in its
meta data , (2) ensures every send and receive operation is guarded by a check on the local
interrupt queue , and (3) tracks the nesting of scope contexts through nested with statements.
The interruptible scope of c x is given by the enclosing with (lines 11–21); if, e.g., a timeout

is received within this scope, the control flow will exit the with to line 22. The inner with

(lines 13–17), corresponding to the inner interruptible block, is associated with the pause

interrupt. When an interrupt, e.g. pause in line 17, is thrown (send interrupt) to the other
conversation participants, the local and receiver runtimes each raise an internal exception
that is either handled or propagated up, depending on the interrupts declared at the current
scope level, to direct the interrupted control flow accordingly. The delineation of interrupt-
ible scopes by the global protocol, and its projection to each local protocol, thus allows
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1 class UserApp(BaseApp):
2 def start(self):
3 self.buffer = buffer(MAX_SIZE)
4 conv = Conversation.create(
5 ’RACProtocol’, config.yml)
6 c = conv.join(user, ’alice’)
7 # request 1 hour access
8 c.send(controller, ’req’, 3600)
9 c_x = c.scope(’timeout’, ’stop’)

10 c_y = c_x.scope(’pause’)
11 c_y.recv_async(agent, recv_handler)
12

13 def recv_handler(self, c, op, payload):
14 with c:
15 if self.should_stop():
16 c.send_interrupt(’stop’)

16 elif self.buffer.is_full():
17 self.process_buffer(c, payload)
18 else:
19 self.buffer.append(payload)
20 c.recv_async(agent, recv_handler)
21

22 def process_buffer(self, c, payload):
23 with c:
24 c_x = c.send_interrupt(’pause’)
25 use_data(self.buffer, payload)
26 self.buffer.clear()
27 c_x.send(agent, ’resume’)
28 c_y = c_x.scope(’pause’)
29 c_y.resv_async(agent, recv_handler)

Fig. 6: Event-driven conversation implementation for the User role

interrupted control flows to be coordinated between distributed participants in a structured
manner.

The scope wrapper channels are closed (via the with) after throwing or handling an in-
terrupt message. For example, using c x after a timeout is received (i.e. outside its parent
scope) will be flagged as an error. By identifying the scope of every message from its meta
data, the conversation runtime (and monitor) is able to compensate for the inherent dis-
crepancies in protocol synchronisation, due to asynchronous interrupts between distributed
endpoints, by safely discarding out-of-scope messages. In our example, the User runtime
discards data messages that arrive after pause is thrown. To prevent the loss of such mes-
sages in the application logic when the stream is resumed, we could extend the protocol to
simply carry the id of the last received data element in the payload of the resume (in line 20).
The API can also make the discarded data available to the programmer through secondary
(non-monitored) operations.

Event-driven conversations For asynchronous, non-blocking receives, the Conversation API
provides recv async to be used in an event-driven style. Figure 6 shows an alternative
implementation of the user role using callbacks. We first enter the nested conversation
scopes according to the potential interrupt messages (Lines 9 and 10). The callback method
(recv handler) is then registered using the recv async operation (Line 11). The callback ex-
ecutions are linked to the flow of the protocol by taking the scoped channel as an argument
(e.g. c on Line 13). Note that if the stop and pause interrupts were not declared for these
scopes, Line 16 and Line 24 would be considered invalid by the monitor. When the buffer
is full (Line 16), the user sends the pause interrupt. After raising an interrupt, the current
scope becomes obsolete and the channel object for the parent scope is returned. After the
data is processed and the buffer is cleared, the resume message is sent (Line 27) and a fresh
scope is created and again registered for receiving data events (Line 28). Any occurence of
the timeout interrupt is handled implicitly by the with statements, which will close the con-
versation and clean up the associated resources. Although the event-driven API promotes a
notably different programming style, our framework monitors both this implementation and
that in Figure 5 transparently without any modifications.
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Fig. 7: Monitor workflow for (1) invitation and (2)
in-conversation messages

C!req(int)
new scope

A?data

A!pauseA!resume

{C, A}!stopC?timeout

Fig. 8: Nested FSM generated from
the User local protocol

3.2 Monitoring architecture

Inline and outline monitoring. In order to guarantee global safety, our monitoring frame-
work imposes complete mediation of communications: no communication action should
have an effect unless the message is mediated by the monitor. This principle requires that
all outgoing messages from a principal before reaching the destination, and all incoming
messages before reaching the principal, are routed through the monitor.

The monitor implementation (and the accompanying theory [7]) is compatible with a
range of monitor configurations. At one end of the spectrum is inline monitoring, where
the monitor is embedded into the endpoint code. Then there are various configurations for
outline monitoring, where the monitor is positioned externally to its component. In the OOI
project, our focus has been to integrate our framework for inline monitoring due to the
architecture of the OOI message interceptor stack [37].

Monitor implementation. Figure 7 depicts the main components and internal workflow of
our prototype monitor. The lower part relates to conversation initiation. The invitation mes-
sage carries (a reference to) the local protocol for the invitee and the conversation id (global
protocols can also be exchanged if the monitor has the facility for projection.)

We use a parser generator (ANTLR) to produce, from a Scribble local protocol, an
abstract syntax tree with MPST constructs as nodes. The tree is traversed to generate a
finite state machine, represented in Python as a hash table, where each entry has the shape:

(current state, transition) 7→ (next state, assertion, var)

where transition is a quadruple (interaction type, label,sender,receiver), interaction type is
either send or receive and var is a variable binder for a message payload. We number the
states using an infinitive integer generator.

When a send/receive node is visited, two states are generated, and a linking transition of
type send or receive is added to the transition table. Dummy states are created on entering a
choice subtree and then again for each of the choice branches. An empty transition connects
a dummy initial choice state and branch states. A recursion is handled by keeping a mapping
between a recursion label and its recursion start state. Processing a node continue node
results in an empty transition between a current state and a corresponding recursion start
state.
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The algorithm for generating FSM from a MPST protocol is presented formally in [16].
Our implementation differs from [16] in the treatment of parallel sub-protocols (i.e. un-
ordered message sequences), and additionally supports interrupts. For efficiency, we extend
[16] to generate a nested FSM for each conversation thread, avoiding the potential state
explosion that comes from constructing their product. This allows FSM generation in poly-
nomial time and space in the length of the local protocol. The (nested) FSMs are stored
in a hash table with conversation id as the key. Due to standard MPST well-formedness
(message label distinction), any nested FSM is uniquely identifiable from any unordered
message, i.e. message-to-transition matching in a conversation FSM is deterministic.

The upper part of Figure 7 relates to in-conversation messages, which carry the con-
versation id (matching an entry in the FSM hash table), sender and receiver fields, and the
message label and payload. This information allows the monitor to retrieve the correspond-
ing FSM (by matching the message signature to the FSM’s transition function). Assertions
associated to communication actions are evaluated by invoking an external logic engine; a
monitor can be configured to use various logic engines, such as for the validation of as-
sertions, automata-based specifications (e.g. security automata), or other stateful properties.
Our current implementation uses a basic Python predicate evaluator, which is sufficient for
the use case protocols we have developed so far.

Monitoring interrupts. FSM generation for interruptible local protocols again makes use of
nested FSMs. Each interruptible induces a nested FSM given by the main interruptible
block, as illustrated in Figure 8 for the User local protocol. The monitor internally augments
the nested FSM with a scope id, derived from the signature of the interruptible block, and
an interrupt table, which records the interrupt message signatures that may be thrown or
received in this scope. Interrupt messages are marked via the same meta data field used to
designate invitation and in-conversation messages, and are validated in a similar way except
that they are checked against the interrupt table. However, if an interrupt arrives that does
not have a match in the interrupt table of the immediate FSM(s), the check searches upwards
through the parent FSMs; the interrupt is invalid if it cannot be matched after reaching the
outermost FSM is reached.

4 Evaluation

Our dynamic MPST verification framework has been implemented and integrated into the
current release of the Ocean Observatories platform [35]. This section reports on our inte-
gration efforts and the performance of our framework.

4.1 Experience: OOI integration

The current release of OOI is based on a Service-Oriented Architecture, with all of the dis-
tributed system services accessible by RPC. As part of their efforts to move to agent-based
systems in the next release, and to support distributed governance for more than just individ-
ual RPC calls, we engineered the following step-by-step transition. The first step was to add
our Scribble monitor to the message interceptor stack of their middleware [37]. The second
was to propose our conversation programming interface to the OOI developers. To facilitate
the use of session types without obstructing the existing application code, we preserved the
interface of the RPC libraries but replaced the underlying machinery with the distributed
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x = Registry.save("some data")

def save(data):

return RPCClient.request("Registry", "save", data)

#follows generic Scribble protocol
def request(svc addr, op, args*):

c = create and join("RPCProtocol")
invite and send(svc addr, c, op, args*)
return c.receive()

core conversation primitives:
? create, join, create and join: creation
? invite, invite and send: initial request
? send, receive: in-conversation messages

Application Code

Local Proxy

RPC Library

Conversation Layer

event-based scheduling ION channels

Fig. 9: Translation of an RPC command into lower-level conversation calls

runtime for session types (as shown in Figure 9, the RPC library is now realised on top of
the Conversation Layer). As wrappers to the conversation primitives, all RPC calls are now
automatically verified by the inline MPST monitors. This approach was feasible because no
changes were required to existing application code, but at the same time, developers now
have the option to use the Conversation API directly for conversations more complex than
RPC. The next step in this ongoing integration work involves porting higher-level and more
complex OOI application protocols, such as distributed agent negotiation [36], to Scribble
specifications and Conversation API implementations.

4.2 Benchmarks

The potential performance overhead that the Conversation Layer and monitoring could intro-
duce to the system is an important consideration. The following performance measurements
for the current prototype show that our framework can be realised at reasonable cost. Ta-
ble 1 presents the execution time comparing RPC calls using the original OOI RPC library
implementation and the conversation-based RPC with and without monitor verification. On

10 RPCs (s)
RPC Lib 0.103
No Monitor 0.108 +4%
Monitor 0.122 +13%

Table 1: Original OOI RPC vs. conversation-based RPC with monitoring disabled/enabled

Seq States No-Mon (s) Mon (s)
10 0.92 0.95 +3.2%
100 8.13 8.22 +1.1%
1000 80.31 80.53 +0.8%

Par States No-Mon (s) Mon
10 0.45 0.49 +8%
100 4.05 4.22 +4.1%
1000 40.16 41.24 +2.7%

Table 2: Conversation execution time for an increasing number of sequential and parallel
states
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Global Scribble FSM Memory Generation Time
Use Cases from research papers (LOC) (B) (s)
A vehicle subsystem protocol [26] 8 840 0.006
Map web-service protocol [18] 10 1040 0.010
A bidding protocol [30] 26 1544 0.020
Amazon search service [19] 12 1088 0.010
SQL service [39] 8 1936 0.009
Online shopping system [17] 10 1024 0.008
Travel booking system [17] 16 1440 0.013

Use Cases from OOI and Savara
A purchasing protocol [25] 11 1088 0.010
A banking example [36] 16 1564 0.013
Negotiation protocol [36] 20 1320 0.014
RPC with timeout [36] 11 1016 0.013
Resource Access Control [36] 21 1854 0.018

Table 3: Use case protocols implemented in Scribble

average, 13% overhead is recorded for conversations of 10 consecutive RPCs, mostly due to
the FSM generation from the textual local Scribble protocol (our implementation currently
uses Python ANTLR); the cost of message validation itself is negligible in comparison. We
plan to experiment with optimisations such as pre-generating or caching FSMs to reduce the
monitor initialisation time.

The second benchmark gives an idea of how well our framework scales beyond basic
RPC patterns. Table 2 shows that the overall verification architecture (Conversation Layer
and inline monitor) scales reasonably with increasing session length (number of message
exchanges) and increasing parallel states (nested FSM size): “Seq States” is the number
of states passed through sequentially by a simple recursive protocol (used to parameterise
the length of the conversation), and “Par States” the number of parallel states in a parallel
protocol. Two benchmark cases are compared. The main case “Monitor” (Mon) is fully
monitored, i.e. FSM generation and message validation are enabled for both the client and
server. The base case for comparison “No Monitor” (No-Mon) has the client and server in the
same configuration, but monitors are disabled (messages do not go through the interceptor
stack). As above, we found that the overhead introduced by the monitor when executing
conversations of increasing number of recursive and parallel states is again mostly due to
the cost of the initial FSM generation. We also note that the relative overhead decreases
as the session length increases, because the one-time FSM generation cost becomes less
prominent. For dense FSMs, the worse case scenario results in linear overhead growth wrt.
the number of parallel branches.

In both of the above tables, the presented figures are the mean time for the client and
server, connected by a single-broker AMQP network, to complete one conversation after
repeating the benchmark 100 times for each parameter configuration. The client and server
Python processes (including the conversation runtime and monitor) and the AMQP broker
were each run on separate machines (Intel Core2 Duo 2.80 GHz, 4 GB memory, 64-bit
Ubuntu 11.04, kernel 2.6.38). Latency between each node was measured to be 0.24 ms on
average (ping 64 bytes). The full source code of the benchmark protocols and applications
and the raw data are available from the project page [42].
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GResCont = U→C : req;C→A : start
{|µX .
{|µY.A→U :data;Y |}c2 〈pause by U〉;
U→A : resume;X
|}c1 〈stop by U, timeout by C〉;end

Fig. 10: Global type for the Resource Access Control protocol in Figure 2

4.3 Use cases

We conclude our evaluation with some remarks on use cases we have examined. Table 3
features a list of protocols, sourced from both the research community and our industry
use cases, that we have written in Scribble and used to test our monitor implementation
on more realistic protocol specifications. A natural question for our methodology, being
based on explicit specification of protocols, is the overhead imposed on developers wrt.
writing protocols, given that a primary motivation for the development of Scribble is to
reduce the design and testing effort for distributed systems. Among these use cases, we
found the average Scribble global protocol is roughly 10 LOC, with the longest one at 26
LOC, suggesting that Scribble is reasonably concise.

The main factors that may affect the performance and scalability of our monitor imple-
mentation, and which depend on the shape of a protocol, are (i) the time required for the
generation of FSMs and (ii) the memory overhead that may be induced by the generation
of nested FSMs in case of parallel blocks and interrupts. Table 3 measures these factors for
each of the listed protocols. The time required for FSM generation remains under 20 ms,
measuring on average to be around 10 ms. The memory overhead also remains within rea-
sonable boundaries (under 2.0 KB), indicating that FSM caching is a feasible optimisation
approach. The full Scribble protocols can be found at [42].

From our experience of running our conversation monitoring framework within the OOI
system, we expect that, in many large distributed systems, the cost of a decentralised mon-
itoring infrastructure would be largely overshadowed by the raw cost of communication
(latency, routing) and other services running at the same time. Considering the presented
results, we thus believe the important benefits in terms of safety and management of high-
level applications come at a reasonable cost and would be a realistic mechanism in many
distributed systems.

5 Multiparty session types with asynchronous interrupts

This section presents the underlying session type theory with interrupts and its correctness
result, session fidelity, justifying our choice for the implementation of interrupt messages.
We build over an existing multiparty session theory [20], adding syntax and semantics for
interrupts.

In our theory, we manipulate global types, which correspond to session specifications
and local types, which are used to express monitored behaviours of processes [7]. We show
that interruptible blocks can be treated through the use of scopes, a new formal construct
that makes explicit, through an explicit identifier, the domain of interrupts.
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Global session type for RAC use case. In Figure 10, to introduce the syntax of global types
informally, we first show a global type which corresponds to the Scribble protocol in Fig-
ure 2. The formal syntax will be given in the next subsection. The first line denotes the two
interactions at the start between the three participants. The outer loop is embedded inside a
scope construct, explicitly by c1. The inner loop is embedded inside another scope c2. The
information directly after the scope describes how it can be interrupted.

We insist on the fact that the formal global type GResCont is very close to its Scribble
counterpart in Figure 2. The main difference comes from the explicit naming of the scopes
(here, c1 and c2). Note that:

– Our types are equi-recursive and every scope annotation has to be different, so in this
representation c2 actually stands for an infinite set of scopes (ci

2)i≥0, one for every
unfolding of the recursion of X .

– This example requires to enrich the syntax presented below with interruptible constructs
accepting two interrupt messages, which can be performed either by slightly updating
the semantics or by encoding the example into two nested interruptible constructs.

5.1 Global and local types

We introduce a session type theory with: global types G which are protocols involving sev-
eral participants abstracted into roles r. Global types can be projected into a set of local
types Tr, which are considered as fragments of the global protocol seen from the point of
view of a role.

Basic syntax. The inductive definition of G in the upper half of Figure 11 describe global
types, role-based global scenarios between multiple participants as a type signature. The
basic type construct is the interaction r→r′ :{li.Gi}i∈I which stands for a message from r

to r′ containing a label chosen by r between the li. Each label li corresponds to a specific
continuation Gi. Notice that, in this theory section, we do not specify the content of messages
(or their type), as it is irrelevant in the semantics. G1 | G2 denotes the parallel composition
of two protocols, µx.G and x are, respectively, the recursion construct and the recursion
variable. end is the end of a protocol.

Scopes. We add to this classical framework two new constructs to handle interrupts. We use
scopes to delimit interruptible blocks inside protocols. In types, scopes are made explicit by
the use of scope variables c. We assume there is an infinite set of such variables and that no
two variables are the same inside global types. This is crucial as our syntax contains recur-
sion: recursive types are treated as equi-recursive terms, meaning that the lazy unfolding of
the types is implicit; thus, when a scope variable appears inside of a recursion loop, it actu-
ally stands for an infinite number of fresh variables. We consider that this is an appropriate
abstraction of the dynamic scope generation present in the implementation in § 3.2.

Interrupts. Our types feature a new interrupt mechanism by explicit interruptible scopes:
we write {|G|}c〈l by r〉;G′ to denote a creation of an interruptible block identified by scope
c, containing protocol G (called inner protocol), that can be interrupt by a message l from
r and continued after completion (either normal or exceptional) with protocol G′ (called
continuation protocol). This construct corresponds to the interruptible of Scribble, pre-
sented in § 2. For the sake of clarity, we suppose there is only one possible interrupt message
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G ::= r→r′ :{li.Gi}i∈I | G|G | {|G|}c〈l by r〉;G′ | µx.G | x | end | Eend

T ::= r!{li.Ti}i∈I | r?{li.Ti}i∈I | T |T | {|T |}c / 〈r!l〉;T ′ | {|T |}c . 〈r?l〉;T ′

| µx.T | x | end | Eend

Fig. 11: Global and local types

We assume r, r′ and r0 are pairwise distinct.

(r→r′ :{li.Gi}i∈I) ↑ r = r′!{li.(Gi ↑ r)}i∈I
(r→r′ :{li.Gi}i∈I) ↑ r′ = r?{li.(Gi ↑ r′)}i∈I
(r→r′ :{li.Gi}i∈I) ↑ r0 = G1 ↑ r0

(µx.G) ↑ r0 = µx.(G ↑ r0) when r0 ∈ G
(µx.G) ↑ r0 = end otherwise

x ↑ r0 = x
end ↑ r0 = end

{|G|}c〈l by r〉;G′ ↑ r = {|G ↑ r|}c . 〈r?l〉;G′ ↑ r
{|G|}c〈l by r′〉;G′ ↑ r = {|G ↑ r|}c / 〈r′!l〉;G′ ↑ r

when r ∈ G
{|G|}c〈l by r′〉;G′ ↑ r = G′ ↑ r

otherwise

Fig. 12: Projection algorithm

(from one particular role) for each scope, but extending it to multiple interrupt messages
(possibly from different roles) is not difficult. Note that we allow interruptible scopes to be
nested.

We use Eend to denote the exceptional termination of a scope. As a result, Eend is
not present in a specification and will appear at runtime, to denote that a block has been
interrupted.

Local types. To represent sessions at the level of participants, we use local type T . Their
syntax is presented in the lower half of Figure 11 and follows a pattern similar to the global
ones: the interaction is divided into two sides: one for emitting a message r!{li.Ti}i∈I , the
other for receiving a message r?{li.Ti}i∈I . Parallel composition T | T , recursion and ending
constructs serve the same purpose as their global type counterparts.

For scopes, the main difference is that the interruptible operation is divided into two
sides, one / side for the role which can send an interrupt {|T |}c / 〈r!l〉;T ′, and the . side
for the roles which should expect to receive an interrupt message {|T |}c . 〈r?l〉;T ′.

Well-formedness. Global types are subject to some well-formedness conditions [20], which
constrain the type syntax. This enforces causality in an asynchronous framework (preventing
r1→ r2;r3→ r4 to be viable). We assume every global type G is well-formed according to
the conditions from [20], and handling interruptible blocks introduces a unique condition:
uniqueness of scope names, meaning that in a (equi-recursive) well-formed type, a scope
name appears only once in an interruptible construct (note that, as explained above, scope
names inside recursions are considered as name generators).

Projection. Figure 12 defines the projection operation ↑ r, which, for any participant playing
a role r in a session G, specifies its local type. We write r ∈G when role r appears in global
type G either as an endpoint in an interaction (sender or receiver) or as role allowed to send
an interrupt message in a scope construct.

The projection rules themselves are identical to the ones in [20] except the interrupts:
an interaction is projected as a send action r′! of the sender side, a receive r′? action on

18



the receiver side and is transparent to other roles (the well-formedness conditions from [20]
allows us to do as such by ensuring that every branch is the same to these roles). When
projecting types embedded inside a recursion on a role that does not appear inside the body
of the recursion, we project on the end type end.

When it comes to interruptible constructs, the projection on role r works as follows: if
role r is the role responsible for the interrupt, the projection is a . local type; and if the role
r is not responsible for the interrupt, but appears inside the inner scope, the projection is a
/ local type. If r does not appear in the inside protocol, the projection ignores the construct
and amounts to the projection on the continuation.

As an example, we give projections of our global type. As stated above, we restrict
ourselves in the formal section to interruptible scopes accepting only one interrupt message
(this can be encoded by two nested scopes), so we omit the timeout interruption. On role U,
projection gives:

GResCont ↑ U= C!req;{|µX .{|µY.A?data.Y |}c2 . 〈U?pause〉;A!resume.X |}c1 . 〈U?resume〉;
The two nested scopes can be interrupted by U (hence the . symbol). Projection of the

same global type on A would yield:
GResCont ↑ A= C?start;{|µX .{|µY.U!data.Y |}c2 . 〈U?pause〉;U?resume.X |}c1 / 〈U!resume〉;
As C does not appear inside the loops (and we omit the timeout interrupt), the projection

of C is:
GResCont ↑ C= U?req;A!start;end

5.2 Configurations and semantics

In order to justify our framework, we need to introduce a semantics for local types. This will
be defined through the use of configurations, which are meant to represent the situation of
an on-going network of monitored principals.

Environments. We identify multiple sessions – possibly instances of the same global type –
taking place simultaneously by a unique session channel (s,k, . . . ), mimicking the conversa-
tion id in our implementation. We use ∆ to denote session environments which are mappings
from session channels to local types, i.e.s1[r1] : T1, . . . ,sn[rn] : Tn. The session environments
abstract monitored principals, more precisely s1[r1] : T1 is the status of participant r1 in
session s1 which is expected to behave as T1.

Messages and queues. Standard messages are explained as follows: c[r,r′]〈l〉 meaning it
appears inside scope c, is sent from r to r′ and contains label l. We also annotate messages
for interrupts as in cI[r,r′]〈l〉. A queue s[r] : h is a sequence of messages waiting to be
consumed by a particular role r in session s. Queues are ordered, but we allow permutations
of two messages in the same queue if they have different receivers (as in [20,15]). For the
sake of clarity, we do not describe here the relaxing of conditions on permutability induced
by the use of scope (we could allow two messages to the same receiver to be permuted if
they are not tagged with the same scope).

Configurations. ∆ ;Σ are pairs composed of a session environment and a transport Σ which
is a collection of queues. Configurations model the behaviour of a network of monitored
agents.

We define a reduction semantics for configurations in Figure 14. In order to treat a
message with its corresponding scope, we need to remember from which scope the message
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Eε = [] | (Eε |T ) | (T |Eε )

Ec = {|Ec|}c′ 6=c . 〈r?l〉;T ′ | {|Ec|}c′ 6=c / 〈r!l〉;T ′ | {|Eε |}c . 〈r?l〉;T ′

| {|Eε |}c / 〈r!l〉;T ′ | {|Eend|}c′ 6=c . 〈r?l〉;Ec | {|Eend|}c′ 6=c / 〈r!l〉;Ec

| {|end|}c′ 6=c . 〈r?l〉;Ec | {|end|}c′ 6=c / 〈r!l〉;Ec | Ec|T | T |Ec

Fig. 13: Evaluation contexts

(Out) s[r] : Ec[r′!{li.Ti}];s[r′] : h → s[r] : Ec[Ti];s[r′] : h.c[r,r′]〈li〉
(In) s[r] : Ec[r′?{li.Ti}];s[r] : c[r′,r]〈li〉.h → s[r] : Ec[Ti];s[r] : h

(EOut) s[r] : Ec0 [{|T |}c . 〈r?l〉;T ′];s[r1] : h, . . . ,s[rn] : h
→ s[r] : Ec0 [{|Eend|}c . 〈r?l〉;T ′];s[r1] : cI[r,r1]〈l〉.h, . . . ,s[rn] : cI[r,rn]〈l〉.h

(EIn) s[r] : Ec0 [{|T |}c . 〈r′?l〉;T ′];s[r] : h.cI[r′,r]〈l〉.h
→ s[r] : Ec0 [{|Eend|}c . 〈r′?l〉;T ′];s[r] : h

(Disc) s[r] : Ec0 [{|Eend|}c . 〈r′?l〉;T ′];s[r] : c1[r
′,r]〈l〉.h

→ s[r] : Ec0 [{|Eend|}c . 〈r′?l〉;T ′];s[r] : h

(EDisc) s[r] : Ec0 [{|Eend|}c . 〈r′?l〉;T ′];s[r] : cI1 [r
′,r]〈l〉.h

→ s[r] : Ec0 [{|Eend|}c . 〈r′?l〉;T ′];s[r] : h

(Par) ∆ ,∆0;Σ ,Σ0→ ∆ ′,∆0;Σ ′,Σ0 if ∆ ;Σ → ∆ ′;Σ ′

In (EOut), we assume Γ (c) = {r,r1, . . . ,rn}; and in (Disc,EDisc), we assume Γ ` c R c1.

Fig. 14: Reduction semantics for a specification

was sent. To this purpose, we enrich the definition of scopes with ε the empty scope and add
a scope annotation on contexts. Evaluation contexts are defined in Figure 13.

Evaluation contexts. The contexts are indexed by scope c; our definition ensures that the
evaluation actually happens inside c (i.e. c is the innermost scope in which the hole ap-
pears). Evaluation can proceed from inside the inner scope of an interruptible (either . or /)
construct, or from inside the continuation scope of a interruptible, but only when the inner
scope has ended (normally or exceptionally).

Semantics. The reduction semantics is defined w.r.t. a scope environment Γ = T ,R com-
posed of a scope table

T ::= ε | c : {r1, . . . ,rn},T

and a scope order which is the reflexive and transitive closure of the relation given by:
c1 R c2 whenever a global type contains Ec1 [{|G|}c2〈l by r〉;G′]. The scope table keeps a
track of every participant in a scope and the scope order keeps track of scope nesting (when
c1 R c2 it means that scope c2 is inside scope c1). We note Γ (c) = {r1, . . . ,rn} whenever
Γ =T ,R and T contains c : {r1, . . . ,rn}. The environment is omitted when not necessary.

Semantics rules in Figure 14 are as follows: in (Out), an output from r to r′ appearing
inside the scope c of the type of role r in session s is played and a message is placed in the
queue s[r′], tagged with c. Conversely in (In), a message in queue s[r′] can be consumed
by r′ inside a matching scope. In rule (EOut), a type T inside scope c is interrupted by r,
which replaces T by Eend and places an interrupt message in the queues of each participant
of scope c (we need the table from Γ ). Conversely in rule (EIn), an interrupt message for
scope c is consumed to exceptionally terminates the type T inside scope c. Rule (Disc)
discards an incoming message to scope c1 nested inside scope c if the latter has already
been exceptionally terminated (we need the scope order from Γ ). Rule (EDisc) performs the
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same thing for exceptional messages. The three points highlighted in the implementation 3.1
are treated in the theory as follows: (1) scopes are explicitly present in messages (2) interrupt
messages can be fired at any time from the global queue (see rule (EIn)), however, using a
single-queue system prevent us from giving them priority (it would otherwise lead to) and
(3) scope nesting is handled by the definition of evaluation contexts (which depends on
scopes and includes scope nesting in their structures).

Remarks on semantics. Regarding to the semantics, we have two remarks. Most of existing
theoretical works such as [20] consider session creations, through the use of auxiliary ac-
tions. Also the garbage collection can be handled by adding completion annotation to types
and additional rules to control broadcasts of special messages: when a participant receives a
completion message it can assume its sender is finished, and when every other participants
of a scope are finished the whole interrupt construct can be garbage collected. Both these
facilities can be integrated into the current semantics.

The correctness of our theory is ensured by Theorem 5.3. This theorem states the fol-
lowing property:

Session Fidelity: a local enforcement implies global correctness: if a network of
monitored agents (modelled as a configuration) corresponds to a collection of well-
formed specifications and makes some steps by firing messages, then the network
can perform reductions (consuming these messages) and reaches a state that cor-
responds to a collection of well-formed specifications, obtained from the previous
one.

This property guarantees that the network is always linked to the specification, and proves,
with the previous dynamic monitoring process theory [7], that the introduction of interrupt-
ible blocks to the syntax and semantics yields a sound theory.

Correspondence. First, we define configuration correspondence: a configuration ∆ ,Σ corre-
sponds to a collection of global types G1, . . . ,Gl whenever Σ is empty and ∆ = {Gi ↑ r | r ∈
Gl , 1≤ i≤ l}. That is, the environment is a projection of existing well-formed global types.
We use→∗ to denote the reflexive-transitive closure of→.

Derivative. We say that a global type G′ is a derivative of G whenever G′ can be obtained
from G by progressing in the types. The formal definition is given by taking the reflexive
and transitive closure of the ;-relation:

r→r′ :{li.Gi}i∈I ; Gi {|G|}c〈l by r〉;G0 ; {|Eend|}c〈l by r〉;G0

{|G|}c〈l by r〉;G0 ; {|G′|}c〈l by r〉;G0 if G ; G′ G | G0 ; G′ | G0 if G ; G′

5.3 Type memory

In order to reconstruct a global type from a configuration, we need to remember what was
the type inside a scope at the moment it was interrupted, this is done by using type memo-
ries. Type memories are a syntactical construct which works as a simple way to remember
interrupted types. It is needed because we want, in order to prove session fidelity, to build
a well-formed global type from a configuration. If we use the syntax proposed above, some
problems would arise: consider a type whose scope c contains a sequence interaction be-
tween A and B, and suppose the scope is interrupted by B, but the interrupt message is not yet
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(Disc′) assuming s[r] : Ec0 [T ];s[r] : c1[r
′,r]〈l〉.h→ s[r] : Ec0 [T ′];s[r] : h

s[r] : Ec0 [{|‖T‖|}c . 〈r′?l〉; ];s[r] : c1[r
′,r]〈l〉.h→ Ec0 [{|‖T ′‖|}c . 〈r′?l〉; ];s[r] : h

(EIn1) assuming ϕ(Σ ,c)

s[r] : Ec0 [{|T |}c . 〈r′?l〉;T ′];s[r] : cI[r′,r]〈l〉.h→ Ec0 [{|‖T‖|}c . 〈r′?l〉;T ′];s[r] : h

(EIn2) assuming ¬ϕ(Σ ,c),

∏1≤i≤n s[ri] : Ei
ci [{|‖Ti‖|} . 〈r′?l〉; ],s[r] : Ec0 [{|T |}c . 〈r′?l〉;T ′];Σ ,s[r] : cI[r′,r]〈l〉.h

→ ∏1≤i≤n s[ri] : Ei
ci [{|Eend|} . 〈r′?l〉; ],s[r] : Ec0 [{|Eend|}c . 〈r′?l〉;T ′];Σ ,s[r] : h

(EDisc1) assuming ϕ(Σ ,k1)
s[r] : Ec0 [{|‖E [{|T |}k1 . 〈r′?l〉;T ′]‖|}c . 〈r′′?l′′〉; ];Σ ,s[r] : kI1 [r

′,r]〈l〉.h
→ s[r] : Ec0 [{|‖E [{|‖T‖|}k1 . 〈r′?l〉;T ′]‖|}c . 〈r′′?l′′〉; ];Σ ,s[r] : h

(EDisc2) assuming ¬ϕ(Σ ,k1)

s[r] : Ec0 [{|‖Ec[{|T |}k1 . 〈r′?l〉;T ′]‖|}c . 〈r′′?l′′〉; ],

∏1≤i≤n s[ri] : E1
c[{|‖Ti‖|}k1 . 〈r′?l〉;T ′i ];Σ ,s[r] : cIi [r

′,r]〈l〉.h
→∏1≤i≤n s[ri] : Ei [{|Eend|}ci . 〈r′?l〉;Ti],

s[r] : Ec0 [{|‖Ec[{|Eend|}k1 . 〈r′?l〉;T ′]‖|}c . 〈r′′?l′′〉; ];Σ ,s[r] : h

Fig. 15: Semantics for types with memories

received by A: we cannot obtain a session fidelity result, i.e. we cannot build a well-formed
session types from the configuration, the reason being there is no counterpart to the type
currently included in scope c in A, as it as been discarded when B exceptionally terminated.
As a way to remember what B was supposed to do before the interruption, we use a type
memory, that is, a syntactic annotation that remember the type in c in B when the interrupt
was raised.

Memories. We use a special annotation, called memory to remember what has been dis-
carded by exceptions. The syntax of memory types is the same as the one for standard local
types except we add Ec[‖T‖]. We define the erase operator Erase(·) which removes memory
annotations from types: Erase(s[r] : Ec[‖T‖]) = s[r] : Ec[Eend].

We say that a queue has an ongoing exception on c, written ϕ(Σ ,c) whenever Σ contains
at least one message cI1[r

′,r]〈l〉 and cRc1.

Intermediate correspondence. From the definition of the correspondence relation between
global types and ∆ we build the intermediate correspondence between global types and
configurations ∆ ,Σ containing types with memories using the following updates:

– ∆ ,s[r] : Ec[T ];Σ ,s[r′] : h.c[r′,r]〈l j〉 becomes ∆ ,s[r] : Ec[r!{li.Ti}];Σ for some (Ti)i6= j
– If the participants of c are r,r1, . . . ,rn, then

∆ ,s[r] : Ec[‖T‖] ∏
1≤i≤k

s[ri] : Ei
c[‖Ti‖], ∏

k+1≤ j≤n
s[r j] : Ei

c[Tj];Σ , ∏
k+1≤ j≤n

s[r j] : cI[r,r j]〈l〉.h j

is treated as ∆ ,s[r] : Ec[T ],∏1≤i≤n s[ri] : Ei
c[Ti];Σ .

This definition ensures first that ongoing outputs are treated as if they were not yet emitted,
and that ongoing exceptions are treated as if the exceptions were not yet triggered.

Special semantics for types with memory annotations is obtained by giving memories
the same semantics as Eend w.r.t. contexts and using the following rules for annotated types
(replacing (Disc), (EDisc) and (EIn)) and presented in Figure 15.

For rule corresponding to (Disc), we reduce the memory instead of discarding the mes-
sage. For rules corresponding to (EIn) and (EDisc), in both cases, we do a discussion on
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whether the exception corresponding to the message is “ongoing” or not. If it is the case, it
means other exception messages for the same scope still exist in queue, thus we annotate the
type in the scope (which would have been discarded) as a memory type, in order to remem-
ber it. If the exception message was the last one from its scope, then we remove the whole
memory for this exception by replacing every corresponding memory (in every types) with
Eend.

It is easy to see that ∆ ,Σ simulates Erase(∆),Σ and that Erase() preserves the inter-
mediate correspondence w.r.t. G1, . . . ,Gn. Thus in the following we will work with memory
annotated configurations, which are useful because they remember what local type has been
discarded by an exception as long as the type has not need discarded for every participant of
the scope.

Results. Theorem 5.3 states that if a configuration corresponds to G1, . . . ,Gn and makes
some reduction steps, we can let it make other steps to reach a configuration that corre-
sponds to some derivatives of G1, . . . ,Gn. The intermediate configurations correspond to the
situation where messages are exchanged through queues.

Theorem 5.3 (Session fidelity) If ∆ corresponds to G1, . . . ,Gn and ∆ ,ε →∗ ∆ ′,Σ ′, there
exists ∆ ′,Σ ′ →∗ ∆ ′′,ε such that ∆ ′′ corresponds to G′′1 , . . . ,G

′′
n which is a derivative of

G1, . . . ,Gn.

Proof We prove that if there is an intermediate correspondence between ∆ ,Σ and G1, . . . ,Gn
and if ∆ ,ε→ ∆ ′,Σ ′, then there is an intermediate correspondence ∆ ′′ and G′′1 , . . . ,G

′′
n which

is a derivative of G1, . . . ,Gn by induction on→. A full proof can be found in Appendix A.

6 Related work

Distributed runtime verification. The work in [3] explores runtime monitoring based on
session types as a test framework for multi-agent systems (MAS). A global session type
is specified as cyclic Prolog terms in Jason (a MAS development platform). Their global
types are less expressive in comparison with the language presented in this paper (due to
restricted arity on forks and the lack of session interrupts). Their monitor is centralised (thus
no projection facilities are discussed), and neither formalisation, global safety property nor
proof of correctness is given in [3].

Other works, notably from the multi-agent community, have studied distributed enforce-
ment of global properties through monitoring. A distributed architecture for local enforce-
ment of global laws is presented by Zhang et al. [46], where monitors enforce laws expressed
as event-condition-action. In [32], monitors may trigger sanctions if agents do not fulfil their
obligations within given deadlines. Unlike such frameworks, where all agents belonging to
a group obey the same set of laws, our approach asks agents to follow personalised laws
based on the role they play in each session.

In runtime verification for Web services, the works [30,31] propose FSM-based mon-
itoring using a rule-based declarative language for specifications. These systems typically
position monitors to protect the safety of service interfaces, but do not aim to enforce global
network properties. Cambronero et al. [10] transform a subset of Web Services Choreog-
raphy Description Language into timed-automata and prove their transformation is correct
with respect to timed traces. Their approach is model-based, static and centralised, and does
not treat either the runtime verification or interrupts. Baresi et al. [5] develop a runtime
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monitoring tool for BPEL with assertions. A major difference is that BPEL approaches do
not treat or prove global safety. BPEL is expressive, but does not support distribution and is
designed to work in a centralised manner. Kruger et al. [27] propose a runtime monitoring
framework, projecting MSCs to FSM-based distributed monitors. They use aspect-oriented
programming techniques to inject monitors into the implementation of the components. Our
outline monitoring verifies conversation protocols and does not require such monitoring-
specific augmentation of programs. Gan [17] follows a similar but centralised approach of
[27]. As a language for protocol specification, a main advantage of Scribble (i.e. MPST)
over alternatives, such as message sequence charts (MSC), CDL and BPML, is that MPST
has both a formal basis and an in-built mechanism (projection) for decentralisation, and is
easily integrated with the language framework as demonstrated for Python in this paper.

Language-based monitoring tools. Jass [24] is a precompiler tool for monitoring the dy-
namic behaviour of sequential objects and the ordering of method invocations by annotating
Java programs with specifications that can be checked at runtime. Other approaches to run-
time verification of program execution by monitors generated from language-based spec-
ifications include: aspect-oriented programming [29]; other works that use process calculi
formalisms, such as CSP [24]; monitors based on FSM skeletons associated to various forms
of underlying patterns [1,4]; and the analysis of dynamic parametric traces [4]. Our moni-
tor framework has been influenced by these works and shares similarities with some of the
presented RV techniques. However, the target program domain and focus of our work are
different. Our framework is specifically designed for decentralised monitoring of distributed
programs with diverse participants and interleaving sessions, as opposed to monitoring the
execution of a single program and verifying its local properties. The basis of our design
and implementation is the theory of multiparty session types, over which we have devel-
oped practically motivated extensions to the type language and the methodology for runtime
verification.

Interrupt in session types. Our theoretical work is new, as existing works for distributed
system do not support at the same time nested interrupt, multiparty protocols and contin-
uations to interruptible blocks. [13,12] contained interactional exceptions for binary only
sessions and for web service choreographies. This approach is different as try-catch blocks
are build upon session-connections—for a single session, exactly two different behaviours
are described—which constrains the shape of the protocols. [11] implements nested excep-
tions with queues and a central synchronisation through the use levels. Yet, the interruptible
construct is blocking w.r.t. continuations and thus not truly asynchronous.

Exception handling is common in distributed object-oriented programming [38,45].
Composition Actions have been adapted in [43] to model fault tolerant Web services but
these works do not address the same models of protocols. [23] presents a copyless message
passing model with exceptions and delegation with a common heap. They do not address
distributed systems and use transaction to restored to a consistent configuration. Service-
oriented calculi (e.g. [8,28,44]) include compensation or termination handling, but do not
coordinate participant behaviour after an exception is raised. CaSPiS [9] models binary ses-
sions (and handle nesting with pipes); a session can be explicitly terminated by one partici-
pant and a termination handler is subsequently activated at the other endpoint.
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7 Conclusion

We have implemented the first dynamic verification of distributed communications based
on multiparty session types and shown that a new feature for interruptible conversations is
effective in the runtime verification of message exchanges in a large cyberinfrastructure [34]
and Web services [40,41]. Our implementation automates distributed monitoring by gener-
ating FSMs from local protocol projections. We sketched the formalisation of asynchronous
interruptions with conversation scopes, and proved the correctness of our design through the
session fidelity theorem. Future work includes the incorporation of more elaborate handling
of error cases into monitors and automatic generation of service code stubs. Although our
implementation work is ongoing through industry collaborations, the results already confirm
the feasibility of our approach. We believe this work contributes towards methodologies for
better specification and more rigorous governance of network conversations in distributed
systems.
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19. S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire. Runtime verification of web service
interface contracts. Computer, 43(3):59–66, Mar. 2010.

20. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL, pages
273–284. ACM, 2008.

21. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in Java. In
ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer-Verlag, 2010.

22. R. Hu, R. Neykova, N. Yoshida, R. Demangeon, and K. Honda. Practical interruptible conversations -
distributed dynamic verification with session types and python. In RV, volume 8174 of LNCS, pages
130–148. Springer, 2013.
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Theorem 5.3 (Session fidelity) If ∆ corresponds to G1, . . . ,Gn and ∆ ,ε→∗ ∆ ′,Σ ′, there exists ∆ ′,Σ ′→∗
∆ ′′,ε such that ∆ ′′ corresponds to G′′1 , . . . ,G

′′
n which is a derivative of G1, . . . ,Gn.

Proof We prove that if there is an intermediate correspondence between ∆ ,Σ and G1, . . . ,Gn and if ∆ ,ε →
∆ ′,Σ ′, then there is an intermediate correspondence ∆ ′′ and G′′1 , . . . ,G

′′
n which is a derivative of G1, . . . ,Gn.

We use Ω ,Θ alongside ∆ to denote session environment. According to the derivative definition above,
we extend the notion of evaluation contexts to global types.

Case (Out) is trivial from the first rule of intermediate correspondence.

Case (EOut). We have ∆ =Θ ,s[r] : Ec0 [{|T |}c . 〈r?l〉;T ′]. Correspondence gives
– ∆ =Θ0,s[r] : Ec0 [{|T |}c . 〈r?l〉;T ′],∏1≤i≤n s[ri] : Ei

ci [{|Ti|}c . 〈r?l〉;T ′i ] and
– Σ = Σ1,Σ0 with Θ0;Σ0

corresponding to G2, . . . ,Gn and (∆ −Θ ′);Σ1 corresponding to G1. We know that Σ ′ = Σ0,∏1≤i≤n s[ri] :
hi.c

I[r,ri]〈l〉. Concluding is easy using the second rule of intermediate correspondence with k = 0.

Case (In). We assume ∆ = Θ ,s[r′] : Ec[r?{li.Ti}] and Σ = Σ0,s[r′] : h.c[r,r′]〈l j〉. We know there exists
G1, . . .Gn and ∆0 such that ∆0 =Θ1, . . . ,Θn with Θi =

⋃
r∈Gi

Gi ↑r.
Without loss of generality we have Θ1 = s[r′] : Ec[r?{li.Ti}],Θ ′1. By the rules of projection, it means

G1 = r→r′ :{l j.G j} j∈J , implying Θ ′1 = s[r′] : Ec′ [r?{li.Ti}],Θ ′′1 . So we have

∆ ′ = Ω ,s[r] : Ec[Tj],s[r′] : Ec′ [r?{li.Ti}],Θ ′1 and Σ ′ = Σ0,s[r′] : h.c[r,r′]〈l j〉.
We apply use (In) to conclude, using the projection rule on G j .

Case (EIn1). We pose r = rk+1. We have Σ = Σ ′,cI[r0,rk+1]〈l〉.h and ϕ(Σ ′,c). Then let us define ∆ =
Θ ,s[rk+1] : Ec0 [{|Tk+1|}c . 〈r0?l〉;T ′] and ∆ ′ =Θ , s[rk+1]Ec0 [{|‖T‖|}c . 〈r0?l〉;T ′]. Without loss of gen-
erality we suppose ∆ ;Σ corresponds to G. We deduce that

– G = F{|G0|}c〈l by r〉;G′ ;
∆ = s[r0] : E [{|T |}c . 〈r′?l〉; ],∏1≤i≤k s[ri] : Ei [{|‖Ti‖|}c . 〈r′?l〉; ],∏k+1≤ j≤n s[r j] : Ei [{|Tj|}c .
〈r′?l〉; ]; and

– Σ = Σ0,∏k+1≤ j≤n s[r j] : cI[r,r j]〈l〉.h j .
Thus we have

– ∆ ′ = s[r0] : E [{|T |}c . 〈r′?l〉; ],∏1≤i≤k+1 s[ri] : Ei [{|‖Ti‖|}c . 〈r′?l〉; ],∏k+2≤ j≤n s[r j] : Ei [{|Tj|}c .
〈r′?l〉; ] and

– Σ ′ = Σ0,∏k+2≤ j≤n s[r j] : cI[r,r j]〈l〉.h j .
We conclude using the second definition of intermediate correspondence with k = k+1.

Case (EIn2). We pose rn = r, we have Σ =Σ ′,cI[r0,rn]〈l〉.h and¬ϕ(Σ ′,c). Then ∆ =Θ ,s[rn] : Ec0 [{|Tn|}c .
〈r0?l〉;T ′] and ∆ ′ =Θ ,s[rk+1]Ec0 [{|‖T‖|}c . 〈r0?l〉;T ′]. Without loss of generality we suppose ∆ ;Σ corre-
sponds to G. We deduce that

– G = F{|G0|}c〈l by r〉;G′ ,
– ∆ = s[r0] : E [{|T |}c . 〈r′?l〉; ],∏1≤i≤n−1 s[ri] : Ei [{|‖Ti‖|}c . 〈r′?l〉; ],s[rn] : En [{|Tn|}c . 〈r′?l〉; ]

and
– Σ = Σ0,s[rn] : cI[r,rn]〈l〉.h.

From the semantics, we also have
– ∆ ′ = s[r0] : E [{|Eend|}c . 〈r′?l〉; ],∏1≤i≤n s[ri] : Ei [{|Eend|}c . 〈r′?l〉; ] and
– Σ = Σ0,s[rn] : h.

We use the hypothesis and the intermediate correspondence rule to prove that ∆ ′;Σ ′ corresponds to
F{|Eend|}c〈l by r〉;G′ which is a derivative of G. We conclude.

Case (Disc′) is easy using the first definition of the intermediate correspondence.

Case (EDisc1) is similar to (EIn1).

Case (EDisc2) is similar to (EIn2).

We then prove the following progress property: if ∆ ,Σ is in intermediate correspondence with G1, . . . ,Gn,
and Σ 6= ε then there exist ∆ ′,Σ ′ with Σ ′ strictly smaller than Σ . We prove it as follows:

– if Σ contains c[r,r′]〈l〉, we use the weak projection definitions to prove that ∆ contains either s[r′] :
Ec[r?{li.Ti}] or s[r′] : Ec′ [{|‖T‖|}] . 〈r?l〉; with T containing r?{li.Ti}. We conclude by applying (In)
or (Disc′).

– otherwise Σ contains cI[r,r′]〈l〉 and we use the intermediate correspondence definition to discuss
whether c is inside an interrupted scope or not and then whether ϕ(Σ0,) or not, the we conclude by
applying (EIn1), (EIn2), (EDisc1) or (EDisc2).
By using these properties, we conclude the proof.
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