Safe Parallel Programming with Session Java

Nicholas Ng*, Nobuko Yoshida*
Olivier Pernet*, Raymond Hu*, and Yiannos KryftisT

*Imperial College London fNational Technical University of Athens

Abstract. The session-typed programming language Session Java (SJ) has proved
to be an effective tool for distributed programming, promoting structured pro-
gramming for communications and compile-time safety. This paper investigates
the use of SJ for session-typed parallel programming, and introduces new lan-
guage primitives for chained iteration and multi-channel communication. These
primitives allow the efficient coordination of parallel computation across multi-
ple processes, thus enabling SJ to express the complex communication topologies
often used by parallel algorithms. We demonstrate that the new primitives yield
clearer and safer code for pipeline, ring and mesh topologies through implemen-
tations of representative parallel algorithms. We then present a semantics and ses-
sion typing system including the new primitives, and prove type soundness and
deadlock-freedom for our implementations. The benchmark results show that the
new SJ is substantially faster than the original SJ and performs competitively
against MPJ Express' used as reference.

1 Introduction

The current practice of parallel and distributed programming is fraught with errors that
go undetected until runtime, manifest themselves as deadlocks or communication er-
rors, and often find their root in mismatched communication protocols. The Session
Java programming language (SJ) [13] improves this status quo. SJ is an extension of
Java with session types, supporting statically safe distributed programming by message-
passing. Session types were introduced as a type system for the 7-calculus [9, 22], and
have been shown to integrate cleanly with formal models of object-oriented program-
ming. The SJ compiler offers two strong static guarantees for session execution: (1)
communication safety, meaning a session-typed process can never cause or encounter a
communication error by sending or receiving unexpected messages; and (2) deadlock-
freedom — a session-typed process will never block indefinitely on a message receive.
Parallel programs often make use of complex, high-level communication patterns
such as globally synchronised iteration over chained topologies like rings and meshes.
Yet modern implementations are still written using low-level languages and libraries,
commonly C and MPI [14]: implementations make the best use of hardware, but at the
cost of complicated programming where communication is entangled with computa-
tion. There is no global view of inter-process communication, and no formal guarantees
are given about communication correctness, which often leads to hard-to-find errors.

I MPJ Express [17] is a Java implementation of the MPI standard. Extensive benchmarks com-
paring MPJ Express to other MPI implementations are presented in [17]. The benchmarks
show performance competitive with C-based MPICH2.

We investigate parallel programming in SJ as a solution to these issues. However,
SJ as presented in [13] only guarantees progress for each session in isolation: dead-
locks can still arise from the interleaving of multiple sessions in a process. Moreover,
implementing chained communication topologies without additional language support
requires temporary sessions, opened and closed on every iteration — a source of non-
trivial inefficiencies (see § 3 for an example). We need new constructs, well-integrated
with existing binary sessions, to enable lightweight global communication safety and
deadlock-freedom, increase expressiveness to support structured programming for com-
munication topologies and improve performance.

Our new multi-channel session primitives fit these requirements, and make it possi-
ble to safely and efficiently express parallel algorithms in SJ. The combination of new
primitives and a well-formed topology check extension to SJ compilation [13] bring the
benefits of type-safe, structured communications programming to HPC. The primitives
can be chained, yielding a simple mechanism for structuring global control flow. We for-
malise these primitives as novel extensions of the session calculus, and the correctness
condition on the shape of programs enforced by a simple extension of SJ compilation.
This allows us to prove communication safety and deadlock-freedom, and offers a new,
lightweight alternative to multiparty session types for global type-safety.

Contributions. This paper constitutes the first introduction to parallel programming
in SJ, in addition to presenting the following technical contributions:

(§2) We introduce SJ as a programming language for type-safe, efficient parallel pro-
gramming, including our implementation of multi-channel session primitives, and
the extended SJ tool chain for parallel programming. We show that the new primi-
tives enable clearer, more readable code.

(§3) We discuss SJ implementations of parallel algorithms using the Jacobi solution to
the discrete Poisson equation (§ 3) as an example. The algorithm uses communi-
cation topology representative of a large class of parallel algorithms, and demon-
strates the practical use of our multi-channel primitives.

(§4) We define the multi-channel session calculus, its operational semantics, and typ-
ing system. We prove that processes conforming to a well-formed communica-
tion topology (Definition 4.1) satisfy the subject reduction theorem (Theorem 4.1),
which implies type and communication-safety (Theorem 4.2) and deadlock-freedom
across multiple, interleaved sessions (Theorem 4.3).

(§5) Performance evaluation of n-Body simulation and Jacobi solution algorithms,
demonstrating the benefits of the new primitives. The SJ implementations using
the new primitives show competitive performance against an MPJ Express [15].

Related and future work are discussed in § 6. Detailed definitions, proofs, benchmark

results and source code can be found at the on-line Appendix [6].
Acknowledgements. We thank the referees for their useful comments and Brittle

Tsoi and Wayne Luk for their collaborations. This work is partially supported by EP-

SRC EP/F003757 and EP/G015635.

2 Session-Typed Programming in SJ

This section firstly reviews the key concepts of session-typed programming using Ses-
sion Java (SJ) [12, 13]. In (1), we outline the basic methodology; in (2), the protocol

structures supported by SJ. We then introduce the new session programming features
developed in this paper to provide greater expressiveness and performance gains for
session-typed parallel programming. In (3), we explain session iferation chaining; and
in (4), the generalisation of this concept to the multi-channel primitives. Finally, (5)
describes the fopology verification for parallel programs.

(1) Basic SJ programming. SJ is an extension of Java for type-safe concurrent and
distributed session programming. Session programming in SJ, as detailed in [13], starts
with the declaration of the intended communication protocols as session types; we shall
often use the terms session type and protocol interchangeably. A session is the inter-
action between two communicating parties, and its session type is written from the
viewpoint of one side of the session. The following declares a protocol named P:

protocol P !<int>.?(Data)

Protocol P specifies that, at this side of the session, we first send (!) a message of
Java type int, then receive (?) another message, an instance of the Java class Data,
which finishes the session. After defining the protocol, the programmer implements the
processes that will perform the specified communication actions using the SJ session
primitives. The first line in the following code implements an Alice process conforming
to the P protocol:

A:alice.send(42); Data d = (Data) alice.receive();//!<int>.2(Data)
B:int i = bob.receiveInt(); bob.send(new Data()); //?(int).!<Data>

The alice variable refers to an object of class SJSocket, called a session socket, which
represents one endpoint of an active session. The session-typed primitives for session-
typed communication behaviour, such as send and receive, are performed on the ses-
sion socket like method invocations. SJSocket declarations associate a protocol to the
socket variable, and the SJ compiler statically checks that the socket is indeed used ac-
cording to the protocol, ensuring the correct communication behaviour of the process.

This simple session application also requires a counterpart Bob process to interact
with Alice. For safe session execution, the Alice and Bob processes need to perform
matching communication operations: when Alice sends an int, Bob receives an int,
and so on. Two processes performing matching operations have session types that are
dual to each other. The dual protocol to P is protocol PDual ?(int).!<Data>, and a
dual Bob process can be implemented as in the second line of the above listing.

(2) More complex protocol structures. Session types are not limited to sequences
of basic message passing. Programmers can specify more complex protocols featuring
branching, iteration and recursion.

The protocols and processes in Fig.1 demonstrate session iteration and branching.
Process P1 communicates with P2 according to protocol IntAndBoolStream; P2 and P3
communicate following protocol IntStream. Like basic message passing, iteration and
branching are coordinated by active and passive actions at each side of the session.
Process P1 actively decides whether to continue the session iteration using outwhile
(condition), and if so, selects a branch using outbranch(label). The former action
implements the ! [T]* type given by IntAndBoolStream, where 7 is the !{Labell: Ty,

Label2: Ty, ...} type implemented by the latter. Processes P2 and P3 passively follow

protocol IntAndBoolStream ![!{Labell: !<int>, Label2: !<boolean>}]x*
protocol IntAndBoolDual ?7[?{Labell: ?<int>, Label2: ?7(boolean)}]*

protocol IntStream 1[1<int>] *
protocol IntStreamDual ?[?7(int)]x*
P1: s.outwhile(x < 10) { Po: s2.outwhile(sl.inwhile()) {
T ’ 1.inbranch
s.outbranch(Labell) { s1.inbranch() {
s.send(42) ; case Labell:
. : ’ int i = sl.receivelInt();

s2.send(i);

case Label2:
boolean b = sil.receiveBool();
s2.send (42);

P3: s.inwhile {
int i = s.receivelInt();

¥ 3

Session socket s in P1 follows IntAndBoolStream, s1 and s2in P2 follows IntAndBoolDual
and IntStream; s in P3follows IntStreamDual.

Fig. 1. Simple chaining of session iterations across multiple pipeline process.

the selected branch and the iteration decisions (received as internal control messages)
using inbranch and inwhile, and proceed accordingly; the two dual protocols show the
passive versions of the above iteration and branching types, denoted by ? in place of !.

So far, we have reviewed basic SJ programming features [13] derived from standard
session type theory [9, 22]; the following paragraphs discuss new features motivated by
the application of session types to parallel programming in practice.

(3) Expressiveness gains from iteration chaining. The three processes in Fig. 1 ad-
ditionally illustrate session iteration chaining, forming a linear pipeline as depicted at
the top of Fig. 1. The net effect is that P1 controls the iteration of both its session with
P2 and transitively the session between P2 and P3. This is achieved through the chain-
ing construct s2.outwhile(s1.inwhile()) at P2, which receives the iteration decision
from P1 and forwards it to P3. The flow of both sessions is thus controlled by the same
master decision from P1.

Iteration chaining offers greater expressiveness than the individual iteration primi-
tives supported in standard session types. Normally, session typing for ordinary inwhile
or outwhile loops must forbid operations on any session other than the session chan-
nel that of loop, to preserve linear usage of session channels. This means that e.g.
s1.inwhile(){ si1.send(v); }is allowed, whereas s1.inwhile(){ s2.send(v); }is
not. With the iteration chaining construct, we can now construct a process containing
two interleaved inwhile or outwhile loops on separate sessions. In fact, session itera-
tion chaining can be further generalised as we explain below.

(4) Multi-channel iteration primitives. Simple iteration chaining allows SJ program-
mers to combine multiple sessions into linear pipeline structures, a common pattern
in parallel processing. In particular, type-safe session iteration (and branching) along a
pipeline is a powerful benefit over traditional stream-based data flow [19]. More com-
plex topologies, however, such as rings and meshes, require iteration signals to be di-

Forwarder

Forwarderl: s3.outwhile(sl.inwhile()) {...}

Forwarder2: s4.outwhile(s2.inwhile()) {...}
End: <s3,s4>.inwhile() {...}
Fig. 2. Multi-channel iteration in a simple grid topology.

rectly forwarded from a given process to more than one other, and for multiple signals
to be directed into a common sink; in SJ, this means we require the ability to send and
receive multiple iteration signals over a set of session sockets. For this purpose, SJ intro-
duces the generalised multi-channel primitives; the following focuses on multi-channel
iteration, which extends the chaining constructs from above.

Fig. 2 demonstrates multi-channel iteration for a simple grid topology. Process
Master controls the iteration on both the s1 and s2 session sockets under a single it-
eration condition. Processes Forwarderi and Forwarder2 iterate following the signal
from Master and forward the signal to End; thus, all four processes iterate in lock-
step. Multi-channel inwhile, as performed by End, is intended for situations where
multiple sessions are combined for iteration, but all are coordinated by an iteration
signal from a common source; this means all the signals received from each socket
of the inwhile will always agree — either to continue iterating, or to stop. In case
this is not respected at run-time, the inwhile will throw an exception, resulting in
session termination. Together, multi-channel primitives enable the type-safe imple-
mentation of parallel programming patterns like scatter-gather, producer-consumer, and

more complex chained topologies. The basic session primitives express only disjoint
behaviour within individual sessions, whereas the multi-channel primitives implement
verification. In previous work, the safety
guarantees offered by the SJ compiler

LY v
means that, while any one session was Topology verifer
guaranteed to be internally deadlock-

l ®

cess as a whole. The nodes in a paral- y 3
%el program typ%cally ma'ke use of many \\U@ \\c@
interleaved sessions — with each of their

interaction across multiple sessions as a single, integrated structure.
were limited to the scope of each inde-

free, this property may not hold in the

neighbours in the chosen network topol- ©
ogy. Furthermore, inwhile and outwhile L

SJ
deployment
config. file

SJ compiler

(5) The SJ tool chain with topology -
SJ program

pendent binary (two-party) session. This

presence of interleaved sessions in a pro-

in iteration chains must be correctly com- Cluster nods Ciuster node Cluster node
pOS@d. Running SJ Running SJ Running SJ
program program program

As a solution to this issue, we add a
topology verification step to the SJ tool
chain for parallel programs. Fig. 3 sum- Fig. 3. The SJ tool chain.

marises the SJ tool chain for developing type-safe SJ parallel program on a distributed
computing cluster. An SJ parallel program is written as a collection of SJ source files,
where each file corresponds to a role in the topology. Topology verification (A) takes as
input the source files and a deployment configuration file, listing the hosts where each
process will be deployed and describing how to connect the processes. The sources and
configuration files are then analysed statically to ensure the overall session topology of
the parallel program conforms to a well-formed topology defined in Definition 4.1 in
§ 4, and in conjunction with session duality checks in SJ, precludes global deadlocks
in parallel SJ programs (see Theorem 4.3). The source files are then compiled (B) to
bytecode, and (C) deployed on the target cluster using details on the configuration file to
instantiate and establish sessions with their assigned neighbours, ensuring the runtime
topology is constructed according to the verified configuration file, and therefore safe
execution of the parallel program.

3 Parallel Algorithms in SJ

This section presents the SJ implementation of a Jacobi method for solving the Discrete
Poisson Equation and explains the benefits of the new multi-channel primitives. The ex-
ample was chosen both as a representative real-world parallel programming application
in SJ, and because it exemplifies a complex communication topology [8]. Implementa-
tions of other algorithms featuring other topologies, such as n-Body simulation (circular
pipeline) and Linear Equation Solver (wraparound mesh), are available from [6].

Jacobi solution of the discrete Poisson equation: mesh topology. Poisson’s equation
is a partial differential equation widely used in physics and the natural sciences. Jacobi’s
algorithm can be implemented using various partitioning strategies. An early session-
typed implementation [1] used a one-dimensional decomposition of the source matrix,
resulting in a linear communication topology. The following demonstrates how the new
multi-channel primitives are required to increase parallelism using a two-dimensional
decomposition, i.e. using a 2D mesh communication topology. The mesh topology is
used in a range of other parallel algorithms [3].
The discrete two-dimensional Poisson equation (V2u); j for am x n grid reads:
wij = (w1 j+ i1 j+uijo1 +uijr1 —dx>gi ;)

where2 <i<m—1,2<j<n—1,anddx=1/(n+1). Jacobi’s algorithm converges
on a solution by repeatedly replacing each element of the matrix « by an adjusted aver-
age of its four neighbouring values and dngi, ;- For this example, we set each g; ; to 0.
Then, from the k-th approximation of u, the next iteration calculates:

uf}“l = %(”ﬁl,j + uf-il’j + uﬁjﬂ + ”i‘{,jq)
Termination may be on reaching a target convergence threshold or on completing a
certain number of iterations. Parallelisation of this algorithm exploits the fact that each
element can be independently updated within each iteration. The decomposition divides
the grid into subgrids, and each process will execute the algorithm for its assigned sub-
grid. To update the points along the boundaries of each subgrid, neighbouring processes

need to exchange their boundary values at the beginning of each iteration.

protocol MasterToWorker

cbegin. // Open o session with the Worker

1<int>. !I<int>. // Send matriz dimensions

'L // Main loop: checking convergence condition
1<double[]>. // Send our boundary values...
?(double[]). // ..and receive our neighbour’s
?(ConvergenceValues) // Convergence data for neighbouring subgrid

1= // (end of main loop)

Fig. 4. The session type between the Master and Workers for the Jacobi algorithm.

A 2D mesh implementation is shown in Fig. 7. The Master node controls iteration
from the top-left corner. Nodes in the centre of the mesh receive iteration control signals
from their top and left neighbours, and propagate them to the bottom and right. Nodes
at the edges only propagate iteration signals to the bottom or the right, and the final
node at the bottom right only receives signals and does not propagate them further.

The session type for communication from the Master to either of the Workers under
it or at its right is given in Fig. 4. The Worker’s protocol for interacting with the Master

is the dual of MasterToWorker; the same protocol is used for interaction with other
Workers at their right and bottom (except for Workers at the edges of the mesh).

As listed in Fig. 5, it is possible to express the complex 2D mesh using single-
channel primitives only. However, this implementation suffers from a problem: without
the multi-channel primitives, there is no way of sending iteration control signals both
horizontally and vertically; the only option is to open and close a temporary session
in every iteration (Fig. 7), an inefficient and counter-intuitive solution. Moreover, the
continuous nature of the vertical iteration sessions cannot be expressed naturally.

Having noted this weakness, Fig. 6 lists a revised implementation, taking advan-
tage of multi-channel inwhile and outwhile. The multi-channel inwhile allows each
Worker to receive iteration signals from the two processes at its top and left. Multi-
channel outwhile lets a process control both processes at the right and bottom. To-
gether, these two primitives completely eliminate the need for repeated opening and
closing of intermediary sessions in the single-channel version. The resulting implemen-
tation is clearer and also much faster. See § 5 for the benchmark results.

4 Multi-channel Session 7-Calculus

This section formalises the new nested iterations and multi-channel communication
primitives and proves correctness of our implementation. Our proof method consists of:

1. We first define programs (i.e. starting processes) including the new primitives, and
then define operational semantics with running processes modelling intermediate
session communications.

2. We define a typing system for programs and running processes.

3. We prove that if a group of running processes conforms to a well-formed topology,
then they satisfy the subject reduction theorem (Theorem 4.1) which implies type
and communication-safety (Theorem 4.2) and deadlock-freedom (Theorem 4.3).

4. Since programs for our chosen parallel algorithms conform to a well-formed topol-
ogy, we conclude that they satisfy the above three properties.

Master :
right.outwhile(notConverged()) {
under = chanUnder.request();
sndBoundaryVal (right, under);
rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder);

rcvConvergenceVal(right, under);
}
Worker :
right.outwhile(left.inwhile) {
over = chanOver.accept();
under = chanUnder.request();
sndBoundaryVal(left,right,over,
under) ;
rcvBoundaryVal (left,right,over,
under) ;
doComputation(rcvLeft,rcvRight,
rcvOver,rcvUnder) ;
sndConvergenceVal(left,top);
}
WorkerSE :
left.inwhile {
over = chanOver.request();
sndBoundaryVal(left,over) ;
rcvBoundaryVal(left,over) ;
doComputation(rcvLeft,rcvOver);
sndConvergenceVal (left,top) ;
}

Master :
<under,right>.outwhile(
notConverged()) {
sndBoundaryVal (right, under);
rcvBoundaryVal(right, under);
doComputation(rcvRight, rcvUnder
)3
rcvConvergenceVal(right, under);
}
Worker :
<under,right>.outwhile
(<over,left>.inwhile) {
sndBoundaryVal(left,right,over,
under) ;
rcvBoundaryVal (left,right,over,
under) ;
doComputation(rcvLeft,rcvRight,
rcvOver,rcvUnder) ;
sndConvergenceVal (left,top);
}
WorkerSE :
<over,left>.inwhile {
sndBoundaryVal(left,over);
rcvBoundaryVal (left,over);
doComputation(rcvLeft,rcv0ver);
sndConvergenceVal(left,top);

Fig. 6. Efficient 2D mesh implementation using

Fig.5. Initial 2D mesh implementation with multi-outwhile and multi-inwhile.

single-channel primitives only.

SouthWest

EEE—— Iteration control msg.

® o o > Repeated session open/close

SouthEast

—]p- |teration control msg.

(emphasis, difference between impl.)

..... » Data transfer

Fig. 7. Initial and improved communication patterns in the 2D mesh implementation.

4.1 Syntax

The session 7-calculus we treat extends [9]. Fig. 8 defines its syntax. Channels (u, 1/, ...)
can be either of two sorts: shared channels (a,b,x,y) or session channels (k,k',...).
Shared channels are used to open a new session. In accepting and requesting processes,
the name a represents the public interaction point over which a session may commence.
The bound variable k represents the actual channel over which the session communi-
cations will take place. Constants (c,c’,...) and expressions (e,¢’,...) of ground types
(booleans and integers) are also added to model data. Selection chooses an available
branch, and branching offers alternative interaction patterns; channel send and channel
receive enable session delegation [9]. The sequencing, written P; Q, meaning that P is
executed before Q. This syntax allows for complex forms of synchronisation, joining,
and forking since P can include any parallel composition of arbitrary processes. The
second addition is that of multicast inwhile and outwhile, following SJ syntax. Note
that the definition of expressions includes multicast inwhile (k; ...k,).inwhile, in or-
der to allow inwhile as an outwhile loop condition. The control message k 1 [b] created
by outwhile appears only at runtime.

The precedence of the process- building operators is (from the strongest) “<,>,{}”,
“”, % and “|”. Moreover we define that associates to the right. The binders for
channels and variables are standard.

733

(Values) (Expressions)
v = a,b,x,y shared names
en=v | e+e | not(e) ... value, sum, not
| true,false boolean S
. | (ki...ky).inwhile inwhile
| n integer
(Processes) (Prefixed processes)

P =0 inaction T := a(k).P request | defDinP recursion
| T prefixed | a(k).P accept | k<l selection
| P; QO sequence | k{e) sending | k> {ly : Pi[]---[Jln: Pu} branch
| P|Q parallel | k(x).P reception | if e then P else Q conditional
| (vu)P hiding | k() sending | (kj... k,).inwhile{Q} inwhile

(Declaration) | k(K').P reception | (kj... kn).outwhile(e){P} outwhile

D = X(xk)=P | X[ek] wvariables | k7 [b] message

Fig. 8. Syntax.

We formalise the reduction relation — in Fig.8 up to the standard structural equiva-
lence = with the rule 0 ;P = P based on [9]. Reduction uses the standard evaluation
contexts defined as:

E:=[]|E;P|E|P| (Vu)E | def DinE
| if EthenPelseQ | (ki... k,).outwhile(E){P} | E+e | ---
We use the notation ITic (.3 F; to denote the parallel composition of (P | <+ | Po).

Rules [Link] 1S a session initiation rule where a fresh channel & is created, then re-
stricted because the leading parts now share the channel & to start private interactions.
Rule [com] sends data. Rule [LsL] selects the i-th branch, and rule [pass] passes a session
channel k for delegation. The standard conditional and recursive agent rules [ir1], [1F2]
and [Der] originate in [9].

Rule [1w1] synchronises with n asynchronous messages if they all carry true. In this

a(k).Py | a(k).P, — (Vk)(Py | P») k(c) | k(x).P, — Py{c/x} [LiNk],[Com]

k>{l P [l B} | k<al;— P, (1<i<n) k(K'Y | k(K).P, — Py [LBL], [PASS]
if true then Pelse Q — P if false then Pelse Q — Q [IF]
def X (xk) = P in X[ck] — def X (xk) = P in P{c/x} [DEF]

— P;{ky ... ky).inwhile{P} [Iwl]
— 0 [IW2]

<k1 . k,,).inwhile{P} | Hie{l“n}ki ¥ [true
(ki... kn).inwhile{P} | ITic(y ki T[false
E[<k1 .. .kn).inwhile} | Hie{lun}ki ¥ [true
E[(ky...kn).inwhile] | ITicqy nyki T [false

Ele] —* E'[tTue] =
E[{ky ... ky).outwhile(e){P}] — E'[P;{k; ... ky).outwhile(e){P}]

— E[true] [IWE1]

—> E[false] [IWE2]

| Hic g1, myki T [true] [owl]
Ele] —* E'[false] =
E[(ki ... ky).outwhile(e){P}| — E'[0]| ITic(y nyki T [£alse] [Ow2]
P=PandP — Q' andQ'=Q = P — Q [STR]
e — ¢ = Ele] — E¢] P — P' = E[P] — E[P']
PlQ — P|Q = E[P|Q — E[P]|Q [EVAL]

In [ow1] and [Ow2], we assume E = E' | Iic(y nyki T [bi]

Fig. 9. Reduction rules.

case, it repeats again. Rule (1w2] is its dual and synchronises with n false messages. In
this case, it moves to the next command. On the other hand, if the results are mixed (i.e.
b; is true, while b; is false), then it is stuck. In SJ, it will raise the exception, cf. § 2 (4).
The rules for expressions are defined similarly. The rules for outwhile generates appro-
priate messages. Note that the assumption E[e] —» E'[true] or E[e] — E'[false] is
needed to handle the case where e is an inwhile expression.

In order for our reduction rules to reflect SJ’s actual behaviour, inwhile rules should
have precedence over outwhile rules. Note that our algorithms do not cause an infinite
generation of k 1 [b] by outwhile: this is ensured by the well-formed topology criteria
described later, together with this priority rule.

4.2 Types, Typing System and Well-Formed Topologies

This subsection presents types and typing systems. The key point is an introduction of
types and typing systems for asynchronous runtime messages. We then define the nota-
tion of a well-formed topology.

Types. The syntax of types, an extension of [9], follows:

Sort S u=nat | bool | (a,)

Partial session T ou=¢| |8 |?0] | &{L: T,k T} | T] x
LUS] o] | @{h: oyl w) | 25 | uxt

Completed session & ::= T.end | L Runtime session B = a | a | 1

Sorts include a pair type for a shared channel and base types. The partial session type
T represents intermediate sessions. € represents inaction and 7;7 is a sequential com-
position. The rest is from [9]. The types with ! and ? express respectively the sending

and reception of a value S or session channel. The selection type & represents the trans-
mission of the label /; followed by the communications described by ;. The branching
type & represents the reception of a label /; chosen in the set {/1,...,/,} followed by
the communications described by t;. Types ![z]* and ?[z]* are types for outwhile and
inwhile. The types are considered up to the equivalence: &{l;: 7i,...,l;,: T,}.end =
&{li: t1.end,...,I,: 1,.end}. This equivalence ensures all partial types 7; ... T, of se-
lection ends, and are compatible with each other in the completed session type (and
vice versa). € is an empty type, and it is defined so that £;7 = 7 and 7;€ = 7.

Runtime session syntax represents partial composed runtime message types. o' rep-
resents the situation inwhile or outwhile are composed with messages; and 7 is a type
of messages. The meaning will be clearer when we define the parallel composition.

Judgements and environments. The typing judgements for expressions and processes
are of the shape:

I''AFe>rS and I'FPrA

where we define the environments as I == 0 | I'-x: S | ' X : Seand A == 0 |
A -k: B. T is the standard environment which associates a name to a sort and a pro-
cess variable to a sort and a session type. A is the session environment which associates
session channels to running session types, which represents the open communication
protocols. We often omit A or I from the judgement if it is empty.

Sequential and parallel compositions of environments are defined as:

A; A" = A\dom(A")UA"\ dom(A)U{k: A(k)\ end;A’(k) | k € dom(A)Ndom(A")}
AoA" = A\dom(A")UA"\dom(A)U{k: A(k)oA’(k) | k € dom(A)Ndom(A")}
where A (k) \ end means we delete end from the tail of the types (e.g. 7.end \ end = 7).
Then the resulting sequential composition is always well-defined. The parallel compo-
sition of the environments must be extended with new running message types. Hence
B o' is defined as either (1) xo@ =1; (2) dot = a’ or (3) aod =L1%. Otherwise
the composition is undefined. Here @ denotes a dual of o (defined by exchanging ! to
7 and & to @; and vice versa). (1) is the standard rule from session type algebra, which
means once a pair of dual types are composed, then we cannot compose any processes
with the same channel further. (2) means a composition of an iteration of type o and
n-messages of type T becomes a. This is further composed with the dual @ by (3) to
complete a composition. Note that LT is different from L since LT represents a situa-
tion that messages are not consumed with inwhile yet.

Typing rules. We explain the key typing rules for the new primitives (Fig. 10). Other
rules are similar with [9] and left to [6].

(ElnwniLg] 1s a rule for inwhile-expression. The iteration session type of k; is recorded
in A. This information is used to type the nested iteration with outwhile in rule [ouTwniLE].
Rule (inwaiLe] is dual to [ourwniLe]. Rule [Messace] types runtime messages as 1. Sequen-
tial and parallel compositions use the above algebras to ensure the linearity of channels.
Well-formed topologies. We now define the well-formed topologies. Since our multi-
channel primitives offer an effective, structured message passing synchronisation mech-
anism, the following simple definition is sufficient to capture deadlock-freedom in
representative topologies for parallel algorithms. Common topologies in parallel algo-
rithms such as circular pipeline, mesh and wraparound mesh all conform to our well-

A =kp: 21" end,... .k, ?[T,]".end I' F b bool
I';A ¢ (ky...ky).inwhile>bool 'Ekt[blok: t

I'; A+ e>bool I''+-PoA-ki:t.end----- ky,: T,.end

[EINWHILE],[MESSAGE]

(0]
TF (k1 ... kn).outwhile(e){P} A ki : ![1]".end, ..kn: ![Tn]*.end [OuTWHILE]
I'-0>A-ki:11.end----- ky: Ty.end |
NWHILE
TF (k1. kn)-inwhile{Q} 5 A k1 2[01]".end, .. kn: 2[Ta]".end ' !
I'EPrA 'FQvA’ I'FP>A F'FQovA'
[SEQl,[Conc]

T'FP; OsAA TFP[QbAoA

Fig. 10. Key typing rules

formed topology definition below [6]. Below we call P is a base if P is either 0, k(e),
k(x).0,k<alorkr>{l; :0[]--[]l,:0}.

Definition 4.1 (Well-formed topology.). Suppose a group of n parallel composed pro-
cesses P=P, | ... | B, such that I - P>A with A(k) = L for all kK € dom(A); and
k(; j denotes a free session channel from P; to P;. We say P conforms to a well-formed
topology if P inductively satisfies one of the following conditions:

1. (inwhile and outwhile)
P, = (ki).outwhile(e){Q;} P, = (k;).outwhile((k}).inwhile){Q;} (2 <i<n)
P, = (k,).inwhile{Q,} K C k1) k(i) K} C i1y k-1,
and (Q | --- | Qn) conforms to a well-formed topology.

2. (sequencing) P, = Qi;;...;Qmi Where (