
Protocols by Default

Safe MPI Code Generation based on Session Types

Nicholas Ng, Jose G. F. Coutinho, and Nobuko Yoshida

Imperial College London

Abstract. This paper presents a code generation framework for type-safe
and deadlock-free Message Passing Interface (MPI) programs. The code
generation process starts with the definition of the global topology using a
protocol specification language based on parameterised multiparty session
types (MPST). An MPI parallel program backbone is automatically
generated from the global specification. The backbone code can then be
merged with the sequential code describing the application behaviour,
resulting in a complete MPI program. This merging process is fully
automated through the use of an aspect-oriented compilation approach.
In this way, programmers only need to supply the intended communication
protocol and provide sequential code to automatically obtain parallelised
programs that are guaranteed free from communication mismatch, type
errors or deadlocks. The code generation framework also integrates an
optimisation method that overlaps communication and computation, and
can derive not only representative parallel programs with common parallel
patterns (such as ring and stencil), but also distributed applications
from any MPST protocols. We show that our tool generates efficient and
scalable MPI applications, and improves productivity of programmers. For
instance, our benchmarks involving representative parallel and application-
specific patterns speed up sequential execution by up to 31 times and
reduce programming effort by an average of 39%.

1 Introduction

Message Passing Interface (MPI) [24] library is the most widely used API standard
for programming high performance parallel applications using the message passing
paradigm. MPI is a relatively low-level programming library, and according to
a survey [12] the most common MPI programming error is the communication
mismatch between senders and receivers. This type of error directly leads to lost
messages, communication deadlocks and subtle calculation errors.

In this work, rather than directly verifying the correctness of a given piece
of MPI code, we explore a compilation approach that automates the generation
of a communication deadlock-free and type-safe MPI program, using as inputs
the sequential code defining the algorithmic behaviour of the application and a
language-independent interaction protocol. Code generation using abstractions of
common parallel programming patterns (also known as algorithmic skeletons) is a
well-developed field, and [15, 30] survey a number of existing tools and frameworks
supporting high-level structured parallel programming. More recently, this code
generation technique has been used to teach undergraduate students parallel
programming, and is reported to reduce programming errors [14, 41], showing
how accessible the technique is.

Our code generation framework is based on a novel approach which, in addition
to common parallel programming patterns, supports general or application-specific
communication patterns. The framework is driven by a theoretically-founded
protocol language called Pabble [26]. Pabble is a protocol language based on
the theory of multiparty session types (MPST) [19]. It is specifically designed
for expressing indexed and grouped processes interaction patterns in parallel
algorithms based on the theories in [11], and distributed applications including
web services [25].

Writing a program using the Pabble language starts with the specification
of the global communication protocol, which is translated automatically to end-
point protocols. The endpoint protocols are localised projection versions of the
global protocol. Our previous work type-checks C distributed parallel applica-
tions written with a customised API [27] or MPI [26] by a programmer against
endpoint protocols. This paper presents the first session-based approach to auto-
matically guarantee (by construction), type-safety, communication-safety (i.e. no
communication mismatch) and deadlock-freedom for MPI applications.

Because of the expressiveness of parameterised MPST [10, 11], our compilation
framework can support parallel algorithms included in the Dwarf benchmarks [2]
(i.e. algorithmic methods that capture common pattern of communication and
computation). We can generate safe MPI programs using not only fixed topologies
such as pipelines or stencils, but also any well-formed Pabble protocols. As a
portable standard, MPI is being adapted as a common interface to different kinds
of programming models, including FPGAs [31], stream programming [22] and fault
tolerant [13]. General MPI applications exhibit more complex communication
patterns than well-known, connected topologies found in scientific computing. The
generality of MPST can provide a more flexible pattern programming approach
based on code generation. In addition, structured session types can guide the
optimisation process using MPI immediate operators, without compromising
the safety properties of the original code. Through our Pabble-based workflow,
snippets of sequential code are automatically combined to generate a distributed
memory parallel application, exploiting the parallelism of multiple nodes and
increasing programming productivity and reusability: the use of design patterns
means that programmers do not need to write an application from scratch, and
can reuse the same protocols and/or sequential code according to their needs.

Pabble code generation workflow. Fig. 1 shows the overview of our approach.
(a) Programmers decide which Pabble communication protocol to use for code
generation: (a-1) If a standard protocol such as a ring, stencil or matrix is used,
programmers can reuse a protocol from the Pabble repository so that they do not
have to write Pabble, or (a-2) If programmers wish to use a more specific protocol
which is not provided in Pabble repository, they can write the intended protocol. In
this case, the tool automatically checks whether the protocol is well-formed or not;
(b) As the second step, the programmer needs to write sequential computation
code (kernels) in C99 and annotate their code with pragmas to link the kernels
with the protocol specification; (c) The tool generates an MPI backbone from
the Pabble protocol in (a); (d) The kernels are automatically injected into the

2

Common protocols
repository

Custom Pabble
global protocols

Sequential
kernels (C99)

or

Pabble tool

Endpoint protocol

MPI codegen

MPI backbone

LARA weaver Non-Optimised MPI
application

Optimised MPI
application

Communication protocol Sequential code

Protocol compiler
(Automatic)

Output(s)

a-1a-2 b

c

d,e

Fig. 1. Pabble-based code generation workflow. Shaded boxes indicate user inputs.

MPI backbone using the LARA [6] weaver, an aspect-oriented compilation tool,
resulting in a complete MPI application (e) As part of the merging project, the
LARA weaver can optionally perform optimisations against previously generated
source code, such as overlapping communication and computation, to improve
the runtime performance.

Challenges. The technical challenges of this work include bridging the gap
between the high-level Pabble specification describing the global communication
protocol, and the low-level C kernels and MPI calls that realise computation
and communication, requiring several implementation details to be automatically
inferred. We are cautious to avoid unnecessary assumptions between the Pabble
specification and the C code defining the behaviour of the application, by providing
a simple and minimally intrusive interface to interoperate between them. The use
of session types to define communication patterns separately from computation
means that data-dependent and non-deterministic protocols are not supported,
but sufficient enough to generate safe representative algorithms (see Section 5).

Outline. Section 2 outlines the application development workflow through a
running example; Section 3 explains the first of two stages of compilation, the
generation of MPI backbone from protocol; Section 4 explains the second stage of
compilation, merging the backbone with kernels and the optimisation; Section 5
gives a number of case studies including scientific computations and flexible
grid computations, and performance evaluation of our framework showing the
flexibility and productivity. The Pabble homepage [29] includes the code generation
framework information, including the Pabble library and benchmark results.

2 Application Development Workflow

2.1 Interaction protocols with the Pabble protocol language

Pabble [26], or Parameterised Scribble [32],represents interaction types as paramet-
ric protocols, such that the protocols are scalable over the number of participants
(i.e. compute nodes) given as parameters.

Listing 1 presents an example of a Pabble protocol which defines a 5-point
stencil design pattern, where N ×N processes are arranged in a 2-dimensional

3

1 const N = 1..max;
2 global protocol Stencil(role P[1..N][1..N]) {
3 rec Steps {
4 LeftToRight(T) from P[r:1..N][c:1..N-1] to P[r][c+1];
5 RightToLeft(T) from P[r:1..N][c:2..N] to P[r][c-1];
6 UpToDown(T) from P[r:1..N-1][c:1..N] to P[r+1][c];
7 DownToUp(T) from P[r:2..N][c:1..N] to P[r-1][c];
8 continue Steps;
9 }

10 }

Listing 1. Pabble protocol for 5-point stencil.

Stencil Protocol

LeftToRight

DownToUp

RightToLeft

UpToDown

Fig. 2. Messages received by
a process in a stencil protocol.

grid, and each participant exchanges messages with its 4 neighbours (except for
edge participants). A Pabble protocol consists of a preamble and a definition.
Line 1 defines N to be in the range between 1 and max, where max corresponds to
the maximum integer. The concrete value of N is known only at run time, and
stays constant in the duration of the instantiated protocol. N can be used in the
protocol body as indices for role definition, which is the mechanism used by Pabble
to support parameterised protocols. The protocol definition starts from Line 2,
with the keywords global protocol followed by the protocol name Stencil.
The parameters to the protocols are the role declarations, role P[1..N][1..N],
which declares a 2-dimensional role P, with N × N participants. Individual
participants can be addressed by integer indices, e.g. P[1][1], similar to an
array access. A valid Pabble protocol ensures that all participants referenced in
the protocol body are declared and within the index bounds ([26] provides a
detailed list of well-formed conditions). For example, the following protocol is not
well-formed because participants P[5] and P[i+1] are undefined when i is 3.

1 global protocol BadProtocol(role P[1..3]) {
2 Msg(T) from P[1] to P[5];
3 Msg(T) from P[i:1..3] to P[i+1]; }

Non well-formed protocol

Pabble protocols provide a guarantee of communication safety and deadlock
freedom between participants in the protocol; this guarantee also extends to
scalable protocols, where the number of participants are not known statically,
and well-formed conditions ensure that the indexing of participants does not
go beyond specified bounds. A Pabble protocol describes (1) the structured
message interaction patterns of the application, and (2) the control-flow elements,
excluding the logic related to actual computation, so that a Pabble protocol
defining a parallel design pattern can be reused for different applications (see
Section 5).

We provide a repository of common Pabble protocols describing common
interaction patterns used by parallel applications. The Stencil protocol in
Listing 1 is one example, and the other patterns in the repository include ring
pipeline, scatter-gather, master-worker and all-to-all.

Our protocol body starts with a rec block, which stands for recursion, and
is assigned with the label Steps. The recursion block does not specify the loop
condition because a Pabble protocol only describes the interaction structure while
implementation details are abstracted away. In the body of the recursion, we have

4

4 lines of interaction statements (Line 4-7), one for each direction. Interaction
statements describe the sending of a message from one participant to another. For
example, in Line 4 a message with label LeftToRight and with a generic payload
type T is sent from P[r:1..N][c:1..N-1] to P[r][c+1]. The index expression
r:1..N means that r is bound and iterated through the list of values in the range
1..N, so the line encapsulates N × (N − 1) individual interaction statements.
The other interaction statements in Listing 1 can be similarly interpreted. Fig. 2
shows the messages received from neighbours for participant P[2][2] in a 3 × 3
grid, which is defined in the protocol as role P[1..3][1..3].

2.2 Computation kernels

Computation kernels are C functions that describe the algorithmic behaviour
of the application. Each message interaction defined in Pabble (e.g. Label(T)
from Sender to Receiver) can be associated to a kernel by the message label
(e.g. Label).

Sender Process Receiver Process

(1) Execute Label kernel

Send ReceiveMessage of type T

(2) Execute Label kernel

Fig. 3. Global view of Label(T)from Sender to Receiver;.

Fig. 3 shows how kernels are invoked in a message-passing statement be-
tween two processes named Sender and Receiver respectively. Since a message
interaction statement involves two participants (e.g. Sender and Receiver), the
kernel serves two purposes: (1) produce a message for sending and (2) consume a
message after it has been received. The two parts of the kernel are defined in
the same function, but runs on the sending process and the receiving process
respectively. The kernels are top-level functions and do not send or receive mes-
sages directly through MPI calls. Instead, messages are passed between kernels
and the MPI backbone (derived from the Pabble protocol) via a queue API: in
order to send a message, the producer kernel (e.g. (1)) of the sending process
enqueues the message to its send queue; and a received message can be accessed
by a consumer kernel (e.g. (2)), dequeuing from its receive queue. This allows the
decoupling between computation (as defined by the kernels) and communication
(as described in the MPI backbone).

Writing a kernel. We now explain how a user writes a kernel file, which contains
the set of kernel functions related to a Pabble protocol for an application. A
minimal kernel file must define a variable meta of meta_t type, which contains the
process id (i.e. meta.pid), total number of spawned processes (i.e. meta.nprocs)
and a callback function that takes one parameter (message label) and returns the
send/receive size of message payload (i.e. unsigned int meta.bufsize(int

label)). The meta.buflen function returns the buffer size for the MPI primitives
based on the label given, as a lookup table to manage the buffer sizes centrally.
Process id and total number of spawned processes will be populated automatically

5

by the backbone code generated. The kernel file includes the definitions of the
kernel functions, annotated with pragmas, associating the kernels with message
labels. The kernels can use file (i.e. static) scope variables for local data storage.
Our stencil kernel file starts with the following declarations for local data and
meta:
1 typedef struct { double* values; int rows; int cols; } local_data_t;
2 static local_data_t *local;
3

4 unsigned int buflen(int label) { return local->rows - 2; } // local rows - halo rows/cols
5

6 meta_t meta = {/*pid*/0, /*nprocs*/1, MPI_COMM_NULL, &buflen};

Kernel header

Initialisation. Most parallel applications require explicit partitioning of input
data. In these cases, the programmer writes a kernel function for partitioning,
such that each participant has a subset of the input data. Input data are usually
partitioned with a layout similar to the layout of the participants. In our stencil
example where processes are organised in a 2D grid, we partition the input data
in a 2D-grid of sub-matrices. The sub-matrices are calculated for each of the
process using the meta.pid and meta.nprocs which are known at runtime when
the kernel functions are called. Below is an example of the main part of the
initialisation function.
6 #pragma pabble kernel Init
7 void init(int id, const char *filename)
8 { FILE *fp = fopen(filename, "r");
9 local = (local_data_t *)malloc(sizeof(local_data_t));

10 local->rows = 0; local->cols = 0; local->values = NULL;
11 ...
12 int proc_per_row = sqrt(meta.nprocs); // Participant per row
13 int proc_per_col = sqrt(meta.nprocs); // Participant per column
14 int row_offset = (meta.pid / proc_per_row) * row_size; // Start row of data
15 int col_offset = (meta.pid % proc_per_col) * col_size; // Start column of data
16 ...
17 if (within_range) { fscanf(fp, "%f", &local->values[i]); } // Copy data to local
18 ...
19 fclose(fp); }

Kernel: Init

Computation and queues. The kernels are void functions with at least one
parameter, which is the label of the kernel. Inside the kernel, no MPI primitive
should be used to perform message passing. Data received from another participant
or data that need to be sent to another participant can be accessed using a receive
queue and send queue. Consider the following kernel for the label LeftToRight
in the stencil example:

20 #pragma pabble kernel LeftToRight
21 void accumulate_LeftToRight(int id)
22 { // Sender sends right col of submatrix and Recver receives left col.
23 if (!pabble_recvq_isempty() && pabble_recvq_top_id() == id) {
24 tmp[HALO_LEFT] = (double *)pabble_recvq_dequeue(); // Get received value.
25 } else { tmp[HALO_RIGHT] = (double *)calloc(meta.buflen(id), sizeof(double));
26 /* populate tmp[HALO_RIGHT] */
27 pabble_sendq_enqueue(id, tmp[HALO_RIGHT]); // Put buffer to be sent
28 }
29 }

Kernel: LeftToRight

Each kernel has access to a send and receive queue local to the whole process,
which holds pointers to the buffer to be sent and the buffer containing the received
messages, respectively. The queues are the only mechanism for kernels to interface
the MPI backbone. The simplest kernel is one that forwards incoming messages

6

1 int main(int argc, char *argv[])
2 { MPI_Init(&argc, &argv);
3 MPI_Comm_rank(MPI_COMM_WORLD, &meta.pid);
4 MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs);
5 #pragma pabble type T
6 typedef void T; ⇒ typedef double T;
7 MPI_Datatype MPI_T; ⇒ MPI Datatype MPI T = MPI DOUBLE;
8

9 T *bufLeftToRight_r, *bufLeftToRight_s;
10 /** Other buffer declarations **/
11 /** Definitions of cond0, cond1, ... **/
12 #pragma pabble predicate Steps
13 while (1) { ⇒ while(iter())
14 if (cond0) { /*if P[i:0..(N-1)][j:1..(N-1)]*/
15 bufLeftToRight_r = (T *)calloc(meta.buflen(LeftToRight), sizeof(T));
16 MPI_Irecv(bufLeftToRight_r, meta.buflen(LeftToRight), MPI_T, /*P[i][(j-1)]*/...);
17 MPI_Wait(&req[0], &stat[0]);
18 pabble_recvq_enqueue(LeftToRight, bufLeftToRight_r);
19 #pragma pabble kernel LeftToRight ⇒ accumulate LeftToRight(LeftToRight);
20 }
21 if (cond1) { /*if P[i:0..(N-1)][j:0..(N-2)]*/
22 #pragma pabble kernel LeftToRight ⇒ accumulate LeftToRight(LeftToRight);
23 bufLeftToRight = pabble_sendq_dequeue();
24 MPI_Isend(bufLeftToRight, meta.buflen(LeftToRight), MPI_T, /*P[i][(j+1)]*/...);
25 MPI_Wait(&req[1], &stat[1]);
26 free(bufLeftToRight);
27 }
28 /** similarly for RightToLeft, UpToDown and DownToUp **/
29 MPI_Finalize();
30 }
31 return EXIT_SUCCESS; }

Listing 2. MPI backbone generated from the Stencil protocol.

Generated MPI Backbone

from the receive queue directly to the send queue. In the above function, when
the kernel function is called, it either consumes a message from the receive queue
if it is not empty (i.e. after a receive), or produce a message for the send queue
(i.e. before a send).

Kernels can have extra parameters. For example, in the init function above,
filename is a parameter that is not specified by the protocol (i.e. Init()). When
such functions are called, all extra parameters are supplied by command-line
arguments in the final generated MPI application.

In the next two sections we describe: (1) the compilation process to generate
the MPI backbone and (2) the merging process in which we combine the MPI
backbone and the kernels.

3 Compilation Step 1: Protocol to MPI backbone

This section describes the MPI backbone code generation from Pabble protocols.
First the generated MPI backbone code of the running example is shown, then
the translation rules from Pabble statements to MPI code are explained along
with details of how to map Pabble participants into MPI processes.

3.1 MPI backbone generation from Stencil protocol

Based on the Pabble protocol (e.g. Listing 1), our code generation framework
generates an MPI backbone code (e.g. Listing 2). First it automatically gener-
ates endpoint protocols from a global protocol as an intermediate step to make

7

MPI code generation more straightforward. For reference, Appendix A lists the
endpoint protocol of the Stencil protocol in Listing 3.

An MPI backbone is a C99 program with boilerplate code for initialising
and finalising the MPI environment of a typical MPI application (Line 2-4 and
29 respectively), and MPI primitive calls for message passing (e.g. MPI_Isend
/MPI_Irecv). Therefore the MPI backbone realises the interaction between
participants as specified in the Pabble protocol, without supporting any specific
application functionality. The backbone has three kinds of #pragma annotations
as placeholders for placing kernel functions, types and program logic. The anno-
tations are explained in Section 4. The boxed code in Listing 2 represents how
the backbone are converted to code that calls the kernel functions in the MPI
program.

In Lines 5 and 6, generic type T and MPI_T are defined datatypes for C and
MPI respectively. T and MPI_T are refined later when an exact type (e.g. int or
composite struct type) is known with the kernels.

Following the type declarations, are other variable declarations including the
buffers (Line 9), and their allocation and deallocation are managed by the back-
bone. They are generated as guarded blocks of code, which come directly from
the endpoint protocol. Line 14-20 shows a guarded receive that correspond to
if P[i:0..(N-1)][j:1..(N-1)] LeftToRight(T)from P[i][j-1] in the pro-
tocol and Line 21-27 for if P[i:0..(N-1)][j:0..(N-2)] LeftToRight(T)to

P[i][j+1].

3.2 MPI backbone generation from Pabble

Table 1 and 2 show how each Pabble construct is translated into MPI blocks for
statements that involve P2P interactions and control-flow respectively (Appendix
B lists additional cases, the internal iteration and choice constructs).

1. Interaction. An interaction statement in a Pabble protocol is projected in
the endpoint protocol as two parts: receive and send.

The first line of the endpoint protocol shows a receive statement, written
in Pabble as if P[dstId] from P[srcId]. The statement is translated to a
block of MPI code in 3 parts. First, memory is dynamically allocated for the
receive buffer (Line 2), the buffer is of Type and its size fetched from the function
meta.bufsize(Label). The function is defined in the kernels and returns the size
of message for the given message label. Next, the program calls MPI_Recv to re-
ceive a message (Line 3) from participant P[srcRole] in Pabble. role_P(srcIdx)
is a lookup macro from the generated backbone to return the process id of the
sender. Finally, the received message, stored in the receive buffer buf, is enqueued
into a global receive queue with pabble_recvq_enqueue() (Line 4), followed by
the pragma indicating a kernel of label Label should be inserted. The block of
receive code is guarded by an if-condition, which executes the above block of
MPI code only if the current process id matches the receiver process id.

The next line in the endpoint protocol is a send statement, converse of
the receive statement, written as if P[srcIdx] Label(Type)to P[dstIdx].
The MPI code begins with the pragma annotation, then dequeuing the global
send queue with pabble_sendq_dequeue() and sends the dequeued buffer with

8

Table 1. Pabble interaction statements and their corresponding code.

1. Interaction

Label(Type) from P[srcIdx] to P[dstIdx];

Global Protocol

if P[dstIdx] Label(Type) from P[srcIdx];
if P[srcIdx] Label(Type) to P[dstIdx];

Projected Endpoint Protocol

1 if (meta.pid == role_P(dstIdx)) {
2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));
3 MPI_Recv(buf, meta.bufsize(Label), MPI_Type, role_P(srcIdx), Label, ...);
4 pabble_recvq_enqueue(Label, buf);
5 #pragma pabble kernel Label
6 }
7 if (meta.pid == role_P(srcIdx)) {
8 #pragma pabble kernel Label
9 buf = pabble_recvq_dequeue();

10 MPI_Send(buf, meta.bufsize(Label), MPI_Type, dstIdx, Label, ...); free(buf);
11 }

Generated MPI Backbone

2. Parallel interaction

Label(Type) from P[i:1..N-1] to P[i+1];

Global Protocol
if P[i:2..N] Label(Type) from P[i-1];
if P[i:1..N-1] Label(Type) to P[i+1];

Projected Endpoint Protocol

1 if (role_P(2)<=meta.pid&&meta.pid<=role_P(N)) {
2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));
3 MPI_Recv(..., prevRank = meta.pid-1, Label, ...);
4 pabble_recvq_enqueue(Label, buf);
5 #pragma pabble kernel Label
6 }
7

8 if (role_P(1)<=meta.pid&&meta.pid<=role_P(N-1)) {
9 #pragma pabble kernel Label

10 buf = pabble_sendq_dequeue();
11 MPI_Send(..., nextRank = meta.pid+1, Label, ...); free(buf);
12 }

Generated MPI Backbone

MPI_Send. After this, the send buffer, which is no longer needed, is deallocated.
The block of send code is similarly guarded by an if-condition to ensure it is only
executed by the sender.

By allocating memory before receive and deallocating memory after send, the
backbone manages memory for the user in a systematic way.

2. Parallel interaction. A Pabble parallel interaction statement is written as
Label(Type)from P[i:1..N-1] to P[i+1], meaning all processes with indices
from 1 to N-1 send a message to its next neighbour. P[1] initiates sending to
P[2], and P[2] receives from P[1] then sends a message to P[3], and so on. As
shown in the endpoint protocol which encapsulates the behaviour of all P[1..N]
processes, the statement is realised in the endpoint as conditional receive followed
by a conditional send, similar to ordinary interaction. The difference is the use of
a range of process ids in the condition, and relative indices in the sender/receiver
indices. The generated MPI code makes use of expression with meta.pid (current
process id) to calculate the relative index.

3. Iteration and 4. For-loop. rec and foreach are iteration statements. Specif-
ically rec is recursion, where the iteration conditions are not specified explicitly
in the protocol, and translates to while-loops. The loop condition is the same in
all processes. This may otherwise be known as collective loops. The loop generated

9

Table 2. Pabble statements and their corresponding code.

3. Iteration

rec LoopName { ... continue LoopName; }

Global/Endpoint Protocol

1

2 #pragma pabble predicate LoopName
3 while (1) {
4 ... }

Generated MPI Backbone

4. For-loop

foreach (i:0..N-1) { ... }

Global/Endpoint Protocol

1

2 for (int i=0; i<=N-1; i++) {
3 ...
4 }

Generated MPI Backbone

by rec has a #pragma pabble predicate annotation, so that the loop condition
can be later replaced by a kernel (see Section 4).

The foreach construct, on the other hand, specifies a counting loop, iterating
over the integer values in the range specified in the protocol from the lower bound
(e.g. 0) to the upper bound value (e.g. N-1). This construct can be naturally
translated into a C for-loop.

Table 3. MPI collective operations and their corresponding Pabble statements.

5. Scatter
Label(Type) from P[rootRole] to __All;

Global Protocol

1 rbuf = (Type *)calloc(meta.buflen(Label), sizeof(Type));
2 #pragma pabble kernel Label
3 sbuf = pabble_sendq_dequeue();
4 MPI_Scatter(sbuf, meta.buflen(Label), MPI_Type,
5 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);
6 pabble_recvq_enqueue(Label, rbuf);
7 #pragma pabble kernel Label
8 free(sbuf);

Generated MPI Backbone

6. Gather
Label(Type) from __All to P[rootRole];

Global Protocol

1 rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs,
2 sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();
5 MPI_Gather(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);
7 pabble_recvq_enqueue(Label, rbuf);
8 #pragma pabble kernel Label
9 free(sbuf);

Generated MP Backbone

7. All-to-All
Label(Type) from __All to __All;

Global Protocol

1 rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs,
2 sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();
5 MPI_Alltoall(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, ...);
7 pabble_recvq_enqueue(Label, rbuf);
8 #pragma pabble kernel Label
9 free(sbuf);

Generated MPI Backbone

5. Scatter, 6. Gather and 7. All-to-all Collective operations are written in
Pabble as multicast or multi-receive message interactions. While it is possible

10

to convert these interactions into multiple blocks of MPI code following the
rules in Table 2, we take advantage of the efficient and expressive collective
primitives in MPI. Table 3 shows the conversion of Pabble statements into MPI
collective operations. We describe only the most generic collective operations,
i.e. MPI_Scatter, MPI_Gather and MPI_Alltoall.

Translating collective operations from Pabble to MPI considers both global
Pabble protocol statements and endpoint protocol. If a statement involves the
__All role as sender, receiver or both, it is a collective operation. Table 3 shows
that translated blocks of MPI code do not use if-statements to distinguish
between sending and receiving processes. This is because collective primitives
in MPI are executed by both the senders and the receivers, and the runtime
decides whether it is a sender or a receiver by inspecting the rootRole parameter
(which is a process rank) in the MPI_Scatter or MPI_Gather call. Otherwise the
conversion is similar to their point-to-point counterparts in Table 2.

Process scaling. In addition to the translation of Pabble statements into MPI
code, we also define the process mapping between a Pabble protocol and a Pabble-
generated MPI program. Typical usage of MPI programs can be parameterised
on the number of spawned processes at runtime via program arguments. Hence,
given a Pabble protocol with scalable roles, we describe the rules below to map
(parameterised) roles into MPI processes.

A Pabble protocol for MPI code generation can contain any number of constant
values (e.g. const M = 10), which are converted in the backbone as C constants
(e.g. #define M 10), but it can use at most one scalable constant [26]. A scalable
constant is defined as:

const N = 1..max;

The constant can then be used for defining parameterised roles, and used in
indices of parameterised message interaction statements. For example, to declare
an N ×N role P, we write in the protocol:

global protocol P (role P[1..N][1..N])

which results in a total of N2 participants in the protocol, but N is not known
until execution time. MPI backbone code generated based on this Pabble protocol
uses N throughout. Since the only parameter in a scalable MPI program is its
size (i.e. number of spawned processes), the following code is generated in the
backbone to calculate, from size, the value of C local variable N:

MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs); // # of processes
int N = (int)pow(meta.nprocs, 1/2); // N = sqrt(meta.nprocs)

4 Compilation Step 2: Aspect-Oriented Design-Flow

This section focuses on the final stage of our code generation framework, which
merges two input components to derive the complete MPI program: (1) the
communication safe MPI backbone derived automatically from a Pabble protocol
(Section 3.1), and (2) the user supplied kernels capturing specific application
functionality.

11

The MPI backbone is automatically annotated with pragma statements
referencing all the labels defined in the Pabble protocol; the programmer, on
the other hand, must manually annotate each kernel with the corresponding
label. This way, our code generation framework can automatically merge both
components.

Our approach takes a similar path as OpenMP [8] and OpenACC [40], which
parallelise sequential programs using non-invasive #pragma annotations. The
difference is that while OpenMP operates on a shared memory architecture model
and OpenACC operates via a host-directed execution (co-processor) model, our
approach allows applications to target customised platform topologies defined by
Pabble, since MPI works on both shared and distributed memory platforms.

LARA language. To support an automated merging process, our programming
framework uses an aspect-oriented programming (AOP) language called LARA [6].
As far as we know, LARA is the only aspect-oriented approach that targets all
stages of a development process allowing static code analysis and manipulation
(e.g. source-level translation and code optimisation), toolchain execution (e.g. for
design-space exploration) and application deployment (e.g. to extract dynamic
behaviour). These various tasks, which are often performed manually and inde-
pendently, can be described in a unified way as LARA aspects. These aspects
can then drive LARA weavers to apply a particular strategy in a systematic and
automated way. In our code generation framework, we use LARA’s ability to
analyse and manipulate C code to automate the merging process between the
MPI backbone and the kernels sources (Section 4.1), and also to further optimise
the MPI code by overlapping communication and computation (Section 4.2).

4.1 Merging process

To combine the MPI backbone with the kernels, our aspect-oriented design-flow
inserts kernel function calls into the MPI backbone code. The insertion points
are realised as #pragmas in the MPI backbone code, generated from the input
protocol as placeholders where functional code is inserted. There are multiple
types of annotations whose syntax is given as:

#pragma pabble [<entry point type>] <entry point id> [(param0, ...)]

where entry point type is one of kernel, type or predicate, and entry point id
is an alphanumeric identifier.

Table 4. Annotations in backbone and kernel.

Generated MPI backbone User supplied kernel Merged code
Kernel
function #pragma pabble kernel Label

#pragma pabble kernel Label
void kernel_func(int label)
{ ... }

kernel_func(Label);

Datatypes
#pragma pabble type T
typedef void T;
MPI_Datatype MPI_T;

#pragma pabble type T
typedef double T;

typedef double T;
MPI_Datatype MPI_T

= MPI_DOUBLE;

Conditionals
#pragma pabble predicate Cond
while (1)
{ ... }

#pragma pabble predicate Cond
int condition()
{ ... return bool; }

while (condition())
{ ... }

12

Kernel function. #pragma pabble kernel Label defines the insertion point
of kernel functions in the MPI backbone code. Label is the label of the interac-
tion statement, e.g. Label(T)from Sender to Receiver, and the annotation is
replaced by the kernel function associated to the label Label. Programmers must
use the same pragma to manually annotate the implementation of the kernel
function. The first row in Table 4 shows an example.

Datatypes. #pragma pabble type TypeName annotates a generic type name
in the backbone, and also annotates the concrete definition of the datatype in the
kernels. In the second row of Table 4, the C datatype T is defined to be void since
the protocol does not have any information to realise the type. The kernel defines T
to be a concrete type of double, and hence our tool transforms the typedef in the
backbone into double and infers the corresponding MPI_Datatype (MPI derived
datatypes) to the built-in MPI integer primitive type, i.e. MPI_Datatype MPI_T

= MPI_DOUBLE. Our tool also supports generating MPI datatypes for structures
of primitive types, e.g. struct { int x, int y, double m } is transformed
to its MPI-equivalent datatype.

Conditionals. #pragma pabble predicate Label is a pragma for annotating
predicates, e.g. loop conditions or if-conditions, in the backbone. Since a Pabble
communication protocol (and transitively, the MPI backbone) does not specify a
loop condition, the default loop condition is 1, i.e. always true. This annotation
introduces a way to insert a conditional expression defined as a kernel function. It
precedes the while-loop, as shown in the third row of Table 4, to label the loop
with the name Label. The kernel function that defines expressions must use the
same annotation as the backbone, e.g. #pragma pabble predicate Label. After
the merge, this kernel function is called when the loop condition is evaluated.

4.2 Performance optimisation for overlapping communication and
computation by MPI immediate operators

When designing a protocol with a session-based approach such as Pabble protocol,
the resulting MPI backbone guarantees communication safety, i.e. the structures
of interactions between the processes are compatible. However, that does not
necessarily guarantee the most efficient communication pattern. For example
the pipeline Pabble statement T() from P[i:0..N-1] to P[i+1] results in a
communication safe pattern of Receive-Send for P[1] to P[N]. The protocol
implies there is a dependency between the received message and the send message,
hence each process in the pipeline must wait for the messages sent by processes
up the pipeline, before they can start sending a message to processes down the
pipeline. This is not optimal because the stall time between the beginning of
the pipeline and when the first message is received is a waste of CPU resources.
Often parallel applications can be modified such that the dependencies within
the same iteration are removed, so the message passing can start sending straight
away and overlap with receive using asynchronous messaging mode.

The use of asynchronous communication is dependent on the kernel functional-
ity and how message dependencies must be handled. For this reason, programmers
can use the async directive when annotating their kernels, e.g. #pragma pabble

async kernel LABEL, in order to trigger this optimisation.

13

The LARA aspect-oriented weaver transforms the generated code without
changing the ordering of the MPI message passing primitives, and hence preserves
the communication safety guarantees of the MPI backbone.

This optimisation relies on the placement of MPI’s immediate communication
primitives, which is made up of two parts: (1) a primitive call (MPI_Isend or
MPI_Irecv) to initiate the message transfer which returns immediately and
after which the buffer should not be accessed, and a (2) second primitive call
(MPI_Wait) to block and wait for the transfer to complete. Between the initial
call and the wait, the application can perform computation in parallel with the
message transfer to realise the communication-computation overlap.

The optimisation overlaps the computation which generates results to be sent
in the following iteration and the communication of sending and receiving results
of previous iteration to and from a neighbouring process. Since all computations
are executed in parallel, and the communication overlaps with the computation,
we achieve a speed-up for the parallel application over the sequential version of
the same application.

Below we show an example before the optimisation (left) and after the
optimisation (right) where the MPI_Wait is issued as late as possible:

1 if (cond) {
2 #pragma pabble Label
3 buffer = pabble_sendq_dequeue();
4 MPI_Send(buffer, ...);
5 free(buffer);
6 }

Original 1 if (cond) {
2 buffer = pabble_sendq_dequeue();
3 MPI_Isend(buffer, ..., request); }
4 ...
5 if (cond) {
6 #pragma pabble Label
7 MPI_Wait(request); free(buffer); }

Optimised

Note that our transformation preserves the ordering of communication defined
in the unoptimised backbone. The following presents an example that splits an
ordinary MPI receive/send as in the Stencil example into a set of statements
that interleave asynchronous receive/send.

1 MPI_Recv(...);
2 MPI_Send(...);

Original 1 MPI_Irecv(..., request1);
2 MPI_Isend(..., request2);
3 /* Interleave with computation */
4 MPI_Wait(request1, ...);
5 MPI_Wait(request2, ...);

Optimised

Since MPI_Wait is an operation that blocks until the send and receive buffers
can be accessed, we can ensure that MPI_Isend(..., request1) is completed
before MPI_Irecv(..., request2) even if the transmission of data for the latter
primitive is finished before the former.

5 Evaluation

In this section, we first demonstrate that our protocols can automatically generate
MPI programs using different parallel patterns, including application-specific
patterns (flexibility); and save efforts in the development of MPI applications
(productivity and reusability). Then we measure the performance and efficiency
of the generated MPI programs.

14

5.1 Productivity and reusability

Table 5. Comparing effort of implementing different applications using our framework.

Protocol Repo. Dwarf Pabble Backbone Kernels Effort

heateq [3] stencil X SG 15 154 335 0.69
nbody ring X PM 15 93 228 0.71
wordcount scatter-gather X 8 76 176 0.70
adpredictor [17] scatter-gather X 8 76 182 0.71
montecarlo scatter-gather X 8 76 70 0.48
montecarlo-mw master-worker X 10 82 70 0.46
LEsovler [26] wrapround mesh SG 15 132 208 0.66
matvec custom [28] DM 15 130 117 0.41
fft64 6-step butterfly S 11 64 134 0.68

Table 5 presents a comparison of different parallel algorithms developed using
our approach. The second and third columns show the input Pabble protocol
and whether it is available in our protocol repository. The Dwarf column denotes
the categorisations of parallel computational and structural patterns defined in
[2]; SG stands for ‘Structured Grid’, PM is ‘Particle Methods’; DM is ‘Dense
Matrix’; and S is ‘Spectral (FFT)’. The next three columns show lines of code
in the input Pabble protocol, the generated backbone, and the input user kernel
file. The final column shows the effort ratio of user written code against the total
(Kernels
Backbone+Kernels for protocols in repository or Kernels+Pabble

Backbone+Kernels). The higher the
ratio, the more effort are needed to write an equivalent program from scratch.

heateq is an implementation of the heat equation based on [3], and uses the
stencil protocol in our running example. nbody is a 2D N-body simulation imple-
mented with a ring topology; it is optimised with the asynchronous messaging
mode described in Section 4.2. wordcount is a simple application that counts
the number of occurrences of each word in a given text, implemented using the
scatter-gather pattern. adpredictor is an implementation of Microsoft’s AdPre-
dictor [17] algorithm for calculated click-through rate, also implemented in the
same scatter-gather pattern, but with a different set of kernel functions. LEsolver
is a linear equation solver parallelised with a custom wraparound mesh topology
outlined in [26]. montecarlo is Monte-Carlo π simulation, implemented with two
different patterns, scatter-gather and master-worker. A remarkable difference
between the two patterns is that the former uses collective operations and all
processes are involved in the main calculation, whereas with the master-worker
pattern workers are coordinated by a central master process by P2P communica-
tion that does not perform the main calculation. Note that the kernels used for
both implementations are the same (except with different kernel labels). matvec
is matrix-vector multiplication parallelised using the MatVec protocol outlined
in [28]. fft64 is an implementation of the Cooley-Tukey FFT between 64 processes
using 6 steps of butterfly exchange between pairs of processes.

Reusability. Both our implementations of wordcount and adpredictor use the
scatter-gather pattern. They exemplify the advantages of pattern programming –
common parallel patterns are collected and stored in our protocol repository, and

15

they are maintained separately from the user kernels so new parallel applications
can be constructed by writing new kernels only. In addition to reusable protocols,
some kernels can also be reused with different protocols. The scenarios for
kernels to be reused are less common since partitioning of input data are usually
dependent on the protocol, and the kernels are designed to be parallelised with a
single protocol. For example, we show two montecarlo implementations, one with
scatter-gather and another with master-worker pattern. Since the algorithm is
embarrassingly parallel and does not depend on input data, both implementations
can share the same kernel.

Our results show that our workflow saves development and debugging efforts
for MPI parallel applications, especially for novice parallel programmers. The
user can focus on developing and maintaining the functional behaviour of their
application, knowing that the merging of updated kernels and the respective MPI
backbones are correct.

5.2 Performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 4 16 32 64

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Number of processes

Unoptimised
Async. optimised

Fig. 4. N-body simulation (nbody).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 4 16 32 64

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Number of processes

Unoptimised
Async. optimised

Fig. 5. Linear Equation Solver (LEsolver).

 10

 100

 1000

1 2 4 8 12 16 24 48 64

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Number of processes

Word Count
AdPredictor

Fig. 6. Word Count (wordcount) and Ad-
Predictor (adpredictor)

 0.1

 1

 10

 100

heateq

nbody

w
ordcount

adpredictor

m
ontecarlo

m
atvec

fft64

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 s

e
q
u
e
n
ti
a
l
(t

im
e
s
)

Sequential
Speedup (64 proc.)

Fig. 7. Parallelisation speedup.

We evaluate our approach with 4 parallel applications which uses 3 different
Pabble protocols. All implementations are evaluated on cx11, a general purpose
multi-core cluster, and compiled with icc with optimisation level -O3, and tested
using Intel’s MPI library.

1 http://www.imperial.ac.uk/ict/services/hpc/facilities

16

In Fig. 4 we compare the performance of nbody with and without asynchronous
optimisation described in Section 4.2. The optimisation overlaps the main calcu-
lation with the communication, and the results show significant improvements
over the unoptimised version. Fig. 5 presents the runtime performance of LEsolver
which uses a custom wraparound mesh protocol with asynchronous optimisation.
In comparison with nbody, the optimisation effect on LEsolver has less impact.
This is partly because the asynchronous kernel implemented by nbody is more
complex than the kernel implemented by LEsolver, so the time spent on com-
munication is dominant. The asynchronous kernel in LEsolver also represents a
smaller proportion of the total computations, hence it has the less effect on the
overall runtime.

Fig. 6 shows that the two implementations – wordcount and adpredictor – both
of which use the scatter-gather pattern and a different set of kernels follow a
similar trend in scalability, which is dependent on the size of the input data.

Fig. 7 compares implementations in our framework running in 64 processes
against sequential C versions. Results show speedup for all algorithms except
fft64 due to communication overhead of the more complex butterfly topology.

6 Conclusion and Related Work

This paper presents a session-based framework for generating safe and scalable
parallel applications based on flexible protocols that capture parallel design
patterns. The framework consists of two parts: a compilation tool that derives a
safe-by-construction parallel backbone from a Pabble protocol description, and
an aspect-oriented compilation framework that mechanically inserts computation
code into the backbone, and performs asynchronous optimisation. We demonstrate
that our tool generates efficient and scalable MPI applications, and improves
productivity of parallel application development with reusable patterns.

Pattern-based structured parallel programming. An algorithmic skeleton
framework [15] is a high-level parallel programming approach which provides
reusable parallel communication and interaction patterns programmers can pa-
rameterise to generate a specific parallel program. [15, 30] describe a number
of tools that were developed in the past decade, and most of the tools target a
similar set of skeletons, including farm (master-slave), pipeline, iterations and
map. Our approach uses Pabble language to define the patterns of the skeletons,
and is able to represent all common patterns above. In addition, custom patterns
can be defined as Pabble protocols, and the formal MPST basis of Pabble ensures
that valid protocols are guaranteed to be communication-safe and deadlock-free,
and these properties hold for our generated MPI backbones (i.e. skeletons) by
construction. Sklml [36], an implementation of P3L language in OCaml supports
the common patterns above but without extensibility. Recently, pattern program-
ming was employed as a parallel programming teaching tool for undergraduate
students [41, 14]. They used a pragma approach, and obtained positive feedback
from the students. This motivated us to use the pragma annotation for sequential
kernels for flexibility and preciseness. Other than teaching, most works in the field
now target heterogeneous and embedded computing, for example, Fast Flow [20,

17

4] for CPU/GPU code generation, which can take advantage of the high-level
abstraction of skeletons to target and coordinate between different hardware,
each with different programming style.

Verification of MPI. The state-of-the-art in MPI program verification has been
surveyed in [16]. Verification approaches in [16] are diverse and we focus on works
that verify and detect deadlocks in MPI. ISP [39] is a runtime model checker
based on in-situ partial order as a heuristic avoid state explosion. DAMPI [38]
is a dynamic verifier for MPI based on ISP, but uses a distributed scheduling
algorithm to allow scaling. Both of the tools suffer from interleaving explosion,
where some execution schedule expands exponentially. MSPOE [33] improves on
ISP’s partial ordering algorithm to overcome the defect and detect orphaning
deadlocks. All above tools are test-based and verify correctness with a fixed
harness suite. MUST [18] is another scalable, MPI dynamic verification tool,
which combines two MPI verification tools, Marmot [21] and Umpire [37], and
overcomes scalability challenges in previous tools by comprehensive analysis of
the semantics of the primitives. TASS [34] employs model checking and symbolic
execution, but is also able to verify user-specified assertions for the interaction
behaviour of the program and functional equivalence between MPI programs and
sequential ones [35]. A user needs to specify the maximum number of processes
(see [23] for further comparisons with protocol-based approaches). The concept of
parallel control-flow graphs is proposed in [5] for static analysis of MPI programs,
e.g., as a means to verify sender-receiver matching in MPI source code. An
extension to dynamic analysis is presented in [1]. As far as we know, no other
work focuses on communication deadlock-free MPI code generation based on
types or backbones.

Session-based parallel programming. Session C [27] is a programming frame-
work designed for parallel programming with multiparty session types. Users
implement endpoint programs using session-based APIs and type-check them
against its endpoint protocols. The framework differs from this work that it does
not use a parameterised type for type-checking and the approach presented here
are top-down code generation as opposed to type checking. Similarly, the work
[26] introduces Pabble and type-checking MPI by Pabble, but it does not consider
code generation. [23] proposes another type-checking tool for MPI based on
multiparty session types. It treats a fine-grained index analysis by using VCC [7]
where a program requires annotations for loops, which can be semi-automatically
generated by the program annotator. All of these session-based works study
type-checking endpoint programs written by developers. As far as we know, this
work is the first to automatically generate a complete, communication-safe MPI
code specified by a protocol specification language.

Future work includes extending our approach to generate MPI one-sided com-
munication from the current point-to-point messaging abstraction in Pabble,
which is more efficient in some categories of communication patterns; and sup-
porting recursive, divide-and-conquer parallel pattern, which is possible with
recent advances in session types on sub-protocols [9].

18

References

1. Aananthakrishnan, S., Bronevetsky, G., Gopalakrishnan, G.: Hybrid approach for
data-flow analysis of MPI programs. In: ICS ’13. pp. 455–456. ACM (2013)

2. Asanovic, K., Wawrzynek, J., Wessel, D., Yelick, K., Bodik, R., Demmel, J., Keaveny,
T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K.: A view of the
parallel computing landscape. CACM 52(10), 56 (2009)

3. Balaji, P., Dinan, J., Hoefler, T., Thakur, R.: Advanced MPI Programming (Tutorial
at SC’13). http://www.mcs.anl.gov/∼thakur/sc13-mpi-tutorial/

4. Boob, S., González-Vélez, H., Popescu, A.M.: Automated instantiation of hetero-
geneous fast flow CPU/GPU parallel pattern applications in clouds. In: PDP. pp.
162–169. IEEE (2014)

5. Bronevetsky, G.: Communication-Sensitive Static Dataflow for Parallel Message
Passing Applications. In: CGO ’09’. pp. 1–12. IEEE (2009)

6. Cardoso, J.a.M., Carvalho, T., Coutinho, J.G., Luk, W., Nobre, R., Diniz, P.,
Petrov, Z.: LARA: an aspect-oriented programming language for embedded systems.
In: AOSD ’12. pp. 179–190. ACM (2012)

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
TPHOLs ’09’. LNCS, vol. 5674, pp. 23–42 (2009)

8. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. Computational Science and Engineering 5(1), 46–55 (1998)

9. Demangeon, R., Honda, K.: Nested protocols in session types. In: CONCUR 2012.
LNCS, vol. 7454, pp. 272–286. Springer (2012)

10. Deniélou, P.M., Yoshida, N.: Dynamic multirole session types. In: POPL ’11. pp.
435–446. ACM (2011)

11. Denielou, P.M., Yoshida, N., Bejleri, A., Hu, R.: Parameterised Multiparty Session
Types. Logical Methods in Computer Science 8(4), 1–46 (2012)

12. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov, S.:
Automated, scalable debugging of MPI programs with Intel Message Checker. In:
SE-HPCS ’05. pp. 78–82. ACM (2005)

13. Fagg, G.E., Dongarra, J.J.: FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World. In: Recent Advances in Parallel Virtual Machine
and Message Passing Interface. LNCS, vol. 1908, pp. 346–353. Springer (2000)

14. Ferner, C., Wilkinson, B., Heath, B.: Toward using higher-level abstractions to
teach parallel computing. In: IPDPSW. pp. 1291–1296. IEEE (2013)

15. González-Vélez, H., Leyton, M.: A Survey of Algorithmic Skeleton Frameworks:
High-level Structured Parallel Programming Enablers. Softw. Pract. Exper. 40(12),
1135–1160 (2010)

16. Gopalakrishnan, G., Kirby, R.M., Siegel, S., Thakur, R., Gropp, W., Lusk, E., De
Supinski, B.R., Schulz, M., Bronevetsky, G.: Formal analysis of MPI-based parallel
programs. CACM 54(12), 82–91 (2011)

17. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-Scale Bayesian Click-
Through Rate Prediction for Sponsored Search Advertising in Microsofts Bing
Search Engine. In: ICML’10. pp. 13–20 (2010)

18. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI Runtime
Error Detection with MUST: Advances in Deadlock Detection. In: SC ’12. pp. 1–11.
IEEE (2012)

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL ’08. vol. 5201, pp. 273–284. ACM (2008)

19

20. Kolodziej, J., González-Vélez, H., Wang, L.: Advances in data-intensive modelling
and simulation. Future Generation Comp. Syst. 37, 282–283 (2014)

21. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: an MPI analysis
and checking tool. In: PARCO 2003. pp. 493–500 (2003)

22. Mancini, E.P., Marsh, G., Panda, D.K.: An MPI-stream hybrid programming model
for computational clusters. In: CCGrid 2010. pp. 323–330. IEEE (2010)

23. Marques, E.R.B., Martins, F., Vasconcelos, V.T., Santos, C., Ng, N., Yoshida, N.:
Protocol-based verification of C+MPI programs. DI-FCUL 13, University of Lisbon
(2014)

24. Message Passing Interface. http://www.mcs.anl.gov/research/projects/mpi/

25. Ng, N., Yoshida, N.: Pabble: Parameterised Scribble. SOCA (2014),
http://www.doc.ic.ac.uk/∼cn06/soca, to appear

26. Ng, N., Yoshida, N.: Pabble: Parameterised Scribble for Parallel Programming. In:
PDP. pp. 707–714. IEEE (2014)

27. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Safe Parallel Programming
with Message Optimisation. In: TOOLS 2012. LNCS, vol. 7304, pp. 202–218.
Springer, Berlin, Heidelberg (2012)

28. Ng, N., Yoshida, N., Luk, W.: Scalable Session Programming for Heterogeneous
High-Performance Systems. In: SEFM 2013 Collocated Workshops. LNCS, vol.
8368, pp. 82–98. Springer (2013)

29. Pabble project page. http://www.doc.ic.ac.uk/∼cn06/pabble

30. Rabhi, F., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed
Computing. Springer (2003)

31. Saldaña, M., Patel, A., Madill, C., Nunes, D., Wang, D., Chow, P., Wittig, R.,
Styles, H., Putnam, A.: MPI as a Programming Model for High-Performance
Reconfigurable Computers. ACM TRETS 3(4), 1–29 (2010)

32. Scribble homepage. http://scribble.org/

33. Sharma, S., Gopalakrishnan, G., Bronevetsky, G.: A sound reduction of persistent-
sets for deadlock detection in mpi applications. In: SBMF 2012. LNCS, vol. 7498,
pp. 194–209. Springer (2012)

34. Siegel, S.F., Zirkel, T.K.: Collective assertions. In: VMCAI’11. pp. 387–402. LNCS
(2011)

35. Siegel, S.F., Zirkel, T.K.: FEVS: A Functional Equivalence Verification Suite for
High-Performance Scientific Computing. MSCS 5(4), 427–435 (2011)

36. Sklml webpage. http://sklml.inria.fr

37. Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications
with Umpire. In: SC ’00. p. 51. IEEE (2000)

38. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B., Schulz, M., Bron-
evetsky, G.: A scalable and distributed dynamic formal verifier for mpi programs.
In: SC ’10. pp. 1–10. IEEE (2010)

39. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.:
Formal verification of practical MPI programs. In: PPoPP ’09. pp. 261–270. ACM
(2008)

40. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC – First Experiences
with Real-World Applications. In: Euro-Par 2012, LNCS, vol. 7484, pp. 859–870.
Springer (2012)

41. Wilkinson, B., Villalobos, J., Ferner, C.: Pattern programming approach for teaching
parallel and distributed computing. In: SIGCSE ’13. pp. 409–414. ACM (2013)

20

A Appendix: Endpoint protocols

MPI processes are usually identified by their process id (called ranks), and the
behaviour of each process is guarded by conditional tests on the ranks at runtime.
Our tool automatically generates endpoint protocols as an intermediate step
from a Pabble protocol to make MPI code generation more straightforward. The
method, called projection algorithm in the literature [19], is described in detail
in [26]. Projecting a Pabble protocol into an endpoint Pabble protocol preserves
its succinctness, where each message interaction statements are guarded by a
condition to check if a participant is part of a statement. Listing 3 shows the
endpoint protocol of the stencil example. After generating the endpoint protocol,
our tool automatically derives the MPI backbone from this description.

1 const N = 2..max;
2 local protocol Stencil at P[1..N][1..N](role P[1..N][1..N]) {
3 rec Steps {
4 if P[r:1..N][c:2..N] LeftToRight(T) from P[r][(c-1)];
5 if P[r:1..N][c:1..(N-1)] LeftToRight(T) to P[r][(c+1)];
6 if P[r:1..N][c:1..(N-1)] RightToLeft(T) from P[r][(c+1)];
7 if P[r:1..N][c:2..N] RightToLeft(T) to P[r][(c-1)];
8 if P[r:2..N][c:1..N] UpToDown(T) from P[(r-1)][c];
9 if P[r:1..(N-1)][c:1..N] UpToDown(T) to P[(r+1)][c];

10 if P[r:1..(N-1)][c:1..N] DownToUp(T) from P[(r+1)][c];
11 if P[r:2..N][c:1..N] DownToUp(T) to P[(r-1)][c];
12 continue Steps;
13 }
14 }

Listing 3. Automatically generated endpoint protocol based on the Stencil protocol.

B Appendix for Section 3.1

This appendix section presents omitted Pabble to MPI translation rules used in
Section 3.1.

Internal interaction. When role with name __self is used in a protocol, it
means that both the sending and receiving endpoints are internal to the processes,
and there is no interaction with external processes. This statement applies to all
processes, and is not to be confused with self-messaging, e.g. Label()from P[1]

to P[1], which would lead to deadlock. The statement does not use any MPI
primitives. The purpose of using this special role is to create optional insertion
point for the MPI backbone, which may be used for optional kernels such as
initialisation or finalisation, hence it generates a pragma in the MPI backbone.

Table 6. Pabble internal iteration and its corresponding code.

Internal interaction
Internal() from __self to __self;

Global/Endpoint Protocol

1

2 #pragma pabble Internal
Generated MPI

Choice. Conditional branching in Pabble is performed by label branching and
selection. We use the example given in Table 2 to explain. The deciding process,
e.g. P[master], makes a choice and executes the statements in the selected

21

branch. Each branch starts by sending a unique label, e.g. Branch0, to the
decision receiver, e.g. P[worker]. Hence for a well-formed Pabble protocol, the
first line of each branch is from the deciding process to the same process but
using a different label.

Note that the decision is only known between the two processes in the first
statement, and other processes should be explicitly notified or use broadcast
to propagate the decision. The MPI backbone is generated with a different
structure as the endpoint protocol. First, the MPI backbone contains an outer
if-then-else, splitting the deciding process (Line 1–9) and the decision receiver
(Line 9–20). In the deciding process, a block of if-then-else-if code is generated to
perform a send with different label (called MPI tag), e.g. Line 5. This statement
is generated with all the queue and memory management code as described
above for ordinary interaction statements. Each of the if-condition is annotated
with #pragma pabble predicate BranchLabel, so that the conditions can be
replaced by predicate kernels (see Section 4). For the decision receiver, MPI_Probe
is used to peek the received label, then the switch statement is used to perform
the correct receive (for different branches).

Choice

choice at P[master] {
Branch0(Type) from P[master]

to P[worker];
...

} or { ... }

Global Protocol

choice at P[master] {
if P[worker] Branch0(Type) from P[master];
if P[master] Branch0(Type) to P[worker];
...

} or { ... }

Projected Endpoint Protocol

1 if (rank==role_P(master)) { // Choice sender
2 #pragma pabble predicate Branch0
3 if (1) {
4 // Block of send.
5 MPI_Send(..., MPI_Type, role_P(worker), Branch0, ...);
6 } else
7 #pragma pabble predicate Branch1
8 if (1) { ... }
9 } else { // Choice receiver

10 MPI_Probe(role_P(master), MPI_ANY_TAG, comm, &status); switch (status.MPI_TAG) {
11 case Branch0:
12 // Ordinary block of recv.
13 if (rank==role_P(worker)) {
14 MPI_Recv(..., MPI_Type, role_P(master), Branch0, ...);
15 pabble_recvq_enqueue(Branch0, buf); }
16 ... break;
17 #pragma pabble Branch1
18 case Branch1: ...
19 }
20 }

Generated MPI Backbone

22

