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This paper proves the soundness and completeness, together referred to as preciseness, of 
the subtyping relation for a synchronous multiparty session calculus.
We address preciseness from operational and denotational viewpoints. The operational 
preciseness has been recently developed with respect to type safety, i.e., the safe 
replacement of a process of a smaller type in a context where a process of a bigger 
type is expected. The denotational preciseness is based on the denotation of a type: 
a mathematical object describing the meaning of the type, in accordance with the 
denotations of other expressions from the language.
The main technical contribution of this paper is a novel proof strategy for the operational 
completeness of subtyping. We develop the notion of characteristic global type of a session 
type T, which describes a deadlock-free circular communication protocol involving all 
participants appearing in T. We prove operational completeness by showing that, if 
we place a process not conforming to a subtype of T in a context that matches the 
characteristic global type of T, then we obtain a deadlock. The denotational preciseness 
is proved as a corollary of the operational preciseness.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Concurrency and The Quest for Canonicity. In concurrency theory, it is often the case that open problems are solved not just 
by formulating a suitable solution, but also by providing general methods to justify whether the given solution is canonical
or not. With this approach, justification methods often lead to general and reusable formal reasoning and proof techniques, 
adaptable to different concurrent calculi.

The most notable instance of this approach can be found in the study of bisimulations in the π -calculus [31,47,55]. 
Variations of the π -calculus can be formalised with various labelled transition systems (LTSs), that in turn, can be used to 
define various notions of bisimulation. This leads to the question: given a calculus equipped with an LTS, and a notion of 
bisimulation, how can we ascertain whether the latter is, in some sense, canonical for the former? To answer this question, 
is now common to adopt a general justification method which consists in proving that, in the given calculus and LTS, the 
given bisimulation coincides with contextual congruence [29,33,48].

In this work, our aim is to extend this approach to subtyping relations for multiparty session calculi:
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(1) we adopt a general justification method for determining whether a given subtyping relation is canonical in a process 
calculus with binary sessions [14];

(2) from this basis, we develop a new justification method for multiparty sessions, and
(3) we show that the subtyping relation for synchronous multiparty session types [16,34,35,39,40] is canonical, as it satisfies 

such a method.

Denotational Preciseness of Subtyping in Functional Calculi. To introduce our approach, we first summarise a denotational no-
tion of canonicity for subtyping relations in functional calculi.

A subtyping relation is a pre-order (reflexive and transitive relation) on types that conforms to the well-known Liskov’s 
substitution principle [44,45]: if σ is a subtype of τ (notation σ ≤ τ ), then a term of type σ may be provided whenever a 
term of type τ is needed: see also [53] (Chapter 15) and [28] (Chapter 23).

A subtyping relation can be deemed canonical when it is both sound and complete. Given a functional calculus, the 
usual approach to assess soundness and completeness of subtyping is to consider the interpretation of a type σ (notation 
[ [σ ] ]) as a set that describes the meaning of the type in accordance with the denotations of the terms of the calculus; in 
general, [ [σ ] ] yields a subset of the domain of a model of the calculus. Then, we say a subtyping relation is denotationally 
sound when σ ≤ τ implies [ [σ ] ] ⊆ [ [τ ] ], and denotationally complete when [ [σ ] ] ⊆ [ [τ ] ] implies σ ≤ τ . A subtyping relation 
is denotationally precise if it is both denotationally sound and denotationally complete. This well-established definition has 
been studied in the context of λ-calculi: e.g., in the pure λ-calculus with arrow and intersection types by Barendregt 
et al. [4], in a call-by-value λ-calculus with arrow, intersection and union types by Bakel et al. [1] and by Ishihara and 
Kurata [38], in a wide class of calculi with arrow, union and pair types by Vouillon [59], and in a concurrent λ-calculus by 
Dezani-Ciancaglini and Ghilezan [21]. When introducing a new subtyping relation for a functional calculus, it is therefore 
natural to adopt denotational preciseness as a notion of canonicity, and thus investigate whether the proposed relation 
satisfies the requirement.

Operational Preciseness. In principle, one would want to adopt such a rigorous notion of subtyping canonicity to con-
currency. This, however, requires to adapt the notions of soundness and completeness to the operational (rather than 
denotational) semantics commonly found in process calculi; and this, in turn, leads to linking the canonicity of subtyp-
ing to type safety.

In this work, we adopt the following intuitions:

• Operational soundness of subtyping means that, if we have a context expecting a term of type τ , then σ ≤ τ implies that 
a term of type σ can be placed into that context without causing errors; e.g., if the context requires a real number, it 
is always correct to fill it with a natural number.

• Operational completeness means that, if σ � τ , then we can find a context expecting a term of type τ , such that if we 
fill it with a certain σ -typed term, it will behave “badly”. For example, nat � bool, and by taking the negation ¬(·) (that 
requires a boolean value) we can show that if we fill it with a natural number, then we obtain the erroneous term 
¬(5).

Operational completeness is the opposite direction of operational soundness, which is formalised above in a contrapositive 
form; henceforth we adopt classical reasoning.

To formally define operational soundness and completeness, we need a boolean predicate bad on terms, standard typing 
judgements � � M : σ (where � is a mapping from variables to types and M is a term) and evaluation contexts C . Then, we 
say that:

• A subtyping relation is operationally sound when σ ≤ τ implies that if (for some ρ) x : τ � C[x] : ρ and � M : σ , then 
bad(C[M]) is false, for all C and M .

• A subtyping relation is operationally complete when σ � τ implies that, for some ρ , C and M , we have x : τ � C[x] : ρ
and � M : σ and bad(C[M]).

and we say a subtyping relation is operationally precise if it is both operationally sound and operationally complete.
When the typing judgement � � M : σ is induced by a set of rules that include subsumption, then operational soundness 

immediately follows after we prove type safety (through a subject reduction theorem). To prove operational completeness, 
more sophistication is needed. We adopt the following general methodology, originally proposed for binary sessions by Chen 
et al. [15], Chen et al. [14]:

• [Step 1] characterise the negation of the subtyping relation;
• [Step 2] for each type σ , define a characteristic term Mσ ;
• [Step 3] for each type σ , define a characteristic context Cσ , behaving well if filled with σ -typed terms;
• [Step 4] show that if σ � τ , then bad(Cτ [Mσ ]).
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In this work, we adapt this proof method to multiparty session types: the adaptation requires a novel notion of character-
istic global types, as explained below.

Multiparty Session Types. The Multiparty Session Type discipline is a framework to guarantee safety properties for the in-
teractions among multiple concurrent peers. The structures of interactions are naturally distilled as protocols. Each protocol 
describes a bare skeleton of how interactions should proceed, by combining and sequencing inputs/outputs, choices, and 
recursions. In the theory of multiparty session types [16,34,35], protocols are captured as types for interaction; type check-
ing statically ensures that all participants engaged in an instance of a protocol, or a session, follow the specified protocol 
structure: this guarantees type safety, and fidelity of programs to a stipulated protocol. This implies that

(�) a group of processes typed within a single multiparty session is deadlock-free.

We illustrate the key ideas of our formulation and proofs for preciseness, through an example. Let us consider a simple ring 
protocol where participant Alice sends a message with label 	1, carrying a natural value, to participant Bob, who forwards 
the value to Carol (in a message with label 	2), who finally forwards it to Alice (in a message with label 	3). To develop 
the code for this protocol, we start by specifying the global type, which can concisely and clearly describe the high-level 
interactions of multiple participants [16,17,34,35], as follows (end denotes protocol termination):

G = Alice→ Bob : 	1(nat) .Bob→ Carol : 	2(nat) .Carol→ Alice : 	3(nat) .end

The flow of communication is indicated with the symbol →; upon agreement on G as a specification for Alice, Bob and 
Carol, each program can be implemented separately: e.g., a possible implementation for Alice is
Bob!	1(50).Carol?	3(z).0 (output 50 to Bob and input z from Carol). For type-checking, G is projected into end-point 
session types: e.g., a type for Alice’s point of view is Bob!	1(nat).Carol?	3(nat) (send a natural value to Bob, then input 
a natural from Carol). Importantly, type checking ensures that Alice’s process matches her session type; similarly, we 
can define the implementation of Bob and Carol, and type-check them against their projected end-point types.

Operational Preciseness of Multiparty Session Types. As explained above, the operational soundness follows straightforwardly 
after proving type safety. For completeness, we can expect the negation of subtyping as well as characteristic processes to 
be defined as the one by Chen et al. [14] (in the synchronous case), since the endpoint types are similar to binary session 
types, and the synchronous subtyping is similar to the one in the literature [18,25]. The remaining task is to find out the 
appropriate “bad” behaviour and characteristic contexts. Observing (�) above, the “bad” behaviour should be defined as a 
set of deadlocked processes engaged in a single multiparty session. However, to capture the role of subtyping, we need 
some sophistication: we must ensure that the characteristic context behaves well (i.e., does not deadlock) when it includes 
a process of type τ (say, for participant p), but behaves badly (i.e., deadlocks) when such a process is replaced with another 
process of type σ such that σ � τ . This requires to develop a notion of characteristic global types, in addition to characteristic 
processes and contexts. The participants that follow the characteristic global type will interact smoothly with p when its 
implementation Pτ follows the corresponding projected endpoint type τ — i.e., we have ¬bad(Cτ [Pτ ]); however, following
[Step 4], we show that if a process Pσ follows a type σ � τ , then we have bad(Cτ [Pσ ]). The characteristic global type of 
p is given as a collection of cyclic communications so that incorrect behaviours can be caught out as bad behaviour (i.e., 
causing a deadlock). Summing up, we prove the operational completeness by the following novel methodology:

• [Step 1] We characterise the negation of the subtyping relation (notation �).
• [Step 2] For each type T, we define a characteristic process P (T), which offers the series of interactions described by T.
• [Step 3] For each type T′ and participant r not appearing in T′ , we define a characteristic global type G(T′, r) and a 

characteristic context Cr,T′ . The characteristic context is a parallel composition of processes following the behaviour of 
participants of G(r, T′) — except for the participant r, whose behaviour is left unspecified.

• [Step 4] We show that if T �T′ then stuck
(
Cr,T′ [r �P(T)]) — where Cr,T′ [r � P (T)] is the characteristic context Cr,T′

with participant r performing actions P (T).

The methodology is developed and explained in Section 4.

Contributions. In this work, we study the multiparty session subtyping relation � (Definition 3.15). We show that � can 
be considered a canonical subtyping for the synchronous multiparty session calculus presented in Section 2: we develop 
the 4-steps approach outlined above, and show that � is operationally sound (Theorem 3.21) and complete (Theorem 4.18), 
hence precise. From these results, we also prove that � is denotationally precise (Theorem 6.2), when characteristic processes 
([Step 2] above) are used as denotations. As an additional result, we present an algorithm for deciding �, proving that it is 
terminating (Lemma 3.25), and sound and complete (Theorem 3.26).

This work is an extended version of a workshop paper presented at PLACES 2015 [22], with:

• a revised theoretical development, including:
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– a novel coinductive treatment of global type projections (Definition 3.6), based on global and local type trees (Re-
marks 3.10 and 3.14);

– a revised session subtyping algorithm (Table 6);
– a revised definition of the negated subtyping relation (Definition 4.3);

• more discussion and examples (especially in Section 3);
• revised and detailed proofs.

Outline. In Section 2, we define the syntax and the semantics of a synchronous multiparty session calculus. At the end of 
this section we define when a multiparty session gets stuck. Section 3 introduces the type system and shows its soundness 
(well-typed multiparty sessions do not get stuck); it also introduces the multiparty session subtyping �, with a decision 
algorithm: the latter (described in Section 3.4) gives us some technical tools that we use to prove our main results. In 
Section 4, we prove that the subtyping relation introduced in Section 3 is operationally precise. Section 5 provides an 
illustrative example. In Section 6 we show that the subtyping relation from Section 3 is denotationally precise. Section 7
concludes with a brief summary of the work and discussion of the related work. The appendices contain detailed proofs 
and further technical discussion.

2. Synchronous multiparty session calculus

This section introduces the syntax and semantics of a synchronous multiparty session calculus. Since our focus is on 
subtyping, we simplify the calculus in [39] eliminating both shared channels for session initiations and session channels for 
communications inside sessions — i.e., our calculus is akin to value-passing CCS [46, Chapter 2.8]. In Section 4 and Section 6, 
we prove the preciseness of the subtyping in this simplified calculus.

Notation 2.1 (Base sets). We use the following base sets: values, ranged over by v, v′, . . .; expressions, ranged over by e, e′, . . .; 
expression variables, ranged over by x, y, z . . . ; labels, ranged over by 	, 	′, . . . ; session participants, ranged over by p, q, . . .; 
process variables, ranged over by X, Y , . . . ; processes, ranged over by P , Q , . . . ; and multiparty sessions, ranged over by 
M, M′, . . . .

Syntax. A value v can be a natural number n, an integer i, or a boolean true / false. An expression e can be a variable, a 
value, or a term built from expressions by applying the operators succ, neg, ¬, ⊕, or the relation >. An evaluation context
E is an expression with exactly one hole. The only non-standard operator is ⊕, that models non-determinism: e1 ⊕ e2 is 
an expression that might yield either e1 or e2. This will be useful later on, to obtain compact definitions and statements 
(especially Definition 4.8).

The processes of the synchronous multiparty session calculus are defined by:

P ::= p!	(e).P || ∑
i∈I

p?	i(xi).Pi || if e then P else P || μX .P || X || 0

The output process p!	(e).Q sends the value of expression e with label 	 to participant p. The sum of input processes 
(external choice) 

∑
i∈I p?	i(xi).Pi is a process that can accept a value with label 	i from participant p, for any i ∈ I . According 

to the label 	i of the received value, the variable xi is instantiated with the value in the continuation process Pi . We assume 
that the set I is always finite and non-empty. The conditional process if e then P else Q represents the internal choice 
between processes P and Q . Which branch of the conditional process will be taken depends on the evaluation of the 
expression e. The process μX .P is a recursive process. We assume that the recursive processes are guarded. For example, 
μX .p?	(x).X is a valid process, while μX .X is not.

We define a multiparty session as a parallel composition of pairs (denoted by p � P ) of participants and processes:

M ::= p � P || M | M
with the intuition that process P plays the role of participant p, and can interact with other processes playing other roles in 
M. A multiparty session is well formed if all its participants are different. We consider only well-formed multiparty sessions.

Operational semantics. The value v of expression e (notation e ↓ v) is computed as expected, see Table 1. The successor oper-
ation succ is defined only on natural numbers, the negation neg is defined on integers, and ¬ is defined only on boolean 
values. The internal choice e1 ⊕ e2 evaluates either to the value of e1 or to the value of e2.

The computational rules of multiparty sessions are given in Table 3. They are closed with respect to the structural congru-
ence defined in Table 2. In rule [r-comm], the participant q sends the value v choosing the label 	 j to participant p, who 
offers inputs on all labels 	i with i ∈ I . In rules [t-conditional] and [f-conditional], the participant p chooses to continue 
as P if the condition e evaluates to true and as Q if e evaluates to false. Rule [r-struct] states that the reduction relation 
is closed with respect to structural congruence. We use −→∗ with the standard meaning.

We adopt some standard conventions regarding the syntax of processes and sessions. Namely, we will use 
∏

i∈I pi � Pi as 
short for p1 � P1 | . . . | pn � Pn , where I = {1, . . . , n}. We will sometimes use infix notation for external choice process. For 
example, instead of 

∑
i∈{1,2} p?	i(x).Pi , we will write p?	1(x).P1 + p?	2(x).P2.
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Table 1
Expression evaluation.

succ(n) ↓ (n + 1) neg(i) ↓ (−i) ¬true ↓ false ¬false ↓ true v ↓ v

(i1 > i2) ↓
{

true if i1 > i2,

false otherwise

e1 ↓ v

e1 ⊕ e2 ↓ v

e2 ↓ v

e1 ⊕ e2 ↓ v

e ↓ v E(v) ↓ v′

E(e) ↓ v′

Table 2
Structural congruence.

[s-rec]
μX .P ≡ P {μX .P/X}

[s-multi]
P ≡ Q ⇒ p � P | M ≡ p � Q | M

[s-par 1]
p � 0 | M ≡M

[s-par 2]
M | M′ ≡M′ | M

[s-par 3]
(M | M′) | M′′ ≡M | (M′ | M′′)

Table 3
Reduction rules.

[r-comm]
j ∈ I e ↓ v

p �
∑
i∈I

q?	i(x).Pi | q � p!	 j(e).Q | M −→ p � P j{v/x} | q � Q | M

[t-conditional]
e ↓ true

p � if e then P else Q | M−→ p � P | M

[f-conditional]
e ↓ false

p � if e then P else Q | M −→ p � Q | M

[r-struct]
M′

1 ≡M1 M1 −→M2 M2 ≡M′
2

M′
1 −→M′

2

Example 2.2. We now show the operational semantics in action. Consider the following multiparty session with three 
participants, Alice, Bob and Carol:

M= Alice � PAlice | Bob � PBob | Carol � PCarol

where

PAlice = Bob!	1(50).Carol?	3(x).0
PBob = Alice?	1(x).Carol!	2(100).0 + Alice?	4(x).Carol!	2(2).0
PCarol = Bob?	2(x).Alice!	3(succ(x)).0

This multiparty session reduces to

Alice � 0 | Bob � 0 | Carol � 0

after three communications occur. First, Alice sends to Bob natural number 50 with the label 	1. Bob is able to receive 
values with labels 	1 and 	4. Next, the only possible communication is between Bob and Carol. So, Carol receives 
natural number 100 from Bob. The value 100 is substituted in the continuation process. Finally, since succ(100) ↓ 101, 
Carol sends 101 to Alice. We can then reduce the session to, for example, Alice � 0, but not further.

From the end of Example 2.2, we can see that a session M always has at least one participant, since we do not have 
neutral element for the parallel composition. In Section 3, we will introduce a type system ensuring that if a well-typed 
multiparty session has only one participant, then the corresponding process is 0 — hence, the participant’s process has no 
inputs/outputs to perform.

In order to define the operational preciseness of subtyping (in Section 4), it is crucial to formalise when a multiparty 
session contains communications that will never be executed.

Definition 2.3. A multiparty session M is stuck if M �≡ p � 0 and there is no multiparty session M′ such that M −→ M′ . 
A multiparty session M gets stuck, notation stuck(M), if it reduces to a stuck multiparty session.

E.g., the multiparty session M in Example 2.2 is not stuck, and it does not get stuck. A similar multiparty session, where 
instead of PAlice we take P ′ = Bob!	1(50).Carol?	5(x).0, gets stuck because of label mismatch.
Alice
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3. Type system

This section introduces a type system for the calculus presented in Section 2. The formulation is based on Kouzapas and 
Yoshida [39,40], with adaptations to account for our simplified calculus. We formalise types and projections (Section 3.1), 
the subtyping relation (Section 3.2), and the typing rules and their properties (Section 3.3).

We also prove that the subtyping relation is decidable, by developing an algorithmic characterisation (Section 3.4): in 
doing this, we introduce the tools for proving our main results in Section 4.

3.1. Types and projections

Global types provide global conversation scenarios of multiparty sessions, with a bird’s eye view describing the message 
exchanges between pairs of participants.

Definition 3.1 (Sorts and global types). Sorts, ranged over by S , are defined as:

S ::= nat || int || bool
Global types, ranged over by G, are terms generated by the following grammar:

G ::= end || μt.G || t || p → q : {	i(Si).Gi}i∈I

We require that p �= q, I �= ∅, and 	i �= 	 j whenever i �= j, for all i, j ∈ I . We postulate that recursion is guarded. Unless 
otherwise noted, global types are closed: a recursion variable t only occurs bounded by μt. . . .

In Definition 3.1, the type p → q : {	i(Si).Gi}i∈I formalises a protocol where participant p must send to q one message 
with label 	i and a value of type Si as payload, for some i ∈ I; then, depending on which 	i was sent by p, the protocol 
continues as Gi . Value types are restricted to sorts, that can be natural (nat), integer (int) and boolean (bool). The type 
end represents a terminated protocol. Recursive protocol is modelled as μt.G, where recursion variable t is bound and 
guarded in G — e.g., μt.p → q : 	(nat).t is a valid global type, whereas μt.t is not.

We define the set of participants of a global type G, by structural induction on G, as follows:

pt{μt.G} = pt{G} pt{end} = pt{t} = ∅ pt{p → q : {	i(Si).Gi}i∈I } = {p,q} ∪ pt{Gi} (i ∈ I)

We will often write p ∈G instead of p ∈ pt{G}.

Global type trees, equality, and balancing. In the rest of this paper, we will often work on global type trees T(G), i.e., possibly 
infinite regular trees whose structure derives from the syntax of G in Definition 3.1. The approach is standard, and based on 
[53, Part IV]: we provide a visual representation of type trees in Fig. 1, and summarise the main elements in Notation 3.2
below; for the full technical details, see Appendix A.1.

Notation 3.2. We write G = G′ whenever T(G) = T
(
G′) (details: Definition A.1, Remark A.12), thus equating global types 

up-to the unfolding of their recursive subterms [53, Chapter 20]. We will write G ≡G′ for the syntactic type equality. Hence, 
a recursive global type μt.G and its unfolding G{μt.G/t} are related by =, but not by ≡. To save some notation, we will 
often write G to refer to a type tree T(G) (for some G); correspondingly, we will write p → q : {	i(Si).Gi}i∈I for a type tree
T(p → q : {	i(Si).Gi}i∈I ) (for some Gi ). The set of participants of tree T(G) is the set of participants of the corresponding 
global type G, i.e., pt{T(G)} = pt{G}. (For more details, see Notation A.6.)

From now on, we will only consider balanced global types, as per Definition 3.3 below. Roughly, a global type is bal-
anced if all its active participants are involved in some communication within a finite number of message exchanges. When 
inspecting the participants of a global type G, the balancing requirement assures that, if G = p → q : {	i(Si).Gi}i∈I , then 
pt{Gi} = pt{G j} for all i, j ∈ I; and consequently, in a recursive type μt.G, all participants are involved in some com-
munication in every path between μt. . . . and an occurrence of t in G. Similar constraints are enforced in most works on 
multiparty session types, albeit with different means; we will exemplify and further discuss balancing later, in Example 3.12
(case G′′) and Remark 3.14.

Definition 3.3 (Balanced global types). We say that a node n of a global type tree involves participant p iff n is marked with 
p → q or q → p (for some q). We say that a global type G is balanced iff, for each node n of T(G), whenever a node 
involving some p is reachable from n, there exists a finite k such that within k steps all paths starting from n reach some 
node involving p. (For a more formal account, see Definition A.28.)

A (multiparty) session type describes the behaviour of a single participant in a multiparty session.
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Fig. 1. Graphical representation of global type trees yielded by the function T(G) (for a more formal definition, see Appendix A.1). 
T
(
p → q : {	i(Si).Gi}1≤i≤n

)
yields a type tree where the edges annotated with 	 C

i are continuation edges, pointing to the type sub-tree of Gi ; those an-
notated with 	 P

i , instead, are payload edges, pointing to a leaf node with the sort Si . T(end) yields a type tree leaf node, marked as end. The tree of a 
recursive type μt.G is a possibly infinite tree, obtained via unfolding: for an example, see Fig. 2.

Fig. 2. The infinite global type tree of: μt.p → q :{	1(bool).t , 	2(nat).end }.

Definition 3.4 (Multiparty Session Types). The grammar of session types, ranged over by T, is:

T ::= end || ∧
i∈I p?	i(Si).Ti || ∨

i∈I q!	i(Si).Ti || μt.T || t

We require that 	i �= 	 j whenever i �= j, for all i, j ∈ I . We postulate that recursion is always guarded. Unless otherwise 
noted, session types are closed.

Note that, according to the previous definition, labels in a type need to be pairwise different. For example, 
p?	(int).end∧ p?	(nat).end is not a type.

The session type end says that no further communication is possible and the protocol is completed. The external choice
or branching type

∧
i∈I p?	i(Si).Ti requires to wait to receive a value of sort Si (for some i ∈ I) from the participant p, via a 

message with label 	i ; if the received message has label 	i , the protocol will continue as prescribed by Ti . The internal choice
or selection type

∨
i∈I q!	i(Si).Ti says that the participant implementing the type must choose a labelled message to send 

to q; if the participant chooses the message 	i , for some i ∈ I , it must include in the message to q a payload value of sort 
Si , and continue as prescribed by Ti . Recursion is modelled by the session type μt.T. We adopt the following conventions: 
we do not write branch/selection symbols in case of a singleton choice, we do not write unnecessary parentheses, and we 
often omit trailing ends.

The set pt{T} of participants of a session type T is defined inductively as follows

pt{
∧
i∈I

p?	i(Si).Ti} = pt{
∨
i∈I

p!	i(Si).Ti} = {p} ∪
⋃
i∈I

pt{Ti} pt{μt.T} = pt{T} pt{t} = pt{end} = ∅.

In a similar way to global types, we will often work on session type trees T(T), shown in Fig. 3.

Notation 3.5. We write T = T′ iff T(T) = T
(
T′) (i.e., for equality up-to unfolding — details: Definition A.1 and Remark A.18), 

and T ≡ T′ for the syntactic session type equality. Hence, a recursive session type μt.T and its unfolding T{μt.T/t} are 
related by =, but not by ≡. To save some notation, we will often write T to refer to a type tree T(T) (for some T); 
correspondingly, we will write, e.g., p?	(int).T′ for a type tree T

(
p?	(int).T′) (for some T′). (For more details, see 

Notation A.15.)

In Definition 3.6 below, we define the global type projection as a coinductive relation G �r T between global and session 
type trees. Our definition extends the one originally proposed by Honda et al. [34], Honda et al. [35], along the lines 
of Yoshida et al. [60] and Deniélou et al. [19]: i.e., it uses a merging operator � to combine multiple session type trees into 
a single tree.
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Fig. 3. Graphical representation of session type trees. The intuition is similar to Fig. 1, but here we have distinct nodes for internal and external choices. 
For a more formal definition, see Appendix A.2.

Definition 3.6. The projection of a global type onto a participant r is the largest relation �r between global type trees and 
session type trees such that, whenever G �r T:

• r /∈ pt{G} implies T = end; [proj-end]
• G = p → r : {	i(Si).Gi}i∈I implies T =∧

i∈I
p?	i(Si).Ti , and Gi �r Ti , ∀i∈ I; [proj-in]

• G = r → q : {	i(Si).Gi}i∈I implies T =∨
i∈I

q!	i(Si).Ti , and Gi �r Ti , ∀i∈ I; [proj-out]
• G = p → q : {	i(Si).Gi}i∈I and r /∈{p,q} implies that there are Ti , i ∈ I such that [proj-cont]

T =�i∈ITi , and Gi �r Ti , for every i ∈ I .

Above, � is the merging operator, that is a partial operation over session type trees defined as:

T1 � T2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T1 if T1 = T2 [mrg-id]

T3 if ∃I, J :
⎧⎨
⎩

T1 =∧
i∈I p′?	i(Si).Ti and

T2 =∧
j∈ J p′?	 j(S j).T j and

T3 =∧
k∈I∪ J p′?	k(Sk).Tk

[mrg-bra]

undefined otherwise.

We naturally lift �r to syntactic types: i.e., G �r T holds iff T(G) �r T(T).

The attentive reader might have noticed that in Definition 3.6, we use a multi-way merging operator �i∈I Ti : it is 
naturally defined from the binary merging in Definition 3.6, which is associative, by Proposition 3.7 below.

Proposition 3.7. The merging operation is associative, i.e.: T � (T′ � T′′) = (T � T′) � T′′ .

Proof. See Appendix A.4. �
Note that our definition of � is slightly simplified w.r.t. the one of Yoshida et al. [60] and Deniélou et al. [19]: rule 

[mrg-bra] does not use � recursively to merge the continuations Ti and T j , and this restricts the set of mergeable session 
types. This simplification is harmless for our purposes.1 By Definition 3.6, merging a type tree with itself results in the tree 
itself (rule [mrg-id]). Moreover, Definition 3.6 allows to combine different external choices (rule [mrg-bra]) if and only if
common labels have identical sorts and identical continuations, as formalised in Proposition 3.8 below and illustrated in 
Examples 3.9, 3.12 and 3.13.

Proposition 3.8. For two type trees T′ =∧
i∈I p′?	i(Si).Ti and T′′ =∧

j∈ J p′′?	 j(S j).T j , we have that T′ � T′′ is defined if and only 
if p′ = p′′ and, whenever 	i = 	 j (for some i ∈ I and j ∈ J ), Si = S j and Ti = T j .

1 In particular, our restricted merging operator is sufficient to project the characteristic global types introduced in Section 4.3. This would not change if 
we used a more powerful operator supporting all the mergeable types of Yoshida et al. [60] and Deniélou et al. [19].
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Proof. See Appendix A.4. �
Example 3.9. We now give some small examples that illustrate the definition of the merging operator (here, i �= j implies 
	i �= 	 j ):

q!	(nat) � q!	(nat) = q!	(nat)

p!	(nat) � q!	(nat) undefined: outputs to different participants
q!	3(nat) � q!	4(nat) undefined: outputs with different labels(

q?	3(int) ∧ q?	5(nat)
) � (q?	4(int) ∧ q?	5(nat)

) = q?	3(int) ∧ q?	4(int) ∧ q?	5(nat)

q?	3(nat) � q?	3(nat).q?	3(nat) undefined: same prefixes, but different continuations
q?	(nat) � q?	(int) undefined: the payload sorts do not match

Remark 3.10. Before describing the clauses of Definition 3.6, we emphasise that, unlike most papers on session types, our 
projection is coinductive and, by reasoning on type trees instead of type syntax, it relates syntactic types up-to unfolding. 
When session types are considered equal up-to unfolding (Notation 3.5), our projection is a partial function: i.e., for all 
syntactic G, T, T′ , G �r T and G �r T′ implies T = T′ , since T(T) = T

(
T′) (Proposition 3.11). Therefore, we will often write 

G�r whenever G ∈ dom(�r ) (i.e., when projection is defined) to refer to the unique type tree T such that G �r T.

Proposition 3.11. The projection relation �r is a partial function.

Proof. See Appendix A.3 �
We now describe the clauses of Definition 3.6:

• clause [proj-end] states that when a global type G is projected onto a participant r who does not appear in G (e.g., 
because G = end), then the result is the inactive session type end;

• clause [proj-in] (resp. [proj-out]) states that a global type G starting with a communication from p to r (resp. from r
to q) projects onto an external (resp. internal) choice T, provided that the continuations of T are also projections of the 
corresponding global type continuations.

• clause [proj-cont] states that if G starts with a communication between p and q, and we are projecting G onto a third 
participant r, then we need to (1) skip the initial communication, (2) project all the continuations onto r, and (3) merge
the resulting session type trees, using the merging operator �.

As a result, clause [proj-cont] of Definition 3.6 allows participant r to receive different messages (from a same partici-
pant p′) in different branches of a global type, as shown in Example 3.12 below.

Example 3.12. We demonstrate interesting points of Definition 3.6 and Definition 3.3. First, we show some projections of 
global types. Consider the global type:

G = p → q : {	1(nat).G1, 	2(bool).G2} where

⎧⎨
⎩
G1 = q → r : {	3(int), 	5(nat)}
G2 = q → r : {	4(int), 	5(nat)}
r �= p

We have:

G�p = q!	1(nat).(G1�p) ∨ q!	2(bool).(G2�p) = q!	1(nat).end ∨ q!	2(bool).end

G�q = p?	1(nat).(G1�q) ∧ p?	2(bool).(G2�q)

= p?	1(nat).
(
r!	3(int) ∨ r!	5(nat)

) ∧ p?	2(bool).
(
r!	4(int) ∨ r!	5(nat)

)
G�r = G1�r �G2�r = (

q?	3(int) ∧ q?	5(nat)
) � (q?	4(int) ∧ q?	5(nat)

)
= q?	3(int) ∧ q?	4(int) ∧ q?	5(nat)

Note that in G, q could output different messages towards r, depending on whether p sends 	1 or 	2 to q; therefore, in G�r, 
the possible inputs of r in G1 and G2 are merged into a larger external choice that supports all possible outputs of q.

Let us now consider the global type G′ = μt.p → q : 	(nat).t. When projecting G′ onto p, by Definition 3.6 and Fig. 1
we have the following equation:

T
(
G′)�p = (p → q : 	(nat).T

(
G′))�p = q!	(nat).(T

(
G′)�p)

whose solution is the infinite type tree of the session type μt.q!	(nat).t (see Fig. 3). Similarly, when projecting G′ onto q, 
we obtain T

(
G′)�q = T(μt.p?	(nat).t).
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Finally, we motivate constraining the global types to balanced global types (Definition 3.3). Let us consider the following 
non-balanced global type:

G′′ = μt.p → q : {	(nat).t , 	′(int).q → r : 	′′(int).end
}

Note that p and q can exchange an arbitrary number of messages 	; and whenever p decides to send 	′ to q, then q sends 
	′′ to r, and the session terminates. This makes G′′ non-balanced: in fact, in its type tree, a node involving r is reachable 
from the root, but it is possible to follow the continuation edges marked by 	 for an arbitrary depth, only visiting nodes 
marked p → q, without encountering a node involving r.

When projecting the type tree of G′′ , we obtain the following equations (with solutions shown on the right):

T
(
G′′)�p = q!	(nat).

(
T
(
G′′)�p)∨ q!	′(int).

(
T
(
q → r : 	′′(int).end

)
�p
)

= q!	(nat).
(
T
(
G′′)�p)∨ q!	′(int).T(end) = T

(
μt.q!	(nat).t ∨ q!	′(int).end

)
T
(
G′′)�q = p?	(nat).

(
T
(
G′′)�q)∨ p?	′(int).

(
T
(
q → r : 	′′(int).end

)
�q
)

= p?	(nat).
(
T
(
G′′)�q)∨ p?	′(int).r!	′′(int) = T

(
μt.p?	(nat).t ∧ p?	′(int).r!	′′(int)

)
T
(
G′′)�r = (

T
(
G′′)�r) � (q?	′′(int).T(end)

) = T
(
q?	′′(int).end

)
and the projections also highlight that p and q can interact forever (exchanging 	-labelled messages) while r might wait 
forever for 	′′ from q. This is often undesirable: in a well-formed multiparty interaction, under mild fair scheduling as-
sumptions, each non-terminated participant should be always eventually involved in a message exchange. Our balancing 
requirement guarantees this, by rejecting problematic global types like G′′ .

Importantly, by Definition 3.6, there exist global types that cannot be projected onto all their participants. This is because 
G might describe meaningless protocols, that cause the merging operation � in clause [proj-cont] to be undefined, as 
shown in Example 3.13 below.

Example 3.13. We show two global types that cannot be projected according to the Definition 3.6. Consider the global type 
G = p → q : {	1(nat).G1 , 	2(bool).G2}, with G1 = r → q : 	3(nat) and G2 = r → q : 	4(nat). Then,

G�p = q!	1(nat) ∨ q!	2(bool)

G�q = p?	1(nat).r?	3(nat) ∧ p?	2(bool).r?	4(nat)

G�r = q!	3(nat) � q!	4(nat) (undefined if 	3 �= 	4)

Intuitively, when 	3 �= 	4, G�r is undefined because in G, depending on whether p and q exchange 	1 or 	2, r is supposed 
to send either 	3 or 	4 to q; however, r is not privy to the interactions between p and q, and thus, G provides an invalid 
specification for r. Instead, if 	3 = 	4, then by Definition 3.6 we have G�r = q!	3(nat) � q!	3(nat) = q!	3(nat).

Now, consider the global type G′ = p → q : {	1(nat).G′
1 , 	2(bool).G′

2}, with G′
1 = q → r : 	3(nat) and G′

2 = q → r :
	3(nat).q → r : 	3(nat). Then,

G′�p = q!	1(nat) ∨ q!	2(bool)

G′�q = p?	1(nat).r!	3(nat) ∧ p?	2(bool).r!	3(nat).r!	3(nat)

G′�r = q?	3(nat) � q?	3(nat).q?	3(nat) (undefined)

Here, G′�r is undefined because in G′ , depending on whether p and q exchange 	1 or 	2, r is supposed to receive either one 
or two messages 	3 from q; however, as in the previous example, r is not aware of the interactions between p and q, and 
thus, G provides an invalid specification for r. This example could be fixed, e.g., by replacing 	3 with 	′ �= 	3 in G′

2, or by 
letting G′

1 = G′
2: both fixes would make G′�r defined, similarly to Example 3.12.

Remark 3.14. Our coinductive global type projection (Definition 3.6) is, in some respects, more flexible than the standard 
inductive projections commonly found in session types literature (e.g., in [19]). The key difference is that such projections, 
albeit similar to Definition 3.6, traverse syntactic types (rather than type trees), hence cannot relate types up-to unfolding. 
In fact, the inductive projection �i , and its inductive merging �i , are defined as follows for recursive terms:

μt.G �i p = μt.(G �i p) t �i p = t μt.T �i μt.T′ = μt.(T �i T′) t �i t = t (1)

(plus other rules akin to [proj-end], [proj-in], [proj-out], [proj-cont], [mrg-id], and [mrg-bra] in Definition 3.6 — here 
omitted).

The inductive projection/merging in (1) fails when it tries to combine session types with “mismatching” μ-subterms. 
This limitation is sometimes undesirable: e.g., the global type
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Gμ = p → q :
{
	1(nat).μt.r → p : 	′(bool).t ,

	2(bool).r → p : 	′(bool).μt.r → p : 	′(bool).t

}
is not projectable with (1) onto participant r. This is because we have to skip the first interaction between p and q, project 
all continuations onto r, and merge the resulting session types2; therefore, when using (1), we have:

Gμ �i r = μt.p!	′(bool).t �i p!	′(bool).μt.p!	′(bool).t

which is undefined: by (1), syntactic types with a top-level recursion can only be merged with types having a top-level 
recursion.

Our projection/merging of type trees, instead, does not consider the position of the syntactic occurrences of μt. . . . — 
and in this example, we have T

(
Gμ

)
�r = T

(
μt.p!	′(bool).t

)
.

In some other cases, the limitation imposed by ((1)) is desirable, as it syntactically enforces a balancing requirement 
similar to ours (Definition 3.3). E.g., if we use inductive projection/merging on the examples in Example 3.12, we obtain the 
same results — except for the non-balanced type G′′ , whose inductive projection onto r is:

G′′ �i r = μt.
(
(t �i r) �i (q → r : 	′′(int) �i r)

) = μt.
(

t �i q?	′′(int)
)

(undefined)

This shows that, albeit other session types works do not have explicit balancing requirements on global types (Defini-
tion 3.3), they actually enforce similar constraints via inductive projection/merging.

3.2. Subtyping

The subtyping relation � is used to augment the flexibility of the type system (introduced in Section 3.3): by determining 
when a type T is “smaller” than T′ , it allows to use a process typed by the former whenever a process typed by the latter 
is required.

Definition 3.15 (Subsorting and subtyping). Subsorting ≤: is the least reflexive binary relation such that nat≤: int.
Subtyping � is the largest relation between session type trees coinductively defined by the following rules:

[sub-end]
end� end

[sub-in]
∀i ∈ I : S ′

i ≤: Si Ti � T′
i∧

i∈I∪ J

p?	i(Si).Ti �
∧
i∈I

p?	i(S ′
i).T

′
i

==============================
[sub-out]

∀i ∈ I : Si ≤: S ′
i Ti � T′

i∨
i∈I

p!	i(Si).Ti �
∨

i∈I∪ J

p!	i(S ′
i).T

′
i

=============================

We lift � to syntactic types: i.e., T � T′ holds iff T(T)� T
(
T′).

Intuitively, the session subtyping � in Definition 3.15 says that T is smaller than T′ when T is “less liberal” than T′ — 
i.e., when T allows for less internal choices, and demands to handle more external choices.3 A peculiarity of the relation is 
that, apart from a pair of inactive session types, only inputs and outputs from/to a same participant can be related (with 
additional conditions to be satisfied). Note that the double line in the subtyping rules indicates that the rules are interpreted 
coinductively [53, Chapter 21].

• Rule [sub-end] says that end is only subtype of itself.
• Rule [sub-in] relates external choices from the same participant p: the subtype must support all the choices of the 

supertype, and for each common message label, the continuations must be related, too; note that the carried sorts are 
contravariant: e.g., if the supertype requires to receive a message 	i(nat) (for some i ∈ I), then the subtype can support 
	i(int) or 	i(nat), since nat≤: int and nat≤: nat.

• Rule [sub-out] relates internal choices towards the same participant p: the subtype must offer a subset of the choices 
of the supertype, and for each common message label, the continuations must be related, too; note that the carried 
sorts are covariant: e.g., if the supertype allows to send a message 	i(int) (for some i ∈ I), then the subtype can allow 
to send 	i(int) or 	i(nat), since int≤: int and nat≤: int.

Lemma 3.16. The subtyping relation � is reflexive and transitive.

Proof. See Appendix A.6. �
2 This “skip, project, and merge” step corresponds to rule [proj-cont] in Definition 3.6; similar approaches are found in most projection/merging opera-

tors in literature.
3 Readers familiar with the theory of session types might notice that our subtyping relation is inverted w.r.t. the original binary session subtyping, 

introduced in the works of Gay and Hole [27], Gay and Hole [25]. In such works, smaller types have less internal choices, and more external choices: this 
is because they formalise a “channel-oriented” notion of subtyping, while we adopt a “process-oriented” view. For a thorough analysis and comparison of 
the two approaches, see [26].
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Table 4
Typing rules for expressions.

� � n : nat � � i : int � � true : bool � � false : bool �, x : S � x : S

� � e : nat
� � succ(e) : nat

� � e : int

� � neg(e) : int

� � e : bool

� � ¬e : bool
� � e1 : S � � e2 : S

� � e1 ⊕ e2 : S

� � e1 : int � � e2 : int

� � e1 > e2 : bool
� � e : S S ≤: S ′

� � e : S ′

Table 5
Typing rules for processes and sessions.

[t-sub]
� � P : T T � T′

� � P : T′
[t-0]
� � 0 : end

[t-rec]
�, X : T � P : T

� � μX .P : T

[t-var]
�, X : T � X : T

[t-input-choice]
∀i ∈ I �, xi : Si � Pi : Ti

� �
∑
i∈I

q?	i(xi).Pi :
∧
i∈I

q?	i(Si).Ti

[t-out]
� � e : S � � P : T

� � q!	(e).P : q!	(S).T

[t-choice]
� � e : bool � � P1 : T � � P2 : T

� � if e then P1 else P2 : T

[t-sess]
∀i ∈ I � Pi : G�pi pt{G} ⊆ {pi | i ∈ I}

�
∏
i∈I

pi � Pi : G

3.3. Type system

We now introduce a type system for the multiparty session calculus presented in Section 2. We distinguish three kinds 
of typing judgements:

� � e : S � � P : T � M : G

where � is the typing environment:

� ::= ∅ || �, x : S || �, X : T

i.e., a mapping that associates expression variables with sorts, and process variables with session type trees.
We say that a multiparty session M is well typed if there is a global type G such that � M : T(G). If a multiparty session is 

well typed, we will sometimes write just � M.
The typing rules for expressions are given in Table 4, and are self-explanatory. The typing rules for processes and multi-

party sessions are content of Table 5:

• [t-sub] is the subsumption rule: a process with type T is also typed by the supertype T′;
• [t-0] says that a terminated process implements the terminated session type;
• [t-rec] types a recursive process μX .P with T if P can be typed as T, too, by extending the typing environment with 

the assumption that X has type T;
• [t-var] uses the typing environment assumption that process X has type T;
• [t-input-choice] types a summation of input prefixes as a branching type. It requires that each input prefix targets the 

same participant q, and that, for all i ∈ I , each continuation process Pi is typed by the continuation type Ti , having the 
bound variable xi in the typing environment with sort Si . Note that the rule implicitly requires the process labels 	i to 
be pairwise distinct (as per Definition 3.4);

• [t-out] types an output prefix with a singleton selection type, provided that the expression in the message payload has 
the correct sort S , and the process continuation matches the type continuation;

• [t-choice] types a conditional process with T if its sub-processes can be typed by T and expression e is boolean.
• [t-sess] types multiparty sessions, by associating typed processes to participants. It requires that the processes being 

composed in parallel can play as participants of a global communication protocol: hence, their types must be projections 
of a single global type G. The condition pt{G} ⊆ {pi | i ∈ I} allows to also type sessions containing p � 0: this is needed 
to assure invariance of typing under structural congruence (Lemma A.22).

Example 3.17. We show that the multiparty session M from Example 2.2 is well typed. Consider the following global type 
tree:

G = Alice→ Bob : {	1(nat).Bob→ Carol : 	2(nat).Carol→ Alice : 	3(nat).end,

	 (nat).Bob→ Carol : 	 (nat).Carol→ Alice : 	 (nat).end}.
4 2 3
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We show that participants Alice, Bob and Carol respect the prescribed protocol G, by showing that they participate in 
a well-typed multiparty session. Applying rules from Table 5, we derive

� PAlice : TAlice � PBob : TBob � PCarol : TCarol

where:

TAlice = Bob!	1(nat).Carol?	3(nat).end
TBob = Alice?	1(nat).Carol!	2(nat).end ∧ Alice?	4(nat).Carol!	2(nat).end
TCarol = Bob?	2(nat).Alice!	3(nat).end

Now, let:

T′
Alice = Bob!	1(nat).Carol?	3(nat).end ∨ Bob!	4(nat).Carol?	3(nat).end

Since it holds that TAlice � T′
Alice , and the projections of G to the participants are

G�Alice= T′
Alice G�Bob= TBob G�Carol= TCarol

we conclude:

� Alice � PAlice | Bob � PBob | Carol � PCarol : G.

Note that this session respects other protocols as well, including the one in Section 1, thanks to subtyping.

The proposed type system for multiparty sessions enjoys two fundamental properties: typed sessions only reduce to 
typed sessions (subject reduction), and typed sessions never get stuck. The remaining of this section is devoted to the proof 
of these properties.

In order to state subject reduction, we need to formalise how global types are modified when multiparty sessions reduce 
and evolve.

Definition 3.18 (Global types consumption and reduction). The consumption of the communication p 	−→ q for the global type 
tree G (notation G \ p 	−→ q) is the global type tree coinductively defined as follows:(

p → q : {	i(Si).Gi}i∈I
) \ p

	−→ q = Gk if ∃k ∈ I : 	 = 	k

(
r → s : {	i(Si).Gi}i∈I

) \ p
	−→ q = r → s : {	i(Si).Gi \ p

	−→ q}i∈I if

{ {r, s} ∩ {p,q} = ∅ and
∀i∈ I : {p,q}⊆Gi

The reduction of global type trees is the smallest pre-order relation closed under the rule: G =⇒ G \ p 	−→ q We lift =⇒ to 
syntactic types: i.e., G =⇒ G′ holds iff T(G) =⇒ T

(
G′).

Notice that end \ p 	−→ q is undefined. Moreover, T
(
μt.r → s : 	′(S).t

) \ p 	−→ q is undefined when r �= p, or s �= q, or 
	′ �= 	, because in such cases, both side conditions of the definition are violated; in particular, when r �= p and/or s �= q, 
we cannot apply neither the first case of the definition, nor the second, because {p, q} �G. Clearly, the consumption of a 

balanced global type (Definition 3.3) yields a balanced global type. Moreover, if G is projectable and G \ p 	−→ q is defined, 
then the global type G \ p 	−→ q is projectable, too; this is formalised in Lemma 3.19 below, which provides properties of 
consumption that are essential in the proof of subject reduction.

Lemma 3.19. If q!	(S).T ≤ G�p and p?	(S ′).T′ ≤ G�q, then:

(1) T � (G \ p
	−→ q)�p

(2) T′ � (G \ p
	−→ q)�q; and

(3) G�r � (G \ p
	−→ q)�r for r �= p, r �= q.

Proof. See Appendix A.7. �
Intuitively, Lemma 3.19 says that global type consumption makes projections “more precise:” e.g., by item (3), G�r (be-

fore the consumption) might require to support more external choices than (G \ p
	−→ q)�r, as per Definition 3.15: this is 

illustrated in Example 3.20 below. The intuition behind items (1) and (2) is similar, except that we remove the consumed 
input/output prefix from the projected types.
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Example 3.20. We show that a projection of a global type before the consumption might require to support more external 
choices than the projection after the consumption. Take G, its subterm G1, from Example 3.12, and their type trees denoted 
as G and G1, respectively. Also take the projection:

G�r = q?	3(int) ∧ q?	4(int) ∧ q?	5(nat)

and recall the explanation on how G�r above merges all the possible inputs that r might receive from q, depending on 
whether p first sends 	1 or 	2 to q. We have:

G \ p
	1−→ q = G1 = q → r : {	3(int), 	5(nat)}

(G \ p
	1−→ q)�r = G1�r = q?	3(int) ∧ q?	5(nat)

and we obtain G�r � (G \ p
	1−→ q)�r, as per Lemma 3.19(3). The reason is that, after the transition from G to G1, there is 

no possibility for q to send 	4 to r, hence r does not need to support such a message in its projection.
Note that a process that plays the role of r in G, and is therefore typed by G�r, has to support the input of 	4 from q, by 

rule [t-input-choice] in Table 5. After the transition from G to G1, the same process is also typed by G1�r, by rule [t-sub]
— but will never receive a message 	4 from q.

We can now prove subject reduction.

Theorem 3.21 (Subject Reduction). Let �M : G. For all M′ , if M −→ M′ , then �M′ : G′ for some G′ such that G =⇒ G′ .

Proof. See Appendix A.7 �
Corollary 3.22. Let �M : G. If M −→∗ M′ , then �M′ : G′ for some G′ such that G =⇒ G′ .

Proof. See Appendix A.7 �
Theorem 3.23 (Progress). If � M : G, then either M ≡ p � 0 or there is M′ such that M −→M′ .

Proof. See Appendix A.7 �
As a consequence of subject reduction and progress, we get the safety property stating that a typed multiparty session 

will never get stuck.

Theorem 3.24 (Type Safety). If � M : G, then it does not hold stuck(M).

Proof. Direct consequence of Corollary 3.22, Theorem 3.23, and Definition 2.3. �
3.4. Algorithmic multiparty session subtyping

We now introduce a characterisation of the subtyping relation by means of an algorithm: (1) we define a procedure to 
induce a relation �a between syntactic types; (2) we prove that �a is equivalent to � in Definition 3.15 (Theorem 3.26), 
and (3) we prove that the procedure is always terminating (Lemma 3.25).

Although decidability of subtyping is not necessary to prove our main result (i.e., the preciseness �); the algorithmic 
definition of �a provides the basis to formalise failing derivations (Definition 3.29 below), characterising when �a (and thus, 
�) does not hold: we will use this technical device in Section 4.1, to prove that a relation � is the complement of �.

We adopt the approach of Gay and Hole [25] and Pierce and Sangiorgi [54]. In Table 6, we inductively define an algorith-
mic subtyping judgement for syntactic types, of the form:


 � T�a T
′ (2)

where T �a T′ is the goal of the algorithm, and the set 
 is the set of assumed instances: it contains pairs of session types 
(T, T′), assumed to be related by the subtyping relation. We obtain a verification procedure by reading the rules upwards: 
i.e., to verify the goal in the conclusion of each rule, we must verify its premises, possibly introducing more sub-goals, and 
adding elements to 
. Given an input 
 � T �a T′ , the procedure returns true when it successfully verifies the given goal 
T �a T′ in 
; otherwise, if the procedure reaches a sub-goal that does not match any rule in Table 6, it returns false. We 
postulate that the rule [alg-assump] always has priority (for the sake of termination); we also postulate that [alg-rec-L] has 
priority over [alg-rec-R] (for the sake of determinism). The procedure is an algorithm (Lemma 3.25 below): it terminates 
on all inputs, since 
 cannot grow indefinitely, as there is a finite maximum number of assumed instances that need to be 
considered.
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Table 6
Algorithmic subtyping rules. Note that in the premise of rule [alg-assump], the types T, T′ are compared 
with those in 
 using syntactic type equality ≡ (Notation 3.5), thus distinguishing a recursive type from its 
unfoldings.

[alg-assump]
(T,T′) ∈ 



 � T�a T′
[alg-end]

 � end�a end

[alg-sub-out]
T ≡∨

i∈I p!	i(Si).Ti T′ ≡∨
i∈I∪ J p!	i(S ′

i).T
′
i

∀i ∈ I : 
 � Ti �a T′
i ∀i ∈ I : Si ≤: S ′

i


 � T�a T′

[alg-sub-in]
T ≡∧

i∈I∪ J p?	i(Si).Ti T′ ≡∧
i∈I p?	i(S ′

i).T
′
i

∀i ∈ I : 
 � Ti �a T′
i ∀i ∈ I : S ′

i ≤: Si


 � T�a T′

[alg-rec-L]

 ∪ {(μt.T1,T2)} � T1{μt.T1/t} �a T2


 � μt.T1 �a T2

[alg-rec-R]

 ∪ {(T1,μt.T2)} � T1 �a T2{μt.T2/t}


 � T1 �a μt.T2

Lemma 3.25. The subtyping procedure in Table 6 is terminating.

Proof. See Appendix A.9. �
The following theorem shows that the definition of algorithmic subtyping and the definition of subtyping in Defini-

tion 3.15 are equivalent.

Theorem 3.26 (Subtyping for multiparty session types is decidable). Let T and T′ be session types. Then, ∅ � T �a T′ if and only if 
T(T) � T

(
T′).

Proof. The proof is similar to those from Pierce and Sangiorgi [54] and [25]. �
Rule function and failing derivations. We now introduce the notions of rule function and failing derivation for algorithmic 
subtyping, following an approach inspired by Ligatti et al. [42,43]. These technical tools will be useful later on, to prove the 
results in Section 4.1.

When the algorithmic subtyping procedure above returns true for an input 
 � T �a T′ , it generates a derivation for 

 � T �a T′ under the rules in Table 6, such that:

• each node of the derivation is a judgement 
i � Ti �a T′
i ;• the root of the derivation is the input 
 � T �a T′;

• the leaves of the derivation have only two possible forms:
a 
 j � T j �a T′

j with (T j, T′
j) ∈ 
 j (from the axiom [alg-assump]), or

b 
 j � end�a end (from the axiom [alg-end]).

With this insight, we can define a rule function (Definition 3.27 below), to associate a judgement 
 � T �a T′ with the 
set of its premises — i.e., a set J such that 
 � T �a T′ can be derived (under the rules in Table 6) if and only if (1) the set 
J is non-empty, and (2) each element of J is either true, or a derivable judgement of the form in (2).

Definition 3.27. The rule function � maps judgements to sets containing judgements or true, as follows:

�(
 � T�a T
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
i∈I

{

 � Ti �a T′

i

}
if

⎧⎨
⎩
T ≡∨

i∈I p!	i(Si).Ti
and T′ ≡∨

i∈I∪ J p!	i(S ′
i).T

′
i

and ∀i ∈ I : Si ≤: S ′
i and (T,T′) /∈ 


⋃
i∈I

{

 � Ti �a T′

i

}
if

⎧⎨
⎩
T ≡∧

i∈I∪ J p?	i(Si).Ti

and T′ ≡∧
i∈I p?	i(S ′

i).T
′
i

and ∀i ∈ I : S ′
i ≤: Si and (T,T′) /∈ 
{


 ∪ {(T,T′)} � T1{T/t}�a T′} if T ≡ μt.T1 and (T,T′) /∈ 
{

 ∪ {(T,T′)} � T�a T2{T′/t}} if T′ ≡ μt.T2 and ∀T′′ : T �≡ μt.T′′ and (T,T′) /∈ 


{true} if (T,T′) ≡ (end,end) or (T,T′) ∈ 


∅ in all other cases
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Lemma 3.28. 
 � T �a T′ can be derived iff �(
 � T �a T′) is non-empty, and only contains true, or derivable judgements.

Proof. It follows directly from Table 6 and Definition 3.27. �
Dually, if the subtyping procedure applied to the input 
 � T �a T′ returns false, then the algorithm constructs a se-

quence of judgements of the form in (2) that starts from 
 � T �a T′ , takes 0 or more steps following the rule function, 
and finally reaches some judgement J that does not match any rule in Table 6 (i.e., the rule function applied to J returns 
∅). We call such a sequence a failing derivation, as formalised in Definition 3.29 below.

Definition 3.29. Consider a finite sequence ( J1, . . . , Jn), where n ≥ 1, and each J i (1 ≤ i ≤ n) is a judgement of the form (2). 
We say that the sequence is a failing derivation of 
 � T �a T′ iff it satisfies the following requirements:

1. J1 is 
 � T �a T′;
2. for m ∈ {2, . . . , n}, Jm is 
m � Tm �a T′

m , with (
m � Tm �a T′
m) ∈ �(
m−1 � Tm−1 �a T′

m−1);
3. Jn is 
n � Tn �a T′

n , with �(
n � Tn �a T′
n) = ∅.

Note that by Definition 3.29, when ( J1, . . . , Jn) is a failing derivation of 
 � T �a T′ , then in each J i = 
i � Ti �a T′
i

(1 ≤ i ≤ n), the set of assumed instances 
i never contains (Ti, T′
i): otherwise, by Definition 3.27, we would have �( J i) =

{true}, and thus, either clause 2 or 3 of Definition 3.29 would not hold. Moreover, if n = 1, then J1 satisfies item 1 of 
Definition 3.29 and has one of the forms listed in Corollary 3.30 below — and this implies, e.g., 
 /� (T, T′) �≡ (end, end).

Corollary 3.30. Assume that the sequence of judgements ( J1, . . . , Jn) is a failing derivation of 
 � T �a T′ . Then, Jn is a judgement

n � Tn �a T′

n such that one of the following holds:

(a) (Tn, T′
n) ≡ (end, T′) and T′ �≡ end;

(b) (Tn, T′
n) ≡ (T, end) and T �≡ end;

(c) (Tn, T′
n) ≡ (

∧
i∈I p?	i(Si).Ti, 

∧
j∈ J q?	′

j(S ′
j).T

′
j) and p �= q;

(d) (Tn, T′
n) ≡ (

∨
i∈I p!	i(Si).Ti, 

∨
j∈ J q!	′

j(S ′
j).T

′
j) and p �= q;

(e) (Tn, T′
n) ≡ (

∧
i∈I p?	i(Si).Ti, 

∨
j∈ J q!	′

j(S ′
j).T

′
j);

(f) (Tn, T′
n) ≡ (

∨
i∈I p!	i(Si).Ti, 

∧
j∈ J q?	′

j(S ′
j).T

′
j);

(g) (Tn, T′
n) ≡ (

∧
i∈I p?	i(Si).Ti, 

∧
j∈ J p?	′

j(S ′
j).T

′
j) and ∃ j ∈ J such that 	i �= 	′

j for every i ∈ I ;

(h) (Tn, T′
n) ≡ (

∧
i∈I p!	i(Si).Ti, 

∧
j∈ J p!	′

j(S ′
j).T

′
j) and ∃i ∈ I such that 	i �= 	′

j for every j ∈ J ;

(i) (Tn, T′
n) ≡ (

∧
i∈I p?	i(Si).Ti, 

∧
j∈ J p?	′

j(S ′
j).T

′
j) and ∃i ∈ I, j ∈ J such that 	i = 	′

j and S ′
j �: Si ;

(j) (Tn, T′
n) ≡ (

∧
i∈I p!	i(Si).Ti, 

∧
j∈ J p!	′

j(S ′
j).T

′
j) and ∃i ∈ I, j ∈ J such that 	i = 	′

j and Si �: S ′
j .

We can now characterise the judgements that do not hold under the rules in Table 6.

Lemma 3.31. The judgement ∅ � T �a T′ is not derivable iff there is a failing derivation of ∅ �T �a T′ .

We will use Lemma 3.31 in Section 4.1, to prove that a relation � is the negation of subtyping.

4. Operational preciseness

In this section, we provide an operational characterisation of preciseness of the synchronous multiparty subtyping relation 
� (Definition 3.15), by adapting the approach of Chen et al. [14,15], that was developed for binary sessions.

From the operational perspective, a subtyping relation R is sound if it satisfies the substitutability principle: i.e., if 
T R T′ , then a process of type T′ engaged in a well-typed session may be safely replaced with a process of type T. If 
R is also the largest relation with that property, then we say that the subtyping R is operationally precise; in this case, 
the implication in the operational soundness statement is also true when reversed — and this reversed direction is called 
operational completeness.

For the purpose of introducing a formal notion of operational preciseness (Definition 4.1 below), we define multiparty 
session contexts as: C ::= _ || C | M

Definition 4.1 (Operational preciseness). The subtyping relation � is

(1) operationally sound if T � T′ implies that for all r, C, P the following implication holds:

if (∀Q ) (� Q : T′ ⇒ � C[r � Q ] : G for some G) then (� P : T ⇒ C[r � P ] does not get stuck);
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Table 7
Negation of subtyping.

[nsub-endR]
T′ �= end

end� T′

[nsub-endL]
T �= end

T � end

[nsub-diff-in]
p �= q∧

i∈I

p?	i(Si).Ti �
∧
j∈ J

q?	′
j(S ′

j).T
′
j

[nsub-diff-out]
p �= q∨

i∈I

p!	i(Si).Ti �
∨
j∈ J

q!	′
j(S ′

j).T
′
j

[nsub-in-out]∧
i∈I

p?	i(Si).Ti �
∨
j∈ J

q!	′
j(S ′

j).T
′
j

[nsub-out-in]∨
i∈I

p!	i(Si).Ti �
∧
j∈ J

q?	′
j(S ′

j).T
′
j

[nsub-label-in]
∃ j ∈ J ∀i ∈ I : 	i �= 	′

j∧
i∈I

p?	i(Si).Ti �
∧
j∈ J

p?	′
j(S ′

j).T
′
j

[nsub-label-out]
∃i ∈ I ∀ j ∈ J : 	i �= 	′

j∨
i∈I

p!	i(Si).Ti �
∨
j∈ J

p!	′
j(S ′

j).T
′
j

[nsub-exch-in]
∃i ∈ I ∃ j ∈ J : 	i = 	′

j S ′
j �: Si∧

i∈I

p?	i(Si).Ti �
∧
j∈ J

p?	′
j(S ′

j).T
′
j

[nsub-cont-in]
∃i ∈ I ∃ j ∈ J : 	i = 	′

j Ti � T′
j∧

i∈I

p?	i(Si).Ti �
∧
j∈ J

p?	′
j(S ′

j).T
′
j

[nsub-cont-out]
∃i ∈ I ∃ j ∈ J : 	i = 	′

j Ti � T′
j∨

i∈I

p!	i(Si).Ti �
∨
j∈ J

p!	′
j(S ′

j).T
′
j

[nsub-exch-out]
∃i ∈ I ∃ j ∈ J : 	i = 	′

j Si �: S ′
j∨

i∈I

p!	i(Si).Ti �
∨
j∈ J

p!	′
j(S ′

j).T
′
j

(2) operationally complete if T �� T′ implies that there are r, C, P such that

(∀Q )(� Q : T′ ⇒ � C[r � Q ] : G for some G) and � P : T and stuck(C[r � P ]) ;
(3) operationally precise if it is operationally sound and operationally complete.

Operational soundness follows from the subsumption rule and the type safety property, which is formalised in the follow-
ing theorem.

Theorem 4.2 (Soundness). The synchronous multiparty session subtyping � is operationally sound.

Proof. Take T, T′ such that T � T′ , and r, C satisfying the following condition:

∀Q : � Q : T′ ⇒ � C[r � Q ] : G for some G. (3)

If � P : T, we derive by [t-sub] that � P : T′ holds. By (3), � C[r � P ] : G, for some G. Hence, by Theorem 3.24, C[r � P ] does 
not get stuck, which completes the proof. �

Operational completeness is the opposite direction of operational soundness, which is formalised above in a contrapositive 
form. Henceforth we prove the completeness using classical reasoning, and leave open the question of a constructive proof 
of completeness. We will derive the proof of operational completeness in four steps, as outlined in Section 1:

[Step 1] (Section 4.1) We define a relation � over session type trees and prove that for all T, T′ , T � T′ is derivable iff 
T � T′ is not derivable.

[Step 2] (Section 4.2) For each T, we define a characteristic process P (T) such that � P (T) : T(T).
[Step 3] (Section 4.3) For each type T′ and participant r /∈ pt{T′}, we define a characteristic global type G(T′, r) and a 

characteristic context Cr,T′ with the property that

(∀Q ) � Q : T(T′) ⇒ � Cr,T′ [r � Q ] : T(G(T′, r)
)
.

[Step 4] (Section 4.4) We prove that for all T, T′ , if T(T)� T
(
T′) then stuck

(
Cr,T′ [r �P(T)]). Thus, we achieve complete-

ness by finding r, Q = P (T) and Cr,T′ that satisfy item (2) of Definition 4.1.

4.1. Step 1: negation of subtyping

We introduce the relation � that characterises when a type is not a subtype of another type. It relies on the negation of 
subsorting �≤: , which is the complementary relation of the subsorting ≤:, and is defined as:

int�: nat bool�: nat nat�: bool bool�: int int�: bool

Definition 4.3 (Negation of subtyping). The relation � between session type trees is inductively defined by the rules in 
Table 7. We lift � to syntactic types: i.e., T �T′ holds iff T(T) � T

(
T′).
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The rules in Table 7 relate two type trees when:

• one is end, but the other is not end ([nsub-endR], [nsub-endL]);
• they target different participants ([nsub-diff-in], [nsub-diff-out]);
• they perform different actions (branching vs. selection) ([nsub-out-in], [nsub-in-out]);
• they are both branching types (resp. selection types), targeting the same participant, and the labels of the LHS 

(resp. RHS) do not cover all the labels of the RHS (resp. LHS) ([nsub-label-in], resp. [nsub-label-out]);
• they are both branching/selection types, targeting the same participant, with matching labels followed by mismatching 

sorts (resp. continuations) ([nsub-exch-in], [nsub-exch-out], resp. [nsub-cont-in], [nsub-cont-out]).

We now give some examples of types related by �.

Example 4.4. We show that T1 �T2 holds for the following pairs of types:

1. T1 ≡ μt.p!	1(nat).p!	2(nat).t, T2 ≡ μt.p!	2(nat).p!	1(nat).t: by [nsub-label-out], we deduce
p!	1(nat).p!	2(nat).T(T1) � p!	2(nat).p!	1(nat).T(T2),

which gives T(T1) � T(T2) by definition of T and folding.
2. T1 ≡ μt.p!	1(nat).t, T2 ≡ p!	1(nat).end: we have

T(T1)� end by [nsub-endL]
p!	1(nat).T(T1)� p!	1(nat).end by [nsub-cont-out]

which again implies T(T1) � T(T2).

Intuitively, the rules in Table 7 describe all the cases where two types cannot be related by � (Definition 3.15). This 
intuition is formalised in Proposition 4.7 below, which says that the relation � introduced in Definition 4.3 is the comple-
ment of the subtyping introduced in Definition 3.15. Hence, for two arbitrary type trees T, T′ , either T � T′ or T � T′ must 
hold, but not both. To prove that relations � and � are complementary, we rely on algorithmic subtyping. We follow the 
approach of Ligatti et al. [42,43], with the method of induction on a failing derivation (Definition 3.29); this exploits, in 
particular, the correspondence between the axioms in Table 7 and the cases listed in Corollary 3.30.

Lemma 4.5. If T(T)� T
(
T′), then there is a failing derivation of ∅ � T �a T′ .

Proof. See Appendix B.1. �
Lemma 4.6. Let ( J1, . . . , Jn) be a failing derivation of ∅ � T �a T′ , where Jm has the form 
m � Tm �a T′

m, m ∈ {1, . . . , n}. Then, 
T(Tm) � T

(
T′

m

)
for every m ∈ {1, . . . , n}.

Proof. See Appendix B.1. �
Proposition 4.7. T(T)� T

(
T′) is derivable if and only if T(T)� T

(
T′) is not derivable.

Proof. The proof follows from Theorem 3.26, Lemma 3.31, Lemma 4.5 and Lemma 4.6. �
As a direct consequence of the Proposition 4.7, and Definition 4.3, we have that T1 � T2 holds iff T(T1) � T(T2) is not 

derivable.
We now proceed with the second step on our way to achieving completeness, in which we introduce suitable processes 

that behave as specified by given session types.

4.2. Step 2: characteristic processes

The characteristic process P (T) of a session type T (Definition 4.8 below) is a process that fulfils two requirements:

1. it behaves as specified by T, and
2. whenever it receives a value v, it checks that v is of the sort expected in T.

To define the characteristic process of a selection type, we define internal choice of processes as a nesting of conditional 
processes. Namely, if I = {1, . . . , n} with n ≥ 2, we will write

⊕
i∈I P i for:
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Table 8
Characteristic processes. Note that we use syntactic session types, and the syntactic type equality ≡
(Notation 3.5) — hence, we distinguish a recursive type from its unfoldings, and they yield different 
characteristic processes.

P(T) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if T ≡ end∑
i∈I

p?	i(xi).if expression(xi , Si) then P
(
T′

i

)
else P

(
T′

i

)
if T ≡∧

i∈I
p?	i(Si).T′

i⊕
i∈I

p!	i(value(Si)).P
(
T′

i

)
if T ≡∨

i∈I
p!	i(Si).T′

i

μXt.P
(
T′) if T ≡ μt.T′

Xt if T ≡ t

expression(x, S) =
⎧⎨
⎩
succ(x) > 0 if S = nat
neg(x) > 0 if S = int

¬x if S = bool
value(S) =

⎧⎨
⎩

5 if S = nat
−5 if S = int
true if S = bool

if (true ⊕ false) then P1 else
if (true ⊕ false) then P2 else

. . .

if (true ⊕ false) then Pn−1 else Pn

(4)

and if I = {1}, then 
⊕

i∈I P i stands for P1. Note that we can derive 
⊕

i∈I P i −→∗ P j for every j ∈ I , because the non-
deterministic operator ⊕ on expressions allows 

⊕
i∈I P i to potentially reduce to any Pi : this capability will be exploited 

later, to state and prove subtyping completeness (Proposition 4.17).4

Definition 4.8. The characteristic process P (T) of a type T is defined by induction on T in Table 8.

By Definition 4.8, the characteristic process P (T) follows the structure of the originating type T; e.g., for each recursive 
subterm μt. . . . of T, we have a corresponding recursive process μXt. . . . (i.e., we have a distinct process variable Xt for 
each recursion variable t in T). To output values of the sorts required by T, Definition 4.8 uses the function value(S): it 
associates sorts nat, int and bool with their characteristic values 5, −5 and true, respectively.5 Moreover, Definition 4.8
inserts runtime checks to let P (T) verify that each received value is of the sort expected by T: this is done with the function 
expression(x, S), which creates an expression e that can be evaluated only if x is substituted with a value of sort S; we 
will see later (in the proof of Proposition 4.17) that, when e cannot be evaluated (because a value of the wrong sort has 
been received), then the characteristic process P (T) will stop reducing, and this will cause its session to get stuck, too. Note 
that expression(x, S) is typable in an environment where x has type S (Lemma 4.9 below).

Lemma 4.9. �, x : S � expression(x, S) : bool

Crucially, the characteristic process of T is typable by T(T), as per Proposition 4.10 below.

Proposition 4.10. For all T, it holds that � P (T) : T(T).

Proof. See Appendix B.2. �
4.3. Step 3: characteristic global types and characteristic contexts

The next step to prove completeness is to define for each session type T′ and participant r /∈ pt{T′} a (characteristic) 
context Cr,T′ , that is well typed when its hole is filled with r � Q , for any process Q of type T

(
T′). With this aim, we first 

define a (characteristic) global type that will provide typability of the session.
For a type T′ and a participant r, characteristic global type G(T′, r) describes a global protocol where participant r behaves 

as specified by T′ , while all participants from pt{T′} interact in a way that is compatible with T′ .

Definition 4.11. The characteristic global type G(T′, r) of the type T′ for the participant r /∈ pt{T′} is:

G(end, r) = end and G(T′, r) = G0(T
′, r, {p j}1≤ j≤n), if pt{T′} = {p j}1≤ j≤n,

where G0(T′, r, {p j}1≤ j≤n) is given in Table 9.

4 Our results can be formalised and proved without the ⊕ operator on expressions, but they would be more cumbersome and less readable: we would 
need to leave the boolean expressions in (4) unspecified; then, we would need to suitably instantiate such expressions (as true/false) in the statement and 
proof of subtyping completeness (Proposition 4.17), where we let ⊕i∈I P i reduce to a desired Pk (for some k ∈ I).

5 The choice of 5/−5 is arbitrary: any other natural/negative integer value would suit the purpose. Similarly, we could use false instead of true.
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Table 9
The function G0(T′, r, {p j}1≤ j≤n), generating characteristic global types from lo-
cal types. Note that it is inductively defined on syntactic types.

G0(
∧

i∈I p j0 ?	i(Si).Ti , r, {p j}1≤ j≤n) = p j0 → r : {	i(Si).G
j0
i }i∈I

G0(
∨

i∈I p j0 !	i(Si).Ti , r, {p j}1≤ j≤n) = r → p j0 : {	i(Si).G
j0
i }i∈I

G0(μt.T′, r, {p j}1≤ j≤n) = μt.G0(T′, r, {p j}1≤ j≤n)

G0(t, r, {p j}1≤ j≤n) = t G0(end, r, {p j}1≤ j≤n) = end

G j0
i = p j0 → p j0+1 : 	i(bool). . . .pn−1 → pn : 	i(bool).pn → p1 : 	i(bool).

p1 → p2 : 	i(bool). . . . .p j0−1 → p j0 : 	i(bool).G0(Ti , r, {p j}1≤ j≤n)

Definition 4.11 ensures that after each communication involving r and some q ∈ pt{T′}, q starts a cyclic communication 
involving all participants from pt{T′}, both as receivers and senders. Such cyclic communications serve two purposes:

1. they ensure that G(T′, r) is projectable (see Example 4.12 and Lemma 4.14), and
2. they ensure that a session based on G(T′, r) gets stuck if r does not follow T′ or its subtypes (see Example 4.13); this 

feature will be leveraged for the proof of operational completeness (Theorem 4.18).

Example 4.12. The cyclic communications produced by G(T′, r) (Definition 4.11) ensure that characteristic global types can 
be projected, thus producing a session type for all their participants: this is necessary to type sessions, by rule [t-sess] in 
Table 5.

If we do not introduce cyclic communications, this requirement may not be guaranteed. Take for example:

T′ = q!	1(nat).p?	2(int).end ∨ q!	3(int).end.

In order to find a global type where a participant r behaves as specified by T′ , we might be tempted to consider, e.g., the 
global type:

G = r → q :
{
	1(nat).p → r : 	2(int).end ,

	3(int).end

}

Indeed, if we check how r behaves in G, we have T(G)�r = T
(
T′), as desired. However, by Definition 3.6, T(G)�p =

T(r!	2(int).end)�T(end) is undefined, and therefore, G cannot type any session.
To avoid this issue, G(T′, r) produces a global type where r behaves according to T′ — and furthermore, the other 

participants appearing in T′ are involved in cyclic communications that can be correctly projected:

G(T′, r) = r → q :
⎧⎨
⎩

	1(nat).q → p : 	1(bool).p → q : 	1(bool).

p → r : 	2(int).p → q : 	2(bool).q → p : 	2(bool).end ,

	3(int).q → p : 	3(bool).p → q : 	3(bool).end

⎫⎬
⎭

G(T′, r)�p = q?	1(bool).q!	1(bool).r!	2(int).q!	2(bool).q?	2(bool).end ∧ q?	3(bool).q!	3(bool).end

Example 4.13. We now explain the necessity of cyclic communications in the definition of characteristic global types, for 
proving the completeness of �.

If we have a type T, we can find many projectable global types where some participant p behaves as T; however, not 
all such global types can be used to prove completeness of subtyping. Consider the two session types below, and note that 
T � T′ does not hold, whereas T �T′ does:

T = p1!	1(nat).p2!	2(nat).end
T′ = p2!	2(nat).p1!	1(nat).end (note the swapping of actions w.r.t. T)

If we don’t require the cyclic communications generated by Definition 4.11, we might be tempted to define a characteristic 
global type for T′ , where p behaves as T′ , as follows:

G = p → p2 : 	2(nat).p → p1 : 	1(nat).end

We can easily see that P 
(
T′) = p2!	2(5).p1!	1(5).0 (by Definition 4.8), and then, G = T(G) types the multiparty session 

p �P 
(
T′) | M, where

M = p1 �P(G�p1) | p2 �P(G�p2) = p1 � p?	1(x).0 | p2 � p?	2(x).0.

Clearly, the session p �P 
(
T′) | M reduces to p � 0 | p1 � 0 | p2 � 0.
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To prove the completeness of �, we need to show that, since T � T′ does not hold, M does not interact correctly with 
P (T). However, being P (T) = p1!	1(5).p2!	2(5).0, also the session p � P (T) | M reduces to p � 0, without getting stuck. 
Therefore, G does not help in proving that subtyping is complete.

Instead, by Definition 4.11, we have the following characteristic global type:

G′ = G(T′,p) = p → p2 : 	2(nat).p2 → p1 : 	2(bool).p1 → p2 : 	2(bool).

p → p1 : 	1(nat).p1 → p2 : 	1(bool).p2 → p1 : 	1(bool).end

which implies:

P
(
T′

1

) = p2?	2(x).p2!	(true). . . . where T′
1 = p2?	2(bool).p2!	2(bool). . . . and T

(
T′

1

)= T
(
G′)�p1

P
(
T′

2

) = p?	2(x).p!	(true). . . . where T′
2 = p?	2(nat).p1!	2(bool). . . . and T

(
T′

2

)= T
(
G′)�p2

and it is then easy to verify that:

p �P
(
T′) | p1 �P

(
T′

1

) | p2 �P
(
T′

2

)
reduces to p � 0, hence is not stuck,

whereas p �P(T) | p1 �P
(
T′

1

) | p2 �P
(
T′

2

)
is stuck.

In order to type a session with the characteristic global type we need to verify that T(G(T,p))�p = T(T), and that 
T(G(T,p))�q is defined for all q ∈ pt{T}.

Lemma 4.14. For all session types T and p /∈ pt{T}:

1. T(G(T,p))�p = T(T);
2. T(G(T,p))�q is defined for all q ∈ pt{T}.

Proof. See Appendix B. �
We can now define characteristic contexts that satisfy desired properties for the proof of operational completeness.

Definition 4.15 (Characteristic context). Let T′ be a session type and r /∈ pt{T′}. A characteristic context for T′ and r, denoted 
by Cr,T′ , is a context such that:

Cr,T′ =
{

_ if T′ = end
_ | ∏

1≤i≤n
pi �P(Ti) if pt{T′} = {p1, . . . ,pn}, and ∀1 ≤ i ≤ n : T(Ti) = T

(
G(T′, r)

)
�pi

When filled with the participant/process pair r � Q , where Q is typed as � Q : T(T′), a characteristic context produces a 
well-typed multiparty session. This is proved in Proposition 4.16 below.

Proposition 4.16. Take any T′ and r /∈ pt{T′}. If � Q : T(T′), then � Cr,T′
1
[r � Q ] : T(G(T′, r)

)
, for any characteristic context Cr,T′

1

such that T
(
T′)= T

(
T′

1

)
.

Proof. See Appendix B.2. �
4.4. Step 4: operational completeness

We have now all the necessary machinery to prove the last step and achieve the operational completeness of subtyping.

Proposition 4.17. Take any T1 , T′
1 and r /∈ pt{T′

1}. If T(T1) � T
(
T′

1

)
, then there are T, T′ and a characteristic context Cr,T′ such 

that T(T) = T(T1) and T
(
T′)= T

(
T′

1

)
and stuck

(
Cr,T′ [r �P(T)]).

Proof. We denote T(T1) and T
(
T′

1

)
by T and T′ , respectively. The proof is by induction on the derivation of T � T′ . More 

precisely, in each case of the proof, we examine the shape of the session type trees related by a rule of � and then pick 
two corresponding syntactic types T, T′ such that T(T1) = T(T) � T

(
T′)= T

(
T′

1

)
. We will always pick T and T′ in unfolded 

form, so they never have μt. . . . as top-level term. Then, we examine the characteristic processes of T and T′ . In case 
pt{T′} = ∅ we show that stuck(r �P(T)). If pt{T′} �= ∅, we show that

stuck

(
r �P(T) | ∏

pl∈pt{T′}
pl �P

(
Tpl

))
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• [nsub-endR] end� T′ and T′ �= end:
By definition of characteristic processes, P (T) = P (end) = 0. Since T′ �= end, by definition of characteristic global type, 
there is a participant q ∈ pt{T′} such that the projection of G to q is either selection of outputs to r or branching of 
inputs from r. Since participant r is inactive, it will never communicate with q, implying that the multiparty session is 
stuck (other participant are waiting to participate in the cyclic communication, which cannot start).

• [nsub-endL] T � end and T �= end:
Then, pt{T′} = pt{end} = ∅, hence T′ has a characteristic context Cr,T′ = _ . From this, we obtain the multiparty session 
Cr,T′ [r �P (T)] = r �P (T), where participant r is not inactive, since pt{T} �= ∅: therefore, the session is stuck.

• [nsub-diff-in] ∧
i∈I

p?	i(Si).Ti �
∧
j∈ J

q?	′
j(S ′

j).T
′
j and p �= q:

Let us assume that pt{T′} = pt{T′} = {q, p1, . . . , pn−1} (with auxiliary denotations p0 := q and pn := q). By definition of 
characteristic process,

P(T) = P

(∧
i∈I

p?	i(Si).Ti

)
=∑

i∈I
p?	i(x).P r

i ,

for some P r
i . By definition of characteristic global type, G = G(T′, r) where

G(T′, r) = G0(T′, r,pt{T′}) = G0(
∧
j∈ J

q?	′
j(S ′

j).T
′

j, r,pt{T′}) = q → r : {	′
j(S ′

j).G
q
j } j∈ J .

Now, the cyclic communication that includes all the participants from T′ has the form:

Gq
j = q → p1 : 	′

j(bool).p1 → p2 : 	′
j(bool). . . . .pn−1 → q : 	′

j(bool).G0(T′
j, r,pt{T′}).

By definition of global type projection and characteristic process, we obtain

Tq = G�q = ∨
j∈ J

r!	′
j(S ′

j).G
q
j�q

Tpl = G�pl = ∧
j∈ J

pl−1?	′
j(bool).pl+1!	′

j(bool).Gq
0 j�pl, l ∈ {1, . . . ,n − 1}

P
(
Tq
) = ⊕

j∈ J
r!	′

j(value(S ′
j)).P

q
j

P
(
Tpl

) = ∑
j∈ J

pl−1?	′
j(x).P ′′

j

for Gq
0 j = G0(T′

j, r, pt{T′}) and some P q
j , P

′′
j .

By consecutive application of [T-conditional], the multiparty session we consider reduces to

r �
∑
i∈I

p?	i(x).P r
i | q � r!	′

j0
(value(S ′

j0
)).P q

j0
|

∏
1≤l≤n−1

pl �
∑
j∈ J

pl−1?	′
j(x).P ′′

j .

The session is stuck since it can not reduce. Notice that all participants pl , l ∈ {1, . . . , n − 1}, are waiting to communicate 
within the cyclic communication that starts by interaction between q and p1. The participant q is emitting a message 
to r, but r is waiting for a message from some other participant (since p �= q).

• [nsub-diff-out] ∨
i∈I

p!	i(Si).Ti �
∨
j∈ J

q!	′
j(S ′

j).T
′
j and p �= q:

By definition of characteristic process,

P(T) = P

(∨
i∈I

p!	i(Si).Ti

)
=⊕

i∈I
p!	i(value(Si)).P(Ti) .

By definition of characteristic global type,

G = G(T′, r) = G0(T′, r,pt{T′}) = G0(
∨
j∈ J

q!	′
j(S ′

j).T
′

j, r,pt{T′}) = r → q : {	′
j(S ′

j).G
q
j } j∈ J .

The cyclic communication and its projections are the same as in the previous case. By definition of global type projec-
tion and characteristic process,

Tq = G�q =
∧
j∈ J

r?	′
j(S ′

j).G
q
j�q and P

(
Tq
)=

∑
j∈ J

r?	′
j(x).P q

j ,

for some P q
j , j ∈ J .

By consecutive application of [T-conditional], the considered multiparty session reduces to:



S. Ghilezan et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 127–173 149
r � p!	i0(value(Si0)).P
(
Ti0

) | q �
∑
j∈ J

r?	′
j(x).P q

j |
∏

1≤l≤n−1

pl �
∑
j∈ J

pl−1?	′
j(x).P ′′

j .

Similarly as in the previous case, the session is stuck.
• [nsub-in-out]: ∧

i∈I
p?	i(Si).Ti �

∨
j∈ J

q!	′
j(S ′

j).T
′
j

Type trees T and T′ are the same as in [nsub-diff-in] and [nsub-diff-out], respectively. Therefore, the multiparty 
session that we consider has the following form:

r �
∑
i∈I

p?	i(x).P r
i | q �

∑
j∈ J

r?	′
j(x).P q

j |
∏

1≤l≤n−1

pl �
∑
j∈ J

pl−1?	′
j(x).P ′′

j .

The session is stuck, since all the participants are waiting to receive messages.
• [nsub-out-in]: ∨

i∈I
p!	i(Si).Ti �

∧
j∈ J

q?	′
j(S ′

j)T
′
j

Type trees T and T′ are the same as in [nsub-diff-out] and [nsub-diff-in], respectively. Hence, we get the multiparty 
session:

r � p!	i0(value(Si0)).P
(
Ti0

) | q � r!	′
j0
(value(S ′

j0
)).P q

j0
|

∏
1≤l≤n−1

pl �
∑
j∈ J

pl−1?	′
j(x).P ′′

j .

It is stuck, since the cyclic communication should start by communication between q and p1. The participant q is trying 
to send a message to r, whilst r is in the same time trying to output a message to p. Even in the case when p = pl , for 
some l ∈ L, the message can not be received before the cyclic communication is completed (and r is not participating in 
it).

• T =∧
i∈I

p?	i(Si).Ti , T′ = ∧
j∈ J

p?	′
j(S ′

j).T
′
j :

Let us assume that pt{T′} = pt{T′} = {p, p1, . . . , pn−1} (with auxiliary denotations p0 := p and pn := p).

G = G0(
∧
j∈ J

p?	′
j(S ′

j).T
′

j, r,pt{T′}) = p → r : {	′
j(S ′

j).G
p
j } j∈ J

Gp
j = p → p1 : 	′

j(bool).p1 → p2 : 	′
j(bool). . . . .pn−1 → p : 	′

j(bool).G0(T′
j, r,pt{T′})

Tp = G�p = ∨
j∈ J

r!	′
j(S ′

j).G
p
j �p

Tpl = G�pl = ∑
j∈ J

pl−1?	′
j(bool).pl+1!	′

j(bool).G j�pl, G j = G0(T′
j, r,pt{T′})

We consider the following cases:
– [nsub-label-in]: ∃ j0 ∈ J ∀i ∈ I : 	i �= 	′

j0

r �∑
i∈I

p?	i(x).P r
i | p � ⊕

j∈ J
r!	′

j(value(S ′
j)).Q

p
j | ∏

1≤l≤n−1
pl �P

(
Tpl

)
−→∗ r �∑

i∈I
p?	i(x).P r

i | p � r!	′
j0
(value(S ′

j0
)).Q p

j0
| ∏

1≤l≤n−1
pl �P

(
Tpl

) �−→

The session is stuck due to the label mismatch.
– [nsub-exch-in]: ∃i0 ∈ I ∃ j0 ∈ J : 	i0 = 	′

j0
and S ′

j0
�: Si0

We prove the case |I| > 1 with Si0 = nat and S ′
j0

= int. Other cases are similar.

r � p?	′
j0
(x).if succ(x) > 0 then P

(
Ti0

)
else P

(
Ti0

)+ P2 |
p � ⊕

j∈ J
r!	′

j(value(S ′
j)).Q

p
j | ∏

1≤l≤n−1
pl �P

(
Tpl

)−→∗

r � p?	′
j0
(x).if succ(x) > 0 then P

(
Ti0

)
else P

(
Ti0

)+ P2 | p � r!	′
j0
(−5).Q p

j0
|∏

1≤l≤n−1
pl �P

(
Tpl

)−→
r � if succ(−5) > 0 then P

(
Ti0

)
else P

(
Ti0

) | p � Q p
j0

| ∏
1≤l≤n−1

pl �P
(
Tpl

)
This session gets stuck, since succ(−5) is not defined.

– [nsub-cont-in]: ∃i0 ∈ I ∃ j0 ∈ J : 	i0 = 	′
j0

and S ′
j0

≤: Si0 and Ti0 � T′
j0

We prove the case |I| > 1 with Si0 = nat and S ′ = nat. Other cases are similar.
j0
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r � p?	′
j0
(x).if succ(x) > 0 then P

(
Ti0

)
else P

(
Ti0

)+ P2 |
p � ⊕

j∈ J
r!	′

j(value(S ′
j)).Q

p
j | ∏

1≤l≤n−1
pl �P

(
Tpl

)−→∗

r � p?	′
j0
(x).if succ(x) > 0 then P

(
Ti0

)
else P

(
Ti0

)+ P2 | p � r!	′
j0
(5).Q p

j0
|∏

1≤l≤n−1
pl �P(Tl) −→ r � if succ(5) > 0 then P

(
Ti0

)
else P

(
Ti0

) |
p � Q p

j0
| ∏

1≤l≤n−1
pl �P

(
Tpl

)−→∗ r �P
(
Ti0

) | p �P
(
G j0�p

) | ∏
1≤l≤n−1

pl �P
(
G j0�pl

)
This session is stuck by induction hypothesis.

• T =∨
i∈I

p!	i(Si).Ti , T′ = ∨
j∈ J

p!	′
j(S ′

j).T
′
j :

Assume that pt{T′} = pt{T′} = {p, p1, . . . , pn−1}.

G = G0(
∨
j∈ J

p j!	′
j(S ′

j).T
′

j, r,pt{T′}) = r → p : {	′
j(S ′

j).G
p
j } j∈ J

Gp
j = p → p1 : 	′

j(bool).p1 → p2 : 	′
j(bool). . . . .pn−1 → p : 	′

j(bool).G0(T′
j, r,pt{T′})

Tp = G�p = ∧
j∈ J

r?	′
j(S ′

j).G
p
j �p

Tpl = G�pl = ∑
j∈ J

pl−1?	′
j(bool).pl+1!	′

j(bool).G j�pl, G j = G0(T′
j, r,pt{T′})

P
(
Tp
) = ∑

j∈ J
r?	 j(x).P p

j

P(T) = ⊕
i∈I

p!	i(value(Si)).P(Ti)

We consider the following cases:
– [nsub-label-out]: ∃i0 ∈ I ∀ j ∈ J : 	i0 �= 	′

j
The session gets stuck due to a label mismatch:

r �⊕
i∈I

p!	i(value(Si)).P(Ti) | p � ∑
j∈ J

r?	′
j(x).P p

j | ∏
1≤l≤n−1

pl �P
(
Tpl

)
−→∗ r � p!	i0(value(Si0)).P

(
Ti0

) | p � ∑
j∈ J

r?	′
j(x).P p

j | ∏
1≤l≤n−1

pl �P
(
Tpl

) �−→

– [nsub-exch-in]: ∃i0 ∈ I ∃ j0 ∈ J : 	i0 = 	′
j0

and Si0 �: S ′
j0

We prove the case | J | > 1 with Si0 = int and S ′
j0

= nat.
The session gets stuck, since succ(−5) is not defined:

r �⊕
i∈I

p!	i(value(Si)).P(Ti) | p � r?	i0(x).if succ(x) > 0 then Q p
j0

else Q p
j0

+ P2 |∏
1≤l≤n−1

pl �P
(
Tpl

)−→∗ r � p!	i0(−5).P
(
Ti0

) |
p � r?	i0(x).if succ(x) > 0 then Q p

j0
else Q p

j0
+ P2 | ∏

1≤l≤n−1
pl �P

(
Tpl

)−→
r �P

(
Ti0

) | p � if succ(−5) > 0 then Q p
j0

else Q p
j0

| ∏
1≤l≤n−1

pl �P
(
Tpl

)
– [nsub-cont-in]: ∃i0 ∈ I ∃ j0 ∈ J : 	i0 = 	′

j0
and Si0 ≤: S ′

j0
and Ti0 �T′

j0

The session gets stuck by induction hypothesis:

r �⊕
i∈I

p!	i(value(Si)).P(Ti) | p � r?	i0(x).if succ(x) > 0 then Q p
j0

else Q p
j0

+ P2 |∏
1≤l≤n−1

pl �P(Tl) −→∗ r � p!	i0(5).P
(
Ti0

) |
p � r?	i0(x).if succ(x) > 0 then Q p

j0
else Q p

j0
+ P2 | ∏

1≤l≤n−1
pl �P(Tl) −→

r �P
(
Ti0

) | p � if succ(5) > 0 then Q p
j0

else Q p
j0

| ∏
1≤l≤n−1

pl �P(Tl) −→∗

r �P
(
Ti0

) | p �P
(
G j0�p

) | ∏
1≤l≤n−1

pl �P
(
G j0�pl

) �

Theorem 4.18 (Completeness). The synchronous multiparty session subtyping is operationally complete.

Proof. It follows from Proposition 4.10, Proposition 4.16 and Proposition 4.17. �
As a consequence of Theorem 4.2 and Theorem 4.18, we obtain operational preciseness.
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Corollary 4.19 (Preciseness). The synchronous multiparty session subtyping is operationally precise.

Moreover, multiparty session subtyping � is the unique precise subtyping for the given calculus.

Corollary 4.20 (Uniqueness). The synchronous multiparty session subtyping is the unique operationally precise subtyping.

Proof. Let � be a reflexive and transitive relation over tree types such that � ��, i.e., there are types T and T′ such that 
T(T) � T

(
T′) but T(T) �� T

(
T′). We prove that � is not an operationally sound subtyping. By the proof of Proposition 4.17, 

T(T) �� T
(
T′) implies stuck

(
Cr,T′ [r �P(T)]). Therefore, by Definition 4.1, � is not an operationally sound subtyping. We 

conclude that if � is sound, then � ⊆ �. Hence, � is the largest operationally sound subtyping for the considered calculus, 
and therefore the unique operationally precise one. �
5. Operational preciseness at work

Consider the following multiparty session, with four participants: client (cl), adder (add), increment (inc), and decre-
ment (dec):

cl � Pcl || add � Padd || inc � Pinc || dec � Pdec.

Client sends two natural numbers to adder and expects the integer result of summation. Adder receives the two numbers 
and sums them by successively increasing the first one by 1 (done by inc) and decreasing the second one by 1 (done by
dec). If the second summand equals 0, the first summand gives the required sum. Processes modelling this behaviour are 
the following:

Pcl = add!	1(5).add!	2(4).add?	3(x).0
Padd = cl?	1(y1).cl?	2(y2).μX .if y2 = 0 then inc!	4(true).dec!	4(true).cl!	3(y1).0

else inc!	5(y1).inc?	6(y1).dec!	7(y2).dec?	8(y2).X
Pinc = μX .add?	4(y).0 + add?	5(y).add!	6(y + 1).X
Pdec = μX .add?	4(y).0 + add?	7(y).add!	8(y − 1).X .

We can extend addition to integers by changing the process Padd as follows:

P ′
add = cl?	1(y1).cl?	2(y2).μX .if y2 = 0 then inc!	4(true).dec!	4(true).cl!	3(y1).0

else if y2 > 0 then inc!	5(y1).inc?	6(y1).dec!	7(y2).dec?	8(y2).X
else inc!	5(y2).inc?	6(y2).dec!	7(y1).dec?	8(y1).X .

Process P ′
add additionally checks if the second summand is positive. If it is not, the sum is calculated by successively 

increasing the second summand by 1 and decreasing the first summand by 1. The new multiparty session follows the global 
protocol:

cl→ add : 	1(int).cl→ add : 	2(int).μt.add→ inc : {
	4(bool) : add→ dec : 	4(bool).add→ cl : 	3(int).end,

	5(int).inc→ add : 	6(int).add→ dec : 	7(int).dec→ add : 	8(int).t }.
Operational soundness of the subtyping guarantees that the summation of natural numbers will be safe after this change, 
as for nat� int we have

add!	1(nat).add!	2(nat).add?	3(int).end � add!	1(int).add!	2(int).add?	3(int).end.

Moreover, our operational completeness result means that any extension of the subtyping relation is not correct. E.g., con-
sider the following types:

T = add!	1(int).add!	2(int).end �� add!	2(int).add!	1(int).end= T′.
They send messages with different labels in a different order, and thus, are not related by subtyping. By opera-
tional completeness, we know that we can construct processes Qcl = add!	1(5).add!	2(4).0 of type T and Q ′

cl =
add!	2(4).add!	1(5).0 of type T′ and a multiparty session

M= add� cl?	2(x).if neg(x) > 0 then cl?	1(x).0 else cl?	1(x).0

such that cl � Q ′
cl || M is well typed (hence has progress, by Theorem 3.23) — whereas cl � Qcl || M is stuck, since the 

multiparty session

cl� add!	1(5).add!	2(4).0 || add� cl?	2(x).if neg(x) > 0 then cl?	1(x).0 else cl?	1(x).0

cannot reduce because of label mismatch. So, if we would extend subtyping to relate the types above, we would break the 
soundness of the subtyping (as there is some context where a corresponding process substitution causes an error (stuck)).
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6. Denotational preciseness

In λ-calculus types are usually interpreted as subsets of the domains of λ-models whereas subtyping is interpreted as 
set-theoretic inclusion [4,30]. Denotational preciseness of subtyping is then:

T� T′ if and only if [[T]] ⊆ [[T′]]
using [ [ ] ] to denote type interpretation.

In the present context, let us interpret a session type T as the set of closed processes typed by T(T), i.e.

[[T]] = {P | � P : T(T)}
We show that the subtyping is denotationally precise. The denotational soundness follows from the subsumption rule [t-

sub] and the interpretation of subtyping as set-theoretic inclusion. In order to prove that denotational completeness holds, 
we show a more general result that operational completeness implies denotational completeness, along the lines of Dezani-
Ciancaglini et al. [23].

Theorem 6.1. The existence of characteristic terms implies denotational completeness.

Proof. Denotational completeness follows from the following key property of characteristic processes:

� P(T) : T(T′) implies T(T) � T
(
T′)

If we could derive � P (T) : T(T′) with T(T) �� T
(
T′), then the multiparty session

r �P(T) |
∏

1≤i≤n

pi �P(Ti)

where pt{T′} = {pi}1≤i≤n and G = G(T′, r) and Ti =G�pi for 1 ≤ i ≤ n, could be typed. Theorem 4.19 shows that this process 
is stuck, and this contradicts the soundness of the type system. We get the desired property, which implies denotational 
completeness, since if T(T) �� T

(
T′) then P (T) ∈ [ [T] ], but P (T) /∈ [ [T′] ]. �

As a consequence, we obtain the denotational preciseness of subtyping.

Theorem 6.2 (Denotational preciseness). The subtyping relation is denotationally precise.

Note that the two notions of preciseness, denotational and operational, are not equivalent. The usual subtyping in 
λ-calculus with intersection types (resp. intersection and union types) is known to be denotationally precise [4] (resp. [59]). 
On the other hand, operational completeness requires that all empty types, i.e., not inhabited types, are less than all inhab-
ited types. This makes unfeasible an operationally complete subtyping for the pure λ-calculus with intersection and union 
types, since inhabitation is undecidable for intersection types and union types [21].

7. Conclusion and related work

The preciseness result of this paper shows that multiparty session subtyping � (Definition 3.15) is a canonical notion of 
subtyping for the synchronous calculus presented in Section 2: it is both operationally sound (Theorem 3.21) and complete 
(Theorem 4.18), hence operationally precise. We also show that � is denotationally precise (Section 6).

This relation � is incorporated into most implementations of multiparty session types [36,37,50–52,56,58]; most imple-
mentations are based on Scribble [61], which is a protocol description language based on multiparty session types [34,35].

The main technical contribution of this paper is the definition of characteristic global types in Section 4. Given a ses-
sion type T and a session participant p which does not occur in T, the associated characteristic global type expresses the 
communications prescribed by T between p and the participants in T. After each communication involving p, the charac-
teristic global type creates a cyclic communication between all participants in T. Such cyclic communications are essential 
to project the characteristic global type and to generate a deadlock when the subtyping relation is extended, as illustrated 
in Examples 4.12 and 4.13.

The subtyping considered here is sound but not complete for asynchronous multiparty session π -calculus in [34,35].
We conjecture the completeness of the subtyping defined in [49] for asynchronous multiparty sessions. We are currently 

working toward the preciseness for asynchronous multiparty sessions, including delegations (i.e. channel passing).
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Related work

Preciseness of subtyping. Ligatti et al. [42] first define operational preciseness of subtyping and apply it to iso-recursive 
types. They consider a typed λ-calculus enriched with naturals, reals, pair and case constructors/destructors, and roll/unroll. 
The predicate bad(M) holds when M reduces to a stuck term, i.e. to an irreducible term which is not a value. They propose 
new algorithmic rules for subtyping iso-recursive types and show that they are operationally precise.

Dezani-Ciancaglini and Ghilezan [21] adapt the ideas of Ligatti et al. [42] to the setting of the concurrent λ-calculus 
with intersection and union types by Dezani-Ciancaglini et al. [20]. For the operational preciseness, they take the view that 
evaluation of well-typed terms always terminates. This means that the predicate bad coincides with non-termination. In 
this calculus, applicative contexts are enough. Notably, soundness and completeness are made more operational by asking 
that some applications converge instead of being typable. To sum up, the definition of operational preciseness becomes:

A subtyping ≤ is operationally precise when σ ≤ τ if and only if there are no closed terms M, N such that:
(i) ML converges for all closed terms L of type τ , and

(ii) N has type σ , and
(iii) MN diverges.

The main result in [21] is the operational preciseness of the subtyping induced by the standard set theoretic interpretation 
of arrow, intersection and union types.

Chen et al. [14,15] first give a general formulation of preciseness for session calculi, where processes are typed by sets 
of pairs (channels, session types) as in Honda et al. [32]. The session types prescribe how the channels can be used for 
communications. The calculus of processes includes an error process and bad(P ) holds when process P reduces to error. The 
typing judgements for closed processes are of the form � P � {a : T }, assuring that the process P has a single free channel a
whose type is T . The judgement � C[a : T ] � ∅ means that filling the hole of C with any process P typed by a : T produces 
a well-typed closed process. They obtain:

A subtyping ≤ is precise when, for all session types T and S:

T � S ⇐⇒
(

there do not exist C and P such that:
� C[a : S] � ∅ and � P � {a : T } and C[P ] −→∗ error

)

When the only-if direction ( =⇒) of this formula holds, we say that the subtyping is sound; when the if direction ( ⇐=
) holds, we say that the subtyping is complete. The first result by Chen et al. [14,15] is that the well-known session 
subtyping, the branching-selection subtyping by Demangeon and Honda [18], is sound and complete for the synchronous 
dyadic calculus. Next, the authors show that in the asynchronous calculus, this subtyping is incomplete for type-safety: that 
is, there exist session types T and S such that T can safely be considered as a subtype of S , but T ≤ S is not derivable by the 
subtyping. They propose an asynchronous subtyping system (inspired by Mostrous et al. [49]) which is sound and complete 
for the asynchronous dyadic calculus. The method gives a general guidance to design rigorous channel-based subtypings 
respecting desired safety properties. We conjecture the preciseness of the subtyping of Demangeon and Honda [18] also 
for the full synchronous multiparty calculus, including multiple interleaved sessions — but we could not use the present 
approach for the proof, since well-typed interleaved sessions can be stuck [17].

(Un-)Decidability of session subtyping. A faithful implementation of the multiparty session subtyping algorithm in Table 6
(with added support for higher-order types) can be found in a software artifact by Scalas and Yoshida [58]. Table 6 is based 
on the subtyping algorithm for binary session types introduced by Gay and Hole [25] — who, in turn, adopt techniques 
inspired by Pierce and Sangiorgi [54]. Chen et al. [14,15] introduce a precise subtyping relation for asynchronous binary 
sessions, where messages can be buffered in FIFO queues; later, Lange and Yoshida [41] and Bravetti et al. [8,9] show that 
such a relation is undecidable, and study some decidable fragments. As observed in Section 4.4 of the paper by Bravetti 
et al. [8], these results imply that if Definition 3.15 is similarly extended to asynchronous subtyping, then the relation 
becomes undecidable.

Semantic subtyping. A framework which is closely related to the above described works is semantic subtyping. In semantic 
subtyping, each type is interpreted as the set of values having that type and subtyping is subset inclusion between type 
interpretations [12]. This gives a precise subtyping as soon as the calculus allows to distinguish operationally values of 
different types.

Semantic subtyping was first proposed by Castagna and Benzaken through the development of the CDuce project [24]. 
CDuce is a modern XML-oriented functional language. Distinctive features of CDuce are a powerful pattern matching, first 
class functions, over-loaded functions, a very rich type system (with arrow, sequence, pair, record, intersection, union, dif-
ference type constructs), precise type inference for patterns and error localisation, and a natural interpretation of types as 
sets of values. It is enriched also with some important implementation aspects: in particular, a dispatch algorithm that 
demonstrates how static type information can be used to obtain very efficient compilation schemas.
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Semantic subtyping has been also studied in [10] for a π -calculus with a patterned input and in [11] for a session 
calculus with internal and external choices and typed input. Types are built using a rich set of type constructors including 
union, intersection and negation: they extend IO-types in [10] and session types in [11]. Semantic subtyping is precise for 
the calculi of [10,11,24], thanks to the type case constructor in [24], and to the blocking of inputs for values of “wrong” 
types in [10,11].

Session types and contracts. Various works study the relationship between binary session types and contracts [13]: they 
assign contract-based semantics to types (e.g., via an encoding), and study the correspondence between the syntactically-
defined relations in the literature of session types (e.g., duality and subtyping) and the semantically-defined relations in the 
literature of contracts: see, e.g., Barbanera and de’Liguoro [2,3], Bartoletti et al. [5], Bernardi and Hennessy [7]. In particular, 
Theorem 4.10 of Bernardi and Hennessy [7] shows that binary session subtyping is fully abstract w.r.t. a behavioural pre-
order on contracts, based on peer compliance. This can be related to our results on multiparty sessions: we investigate the 
canonicity of the syntactically-defined multiparty session subtyping, by reasoning on the semantics of typed (characteristic) 
processes, and the correctness of their interactions. In a recent work, Bernardi and Francalanza [6] provide a novel conduc-
tive characterisation of a preorder that relates client contracts, and argue its decidability; notably, client contracts feature 
mixed choices and non-determinism (both absent in session types). As future work, it would be interesting to integrate 
this rich language in multiparty session types, develop a corresponding subtyping relation, and study its canonicity (i.e., 
preciseness) with the approach presented in the present paper.
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Appendix A. Additional definitions and proofs for Section 3

In this section, we reprise the global/local type trees introduced in Section 3 with a more detailed treatment, based on 
[53, Part IV]: this is developed in Appendix A.1 (for global types) and Appendix A.2 (for session types), thus giving a more 
formal basis to the graphical type tree representations in Figs. 1 and 3, and to Notation 3.2 and 3.5.

Then, we study the properties of type projection (Appendix A.3) and merging (Appendix A.4), substitution/congruence 
(Appendix A.5). We continue with the properties of the type system (Appendix A.6), and the proofs of Lemma 3.19 (Ap-
pendix A.7), subject reduction and progress (Appendix A.8), and termination of algorithmic subtyping (Appendix A.9).

Before starting, we observe that since we will define global and session type trees as partial functions (cf. Definitions A.4
and A.13), we can consider them equal under the standard equality between functions, formalised in Definition A.1 below.

Definition A.1 (Extensional function equality). Given two (partial) functions f and f ′ , we write f = f ′ (read: f and f ′ are 
equal) iff (1) dom( f ) = dom( f ′), and (2) ∀x ∈ dom( f ) : f (x) = f ′(x).

Proposition A.2. The relation “ =” between (partial) functions is symmetric, reflexive and transitive.

A.1. Global type trees

Definition A.3 (Payload/continuation labels and sequences). From the set of labels in Notation 2.1, we define the sets of contin-
uation labels

{
	 C

∣∣ 	 ∈ labels
}

, and payload labels
{
	 P
∣∣ 	 ∈ labels

}
. We write w to indicate a sequence of continuation labels, 

ε for the empty sequence, and w·	 C for the chaining of w and 	 C . Further, we write w·	 P for the sequence obtained by 
chaining w (consisting of continuation labels, only) with just one payload label 	 P .

Definition A.4 (Global type trees). Let f be a partial function from sequences w or w·	 P (Definition A.3) to the set 
{p → q,end, S | p,q ∈ roles, S ∈ sorts}. We say that f is a global type tree if it satisfies the following constraints:

1. f (ε) is defined as either end or p → q (for some p, q);
2. if f (w) = end, then for all 	, f (w·	 C) and f (w·	 P) are undefined;
3. if f (w) = p → q (for some p, q), then there is a finite set of labels L �= ∅ such that, for all 	 ∈ L, both f (w·	 C) and 

f (w·	 P) are defined;
4. if f (w·	 C) is defined, then it is either p → q (for some p, q) or end, and f (w) is defined;
5. if f (w·	 P) is defined, then it is a sort S , and f (w) is defined.
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A partial function f satisfying Definition A.4 can be visually represented as a tree, as shown in Figs. 1 and 2: edges are 
marked by continuation/payload labels, and nodes are marked by either p → q, end, or S (for some p, q, S); a path along 
the tree is defined as a sequence w or w·	 P for which f is defined.

Definition A.5. The function T, from closed global types to type trees, is inductively defined as:

T(end) (ε) = end
T(p → q : {	i(Si).Gi}i∈I ) (ε) = p → q
T(p → q : {	i(Si).Gi}i∈I ) (	 C

k ·w) = T(Gk) (w) for all k ∈ I
T(p → q : {	i(Si).Gi}i∈I ) (	 P

k ) = Sk for all k ∈ I
T(μt.G) (w) = T(G{μt.G/t}) (w)

We define the tree of G as T(G).

We can now observe that the graphical tree constructed by T(G) in Fig. 1 corresponds to the tree function yielded by 
T(G) in Definition A.5:

• a sequence of continuation labels w can be followed along the labelled edges of T(G) in Fig. 1, reaching a node with 
marking m (of the form p → q or end), if and only if in Definition A.5 we have T(G) (w) = m;

• similarly, a sequence w·	 P can be followed along the edges of T(G) in Fig. 1, reaching a leaf node marked with sort S , 
if and only if in Definition A.5 we have T(G) (w·	 P) = S .

Notation A.6 (Global types as trees). As in [53, p. 285], we save some notation by writing:

end for the type tree f with f (ε) = end

p → q : {	i(Si).gi}i∈I
where gi is a global type tree (∀i∈ I)
and ∀i, j ∈ I : i �= j implies 	i �= 	 j

for

the type tree f with:
1. (1) f (ε) = p → q, and
2. (2) ∀i ∈ I , f (	 P

i ) = Si and f (	 C
i ·w) = gi(w)

We will also write G as a shorthand for a tree T(G), for some G (cf. Notation 3.2).

In practice, two global type trees are equal when they are both end, or denote a communication between a same pair 
of participants, with the same labels, and equal continuations. This is detailed in Definition A.7 and Lemma A.11 below.

Definition A.7 (Global type tree isomorphism). We say that a relation R between global type trees is a global type tree isomor-
phism iff it satisfies the following clauses, whenever ( f , f ′) ∈R:

(i) if f is end, then f ′ is end;
(ii) if f is p → q : {	i(Si).gi}i∈I (for some p, q, I, 	i, Si, gi ) then f ′ is p → q : {	i(Si).g′

i}i∈I such that ∀i ∈ I : (g, g′
i) ∈R.

We write f ∼ f ′ (read “ f and f ′ are isomorphic”) iff f R f ′ for some global type tree isomorphism R. Given two global 
types G and G′ , we write G ∼G′ iff T(G) ∼ T

(
G′).

Proposition A.8. Assume G ∼ G′ , and take any sequence of continuation labels w such that G(w) is defined or G′(w) is defined. Then, 
G(w) = G′(w).

Proof. We prove a stronger statement (formalised below): intuitively, we show that when two global type trees G and G′
are isomorphic (Definition A.7), and one of them is defined on a sequence of continuation labels w , then each label in the 
sequence w connects the pair (G, G′) to a pair of “continuation” type trees, that are also isomorphic.

Take any global type tree isomorphism R, any G, G′ such that G R G′ , and any sequence of continuation labels w =
	 C

1 ·	 C
2 ·. . .·	 C

n such that G(w) is defined or G′(w) is defined. Letting:

G0 = G and G′
0 = G′ (1)

there is a sequence (G0, G′
0), (G1, G′

1), . . . , (Gn, G′
n) such that:

(p1) ∀i ∈ 0..n: (Gi, G′
i) ∈R;

(p2) Gn(ε) = G′
n(ε);

(p3) ∀i ∈ 0..n −1: Gi = p → q : {	k(Sk).Gk}k∈K , for some p, q, K , 	k, Sk, Gk; moreover, for some k ∈ K , 	k = 	i and Gk = Gi+1;
(p4) ∀i ∈ 0..n − 1: Gi(	

C ·	 C ·. . .·	 C
n ) = Gi+1(	

C ·. . .·	 C
n ) (where “	 C ·. . .·	 C

n ” for n = 1 means ε);
i+1 i+2 i+2 i+2
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(p5) ∀i ∈ 0..n −1: G′
i = p → q : {	k(Sk).G

′
k}k∈K , for some p, q, K , 	k, Sk, G′

k; moreover, for some k ∈ K , 	k = 	i and G′
k = G′

i+1;

(p6) ∀i ∈ 0..n − 1: G′
i(	

C
i+1·	 C

i+2·. . .·	 C
n ) = G′

i+1(	
C
i+2·. . .·	 C

n ).

Assuming G = G0 R G′
0 = G′ , and assuming at least one between G(w) and G′(w) is defined, we proceed by induction 

on the length of w .
The base case n = 0 (i.e., w = ε) is immediate: (p1) holds by hypothesis, (p2) holds by Definition A.7, and (p3)–(p6) hold 

vacuously.
In the inductive case n = m + 1, by the induction hypothesis, we have:

(ih1) ∀i ∈ 0..m: (Gi, G′
i) ∈R;

(ih2) Gm(ε) = G′
m(ε);

(ih3) ∀i ∈ 0..m − 1: Gi = p → q : {	k(Sk).Gk}k∈K (for some p, q, K , 	k, Sk, Gk); moreover, for some k ∈ K , 	k = 	i and Gk =
Gi+1;

(ih4) ∀i ∈ 0..m − 1: Gi(	
C
i+1·	 C

i+2·. . .·	 C
m ) = Gi+1(	

C
i+2·. . .·	 C

m );
(ih5) ∀i ∈ 0..m − 1: G′

i = p → q : {	k(Sk).G
′
k}k∈K (for some p, q, K , 	k, Sk, G′

k); moreover, for some k ∈ K , 	k = 	i and G′
k =

G′
i+1;

(ih6) ∀i ∈ 0..m − 1: G′
i(	

C
i+1·	 C

i+2·. . .·	 C
m ) = G′

i+1(	
C
i+2·. . .·	 C

m ).

Then, we observe that since (Gm, G′
m) ∈R, the pair must satisfy clauses (i) and (ii) of Definition A.7. Thus, have the following 

cases:

• the pair (Gm, G′
m) satisfies clause (i) non-vacuously — i.e., both Gm and G′

m are end. This case is impossible. In fact, if 
we admit it, we have that

both Gm(	 C
n ) and G′

m(	 C
n ) are undefined (by Notation A.6 and Definition A.4) (2)

From (2), we can prove that:

∀i ∈ 0..m, both Gi(	
C
i+1·	 C

i+2·. . .·	 C
n ) and G′

i(	
C
i+1·	 C

i+2·. . .·	 C
n ) are undefined (3)

The proof of (3) is by induction on i, in the decreasing range m..0:
– in the base case i = m, both Gi(	

C
n ) and G′

i(	
C
n ) are undefined, by (2);

– in the inductive case i = m − j (for j ∈ 1..m), by the induction hypothesis on (3), we know that Gi+1(	
C
i+2·	 C

i+3·. . .·	 C
n )

and G′
i+1(	

C
i+2·	 C

i+3·. . .·	 C
n ) are undefined. Therefore, by (ih3) and (ih5), and by Notation A.6 and Definition A.5, also 

Gi(	
C
i+1·	 C

i+2·. . .·	 C
n ) and G′

i(	
C
i+1·	 C

i+2·. . .·	 C
n ) are undefined.

Thus, by admitting that the pair (Gm, G′
m) satisfies clause (i) non-vacuously, we have proved (3); however, this implies 

that both G(w) = G0(w) and G′(w) = G′
0(w) are undefined — contradiction. Therefore, neither Gm nor G′

m is end;
• the pair (Gm, G′

m) satisfies clause (ii) non-vacuously. Then, we have two sub-cases:
– 	n does not belong to the labels in the existential quantification (“for some. . . ”) of clause (ii). This case is impossible. 

In fact, if we admit it, then Gm(	 C
n ) and G′

m(	 C
n ) are undefined, and we obtain the same contradiction stemming from 

(2) above;
– 	n belongs to the labels in the existential quantification (“for some. . . ”) of clause (ii). In this case, by clause (ii) of 

Definition A.7,

∃p,q, K :
Gm = p → q : {	k(Sk).Gk}k∈K (4)

G′
m = p → q : {	k(Sk).G

′
k}k∈K (5)

∃k ∈ K : 	k = 	n and (Gk,G′
k) ∈R (6)

Therefore, letting:

(Gn,G′
n) = (Gk,G′

k) from (6) (7)

we obtain a sequence (G0, G′
0), (G1, G′

1), . . . , (Gn, G′
n) which satisfies (p1)–(p6), as follows:

∗ (p1) holds by (ih1), (7) and (6);
∗ (p2) holds by (4) and (5);
∗ (p3) is proved by cases on i ∈ 1..n −1 (reminding that n −1 = m):

· if i = m − j (for some j ∈ 1..m), the result follows by (ih3) and Notation A.6;
· if i = m = n − 1, observe that i + 1 = n: the result follows by (7), (6) and (4);

∗ (p4) is proved by taking any i ∈ 1..n −1, and Gi in item (p3): the result follows by Notation A.6 and Definition A.5;
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∗ (p5) is proved similarly to (p3), using (5) instead of (4);
∗ (p6) is proved similarly to (p4), using (5) instead of (4).

We have thus proved (p1)–(p6). To conclude, notice that:

∀i ∈ 0..n : Gi(	
C
i+1·. . .·	 C

n ) = G′
i(	

C
i+1·. . .·	 C

n ) (by p2, p4 and p6) (8)

G(w) = G0(w) = G′
0(w) = G′(w) (by (8) (when i = 0) and (1))

which is the main thesis. �
Proposition A.9. Assume G ∼ G′ , and take any sequence of continuation labels w, and any label 	, such that G(w·	 P) is defined or 
G′(w·	 P) is defined. Then, G(w·	 P) = G′(w·	 P).

Proof. Similar to the proof of Proposition A.8, but considering the equality of the payload sorts pointed by 	 P , when 
checking the clauses of Definition A.7. �
Proposition A.10. If G ∼ G′ , then:

1. dom(G) = dom(G′);
2. for all x ∈ dom(G), G(x) = G′(x).

Proof. Item 1 is direct consequence of Proposition A.8 and Proposition A.9: they imply that when G(w) (resp. G(w·	 P)), is 
defined, then also G′(w) (resp. G′(w·	 P)), is defined, and vice versa.

Item 2 follows by item 1, Proposition A.8 and Proposition A.9. �
Lemma A.11. For all G and G′ , G = G′ if and only if G ∼ G′ .

Proof. ( =⇒) Consider the following relation:

R = {
(G,G′)

∣∣ G = G′ }
Inspecting each pair (G, G′) ∈ R, by Definition A.1 we have dom(G) = dom(G′); moreover, for all x ∈ dom(G), G(x) = G′(x). 
Thus, by Notation A.6, Definition A.5 and Definition A.4, we have two possibilities:

(a) both G and G′ are end; or
(b) G is p → q : {	i(Si).Gi}i∈I (for some p, q, I, 	i, Si, Gi ) and G′ is p → q : {	i(Si).G

′
i}i∈I (for some G′

i ), with Gi = G′
i (for 

all i ∈ I) — which means (Gi, G′
i) ∈R (for all i ∈ I).

Therefore, R satisfies the clauses of Definition A.7, i.e., R is a global type tree isomorphism — hence, we conclude G ∼ G′ .
( ⇐=) Assume G ∼ G′: the result is direct consequence of Proposition A.10 and Definition A.1. �

Remark A.12. We will take advantage of Lemma A.11 to use = (Definition A.1) and ∼ (Definition A.7) interchangeably. I.e., 
when considering two equal type trees G = G′ , we will sometimes implicitly leverage Lemma A.11, to reason on how the 
pair (G, G′) satisfies the clauses of Definition A.7. Symmetrically, we can show G = G′ by showing that G ∼ G′ holds, and 
implicitly leveraging Lemma A.11.

A.2. Session type trees

Definition A.13 (Session type trees). Let f be a partial function from sequences w or w·	 P (Definition A.3) to the set 
{∧p?,∨p!,end, S | p ∈ roles, S ∈ sorts}. We say that f is a session type tree if it satisfies the following constraints:

1. f (ε) is defined as either end, ∧p?, or ∨p! (for some p);
2. if f (w) = end, then for all 	, f (w·	 C) and f (w·	 P) are undefined;
3. if f (w) = ∧p? or f (w) = ∨p! (for some p), then there is a finite set of labels L �= ∅ such that, for all 	 ∈ L, both f (w·	 C)

and f (w·	 P) are defined;
4. if f (w·	 C) is defined, then it is either end, ∧p?, or ∨p! (for some p), and f (w) is defined;
5. if f (w·	 P) is defined, then it is a sort S , and f (w) is defined.

A function f satisfying Definition A.13 can be visually represented as a tree, as shown in Fig. 3: edges are marked by 
continuation/payload labels, and nodes are marked by either ∧p?, ∨p!, end, or S (for some p, S); a path along the tree is 
defined as a sequence w or w·	 P for which f is defined.
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Definition A.14. The function T, from closed session types to type trees, is inductively defined as:

T(end) (ε) = end
T
(∧

i∈I p?	i(Si).Ti
)
(ε) = ∧p?

T
(∨

i∈I p!	i(Si).Ti
)
(ε) = ∨p!

T
(∧

i∈I p?	i(Si).Ti
)
(	 C

k ·w) = T
(∨

i∈I p!	i(Si).Ti
)
(	 C

k ·w) = T(Tk) (w) for all k ∈ I
T
(∧

i∈I p?	i(Si).Ti
)
(	 P

k ) = T
(∨

i∈I p!	i(Si).Ti
)
(	 P

k ) = Sk for all k ∈ I
T(μt.T) (w) = T(T{μt.T/t}) (w)

We define the tree of T as T(T).

We can now observe that the graphical tree constructed by T(T) in Fig. 3 corresponds to the tree function yielded by 
T(T) in Definition A.14:

• a sequence of continuation labels w can be followed along the labelled edges of T(T) in Fig. 3, reaching a node with 
marking m (of the form ∧p?, ∨p!, or end), if and only if in Definition A.14 we have T(T) (w) = m;

• similarly, a sequence w·	 P can be followed along the edges of T(T) in Fig. 3, reaching a leaf node marked with sort S , 
if and only if in Definition A.14 we have T(T) (w·	 P) = S .

Notation A.15 (Session types as trees). Similarly to [53, p. 285], we will save some notation by writing:

end for the type tree f with f (ε) = end

∧
i∈I p?	i(Si).ti

where ti is a session type tree (∀i∈ I)
and ∀i, j ∈ I : i �= j implies 	i �= 	 j

for
the type tree f with (1) f (ε) = ∧p?, and (2) ∀i ∈
I , f (	 P

i ) = Si and f (	 C
i ·w) = ti(w)

∨
i∈I p?	i(Si).ti

where ti is a session type tree (∀i∈ I)
and ∀i, j ∈ I : i �= j implies 	i �= 	 j

for
the type tree f with (1) f (ε) = ∨p!, and (2) ∀i ∈ I , 
f (	 P

i ) = Si and f (	 C
i ·w) = ti(w)

We will also write T as a shorthand for a tree T(T), for some T (cf. Notation 3.5).

Definition A.16 (Session type isomorphism). We say that a relation R between session type trees is a session type tree isomor-
phism iff it satisfies the following clauses, whenever ( f , f ′) ∈R:

(i) if f is end, then f ′ is end;
(ii) if f is 

∧
i∈I p?	i(Si).ti (for some p, I, 	i, Si, ti), then f ′ is 

∧
i∈I p?	i(Si).t′

i such that ∀i ∈ I : (ti, t′
i) ∈R;

(iii) if f is 
∨

i∈I p!	i(Si).ti (for some p, I, 	i, Si, ti), then f ′ is 
∨

i∈I p!	i(Si).t′
i such that ∀i ∈ I : (ti, t′

i) ∈R.

We write f ∼ f ′ (read “ f and f ′ are isomorphic”) iff f R f ′ for some session type tree isomorphism R. Given two session 
types T and T′ , we write T ∼ T′ iff T(T) ∼ T

(
T′).

Lemma A.17. For all T and T′ , T = T′ (Definition A.1) if and only if T ∼ T′ .

Proof. Similar to Lemma A.11, adapting Proposition A.10, Proposition A.8 and Proposition A.9 to use session type trees as 
per Definition A.13 and Notation A.15. �
Remark A.18. We will take advantage of Lemma A.17 to use = (Definition A.1) and ∼ (Definition A.16) interchangeably. I.e., 
when considering two equal type trees T = T′ , we will sometimes implicitly leverage Lemma A.17, to reason on how the 
pair (T, T′) satisfies the clauses of Definition A.16. Symmetrically, we will demonstrate T = T′ by showing that T ∼ T′ holds, 
and implicitly leveraging Lemma A.17.

A.3. Properties of global type projection

The proofs below leverage the notion of global type tree context, introduced in Definition A.19: i.e., a global type tree 
whose continuation branches always reach a hole after traversing a finite number of edges (see Fig. A.4): this leads to the 
inductive definition in Definition A.19 (the approach follows [53, p. 285], for finite type trees). Hence, a global type tree 
context G can be traversed by structural induction.

Definition A.19. A global type tree context G is a partial function f similar to Definition A.4, but only defined for sequences 
w with a maximum length k (for some k) and returning a hole [ ]i (where i is an index) instead of end. Using Notation A.6, 
G can be defined inductively, with the following productions:
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Fig. A.4. The type tree of the global type context: p → q :
{

	1(bool) .q → p : {	3(int).[ ]3 , 	4(nat).[ ]4} , 	2(nat).[ ]2
}

.

G ::= p → q : {	i(Si).Gi}i∈I || [ ]i

We write G[Gi]i
i∈I to denote the global type tree obtained by grafting the tree Gi in the hole [ ]i , for all i ∈ I , with the 

understanding that I indexes all the holes in G.

Proposition A.20. Assume that G �r T holds non-vacuously by clause [proj-cont] of Definition 3.6. Then, there is G′ such that G′ �r T
holds non-vacuously by clause [proj-end], [proj-in], or [proj-out] of Definition 3.6.

Proof. Assume the hypothesis. By Definition 3.6, this means G = p → q : {	i(Si).Gi}i∈I with r /∈{p, q}. We have two possibili-
ties:

• if r /∈ pt{G}, then by Definition 3.6 we must have T = end, and letting G′ = end, we conclude that G′ �r T holds 
non-vacuously by clause [proj-end];

• if r ∈ pt{G}, then by Definition 3.6 we have T = �i∈I Ti with Gi �r Ti . This means that, for all i ∈ I , there is Gi such 
that r /∈ pt{Gi} and Gi =Gi[G j] j

j∈ J i
, for some J i ; moreover, for some p, either:

(a) when T = ∧
l∈L p?	l(Sl).T

′
l , then for all i ∈ I and j ∈ J i , there are Li j such that L = ⋃

i∈I, j∈ J Li j and G j = p → r :
{	l(Sl).Gl}l∈Li j and ∀l ∈ L : Gl �r T′

l ;
(b) when T =∨

l∈L p!	l(Sl).T
′
l , for all i ∈ I and j ∈ J i , G j = r → p : {	l(Sl).Gl}l∈L and ∀l ∈ L : Gl �r T′

l .
Now, letting J = ⋃

i∈I J i , by structural induction on G we can show that merging is defined only if T = �i∈I Ti =� j∈ J T′
j , with G j �r T′

j — i.e., by Definition 3.6, T is obtained by “skipping” G (where r does not occur) and merging 
the projections of the types G j grafted at its leafs (where r occurs). Then, by Definition 3.6, we have the following 
possibilities:
– in case (a) above, letting G′ = p → r : {	l(Sl).Gl}l∈L , by Definition 3.6 we conclude that G′ �r T holds non-vacuously by 

clause [proj-in];
– in case (b) above, letting G′ = r → p : {	l(Sl).Gl}l∈L , by Definition 3.6 we conclude that G′ �r T holds non-vacuously by 

clause [proj-out]. �
Proposition 3.11. The projection relation �r is a partial function.

Proof. To prove the statement, we need to show that if G �r T and G �r T′ (for some G), then T = T′ , by Definition A.1. We 
leverage Lemma A.17, to obtain the result by proving T ∼ T′ (Definition A.16). We define the following relation:

R′ = {
(T,T′)

∣∣ ∃G : G �r T and G �r T′}
and prove that R′ is session type tree isomorphism, by Definition A.16. We proceed by taking each pair (T, T′) ∈ R′ , and 
inspecting the corresponding G such that G �r T and G �r T′:

• if r /∈ pt{G}, then (by clause [proj-end] of Definition 3.6) T = T′ = end. Hence, the pair (T, T′) satisfies clause i, and 
(vacuously) clauses ii and iii of Definition A.16;

• if G = p → r : {	 j(S j).G j} j∈ J , then (by clause [proj-in] of Definition 3.6) T =∧
j∈ J p?	 j(S j).T j , T′ =∧

j∈ J p?	 j(S j).T
′
j , 

and for all j ∈ J , G j �r T j and G j �r T′
j : therefore, ∀ j ∈ J : (T j, T′

j) ∈ R′ . Hence, the pair (T, T′) satisfies clause ii, and 
(vacuously) clauses i and iii of Definition A.16;

• if G = r → q : {	 j(S j).G j} j∈ J , then (by clause [proj-out] of Definition 3.6) T =∨
j∈ J p!	 j(S j).T j , T′ =∨

j∈ J p!	 j(S j).T
′
j , 

and for all j ∈ J , G j �r T j and G j �r T′
j : therefore, ∀ j ∈ J : (T j, T′

j) ∈ R′ . Hence, the pair (T, T′) satisfies clause iii, and 
(vacuously) clauses i and ii of Definition A.16;

• if G = p → q : {	i(Si).Gi}i∈I and r /∈{p, q}, then G �r T and G �r T′ hold non-vacuously by clause [proj-cont] of Defini-
tion 3.6; hence, by Proposition A.20, there is G′ such that G′ �r T and G′ �r T′ hold non-vacuously by clause [proj-end], 
[proj-in], or [proj-out] of Definition 3.6. Hence, we fall back into one of the previous three cases.
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We have thus proved that R′ is a session type tree isomorphism. Hence, since if G �r T and G �r T′ (for some G) we have 
(T, T′) ∈ R′ , we also have T ∼ T′ (by Definition A.16), hence T = T′ (by Lemma A.17), and we conclude that the projection 
relation �r is a partial function. �
A.4. Properties of session type merging

Proposition 3.8. For two type trees T′ =∧
i∈I p′?	i(Si).Ti and T′′ =∧

j∈ J p′′?	 j(S j).T j , we have that T′ � T′′ is defined if and only 
if p′ = p′′ and, whenever 	i = 	 j (for some i ∈ I and j ∈ J ), Si = S j and Ti = T j .

Proof. ( =⇒). Assuming T = T′ �T′′ , we proceed by cases on the merging rule in Definition 3.6 that yields T. If T is obtained 
by rule [mrg-id], then we have T = T′ = T′′ , and the result is immediate. Otherwise, if T is obtained by rule [mrg-bra], we 
know that there exist p, I ′, J ′ such that:

T′ =
∧
i∈I ′

p?	i(Si).Ti and T′′ =
∧
j∈ J ′

p?	 j(S j).T j and T =
∧

k∈I ′∪ J ′
p?	k(Sk).Tk (by Definition 3.6) (9)

and this implies p = p′ = p′′ . Now, from the statement, assume 	i = 	 j , for some i ∈ I and j ∈ J ; then pick the corresponding 
	i′ = 	 j′ = 	i = 	 j , for some i′ ∈ I ′ and j′ ∈ J ′: we show that we must have i′ = j′ . We prove it by contradiction: if we assume 
i′ �= j′ , then from (9) we have that, since {i′, j′} ⊆ I ′ ∪ J ′ , T is an invalid type tree with duplicated labels 	i′ and 	 j′ — i.e., 
(9) does not allow to merge T′ and T′′ into T (contradiction). Therefore, whenever 	i′ = 	 j′ , we must have i′= j′; from this, 
we get Si′ = S j′ and Ti′ =T j′ ; and since Si′ = Si , Ti′ = Ti , S j′ = S j , and T j′ = T j , we conclude Si = S j and Ti = T j .

( ⇐=). Assume that p′ = p′′ and, whenever 	i′ = 	 j′ (for i′ ∈ I and j′ ∈ J ), Si′ = S j′ and Ti′ = T j′ . Take a pair of indexes i′
and j′ that satisfy the above condition. We can reindex T′ by replacing i′ with j′ , i.e.:

T′ =
∧

i∈(I\i′)∪{ j′}
p′?	i(Si).Ti

By repeating the procedure for all common labels of T′ and T′′ , we obtain an indexing set I ′ for T′ sharing a common index 
with J for each equal branch of T′ and T′′ . Then, we can define T =∧

k∈I ′∪ J p′?	k(Sk).Tk , and by Definition 3.6, we conclude 
that there exists T = T′ � T′′ . �
Proposition 3.7. The merging operation is associative, i.e.: T � (T′ � T′′) = (T � T′) � T′′ .

Proof. By examining T, T′ and T′′ , considering when their merging is defined by Definition 3.6. Note that if one of T, T′ or 
T′′ is end or an internal choice, then we must have T = T′ = T′′ , and we trivially conclude the proof. Otherwise we have, 
for some I, J , K :

• T =∧
i∈I p?	i(Si).Ti

• T′ =∧
j∈ J p?	 j(S j).T j

• T′′ =∧
k∈K p?	k(Sk).Tk

Then, by Definition 3.6, T′ � T′′ = ∧
l∈ J∪K p?	l(Sl).Tl , and T � (T′ � T′′) = ∧

l∈I∪ J∪K p?	l(Sl).Tl . Moreover, (T � T′) =∧
m∈I∪ J p?	m(Sm).Tm , and (T � T′) � T′′ =∧

m∈I∪ J∪K p?	m(Sm).Tm . Therefore, we conclude T � (T′ � T′′) = (T � T′) � T′′ . �
A.5. Substitution and congruence lemmas

Lemma A.21 (Substitution lemma for process variables). If �, X : T � P : T and � � Q : T, then � � P {Q /X} : T.

Proof. By structural induction on P . We assume that X occurs free in P and we proceed by cases on the last rule applied 
in the derivation of �, X : T � P : T.

• [t-sub] In this case by inversion of [t-sub] we know that �, X : T � P : T′ for T′ � T. By induction hypothesis we get 
� � P {Q /X} : T′ . We conclude the proof in this case from T′ � T and by an application of [t-sub].

• [t- 0] impossible since we assume that X occurs free in P .
• [t-var] In this case P = X . Then P {Q /X} = Q , so the proof is trivial.
• [t-rec] In this case P = μY .P ′ and X �= Y . From Lemma A.23.(1).(d) we know that �, X : T, Y : T � P ′ : T. By induction 

hypothesis we get �, Y : T � P ′{Q /X} : T. We conclude the proof in this case by an application of [t-rec].
• The proof in cases [t-in-choice], [t-out], and [t-choice] is straightforward by induction hypothesis. �
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Lemma A.22.

(1) Let � � P : T and P ≡ Q . Then � � Q : T
(2) Let �M : G and M ≡M′ . Then � M : G

Proof. By case analysis on the derivation of P ≡ Q and M ≡M′

1. • The only case is [s-rec]. So, in this case, P = μX .P ′ and Q = P ′{μX .P ′/X}. By Lemma A.23.(1).(d) we get �, X : T �
P ′ : T. From that, � � P : T and Lemma A.21, we derive the proof.

2. • [s-multi] In this case M = p � P | M1, M′ = p � Q | M1 and P ≡ Q . Let M1 =∏
i∈I

pi � Pi . Then, by Lemma A.23.(2) we 

get pt{G} ⊆ {p} ∪ {pi | i ∈ I} and � P : T and G �p T and � Pi : Ti and G �pi Ti for all i ∈ I . So, from � P : T and P ≡ Q , 
by Lemma A.22.1, we obtain � Q : T. We conclude the proof by an application of [t-sess].

• [s-par 1] In this case M = p � 0 | M1 and M′ = M1. Let M1 = ∏
i∈I

pi � Pi . Then, by Lemma A.23.(2) we get pt{G} ⊆
{p} ∪ {pi | i ∈ I} and � 0 : T and G �p T and � Pi : Ti and G �pi Ti for all i ∈ I . From Lemma A.23.(1).(f) we know that 
T = end. We derive the proof from Lemma A.23.(2), Definition 3.6, p /∈ pt{M1} and an application of [t-sess].

• The proof in cases [s-par 2] and [s-par 3] is trivial. �
A.6. Properties of subtyping and type system

Lemma 3.16. The subtyping relation � is reflexive and transitive.

Proof. Proof of reflexivity is straightforward and we give here only the proof of transitivity. Let T1 �+ T3 if there exists T2
such that T1 � T2 and T2 � T3. We are going to show that �+ satisfies the rules from Definition 3.15 — and therefore, since 
� is the largest relation satisfying such rules, �+ ⊆�. We have the following cases:

1. T1 = T2 = T3 = end: In this case T1 �+ T3 satisfies [sub-end].
2. T1 = ∧

i∈I∪ J∪K
p?	i(Si).Ti and T2 = ∧

i∈I∪ J
p?	i(S ′

i).T
′
i and T3 =∧

i∈I
p?	i(S ′′

i ).T′′
i and

S ′
i ≤: Si and Ti � T′

i , for every i ∈ I ∪ J , and S ′′
i ≤: S ′

i and T′
i � T′′

i , for every i ∈ I .
By transitivity of ≤: and definition of �+ , we conclude that S ′′

i ≤: Si and Ti �+ T′′
i , for every i ∈ I . Thus, T1 �+ T3

satisfies [sub-in].
3. T1 =∨

i∈I
p!	i(Si).Ti and T2 = ∨

i∈I∪ J
p?	i(S ′

i).T
′
i and T3 = ∨

i∈I∪ J∪K
p?	i(S ′′

i ).T′′
i and

Si ≤: S ′
i and Ti � T′

i , for every i ∈ I , and S ′
i ≤: S ′′

i and T′
i � T′′

i , for every i ∈ I ∪ J .
By transitivity of ≤: and definition of �+ , we conclude that Si ≤: S ′′

i and Ti �+ T′′
i , for every i ∈ I . Thus, T1 �+ T3

satisfies [sub-out].

At this point, we have shown that �+ ⊆ �. Hence, take T1, T2, T3 such that T1 � T2 and T2 � T3: since T1 �+ T3, from the 
above we have T1 � T3, and we conclude that � is transitive. �

As usual, we start with inversion and substitution lemmas.

Lemma A.23 (Inversion lemma). (1) Let � � P : T.

(a) If P =∑
i∈I

p?	i(x).Q i , then 
∧

i∈I p?	i(Si).Ti � T and �, x : Si � Q i : Ti , for every i ∈ I .

(b) If P = p!	(e).Q , then � � e : S and � � Q : T′ and S ′ ≤: S and p!	(S ′).T′ � T.
(c) If P = if e then P1 else P2 , then � � P1 : T1 and � � P2 : T2 and T1 � T and T2 � T.
(d) If P = μX .Q , then �, X : T � Q : T.
(e) If P = X, then � = �′, X : T′ and T′ � T.
(f) If P = 0, then T = end.

(2) If �∏
i∈I

pi � Pi : G, then pt{G} ⊆ {pi | i ∈ I} and � Pi : G�pi for every i ∈ I .

Proof. By induction on type derivations. �
Lemma A.24 (Substitution lemma). If �, x : S � P : T and � � v : S, then � � P {v/x} : T.

Proof. By structural induction on P . �
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A.7. Subject reduction and type safety

Proposition A.25. If T =�i∈I Ti and ∀i ∈ I : T′ � Ti , then T′ � T.

Proof. Assume T =�i∈I Ti and take any T′ such that ∀i ∈ I : T′ � Ti . We have the following two cases:

• for some i ∈ I , Ti is an internal choice (resp. end). This implies that, since �i∈I Ti is defined, for all i ∈ I , Ti is an 
internal choice (resp. end), and ∀i, j ∈ I , Ti = T j = T (by Definition 3.6). Moreover, since T′ � Ti = T (for all i ∈ I), by 
Lemma 3.16 we conclude T � T′;

• for some i ∈ I , Ti is an external choice. This implies that, since �i∈I Ti is defined, for all i ∈ I there is J i such that Ti =∧
j∈ J i

p?	 j(S j).T j , and letting J =⋃
i∈I J i , we have T =∧

j∈ J p?	 j(S j).T j (by Definition 3.6). Moreover, since T′ � T′
i (for 

all i ∈ I), by Definition 3.15 (rule [sub-in]) we know that each T′ is an external choice and, for some J ′ ⊇⋃
i∈I J i = J , 

we have T′ =∧
j∈ J ′ p?	 j(S ′

j).T
′
j and, ∀ j ∈⋃i∈I J i = J , S j ≤: S ′

j and T′
j � T j . Hence, by rule [sub-in] of Definition 3.15, 

we conclude T′ � T. �
Proposition A.26. If T =�i∈I Ti , then for all i ∈ I , T � Ti .

Proof. Assume T =�i∈I Ti . We have the following two cases:

• T is an internal choice or T = end. Then, by Definition 3.6, �i∈I Ti = T j = Tk (for all j, k ∈ I), and by reflexivity of �
(Lemma 3.16) we conclude T � Ti (for all i ∈ I);

• T is an external choice. Then, by Definition 3.6, for all i ∈ I there is J i such that Ti =∧
j∈ J i

p?	 j(S j).T j , and letting 
J = ⋃

i∈I J i , we have T = ∧
j∈ J p?	 j(S j).T j . Therefore, each Ti (i ∈ I) has a subset of the branches of T; hence, by 

rule [sub-in] of Definition 3.15, we conclude T � Ti (for all i ∈ I). �
Corollary A.27. If T =�i∈I Ti , T′ =�i∈I T′

i , and ∀i ∈ I : Ti � T′
i , then T � T′ .

Proof. Assume all the hypotheses. By Proposition A.26 we have ∀i ∈ I : T � Ti ; hence, by Lemma 3.16, ∀i ∈ I : T � T′
i ; thus, 

by Proposition A.25, we have T ��i∈I T′
i , and by Lemma 3.16, we conclude T � T′ . �

Definition A.28 below restates Definition 3.3 (balancing), under the formalism of Definition A.4.

Definition A.28 (Balanced global type tree). A node of a global type tree is a pair ( f , w) where f is a global type tree (Defini-
tion A.4), and w is a sequence of continuation labels for which f (w) is defined. Given a type tree node n = ( f , w), we say 
that n involves p if f (w) = p → q or f (w) = q → p (for some q).

We say that a type tree f is balanced iff:

for all nodes ( f , w),
if there is some p such that node ( f , w·w ′) involves p (for some w ′),

then there is k finite such that,
for all w ′ for which node ( f , w·w ′) exists, and either (a) f (w·w ′) = end, or (b) w ′ has length k,

there is w ′′ such that w ′ = w ′′·w0 (for some w0)
and node ( f , w·w ′′) involves p.

Lemma A.29. Assume:

(i) q!	(S).T � G�p
(ii) either p?	(S ′).T′ � G�q or p?	(S ′).T′ ∧ T′′ � G�q

Then, there are G, J , {G j} j∈ J such that:

1. G =G[G j] j
j∈ J

2. p /∈ pt{G} /� q

Moreover, there is I and {G′
ji} j∈ J ,i∈I such that, for all j ∈ J :

3. G j = p → q : {	i(Si).G
′
j i
}i∈I

Further, there is k ∈ I such that:
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4. 	 = 	k
5. S ≤: Sk and ∀ j ∈ J : T � G′

jk�p
6. Sk ≤: S ′ and ∀ j ∈ J : T′ � G′

jk�q

Proof. Assume the hypothesis (i) of the statement. We have:

∃I,k ∈ I :
{

G�p = ∨
i∈I q!	i(Si).Ti

and 	 = 	k , S ≤: Sk , T � Tk
(by hyp. (i) and Definition 3.15, rule [sub-out]) (10)

Moreover, we have:

∃G, J :

⎧⎪⎨
⎪⎩

G = G[G j] j
j∈ J and p /∈ pt{G}

and ∀ j ∈ J : G j = p → q : {	i(Si).G
′
j i
}i∈I

and ∀ j, j′∈ J and i∈ I : Ti = G′
ji�p = G′

j′i�p
(11)

To prove (11) above, observe that since G is balanced (Definitions 3.3 and A.28), we can always choose a G, J such that 
G =G[G j] j

j∈ J and p /∈ pt{G}, simply by extending G along G until we reach, in each branch, a communication involving p; 
also note that such communication must exist in each branch of G, with the form p → q : {. . .} — otherwise, the projection 
G�p would not match (10) (i.e., we would get a contradiction). Furthermore, observe that in (10), G�p =∨

i∈I q!	i(Si).Ti can 
only hold if ∀ j ∈ J : G j�p = G�p =∨

i∈I q!	i(Si).Ti : this can be proven by induction on the size of J , i.e., the number of 
holes in G, which corresponds to the number of projections G j�p that need to be merged to obtain G�p, by Definition 3.6. 
Now, notice that since we have obtained that ∀ j ∈ J : G j�p = ∨

i∈I q!	i(Si).Ti , then it must also be the case that, for all 
j ∈ J , G j = p → q : {	i(Si).G

′
j i
}i∈I , for some {G′

ji} j∈ J ,i∈I such that, ∀ j, j′ ∈ J and i ∈ I , Ti = G′
ji�p = G′

j′ i�p — otherwise, by 
Definition 3.6, there would be some j ∈ J such that G j�p �= G�p (contradiction). We have thus proved (11), and we also get:

∀ j, j′ ∈ J : T � Tk = G jk�p = G j′k�p (by (10) and (11)) (12)

and the results above satisfy items 1, 3, 4, and 5 of the statement.
We are left to prove that, with I, k, G, J above, we also satisfy items 2 and 6 of the statement. Assume the hypothesis 

(ii); with a slight abuse of notation, we simplify the proof below by collapsing its two sub-cases: we allow T′′ to be an 
“empty” external choice T′′ =∧

i∈∅ p?	i(S ′′
i ).T′′

i — and when it happens, we postulate p?	(S ′).T′ ∧ T′′ = p?	(S ′).T′ . We have:

∃I ′ :
{

T′′ =∧
i∈I ′ p?	i(S ′′

i ).T′′
i

where ∀i ∈ I ′ : 	 �= 	i
(by hyp. (ii), for the type to be well-formed) (13)

G�q = ∧
i∈I p?	i(Si).T

′′′
i (by hyp. (ii) and Definition 3.15, rule [sub-in]) (14)

Now, observe that (14) implies q /∈ pt{G}: otherwise, by (11), G must contain some communication between q and r �= p, 
which by Definition 3.6, would mean that G�q is either undefined, or different from (14) (contradiction). Hence, we get:

p /∈ pt{G} /� q (by (11) and (14))

which satisfies item 2 of the statement. Finally,

I ′∪{k} ⊇ I and

{ ∀i∈ I\{k} : Si ≤: S ′
i and T′

i ≤: T′′′
i

and Sk ≤: S ′ and T′ � T′′′
k

(
by (10), (13), (14), hyp. (ii)
and Definition 3.15 [sub-in]

)
(15)

∀ j, j′ ∈ J : T′′′
k = G jk�q = G j′k�q (by (11) and Definition 3.6) (16)

∀ j ∈ J : T′ � G jk�q (by (15), (16), and Lemma 3.16) (17)

and with (15) and (17) above, we satisfy the remaining item 6 of the statement, and conclude the proof. �
Lemma 3.19. If q!	(S).T ≤ G�p and p?	(S ′).T′ ≤ G�q, then:

(1) T � (G \ p
	−→ q)�p

(2) T′ � (G \ p
	−→ q)�q; and

(3) G�r � (G \ p
	−→ q)�r for r �= p, r �= q.

Proof. Assume the two hypotheses. By Lemma A.29, we know that there is some G such that p /∈ pt{G} /� q and G =
G[G j] j

j∈ J , and there is I such that (for all j ∈ J ) G j = p → q : {	i(Si).G
′
i}i∈I and for some k ∈ I , 	k = 	.

(Items (1) and (2)) We proceed by structural induction on G. In the base case G = [ ] j (i.e., when G is just a hole with 
index j), we have:
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G \ p
	−→ q = (p → q : {	i(Si).G

′
i}i∈I ) \ p

	−→ q = G′
k (by Definition 3.18) (18)

(G \ p
	−→ q)�p = G′

k�p and (G \ p
	−→ q)�q = G′

k�q (by (18) and Definition 3.6) (19)

T � (G \ p
	−→ q)�p (by (19) and Lemma A.29(5))

T′ � (G \ p
	−→ q)�q (by (19) and Lemma A.29(6))

In the inductive case G=s → s′ : {	′
l(Sl).Gl}l∈L , we have:

G = G[G j] j
j∈ J = s → s′ : {	′

l(Sl).Gl[G j] j
j∈ Jl

}l∈L with
⋂

l∈L Jl = ∅ and
⋃

l∈L Jl = J (20)

i.e., the set J indexing the holes of G is partitioned among the sub-contexts Gl (l ∈ L); and

G \ p
	−→ q = G[G j] j

j∈ J \ p
	−→ q

= s → s′ : {	′
l(Sl).(Gl[G j] j

j∈ Jl
\ p

	−→ q)}l∈L

⎛
⎝ by (20) and Definition 3.18,

since p /∈ pt{G} /� q,
i.e., {s, s′} ∩ {p,q} = ∅)

⎞
⎠ (21)

Therefore:

(G \ p
	−→ q)�p = �

l∈L

((
Gl[G′

j] j
j∈ Jl

\ p
	−→ q

)
�p
)

(by (21) and Definitions 3.6 and 3.18) (22)

(G \ p
	−→ q)�q = �

l∈L

((
Gl[G′

j] j
j∈ Jl

\ p
	−→ q

)
�q
)

(by (21) and Definitions 3.6 and 3.18) (23)

∀l ∈ L :
⎧⎨
⎩T �

(
Gl[G j] j

j∈ Jl
\ p

	−→ q
)
�p and

T′ �
(
Gl[G j] j

j∈ Jl
\ p

	−→ q
)
�q

(by the induction hypothesis) (24)

T � (G \ p
	−→ q)�p (by (22), (24) and Proposition A.25) (25)

T′ � (G \ p
	−→ q)�q (by (23), (24) and Proposition A.25)

(Item (3)) When r /∈ pt{G}, we trivially conclude G�r = end � end = (G \ p
	−→ q)�r, by Definitions 3.6 and 3.18 and 

Lemma 3.16. Otherwise, when r ∈ pt{G}, reminding that G = G[G j] j
j∈ J , we proceed by structural induction on G. In the 

base case G = [ ] j (i.e., when G is just a hole with index j), we have:

G�r = G j�r = (
p → q : {	i(Si).G

′
i}i∈I

)
�r =�

i∈I j

(G′
i�r) (by Definition 3.6) (26)

∃k∈ I : 	k = 	 and (G \ p
	−→ q)�r = (G j \ p

	−→ q)�r =(
(p → q : {	i(Si).G

′
i}i∈I ) \ p

	−→ q
)
�r = G′

k�r

⎛
⎝ since p �= r �= q,

and by Definition 3.18,
and Lemma A.29(4)

⎞
⎠ (27)

G�r = �
i∈I

(G′
i�r) � G′

k�r = (G \ p
	−→ q)�r (by (26), (27), Proposition A.26, and Lemma 3.16)

In the inductive case G = s → s′ : {	′
l(Sl).Gl}l∈L , we have (20) and (21) above, and the following sub-cases:

• s �= r �= s′ . We have:

G�r = �
l∈L

(
Gl[G j] j

j∈ Jl
�r
)

(by (20) and Definition 3.6) (28)

(G \ p
	−→ q)�r = �

l∈L

((
Gl[G j] j

j∈ Jl
\ p

	−→ q
)
�r
)

(by (21) and Definitions 3.6 and 3.18) (29)

∀l ∈ L : Gl[G j] j
j∈ Jl

�r � (Gl[G j] j
j∈ Jl

\ p
	−→ q)�r (by the induction hypothesis) (30)

and by (28), (29), (30) and Corollary A.27, we conclude G�r � (G \ p
	−→ q)�r;

• s = r �= s′ . Then, we have:

G�r = ∨
l∈L s′!	′

l(Sl).
(
(Gl[G j] j

j∈ J )�r
)

(by (20) and Definition 3.6) (31)

l
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(G \ p
	−→ q)�r =(

r → s′ : {	′
l(Sl).(Gl[G j] j

j∈ Jl
\ p

	−→ q)}l∈L

)
�r =∨

l∈L s′!	′
l(Sl).

(
(Gl[G j] j

j∈ Jl
\ p

	−→ q)�r
) (by (21) and Definitions 3.6 and 3.18) (32)

∀l ∈ L : Gl[G j] j
j∈ Jl

�r � (Gl[G j] j
j∈ Jl

\ p
	−→ q)�r (by the induction hypothesis) (33)

and by (31), (32), (33) and Definition 3.15 (rule [sub-out]), we conclude G�r � (G \ p
	−→ q)�r;

• s �= r = s′ . Similar to the previous case, except that G�r and (G \ p
	−→ q)�r trigger the third case of Definition 3.6 (i.e., 

they produce external choice types, with L-indexed branches), and we conclude by rule [sub-in] of Definition 3.15. �
A.8. Subject reduction and progress

Theorem 3.21 (Subject Reduction). Let �M : G. For all M′ , if M −→ M′ , then �M′ : G′ for some G′ such that G =⇒ G′ .

Proof. The proof is by induction on the derivation of M −→ M′ . According to reduction rules (Table 3), we have three base 
cases.

[r-comm]: M = p �∑
i∈I

q?	i(x).Pi | q � p!	 j(e).Q | ∏
l∈L

pl � Pl, M′ = p � P j{v/x} | q � Q | ∏
l∈L

pl � Pl, e ↓ v

From � M : G, by Lemma A.23(2),

pt{G} ⊆ {p,q} ∪ {pl : l ∈ L} (34)

�
∑
i∈I

q?	i(x).Pi : G�p (35)

� p!	 j(e).Q : G�q (36)

� Pl : G�pl for every l ∈ L (37)

By Lemma A.23(1)(a), from (35),∧
i∈I

q?	i(Si).Ti � G�p (38)

x : Si � Pi : Ti for every i ∈ I (39)

By Lemma A.23(1)(b), from (36),

p!	 j(S ′
j).T

′′′
2 � G�q (40)

� Q : T′′′
2 (41)

� e : S j (42)

S ′
j ≤: S j (43)

By Lemma A.24, from (39), (42) and e ↓ v,

� P j{v/x} : T j (44)

By Lemma 3.19, from (38) and (40)

T′′′
2 � (G \ q

	 j−→ p)�q T j � (G \ p
	 j−→ q)�p G�pl � (G \ q

	 j−→ p)�pl, l ∈ L (45)

By [t-sub] and [t-sess], from (37), (41), (44) and (45),

�M′ : G \ q
	 j−→ p.

[t-conditional]: M = p � if e then P else Q | ∏
l∈L

pl � Pl, M′ = p � P | ∏
l∈L

pl � Pl, e ↓ true.

From � M : G, by Lemma A.23(2),

� if e then P else Q : G�p (46)

� Pl : G�pl, l ∈ L (47)
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By Lemma A.23(1)(c), from (46),

� P : T1 � Q : T2 (48)

T1 � G�p T2 � G�p (49)

By [t-sub] and [t-sess], from (47), (48) and (49), we derive �M′ : G.
[f-conditional]: This case is similar to the previous one.

Assume that the last applied rule was [r-struct]. Then, M′
1 −→ M′

2 was derived from M1 −→ M2, where M1 ≡ M′
1

and M2 ≡ M′
2. By Lemma A.22(2), from the assumption � M′

1 : G, we deduce � M1 : G. By induction hypothesis, 
�M2 : G′ for some G′ such that G =⇒ G′ . By Lemma A.22(2), � M′

2 : G′ for some G′ such that G =⇒ G′ . �
Corollary 3.22. Let �M : G. If M −→∗ M′ , then �M′ : G′ for some G′ such that G =⇒ G′ .

Proof. Assume that M = M0 −→ M1 −→ · · · −→ Mn−1 −→ Mn = M′ , i.e., there are n reduction steps from M to M′ . We 
proceed by induction on n. The base case n = 0 is trivial, as M = M′ . In the inductive case n = m + 1, by the induction 
hypothesis we obtain that there is G′′ such that � Mm : G′′ and G =⇒ G′′; then, by Theorem 3.21, we conclude that there is 
G′ such that � M′ : G′ and G =⇒ G′′ =⇒ G′ , i.e., G =⇒ G′ . �

To show progress, a lemma on canonical forms is helpful. The proof easily follows from the inspection of the typing 
rules.

Lemma A.30 (Canonical forms of processes). Let � � P : T.

(1) If T =∧
i∈I

p?	i(Si).Ti , then

(a) P ≡ if e then P1 else P2 and � P1 : T1 and � P2 : T2 and T1 � T and T2 � T, or
(b) P ≡ ∑

i∈I ′
p?	i(xi).Pi and �, xi : S ′

i � Pi : T′
i and Si ≤: S ′

i and T′
i � Ti and I ⊆ I ′ .

(2) If T = p!	(S ′).T′ or T = p!	(S ′).T′ ∨ T′′ , then
(a) P ≡ if e then P1 else P2 and � P1 : T1 and � P2 : T2 and T1 � T and T2 � T, or
(b) P ≡ p!	(e).Q and � � e : S ′

1 and � � Q : T′
1 and T′

1 � T′ and S ′
1 ≤: S ′ .

Proof. The proof is by induction on the derivation � � P : T. �
Lemma A.31 (Canonical forms of sessions). Let �M : G.

(1) If G = end, then M ≡ p � 0.
(2) If G = p → q : {	i(Si).Gi}i∈I , then M ≡ p � P | q � Q | M1 and � P :∨

i∈I
q!	i(Si).(Gi�p) and � Q :∧

i∈I
p?	i(Si).(Gi�q).

Proof. The proof holds by inversion of [t-sess] and Definition 3.6. �
Theorem 3.23 (Progress). If �M : G, then either M ≡ p � 0 or there is M′ such that M −→M′ .

Proof. We consider here G as a global type tree, since by [t-sess] and the definition of the global type projection, M is 
typed considering G in that form.

1. If G = end, then M = p � 0 by Lemma A.311.
2. If G = p → q : {	i(Si).Gi}i∈I , then M ≡ p � P | q � Q | M1 and � P : ∨

i∈I
q!	i(Si).(Gi�p) and � Q : ∧

i∈I
p?	i(Si).(Gi�q). By 

Lemma A.30, we have the following cases:
(a) P ≡ if e then P1 else P2 and e ↓ true: M −→ p � P1 | q � Q | M1, by [t-conditional],
(b) P ≡ if e then P1 else P2 and e ↓ false: M −→ p � P2 | q � Q | M1, by [f-conditional],
(c) Q ≡ if e then Q 1 else Q 2 and e ↓ true: M −→ p � P | q � Q 1 | M1, by [t-conditional],
(d) Q ≡ if e then Q 1 else Q 2 and e ↓ false: M −→ p � P | q � Q 2 | M1, by [f-conditional],
(e) P ≡ q!	 j(e).P p

j , j ∈ I , e ↓ v , and Q ≡ ∑
i∈I ′

p?	i(xi).P
q
i and I ⊆ I ′:

M −→ p � P p
j | q � P q

j {v/x} | M1, by [r-comm]. �
As a consequence of subject reduction and progress, we get the safety property stating that a typed multiparty session 

will never get stuck.
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Theorem 3.24 (Type Safety). If �M : G, then it does not hold stuck(M).

Proof. Direct consequence of Theorem 3.23, Corollary 3.22, and Definition 2.3. �
A.9. Algorithmic subtyping

Lemma 3.25. The subtyping procedure in Table 6 is terminating.

Proof. For a session type T, we inductively define the set of subterms of T, denoted by subterm(T):

subterm(end) = {end} subterm(t) = {t} subterm(μt.T) = {μt.T} ∪ {T′{μt.T/t} | T′ ∈ subterm(T)}

subterm

(∧
i∈I

p?	(Si).Ti

)
=⋃

i∈I
subterm(Ti) ∪

{∧
i∈I

p?	(Si).Ti

}

subterm

(∨
i∈I

p!	(Si).Ti

)
=⋃

i∈I
subterm(Ti) ∪

{∨
i∈I

p!	(Si).Ti

}
.

It is clear that the recursive function subterm(T) terminates, since it traverses T only once. Moreover, at each recursion 
step, the function yields a finite set of types, hence subterm(T) yields a finite set. E.g.,

letting T = μt.p!	(S).t, subterm(T) = {T} ∪ {T′{T/t} | T′ ∈ subterm(p!	(S).t) }
= {T} ∪ {T′{T/t} | T′ ∈ {p!	(S).t , t} }
= {T} ∪ {p!	(S).t{T/t} , t{T/t} }
= { T , p!	(S).T }

Let us consider the application of the subtyping procedure to verify ∅ � T1 �a T2, and let 
 � T′
1 �a T′

2 be a goal reached 
during its execution. Then, we have:

1. T′
1, T

′
2 ∈ subterm(T1) ∪ subterm(T2),

2. if (T′′
1, T′′

2) ∈ 
 then T′′
1, T′′

2 ∈ subterm(T1) ∪ subterm(T2).

We can associate a measure to each goal reached during the execution of the procedure:

measure (
 � T1 �a T2) = (n,m)

where n is the cardinality of 
, and m is the maximum number of type constructors in T1 or T2. Measures are ordered as 
follows:

(n,m) > (n′,m′) if n < n′ or (n = n′ and m > m′).

The first component of the measure is upper bounded by |(subterm(T1) ∪ subterm(T2))|2, whilst the second one is 
lower bounded by 1. By examining the rules in Table 6, we can verify that in each state of the procedure, the measure of 
the current goal (in the rule conclusion) is bigger than the measures of its subgoals, if any (in the rule premises), directly 
implying that the subtyping procedure is terminating. �
Appendix B. Proofs for Section 4

B.1. Complementarity of relations �a and �

Lemma B.1. If (
2 � T2 �a T′
2) ∈ �(
1 � T1 �a T′

1), then, for all 
 such that (T1, T′
1) /∈ 
, we have (
 ∪ 
2 � T2 �a T′

2) ∈
�(
 ∪ 
1 � T1 �a T1).

Proof. It follows directly from Definition 3.27. �
Lemma 4.5. If T(T)� T

(
T′), then there is a failing derivation of ∅ � T �a T′ .

Proof. By induction on the derivation of T(T)� T
(
T′).

We develop just two cases (the others are similar):
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• base case [nsub-diff-in]. If T(T) = ∧
i∈I p?	i(Si). T(Ti) and T

(
T′) = ∧

j∈ J q?	′
j(S ′

j). T
(
T′

j

)
, then T ≡ μt1 . . .μtl1 .∧

i∈I p?	i(Si).T1i (or T ≡ ∧
i∈I p?	i(Si).T1i ) and T′ ≡ μt1 . . .μtl2 . 

∧
j∈ J q?	′

j(S ′
j).T

′
1 j (or T′ ≡ ∧

j∈ J q?	′
j(S ′

j).T
′
1 j). We 

assume that both T and T′ are μ-types (the other cases are simpler), and construct a failing derivation of ∅ � T �a T′
as follows.

J1 = ∅ � T�a T
′

Jk+1 = 
k ∪ {(μtk.T2k,T
′)} � T2k{μtk.T2k/tk} �a T

′,k = 1, .., l1, where

T2k{μtk .T2k/tk} ≡ μtk+1.T2(k+1),k ≥ 2, and T ≡ μt1.T21 and


k+1 = 
k ∪ {(μtk.T2k,T
′)} and 
1 = ∅

Jl1+m+1 = 
m ∪ {(μtl1 .T2l1 ,μtm.T′
2m)} � T2(l1+1) �a T

′
2m{μtm.T′

2m/tm},m = 1, .., l2 − 1, where

T2(l1+1) = T2l1{μtl1 .T2l1/tl1} and T2l1 ≡
∧
i∈I

p?	i(Si).T
l1
1i( for some Tl1

1i, i ∈ I)

T′
2m{μtm.T′

2m/tm} ≡ μtm+1.T
′
2(m+1) and T′ ≡ μt1.T

′
21 and


l1+m+1 = 
l1+m ∪ {(μtl1+m.T2(l1+m),T
′)}

Jl1+l2+1 = 
l1+l2 ∪ {(μtl1 .T2l1 ,μtl2 .T
′
2l2

)} � T2(l1+1) �a T
′
l1+l2+1, where

T′
l1+l2+1 ≡ T′

2l2
{μtl2 .T′

l2/tl2} and T′
2l2

≡
∧
j∈ J

q?	′
j(S ′

j).T
j2
j ( for some Tl2

1 j, j ∈ J )

Note that, if T is not a μ-type, we erase components J2, . . . , Jl1+1 — and similarly, if T′ is not a μ-type, we erase the 
components J l1+2, . . . , Jl1+l2+1. The proof for the other base cases [nsub-diff-out], [nsub-in-out] and [nsub-out-in] is 
similar;

• inductive case [nsub-cont-in]. Let T(T) =∧
i∈I p?	i(Si). T(Ti) and T

(
T′)=∧

j∈ J p?	′
j(S ′

j). T
(
T′

j

)
. For the sake of sim-

plicity of the presentation, we show the proof for the case T ≡ μt. 
∧

i∈I p?	i(Si).Ti and T′ ≡ ∧
j∈ J p?	′

j(S ′
j).T

′
j with 

k ∈ I and s ∈ J such that 	k = 	′
s and T(Tk{T/t}) � T

(
T′

s

)
. Other cases are similar. By the induction hypothesis, there 

is a failing derivation ( J ′
1, . . . , J

′
m) of ∅ � Tk{T/t} �a T′

s , where J ′
l = 
′

l′ � Tl′ �a T′
l′ for l′ = 1, . . . , m. We can prove by 

Definition 3.27 and Lemma B.1 that the sequence ( J1, . . . , Jm+3) with

J1 = ∅ � T�a T
′

J2 = {(T,T′)} �
∧
i∈I

p?	i(Si).Ti{T/t} �a

∧
j∈ J

p?	′
j(S ′

j).T
′
j

J3 = {(T,T′)} � p?	k(Sk).Tk{T/t}�a p?	k(S ′
s).T

′
s

J4 = {(T,T′)} � Tk{T/t}�a T
′
s

J3+l′ = {(T,T′)} ∪ 
′
l′ � Tl′ �a T

′
l′ , l′ = 2, ..,m.

is a failing derivation of ∅ � T �a T′ . (Notice that the general case would have instead of ( J1, J2) the same components 
( J1, . . . , Jl1+l2+1) as in the base case, just with different processes T2l1 and T′

2l2
.) �

Lemma 4.6. Let ( J1, . . . , Jn) be a failing derivation of ∅ � T �a T′ , where Jm has the form 
m � Tm �a T′
m, m ∈ {1, . . . , n}. Then, 

T(Tm) � T
(
T′

m

)
for every m ∈ {1, . . . , n}.

Proof. The proof is by induction on m, in decreasing order from n to 1:

• base case m = n: in this case, (Tm, T′
m) has one of the forms listed in Corollary 3.30. We directly deduce T(T)� T

(
T′)

by applying one of the rules: [nsub-endL], [nsub-endR], [nsub-diff-in], [nsub-diff-out], [nsub-out-in], [nsub-in-out], 
[nsub-label-in], [nsub-label-out], [nsub-exch-in], or [nsub-exch-out];

• inductive case m < n: by induction hypothesis, it holds that T(Tm+1) � T
(
T′

m+1

)
. By Definition 3.29(2), 
m+1 �

Tm+1 �a T′
m+1 ∈ �(
m � Tm �a T′

m); therefore, by Definition 3.27, (Tm, T′
m) has one of the following forms:

– (Tm, μt.T′′
m):

then, (T(Tm) , T
(
T′

m

)
) = (T(Tm) , T

(
μt.T′′

m

)
) = (T(Tm) , T

(
T′′

m{μt.T′′
m/t})) = (T(Tm+1) , T

(
T′

m+1

)
), and from the i.h. we 

conclude T(Tm) � T
(
T′

m
)
;
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– (μt.T′′
m, T′

m):
then, (T(Tm) , T

(
T′

m

)
) = (T

(
μt.T′′

m

)
, T
(
T′

m

)
) = (T

(
T′′

m{μt.T′′
m/t}) , T(T′

m

)
) = (T(Tm+1) , T

(
T′

m+1

)
), and from the i.h. we 

conclude T(T)� T
(
T′);

– (
∨

i∈I p!	i(Si).Ti, 
∨

i∈ J p!	i(S ′
i).T

′
i):

then, (T(Tm) , T
(
T′

m

)
) = (

∨
i∈I p!	i(Si). T(Ti) , 

∨
i∈ J p!	i(S ′

i). T
(
T′

i

)
) and T(Tm+1) � T

(
T′

m+1

)
with m +1 ∈ I ∩ J . Hence, 

by the i.h. and [nsub-cont-out], we conclude T(Tm) � T
(
T′

m

)
;

– (
∧

i∈I p?	i(Si).Ti, 
∧

j∈ J p?	 j(S ′
j).T

′
j):

then, (T(Tm) , T
(
T′

m

)
) = (

∧
i∈I p!	i(Si). T(Ti) , 

∧
j∈ J p!	i(S ′

i). T
(
T′

i

)
) and T(Tm+1) � T

(
T′

m+1

)
with m +1 ∈ I ∩ J . Hence, 

by the i.h. and [nsub-cont-in], we conclude T(Tm)� T
(
T′

m

)
. �

B.2. Characteristic global types and characteristic contexts

Lemma B.2 (Strengthening). If �, X : T′ � P : T and X /∈ fv{P } then � � P : T.

Lemma B.3 (Weakening). If � � P : T and X /∈ dom(�) then �, X : T′ � P : T.

Lemma B.4. If �, Xt : T1 � P (T) : T(Tσ) where T1 = T(T1) (for some T1), and σ = {�(Xt′ )/t′ | t′ ∈ fv(T)}, then �, Xt : T2 � P (T) :
T
(
Tσ ′), for any T2 = T(T2) (for some T2) and σ ′ = (σ \ {T1/t}) ∪ {T2/t}.

Proof. By induction on the structure of T. �
Lemma B.5. For every (possibly open) type T, there is � and σ such that dom(�) = {Xt | t ∈ fv(T)} and � � P (T) : T(Tσ), where 
σ is a substitution such that σ = {Tt/t | t ∈ fv(T) and �(Xt) = T(Tt)}.

Proof. By induction on the structure of T.

• T ≡ end: P (end) = 0 and, by [t-0], � P (end) : end.
• T ≡ t: P (t) = Xt

By [t-var], Xt : T(T′) � Xt : T(T′) for any T′ . For σ = {T′/t}, we have

Xt : T(T′) � P(t) : T(Tσ) .

• T ≡∧
i∈I

p?	i(Si).Ti : P (T) =∑
i∈I

p?	i(xi).if expression(xi, Si) then P (Ti) else P (Ti)

By the induction hypothesis, �i � P (Ti) : T(Tiσi), where σi = {Tt/t | t ∈ fv(Ti) and T(Tt) = �i(Xt)} for some �i , and 
every i ∈ I . Let us denote by � the environment consisting of assignments Xt : T(Tt) for arbitrarily chosen Tt , where 
Xt ∈ dom(�i) for some i ∈ I . By Lemma 4.9, �, xi : Si � expression(xi, Si) : bool, for every i ∈ I . By Lemma B.4, 
[t-choice] and weakening, for each i ∈ I , we have the judgements:

�, xi : Si � if expression(xi, Si) then P(Ti) else P(Ti) : T(Tiσ
′
i

)
where σ ′

i =
{
Tt/t

∣∣∣∣ t ∈ fv(Ti) and
T(Tt) = �(Xt)

}

Now, by [t-input-choice], we have

� �
∑
i∈I

p?	(xi).if expression(xi, Si) then P(Ti) else P(Ti) :
∧
i∈I

p?	(Si).T
(
Tiσ

′
i

)
.

We conclude this case by remarking that∧
i∈I

p?	(Si).T
(
Tiσ

′
i

)= T(Tσ) for σ = ∪i∈Iσ
′
i = {Tt/t | t ∈ fv(T) and T(Tt) = �(Xt)}.

• T ≡∨
i∈I

p!	i(Si).Ti : P (T) =⊕
i∈I

p!	i(value(Si)).P (Ti).

By the induction hypothesis, �i � P (Ti) : T(Tiσi), where σi = {Tt/t | t ∈ fv(Ti) and T(Tt) = �i(Xt)} for some �i , and 
every i ∈ I . Let us denote by � the environment consisting of assignments Xt : T(Tt) for arbitrarily chosen Tt , where 
Xt ∈ dom(�i) for some i ∈ I . By Lemma B.4 and weakening, for each i ∈ I , we have the judgement:

� � P(Ti) : T(Tiσ
′
i

)
where σ ′

i =
{
Tt/t

∣∣∣∣ t ∈ fv(Ti)

and T(T ) = �(X )

}

t t
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Since p!	i(Si). T
(
Tiσ

′
i

)
�
∨

i∈I p!	i(Si). T
(
Tiσ

′
i

)
, for every i ∈ I , we get by [t-out] and [t-sub] that

� � p!	i(value(Si)).P(Ti) :
∨
i∈I

p!	i(Si).T
(
Tiσ

′
i

)
.

By successive application of [t-choice], we conclude

� �
⊕
i∈I

p!	i(value(Si)).P(Ti) : T(Tσ) where σ = ∪i∈Iσ
′
i

• T ≡ μt.T′: P (T) = μXt.P 
(
T′)

By induction hypothesis, there is �′ such that

�′ � P
(
T′) : T(T′σ ′) where σ ′ = {Tt′/t′ | t′ ∈ fv(T′) and T(Tt′) = �′(Xt′)}

We have two cases:
(i) t /∈ fv(T′). In this case, Xt /∈ fv(P 

(
T′)) and �′′, Xt : T(T′′) � P 

(
T′) : T(T′σ ′), for some T′′ (either �′ = �′′, Xt : T(T′′)

or it is obtained by weakening of �′). By [t-rec], we get �′′ � μXt.P 
(
T′) : T(T′σ

)
with σ ′ = σ .

(ii) t ∈ fv(T′). In this case, Xt ∈ fv(P 
(
T′)) and �′ = �′′, Xt : T(T′′) for some T′′ . By Lemma B.4,

�′′, Xt : T(T′σ ′) � P
(
T′) : T(T′σ ′′)

where σ ′′ = {
Tt′/t′

∣∣ t′ ∈ fv(T′) \ {t} and T(Tt′) = �′′(Xt′)
}∪ {T′σ ′/t}

i.e., the difference between σ ′ and σ ′′ is that σ ′′ contains T′σ ′/t instead of T′′/t. Then, by [t-rec], we conclude

�′′ � μXt.P
(
T′) : T(T′σ

)
where σ = {Tt/t | t ∈ fv(T) and T(Tt) = �′′(Xt)} = σ ′′ \ {T′σ ′/t} �

Proposition 4.10. For all T, it holds that � P (T) : T(T).

Proof. Direct consequence of Lemma B.5 (recalling that T is here assumed to be closed, cf. Definition 3.4). �
Lemma 4.14. For all session types T and p /∈ pt{T}:

1. T(G(T,p))�p = T(T);
2. T(G(T,p))�q is defined for all q ∈ pt{T}.

Proof.

Item 1. We define a relation R containing the type trees T(T) and T(G(T,p))�p = G0(T, p, pt{T}) (for any T and p /∈
pt{T}), and show that R is a session type tree isomorphism (Definition A.16). Let:

R = { (
T
(
T′) , T

(
G0(T

′,p,pt{T}))�p) ∣∣ p /∈ pt{T′} } (1)

We proceed by inspecting each pair (T, T′) ∈ R, and showing that it satisfies the clauses of Definition A.16. We 
have the following cases:
• T = T(end). Then, we have T(G(T,p)) = end, which means T′ = T(G(T,p))�p = T(end). Hence, we conclude 

that the pair (T, T′) satisfies clause (i) and (vacuously) all other clauses of Definition A.16;
• T = T

(
T′) = ∧

i∈I p j0 ?	i(Si). T
(
T′

i

)
, with pt{T} = {p j}1≤ j≤n .In this case, the pair (T, T′) vacuously satisfies all 

clauses of Definition A.16 — except for clause (ii), that we now prove. Observe that, since T′ is a (possibly 
recursive) external choice, by Definition 4.11 we have:

T′ = T
(

p j0 → p : {	i(Si).G
j0
i }i∈I

)
�p with G j0 from Table 9

which, by Definition 3.6, corresponds to:

T′ =
∧
i∈I

p j0 ?	i(Si).
(
T
(
G j0

i

)
�p
)

(2)

where, by Table 9, each G j0
i (i ∈ I) consists of a sequence of communications not involving p (by (1)) 

that are skipped by projection (Definition 3.6), and lead to G0(T′
i, p, pt{T}). Therefore, ∀i ∈ I , T

(
G j0

i

)
�p =

T
(
G0(T′

i,p,pt{T}))�p, with p /∈ pt{T′
i} — and thus, by (1), we have:

∀i ∈ I : (
T
(
T′

i

)
, T
(
G0(T

′
i,p,pt{T})) ) ∈R (3)

and by (2) and (3), we obtain that the pair (T, T′) satisfies clause ii and (vacuously) all other clauses of Defini-
tion A.16;
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• T = T
(
T′)=∨

i∈I p j0 ?	i(Si). T
(
T′

i

)
, with pt{T} = {p j}1≤ j≤n . Similar to the previous case.

We have thus shown that R in (1) is a session type isomorphism, containing the pair 
(
T(T) , T(G(T,p))�p

)
. From 

this, by Definition A.16 we get T(T) = T(G(T,p))�p, and by symmetry (Proposition A.2), we obtain the thesis.
Item 2. We need to show that T(G(T,p))�q = T(G0(T,p,pt{T}))�q is defined for all q ∈ pt{T}. We prove a more general 

statement: T(G0(T,p,S))�q is defined, for any set of participants S = {p j}1≤ j≤n ⊇ pt{T}, and for any q ∈ S. To this 
purpose, we first define a relation R between types and type trees: intuitively, the image of T in R is a set of type 
trees that over-approximate the one yielded by T(G(T,p))�q (when the latter is defined). Fix q, and let R be the 
largest relation such that, whenever the pair (T, T) belongs to R, we have:

T(T) = T(end) implies T = T(end)

T(T) =∧
i∈I q?	i(Si).T(Ti) implies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∃Ti (∀i ∈ I) : T =∨
i∈I p!	i(Si).Ti

and ∀i ∈ I : (Ti,Ti) ∈R

or ∃r, r′,Ti (∀i ∈ I) :
T =∨

i∈I p!	i(Si).r!	i(bool).r′?	i(bool).Ti
and ∀i ∈ I : (Ti,Ti) ∈R

T(T) =∧
i∈I q′?	i(Si).T(Ti) (q′ �=q) implies

⎧⎨
⎩

∃r, r′,Ti (∀i ∈ I) :
T =�i∈I r?	i(bool).r′!	i(bool).Ti
and ∀i ∈ I : (Ti,Ti) ∈R

T(T) =∨
i∈I q!	i(Si).T(Ti) implies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∃Ti (∀i ∈ I) : T =∧
i∈I p?	i(Si).Ti

and ∀i ∈ I : (Ti,Ti) ∈R

or ∃r, r′,Ti (∀i ∈ I) :
T =∧

i∈I p?	i(Si).r!	i(bool).r′?	i(bool).Ti
and ∀i ∈ I : (Ti,Ti) ∈R

T(T) =∨
i∈I q′!	i(Si).T(Ti) (q′ �=q) implies

⎧⎨
⎩

∃r, r′,Ti (∀i ∈ I) :
T =�i∈I r?	i(bool).r′!	i(bool).Ti
and ∀i ∈ I : (Ti,Ti) ∈R

(4)

We now show that, if we take R satisfying (4) for a given q:
(S1) R is left-total, i.e., for all T, there is T such that (T, T) ∈ R. To see why, notice that the only potential cases 

where, for some T, there is no T such that (T, T) ∈ R are those where T is an internal/external choice to/from 
a participant q′ �= q: in such cases, (4) requires T to be a (potentially undefined) merging � of type trees. But 
in such cases, T is obtained by merging singleton external choices from a same role r, with non-overlapping 
labels 	i (i ∈ I): therefore, the merging is always defined, by [mrg-bra] in Definition 3.6;

(S2) if T = T(G0(T,p,S))�q is defined (for some S = {p j}1≤ j≤n ⊇ pt{T}), then (T, T) ∈ R — i.e., R relates T with 
the projection onto q of its characteristic global type. This is proved below;

(S3) if (by contradiction) we assume that T(G0(T,p,S))�q is undefined (for some T and S = {p j}1≤ j≤n ⊇ pt{T}), 
then we obtain a contradiction. This is proved below;

(S4) hence, there is no T that satisfies the assumption of item (S3) above: this proves the thesis.
We now prove (S2). Fix q, and consider the relation:

R′ = { (T,T) | T = T(G0(T,p,S))�q with q ∈ S ⊇ pt{T} } (5)

We now show that R′ satisfies the clauses of (4), which implies R′ ⊆ R (since R is the largest relation satisfying 
such clauses). For each pair (T, T) ∈ R′ and the corresponding S, we have the cases:
• T(T) = end. Then, T = T(G0(T,p,S))�q = T(end), as required by (4);
• T(T) =∧

i∈I p j0 ?	i(Si). T(Ti), for some p j0 ∈ S. Then, by Definition 4.11, we have:

T = T
(

p j0 → p : {	i(Si).G
j0
i }i∈I

)
�q with G j0 from Table 9 (6)

and two sub-cases:
– p j0 = q. Then, from (6) and Definition 3.6, we have either:

T =
∨
i∈I

p!	i(Si).Ti where ∀i ∈ I : Ti = T
(
G j0

i

)
�q (7)

or ∃r, r′: T =
∨
i∈I

p!	i(Si).r!	i(bool).r′?	i(bool).Ti where ∀i ∈ I : Ti = T
(
G j0

i

)
�q (8)

where case (7) holds when S = {q}, while case (8) holds when S � {q} (we have no further cases, since 
q ∈ S by (5)). Now, notice that, by Table 9, each G j0 (i ∈ I) consists of a sequence of communications not
i
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involving p, that are skipped by projection (Definition 3.6), and lead to G0(Ti, p, S): therefore, ∀i ∈ I , we have 
Ti = T

(
G j0

i

)
�q = T(G0(Ti,p,S))�q. This means that, by (5) we have ∀i ∈ I : (Ti, Ti) ∈ R′ — and this, together 

with either (7) or (8), satisfies the clauses of (4);
– p j0 �= q. In this case, by Definition 3.6, we have:

T = �
i∈I

(
T
(
G j0

i

)
�q
)

(9)

Notice that, by Table 9, each G j0
i (i ∈ I) consists of a sequence of communications where q first receives a 

message with label 	i from some participant r, and immediately resends it to some other participant r′ (with 
r, r′ ∈ S, by clause S ⊇ pt{T} in (5) and Table 9). More in detail, we have:

∃r, r′ : ∀i ∈ I : T
(

G j0
i

)
�q = r?	i(bool).r′!	i(bool).Ti where Ti = T(G0(Ti,p,S))�q (10)

This means that, by (5) we have ∀i ∈ I : (Ti, Ti) ∈ R′ — and this, together with (9) and (10), satisfies the 
clauses of (4);

• T(T) =∨
i∈I p j0 ?	i(Si). T(Ti), for some p j0 ∈ S. Similar to the previous case.

We have thus proved R′ ⊆ R; and since ∀T, if T = T(G0(T,p,S))�q is defined then (T, T) ∈ R′ ⊆ R, we conclude 
that (S2) holds.

We now prove (S3). By contradiction, assume that there is some T such that T(G0(T,p,S))�q is undefined (for 
some S = {p j}1≤ j≤n ⊇ pt{T}). This can only occur because the projection onto q requires an undefined merging. By 
Definitions 3.6 and 4.11, merging is only used when an (unfolded) subterm T′ of T is an internal/external choice 
to/from a participant p j0 �= q: this leads to a merging involving some participants r, r′ ∈ S, similarly to (9) and 
(10) in the proof of (S2) above — except that the merging is now undefined. But if such a merging is undefined 
for r and r′ , then it is also undefined if we replace r, r′ with any other pair of participants: this is because the 
merging rules of Definition 3.6 do not depend on the participants’ identities. Now, recall that R is left-total by 
(S1): therefore, there is some T′ such that (T′, T′) ∈R — however, such T′ cannot be obtained by merging the type 
trees as described in (4): this is because, under our initial (contradictory) assumption, we know that such merging 
is always undefined, so we cannot satisfy the existential quantifications “∃r, r′ . . .” in the clauses of (4) that use 
�. Thus, the pair (T′, T′) ∈ R does not satisfy the clauses in (4), i.e., R is not the largest relation whose elements 
satisfy such clauses — contradiction. Therefore, as per (S4), we conclude that T(G0(T,p,S))�q is defined for all T: 
this proves the thesis. �

Proposition 4.16. Take any T′ and r /∈ pt{T′}. If � Q : T(T′), then � Cr,T′
1
[r � Q ] : T(G(T′, r)

)
, for any characteristic context Cr,T′

1

such that T
(
T′)= T

(
T′

1

)
.

Proof. There are two cases.

• T′ = end: If � Q : end then Q = 0 and, by [t-sess], � r � 0 : end.
• pt{T′} = pt{T′

1} = {p1, . . . , pn}, n ≥ 1:
Cr,T′

1
[r � Q ] = r � Q | ∏

1≤i≤n pi �P (Ti), T(Ti) = T
(
G(T′

1, r)
)
�pi = T

(
G(T′, r)

)
�pi

By Lemma 4.14(2), T
(
T′

1

)= T
(
G(T′, r)

)
�r.

By Proposition 4.10, � P (Ti) : T(Ti) i.e. � P (Ti) : T(G(T′, r)
)
�pi .

By [t-sess], � Cr,T′
1
[r � Q ] : T(G(T′, r)

)
. �
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