
Safe Parallel Programming with Session Java

Nicholas Ng∗, Nobuko Yoshida∗

Olivier Pernet∗, Raymond Hu∗, and Yiannos Kryftis†

∗Imperial College London †National Technical University of Athens

Abstract. The session-typed programming language Session Java (SJ) has proved
to be an effective tool for distributed programming, promoting structured pro-
gramming for communications and compile-time safety. This paper investigates
the use of SJ for session-typed parallel programming, and introduces new lan-
guage primitives for chained iteration and multi-channel communication. These
primitives allow the efficient coordination of parallel computation across multi-
ple processes, thus enabling SJ to express the complex communication topologies
often used by parallel algorithms. We demonstrate that the new primitives yield
clearer and safer code for pipeline, ring and mesh topologies through implemen-
tations of representative parallel algorithms. We then present a semantics and ses-
sion typing system including the new primitives, and prove type soundness and
deadlock-freedom for our implementations. The benchmark results show that the
new SJ is substantially faster than the original SJ and performs competitively
against MPJ Express1 used as reference.

1 Introduction

The current practice of parallel and distributed programming is fraught with errors that
go undetected until runtime, manifest themselves as deadlocks or communication er-
rors, and often find their root in mismatched communication protocols. The Session
Java programming language (SJ) [13] improves this status quo. SJ is an extension of
Java with session types, supporting statically safe distributed programming by message-
passing. Session types were introduced as a type system for the π-calculus [9, 22], and
have been shown to integrate cleanly with formal models of object-oriented program-
ming. The SJ compiler offers two strong static guarantees for session execution: (1)
communication safety, meaning a session-typed process can never cause or encounter a
communication error by sending or receiving unexpected messages; and (2) deadlock-
freedom — a session-typed process will never block indefinitely on a message receive.

Parallel programs often make use of complex, high-level communication patterns
such as globally synchronised iteration over chained topologies like rings and meshes.
Yet modern implementations are still written using low-level languages and libraries,
commonly C and MPI [14]: implementations make the best use of hardware, but at the
cost of complicated programming where communication is entangled with computa-
tion. There is no global view of inter-process communication, and no formal guarantees
are given about communication correctness, which often leads to hard-to-find errors.

1 MPJ Express [17] is a Java implementation of the MPI standard. Extensive benchmarks com-
paring MPJ Express to other MPI implementations are presented in [17]. The benchmarks
show performance competitive with C-based MPICH2.

We investigate parallel programming in SJ as a solution to these issues. However,
SJ as presented in [13] only guarantees progress for each session in isolation: dead-
locks can still arise from the interleaving of multiple sessions in a process. Moreover,
implementing chained communication topologies without additional language support
requires temporary sessions, opened and closed on every iteration — a source of non-
trivial inefficiencies (see § 3 for an example). We need new constructs, well-integrated
with existing binary sessions, to enable lightweight global communication safety and
deadlock-freedom, increase expressiveness to support structured programming for com-
munication topologies and improve performance.

Our new multi-channel session primitives fit these requirements, and make it possi-
ble to safely and efficiently express parallel algorithms in SJ. The combination of new
primitives and a well-formed topology check extension to SJ compilation [13] bring the
benefits of type-safe, structured communications programming to HPC. The primitives
can be chained, yielding a simple mechanism for structuring global control flow. We for-
malise these primitives as novel extensions of the session calculus, and the correctness
condition on the shape of programs enforced by a simple extension of SJ compilation.
This allows us to prove communication safety and deadlock-freedom, and offers a new,
lightweight alternative to multiparty session types for global type-safety.

Contributions. This paper constitutes the first introduction to parallel programming
in SJ, in addition to presenting the following technical contributions:
(§ 2) We introduce SJ as a programming language for type-safe, efficient parallel pro-

gramming, including our implementation of multi-channel session primitives, and
the extended SJ tool chain for parallel programming. We show that the new primi-
tives enable clearer, more readable code.

(§ 3) We discuss SJ implementations of parallel algorithms using the Jacobi solution to
the discrete Poisson equation (§ 3) as an example. The algorithm uses communi-
cation topology representative of a large class of parallel algorithms, and demon-
strates the practical use of our multi-channel primitives.

(§ 4) We define the multi-channel session calculus, its operational semantics, and typ-
ing system. We prove that processes conforming to a well-formed communica-
tion topology (Definition 4.1) satisfy the subject reduction theorem (Theorem 4.1),
which implies type and communication-safety (Theorem 4.2) and deadlock-freedom
across multiple, interleaved sessions (Theorem 4.3).

(§ 5) Performance evaluation of n-Body simulation and Jacobi solution algorithms,
demonstrating the benefits of the new primitives. The SJ implementations using
the new primitives show competitive performance against an MPJ Express [15].

Related and future work are discussed in § 6. Detailed definitions, proofs, benchmark
results and source code can be found at the on-line Appendix [6].

Acknowledgements. We thank the referees for their useful comments and Brittle
Tsoi and Wayne Luk for their collaborations. This work is partially supported by EP-
SRC EP/F003757 and EP/G015635.

2 Session-Typed Programming in SJ

This section firstly reviews the key concepts of session-typed programming using Ses-
sion Java (SJ) [12, 13]. In (1), we outline the basic methodology; in (2), the protocol

structures supported by SJ. We then introduce the new session programming features
developed in this paper to provide greater expressiveness and performance gains for
session-typed parallel programming. In (3), we explain session iteration chaining; and
in (4), the generalisation of this concept to the multi-channel primitives. Finally, (5)
describes the topology verification for parallel programs.
(1) Basic SJ programming. SJ is an extension of Java for type-safe concurrent and
distributed session programming. Session programming in SJ, as detailed in [13], starts
with the declaration of the intended communication protocols as session types; we shall
often use the terms session type and protocol interchangeably. A session is the inter-
action between two communicating parties, and its session type is written from the
viewpoint of one side of the session. The following declares a protocol named P:

protocol P !<int>.?(Data)

Protocol P specifies that, at this side of the session, we first send (!) a message of
Java type int, then receive (?) another message, an instance of the Java class Data,
which finishes the session. After defining the protocol, the programmer implements the
processes that will perform the specified communication actions using the SJ session
primitives. The first line in the following code implements an Alice process conforming
to the P protocol:

A: alice.send(42); Data d = (Data) alice.receive();//!<int>.?(Data)

B: int i = bob.receiveInt(); bob.send(new Data()); //?(int).!<Data>

The alice variable refers to an object of class SJSocket, called a session socket, which
represents one endpoint of an active session. The session-typed primitives for session-
typed communication behaviour, such as send and receive, are performed on the ses-
sion socket like method invocations. SJSocket declarations associate a protocol to the
socket variable, and the SJ compiler statically checks that the socket is indeed used ac-
cording to the protocol, ensuring the correct communication behaviour of the process.

This simple session application also requires a counterpart Bob process to interact
with Alice. For safe session execution, the Alice and Bob processes need to perform
matching communication operations: when Alice sends an int, Bob receives an int,
and so on. Two processes performing matching operations have session types that are
dual to each other. The dual protocol to P is protocol PDual ?(int).!<Data>, and a
dual Bob process can be implemented as in the second line of the above listing.
(2) More complex protocol structures. Session types are not limited to sequences
of basic message passing. Programmers can specify more complex protocols featuring
branching, iteration and recursion.

The protocols and processes in Fig.1 demonstrate session iteration and branching.
Process P1 communicates with P2 according to protocol IntAndBoolStream; P2 and P3

communicate following protocol IntStream. Like basic message passing, iteration and
branching are coordinated by active and passive actions at each side of the session.
Process P1 actively decides whether to continue the session iteration using outwhile

(condition), and if so, selects a branch using outbranch(label). The former action
implements the ![τ]* type given by IntAndBoolStream, where τ is the !{Label1: τ1,

Label2: τ2, . . .} type implemented by the latter. Processes P2 and P3 passively follow

P1 P2 P3

protocol IntAndBoolStream ![!{Label1: !<int>, Label2: !<boolean>}]*

protocol IntAndBoolDual ?[?{Label1: ?<int>, Label2: ?(boolean)}]*

protocol IntStream ![!<int>]*

protocol IntStreamDual ?[?(int)]*

P1:

P3:

s.outwhile(x < 10) {

s.outbranch(Label1) {

s.send(42);

}}

s.inwhile {

int i = s.receiveInt();

}

P2:
s2.outwhile(s1.inwhile()) {

s1.inbranch() {

case Label1:

int i = s1.receiveInt();

s2.send(i);

case Label2:

boolean b = s1.receiveBool();

s2.send(42);

}}

Session socket s in P1 follows IntAndBoolStream; s1 and s2 in P2 follows IntAndBoolDual
and IntStream; s in P3 follows IntStreamDual.

Fig. 1. Simple chaining of session iterations across multiple pipeline process.

the selected branch and the iteration decisions (received as internal control messages)
using inbranch and inwhile, and proceed accordingly; the two dual protocols show the
passive versions of the above iteration and branching types, denoted by ? in place of !.

So far, we have reviewed basic SJ programming features [13] derived from standard
session type theory [9, 22]; the following paragraphs discuss new features motivated by
the application of session types to parallel programming in practice.
(3) Expressiveness gains from iteration chaining. The three processes in Fig. 1 ad-
ditionally illustrate session iteration chaining, forming a linear pipeline as depicted at
the top of Fig. 1. The net effect is that P1 controls the iteration of both its session with
P2 and transitively the session between P2 and P3. This is achieved through the chain-
ing construct s2.outwhile(s1.inwhile()) at P2, which receives the iteration decision
from P1 and forwards it to P3. The flow of both sessions is thus controlled by the same
master decision from P1.

Iteration chaining offers greater expressiveness than the individual iteration primi-
tives supported in standard session types. Normally, session typing for ordinary inwhile

or outwhile loops must forbid operations on any session other than the session chan-
nel that of loop, to preserve linear usage of session channels. This means that e.g.
s1.inwhile(){ s1.send(v); } is allowed, whereas s1.inwhile(){ s2.send(v); } is
not. With the iteration chaining construct, we can now construct a process containing
two interleaved inwhile or outwhile loops on separate sessions. In fact, session itera-
tion chaining can be further generalised as we explain below.
(4) Multi-channel iteration primitives. Simple iteration chaining allows SJ program-
mers to combine multiple sessions into linear pipeline structures, a common pattern
in parallel processing. In particular, type-safe session iteration (and branching) along a
pipeline is a powerful benefit over traditional stream-based data flow [19]. More com-
plex topologies, however, such as rings and meshes, require iteration signals to be di-

Master: <s1,s2>.outwhile(i < 42) {...}

Forwarder1: s3.outwhile(s1.inwhile()) {...}

Forwarder2: s4.outwhile(s2.inwhile()) {...}

End: <s3,s4>.inwhile() {...}

Master Forwarder
1

EndForwarder
2

Fig. 2. Multi-channel iteration in a simple grid topology.

rectly forwarded from a given process to more than one other, and for multiple signals
to be directed into a common sink; in SJ, this means we require the ability to send and
receive multiple iteration signals over a set of session sockets. For this purpose, SJ intro-
duces the generalised multi-channel primitives; the following focuses on multi-channel
iteration, which extends the chaining constructs from above.

Fig. 2 demonstrates multi-channel iteration for a simple grid topology. Process
Master controls the iteration on both the s1 and s2 session sockets under a single it-
eration condition. Processes Forwarder1 and Forwarder2 iterate following the signal
from Master and forward the signal to End; thus, all four processes iterate in lock-
step. Multi-channel inwhile, as performed by End, is intended for situations where
multiple sessions are combined for iteration, but all are coordinated by an iteration
signal from a common source; this means all the signals received from each socket
of the inwhile will always agree — either to continue iterating, or to stop. In case
this is not respected at run-time, the inwhile will throw an exception, resulting in
session termination. Together, multi-channel primitives enable the type-safe imple-
mentation of parallel programming patterns like scatter-gather, producer-consumer, and
more complex chained topologies. The basic session primitives express only disjoint
behaviour within individual sessions, whereas the multi-channel primitives implement
interaction across multiple sessions as a single, integrated structure.

SJ program
source

SJ
deployment
config. file

Topology verifier

Cluster node Cluster nodeCluster node

User program
classes

ConfigLoader
class

(C)

Running SJ
program

Running SJ
program

Running SJ
program

SJ compiler

(B)

(A)

Fig. 3. The SJ tool chain.

(5) The SJ tool chain with topology
verification. In previous work, the safety
guarantees offered by the SJ compiler
were limited to the scope of each inde-
pendent binary (two-party) session. This
means that, while any one session was
guaranteed to be internally deadlock-
free, this property may not hold in the
presence of interleaved sessions in a pro-
cess as a whole. The nodes in a paral-
lel program typically make use of many
interleaved sessions – with each of their
neighbours in the chosen network topol-
ogy. Furthermore, inwhile and outwhile

in iteration chains must be correctly com-
posed.

As a solution to this issue, we add a
topology verification step to the SJ tool
chain for parallel programs. Fig. 3 sum-

marises the SJ tool chain for developing type-safe SJ parallel program on a distributed
computing cluster. An SJ parallel program is written as a collection of SJ source files,
where each file corresponds to a role in the topology. Topology verification (A) takes as
input the source files and a deployment configuration file, listing the hosts where each
process will be deployed and describing how to connect the processes. The sources and
configuration files are then analysed statically to ensure the overall session topology of
the parallel program conforms to a well-formed topology defined in Definition 4.1 in
§ 4, and in conjunction with session duality checks in SJ, precludes global deadlocks
in parallel SJ programs (see Theorem 4.3). The source files are then compiled (B) to
bytecode, and (C) deployed on the target cluster using details on the configuration file to
instantiate and establish sessions with their assigned neighbours, ensuring the runtime
topology is constructed according to the verified configuration file, and therefore safe
execution of the parallel program.

3 Parallel Algorithms in SJ

This section presents the SJ implementation of a Jacobi method for solving the Discrete
Poisson Equation and explains the benefits of the new multi-channel primitives. The ex-
ample was chosen both as a representative real-world parallel programming application
in SJ, and because it exemplifies a complex communication topology [8]. Implementa-
tions of other algorithms featuring other topologies, such as n-Body simulation (circular
pipeline) and Linear Equation Solver (wraparound mesh), are available from [6].
Jacobi solution of the discrete Poisson equation: mesh topology. Poisson’s equation
is a partial differential equation widely used in physics and the natural sciences. Jacobi’s
algorithm can be implemented using various partitioning strategies. An early session-
typed implementation [1] used a one-dimensional decomposition of the source matrix,
resulting in a linear communication topology. The following demonstrates how the new
multi-channel primitives are required to increase parallelism using a two-dimensional
decomposition, i.e. using a 2D mesh communication topology. The mesh topology is
used in a range of other parallel algorithms [3].

The discrete two-dimensional Poisson equation (∇2u)i j for a m×n grid reads:
ui j =

1
4 (ui−1, j +ui+1, j +ui, j−1 +ui, j+1−dx2gi, j)

where 2≤ i≤ m−1, 2≤ j ≤ n−1, and dx = 1/(n+1). Jacobi’s algorithm converges
on a solution by repeatedly replacing each element of the matrix u by an adjusted aver-
age of its four neighbouring values and dx2gi, j. For this example, we set each gi, j to 0.
Then, from the k-th approximation of u, the next iteration calculates:

uk+1
i j = 1

4 (u
k
i+1, j +uk

i−1, j +uk
i, j+1 +uk

i, j−1)

Termination may be on reaching a target convergence threshold or on completing a
certain number of iterations. Parallelisation of this algorithm exploits the fact that each
element can be independently updated within each iteration. The decomposition divides
the grid into subgrids, and each process will execute the algorithm for its assigned sub-
grid. To update the points along the boundaries of each subgrid, neighbouring processes
need to exchange their boundary values at the beginning of each iteration.

protocol MasterToWorker

cbegin. // Open a session with the Worker

!<int>.!<int>. // Send matrix dimensions

![// Main loop: checking convergence condition

!<double[]>. // Send our boundary values...

?(double[]). // ..and receive our neighbour’s

?(ConvergenceValues) // Convergence data for neighbouring subgrid

]* // (end of main loop)

Fig. 4. The session type between the Master and Workers for the Jacobi algorithm.

A 2D mesh implementation is shown in Fig. 7. The Master node controls iteration
from the top-left corner. Nodes in the centre of the mesh receive iteration control signals
from their top and left neighbours, and propagate them to the bottom and right. Nodes
at the edges only propagate iteration signals to the bottom or the right, and the final
node at the bottom right only receives signals and does not propagate them further.

The session type for communication from the Master to either of the Workers under
it or at its right is given in Fig. 4. The Worker’s protocol for interacting with the Master

is the dual of MasterToWorker; the same protocol is used for interaction with other
Workers at their right and bottom (except for Workers at the edges of the mesh).

As listed in Fig. 5, it is possible to express the complex 2D mesh using single-
channel primitives only. However, this implementation suffers from a problem: without
the multi-channel primitives, there is no way of sending iteration control signals both
horizontally and vertically; the only option is to open and close a temporary session
in every iteration (Fig. 7), an inefficient and counter-intuitive solution. Moreover, the
continuous nature of the vertical iteration sessions cannot be expressed naturally.

Having noted this weakness, Fig. 6 lists a revised implementation, taking advan-
tage of multi-channel inwhile and outwhile. The multi-channel inwhile allows each
Worker to receive iteration signals from the two processes at its top and left. Multi-
channel outwhile lets a process control both processes at the right and bottom. To-
gether, these two primitives completely eliminate the need for repeated opening and
closing of intermediary sessions in the single-channel version. The resulting implemen-
tation is clearer and also much faster. See § 5 for the benchmark results.

4 Multi-channel Session π-Calculus

This section formalises the new nested iterations and multi-channel communication
primitives and proves correctness of our implementation. Our proof method consists of:

1. We first define programs (i.e. starting processes) including the new primitives, and
then define operational semantics with running processes modelling intermediate
session communications.

2. We define a typing system for programs and running processes.
3. We prove that if a group of running processes conforms to a well-formed topology,

then they satisfy the subject reduction theorem (Theorem 4.1) which implies type
and communication-safety (Theorem 4.2) and deadlock-freedom (Theorem 4.3).

4. Since programs for our chosen parallel algorithms conform to a well-formed topol-
ogy, we conclude that they satisfy the above three properties.

Master :
right.outwhile(notConverged()) {

under = chanUnder.request();

sndBoundaryVal(right, under);

rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder);

rcvConvergenceVal(right, under);

}

Worker :
right.outwhile(left.inwhile) {

over = chanOver.accept();

under = chanUnder.request();

sndBoundaryVal(left,right,over,

under);

rcvBoundaryVal(left,right,over,

under);

doComputation(rcvLeft,rcvRight,

rcvOver,rcvUnder);

sndConvergenceVal(left,top);

}

WorkerSE :
left.inwhile {

over = chanOver.request();

sndBoundaryVal(left,over);

rcvBoundaryVal(left,over);

doComputation(rcvLeft,rcvOver);

sndConvergenceVal(left,top);

}

Fig. 5. Initial 2D mesh implementation with
single-channel primitives only.

Master :
<under,right>.outwhile(

notConverged()) {

sndBoundaryVal(right, under);

rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder

);

rcvConvergenceVal(right, under);

}

Worker :
<under,right>.outwhile

(<over,left>.inwhile) {

sndBoundaryVal(left,right,over,

under);

rcvBoundaryVal(left,right,over,

under);

doComputation(rcvLeft,rcvRight,

rcvOver,rcvUnder);

sndConvergenceVal(left,top);

}

WorkerSE :
<over,left>.inwhile {

sndBoundaryVal(left,over);

rcvBoundaryVal(left,over);

doComputation(rcvLeft,rcvOver);

sndConvergenceVal(left,top);

}

Fig. 6. Efficient 2D mesh implementation using
multi-outwhile and multi-inwhile.

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

1

3

6

2

5

8

4

7

9

Repeated session open/close

Iteration control msg.

Data transfer

Iteration control msg.
(emphasis, difference between impl.)

Fig. 7. Initial and improved communication patterns in the 2D mesh implementation.

4.1 Syntax

The session π-calculus we treat extends [9]. Fig. 8 defines its syntax. Channels (u,u′, ...)
can be either of two sorts: shared channels (a,b,x,y) or session channels (k,k′, ...).
Shared channels are used to open a new session. In accepting and requesting processes,
the name a represents the public interaction point over which a session may commence.
The bound variable k represents the actual channel over which the session communi-
cations will take place. Constants (c,c′, ...) and expressions (e,e′, ...) of ground types
(booleans and integers) are also added to model data. Selection chooses an available
branch, and branching offers alternative interaction patterns; channel send and channel
receive enable session delegation [9]. The sequencing, written P;Q, meaning that P is
executed before Q. This syntax allows for complex forms of synchronisation, joining,
and forking since P can include any parallel composition of arbitrary processes. The
second addition is that of multicast inwhile and outwhile, following SJ syntax. Note
that the definition of expressions includes multicast inwhile 〈k1 . . .kn〉.inwhile, in or-
der to allow inwhile as an outwhile loop condition. The control message k † [b] created
by outwhile appears only at runtime.

The precedence of the process-building operators is (from the strongest) “/,.,{}”,
“.”, “;” and “|”. Moreover we define that “.” associates to the right. The binders for
channels and variables are standard.

(Values) (Expressions)
v ::= a,b,x,y shared names

| true,false boolean
| n integer

e ::= v | e+ e | not(e) . . . value, sum, not
| 〈k1 . . .kn〉.inwhile inwhile

(Processes) (Prefixed processes)
P ::= 0 inaction

| T prefixed
| P ; Q sequence
| P | Q parallel
| (νu)P hiding

(Declaration)
D ::= X(xk) = P

T ::= a(k).P request
| a(k).P accept
| k〈e〉 sending
| k(x).P reception
| k〈k′〉 sending
| k(k′).P reception
| X [ek] variables

| def D in P recursion
| k� l selection
| k�{l1 : P1[] · · · []ln : Pn} branch
| if e then P else Q conditional
| 〈k1 . . . kn〉.inwhile{Q} inwhile
| 〈k1 . . . kn〉.outwhile(e){P} outwhile
| k † [b] message

Fig. 8. Syntax.

We formalise the reduction relation −→ in Fig.8 up to the standard structural equiva-
lence ≡ with the rule 0 ;P ≡ P based on [9]. Reduction uses the standard evaluation
contexts defined as:

E ::= [] | E;P | E | P | (νu)E | def D in E
| if E then P else Q | 〈k1 . . . kn〉.outwhile(E){P} | E + e | · · ·

We use the notation Πi∈{1..n}Pi to denote the parallel composition of (P1 | · · · | Pn).
Rules [LINK] is a session initiation rule where a fresh channel k is created, then re-

stricted because the leading parts now share the channel k to start private interactions.
Rule [COM] sends data. Rule [LBL] selects the i-th branch, and rule [PASS] passes a session
channel k for delegation. The standard conditional and recursive agent rules [IF1], [IF2]

and [DEF] originate in [9].
Rule [IW1] synchronises with n asynchronous messages if they all carry true. In this

a(k).P1 | a(k).P2 −→ (νk)(P1 | P2) k〈c〉 | k(x).P2 −→ P2{c/x} [LINK], [COM]

k�{l1 : P1[] · · · []ln : Pn} | k / li −→ Pi (1≤ i≤ n) k〈k′〉 | k(k′).P2 −→ P2 [LBL], [PASS]

if true then P else Q−→ P if false then P else Q−→ Q [IF]

def X(xk) = P in X [ck] −→ def X(xk) = P in P{c/x} [DEF]

〈k1 . . . kn〉.inwhile{P} |Πi∈{1..n}ki † [true] −→ P;〈k1 . . . kn〉.inwhile{P} [IW1]

〈k1 . . . kn〉.inwhile{P} |Πi∈{1..n}ki † [false] −→ 0 [IW2]

E[〈k1 . . .kn〉.inwhile] |Πi∈{1..n}ki † [true] −→ E[true] [IWE1]

E[〈k1 . . .kn〉.inwhile] |Πi∈{1..n}ki † [false] −→ E[false] [IWE2]

E[e]−→∗ E ′[true] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}] −→ E ′[P;〈k1 . . . kn〉.outwhile(e){P}]

|Πi∈{1..n}ki † [true] [OW1]

E[e]−→∗ E ′[false] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}] −→ E ′[0] |Πi∈{1..n}ki † [false] [OW2]

P≡ P′ and P′ −→ Q′ and Q′ ≡ Q ⇒ P −→ Q [STR]

e −→ e′⇒ E[e] −→ E[e′] P −→ P′⇒ E[P] −→ E[P′]

P | Q −→ P′ | Q′ ⇒ E[P] | Q −→ E[P′] | Q′ [EVAL]

In [OW1] and [OW2], we assume E = E ′ |Πi∈{1..n}ki † [bi]

Fig. 9. Reduction rules.

case, it repeats again. Rule [IW2] is its dual and synchronises with n false messages. In
this case, it moves to the next command. On the other hand, if the results are mixed (i.e.
bi is true, while b j is false), then it is stuck. In SJ, it will raise the exception, cf. § 2 (4).
The rules for expressions are defined similarly. The rules for outwhile generates appro-
priate messages. Note that the assumption E[e] −→ E ′[true] or E[e] −→ E ′[false] is
needed to handle the case where e is an inwhile expression.

In order for our reduction rules to reflect SJ’s actual behaviour, inwhile rules should
have precedence over outwhile rules. Note that our algorithms do not cause an infinite
generation of k † [b] by outwhile: this is ensured by the well-formed topology criteria
described later, together with this priority rule.

4.2 Types, Typing System and Well-Formed Topologies

This subsection presents types and typing systems. The key point is an introduction of
types and typing systems for asynchronous runtime messages. We then define the nota-
tion of a well-formed topology.
Types. The syntax of types, an extension of [9], follows:
Sort S ::= nat | bool | 〈α,α〉
Partial session τ ::= ε | τ; τ | ?[S] | ?[α] | &{l1 : τ1, . . . , ln : τn} | ![τ]∗ | x

| ![S] | ![α] | ⊕{l1 : τ1, . . . , ln : τn} | ?[τ]∗ | µx.τ
Completed session α ::= τ.end | ⊥ Runtime session β ::= α | α† | †
Sorts include a pair type for a shared channel and base types. The partial session type
τ represents intermediate sessions. ε represents inaction and τ;τ is a sequential com-
position. The rest is from [9]. The types with ! and ? express respectively the sending

and reception of a value S or session channel. The selection type⊕ represents the trans-
mission of the label li followed by the communications described by τi. The branching
type & represents the reception of a label li chosen in the set {l1, . . . , ln} followed by
the communications described by τi. Types ![τ]∗ and ?[τ]∗ are types for outwhile and
inwhile. The types are considered up to the equivalence: &{l1 : τ1, . . . , ln : τn}.end ≡
&{l1 : τ1.end, . . . , ln : τn.end}. This equivalence ensures all partial types τ1 . . .τn of se-
lection ends, and are compatible with each other in the completed session type (and
vice versa). ε is an empty type, and it is defined so that ε;τ ≡ τ and τ;ε ≡ τ .

Runtime session syntax represents partial composed runtime message types. α† rep-
resents the situation inwhile or outwhile are composed with messages; and † is a type
of messages. The meaning will be clearer when we define the parallel composition.
Judgements and environments. The typing judgements for expressions and processes
are of the shape:

Γ ;∆ ` e.S and Γ ` P.∆

where we define the environments as Γ ::= /0 | Γ · x : S | Γ ·X : Sα and ∆ ::= /0 |
∆ · k : β . Γ is the standard environment which associates a name to a sort and a pro-
cess variable to a sort and a session type. ∆ is the session environment which associates
session channels to running session types, which represents the open communication
protocols. We often omit ∆ or Γ from the judgement if it is empty.

Sequential and parallel compositions of environments are defined as:
∆ ;∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{k : ∆(k)\ end;∆ ′(k) | k ∈ dom(∆)∩dom(∆ ′)}

∆ ◦∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{k : ∆(k)◦∆ ′(k) | k ∈ dom(∆)∩dom(∆ ′)}
where ∆(k)\ end means we delete end from the tail of the types (e.g. τ.end\ end= τ).
Then the resulting sequential composition is always well-defined. The parallel compo-
sition of the environments must be extended with new running message types. Hence
β ◦β ′ is defined as either (1) α ◦α =⊥; (2) α ◦† = α† or (3) α ◦α

† =⊥†. Otherwise
the composition is undefined. Here α denotes a dual of α (defined by exchanging ! to
? and & to ⊕; and vice versa). (1) is the standard rule from session type algebra, which
means once a pair of dual types are composed, then we cannot compose any processes
with the same channel further. (2) means a composition of an iteration of type α and
n-messages of type † becomes α†. This is further composed with the dual α by (3) to
complete a composition. Note that ⊥† is different from ⊥ since ⊥† represents a situa-
tion that messages are not consumed with inwhile yet.
Typing rules. We explain the key typing rules for the new primitives (Fig. 10). Other
rules are similar with [9] and left to [6].

[EINWHILE] is a rule for inwhile-expression. The iteration session type of ki is recorded
in ∆ . This information is used to type the nested iteration with outwhile in rule [OUTWHILE].
Rule [INWHILE] is dual to [OUTWHILE]. Rule [MESSAGE] types runtime messages as †. Sequen-
tial and parallel compositions use the above algebras to ensure the linearity of channels.
Well-formed topologies. We now define the well-formed topologies. Since our multi-
channel primitives offer an effective, structured message passing synchronisation mech-
anism, the following simple definition is sufficient to capture deadlock-freedom in
representative topologies for parallel algorithms. Common topologies in parallel algo-
rithms such as circular pipeline, mesh and wraparound mesh all conform to our well-

∆ = k1 : ?[τ1]
∗.end, ...,kn : ?[τn]

∗.end

Γ ;∆ ` 〈k1 . . .kn〉.inwhile.bool

Γ ` b.bool

Γ ` k † [b]. k : †
[EINWHILE],[MESSAGE]

Γ ; ∆ ` e.bool Γ ` P.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.outwhile(e){P}.∆ · k1 : ![τ1]∗.end, ...,kn : ![τn]∗.end
[OUTWHILE]

Γ ` Q.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.inwhile{Q}.∆ · k1 : ?[τ1]∗.end, ...,kn : ?[τn]∗.end
[INWHILE]

Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P; Q.∆ ;∆ ′
Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P | Q.∆ ◦∆ ′
[SEQ],[CONC]

Fig. 10. Key typing rules

formed topology definition below [6]. Below we call P is a base if P is either 0, k〈e〉,
k(x).0, k� l or k�{l1 : 0[] · · · []ln : 0}.

Definition 4.1 (Well-formed topology.). Suppose a group of n parallel composed pro-
cesses P = P1 | . . . | Pn such that Γ ` P .∆ with ∆(k) = ⊥ for all k ∈ dom(∆); and
k(i, j) denotes a free session channel from Pi to Pj. We say P conforms to a well-formed
topology if P inductively satisfies one of the following conditions:

1. (inwhile and outwhile)
P1 = 〈~k1〉.outwhile(e){Q1} Pi = 〈~ki〉.outwhile(〈~k′i〉.inwhile){Qi} (2≤ i < n)
Pn = 〈~k′n〉.inwhile{Qn} ~ki ⊂ k(i,i+1) · · ·k(i,n),~k′i ⊂ k(1,i) · · ·k(i−1,i)

and (Q1 | · · · | Qn) conforms to a well-formed topology.
2. (sequencing) Pi = Q1i; ...;Qmi where (Q j1 | Q j2 | · · · | Q jn) conforms to a well-

formed topology for each 1≤ j ≤ m.
3. (base) (1) session actions in Pi follow the order of the index (e.g. the session actions

at k(i, j) happens before k(h,g) if (i, j)< (h,g)), then the rest is a base process P′i ; and
(2) Pi includes neither shared session channels, inwhile nor outwhile.

The figure below explains condition (1) of the above definition, ensuring consistency of
control flows within iterations. Subprocesses Pi are ordered by their process index i. A
process Pi can only send outwhile control messages to processes with a higher index via
~ki (denoted by k(i,m)), while it can receive messages from those with a lower index via
~k′i (denoted by k(h,i)). This ordering guarantees absence of cycles of communications.

Pi

k(h,i) h⪇i

k(i,m) i⪇m

P1 … Pi-1Ph … Pi+1 … PnPm …

…

…
There is only one source P1 (only sends
outwhile control messages) and one sink
Pn (only receives those messages). (2)
says that a sequential composition of
well-formed topologies is again well-

formed. (3) defines base cases which are commonly found in the algorithms: (3-1)
means that since the order of session actions in Pi follow the order of the indices, ΠiPi
reduces to ΠiP′i without deadlock; then since ΠiP′i is a parallel composition of base
processes where each channel k has type ⊥, ΠiP′i reduces to 0 without deadlock. (3-2)
ensures a single global topology.

4.3 Subject Reduction, Communication Safety and Deadlock Freedom

We state here that process groups conforming to a well-formed topology satisfy the
main theorems. The full proofs can be found in [6].

Theorem 4.1 (Subject reduction) Assume P forms a well-formed topology and Γ `
P.∆ . Suppose P−→∗ P′. Then we have Γ ` P′ .∆ ′ with for all k (1) ∆(k) = α implies
∆ ′(k) = α†; (2) ∆(k) = α† implies ∆ ′(k) = α; or (3) ∆(k) = β implies ∆ ′(k) = β .

(1) and (2) state an intermediate stage where messages are floating; or (3) the type
is unchanged during the reduction. The proof requires to formulate the intermediate
processes with messages which are started from a well-formed topology, and prove
they satisfy the above theorem.

We say process has a type error if expressions in P contains either a type error of
values or constants in the standard sense (e.g. if 100 then P else Q).

To formalise communication safety, we need the following notions. Write inwhile(Q)
for either inwhile or inwhile{Q}. We say that a processes P is a head subprocess of
a process Q if Q ≡ E[P] for some evaluation context E. Then k-process is a head pro-
cess prefixed by subject k (such as k〈e〉). Next, a k-redex is the parallel composition of
a pair of k-processes. i.e. either of form of a pair such that (k〈e〉,k(x).Q), (k/ l,k�{l1 :
Q1[] · · · []ln : Qn}), (k〈k′〉,k(k′).P), (〈k1 . . . kn〉.outwhile(e){P},〈k′1 . . . k′m〉.inwhile(Q))
with k∈{k1, ..,kn}∩{k′1, ..,k′m} or (k† [b] | 〈k′1 . . . k′m〉.inwhile(Q)) with k∈{k1, ..,kn}.
Then P is a communication error if P≡ (ν ũ)(def D in (Q | R)) where Q is, for some
k, the parallel composition of two or more k-processes that do not form a k-redex. The
following theorem is direct from the subject reduction theorem [22, Theorem 2.11].

Theorem 4.2 (Type and communication safety) A typable process which forms a well-
formed topology never reduces to a type nor communication error.

Below we say P is deadlock-free if for all P′ such that P−→∗ P′, P′ −→ or P′ ≡ 0 .
The following theorem shows that a group of typable multiparty processes which form
a well-formed topology can always move or become the null process.

Theorem 4.3 (Deadlock-freedom) Assume P forms a well-formed topology and Γ `
P.∆ . Then P is deadlock-free.

Now we reason Jacobi algorithm in Fig. 6. We only show the master P1 and the worker
in the middle P5 (the indices follow the right picture of Fig. 7).

P1 = 〈k(1,2),k(1,4)〉.outwhile(e){k(1,2)〈d[]〉;k(1,2)(x).k(1,4)〈d[]〉;k(1,4)(y). 0 }
P5 = 〈k(5,7),k(5,8)〉.outwhile(〈k′(2,5),k

′
(3,5)〉.inwhile){

k′(2,5)(w).k
′
(2,5)〈d[]〉;k′(3,5)(x).k

′
(3,5)〈d[]〉;k(5,7)〈d[]〉;k(5,7)(y).k(5,8)〈d[]〉;k(5,8)(z). 0 }

where d[] denotes the type of array with double. We can easily prove they are typable
and forms the well-formed topology satisfying the conditions (1) and (3) in Definition
4.1. Hence it is type and communication-safe and deadlock-free. [6] lists the full defi-
nition and more complex algorithms which conform to a well-formed topology.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 500 1000 1500 2000 2500 3000

R
u

n
ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of particles per node

n-Body simulation

Multi-channel SJ
Old SJ

MPJ Express

 0

 500

 1000

 1500

 2000

 2500

 3000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of elements in sub-grid

Jacobi solution of the Discrete Poisson Equation

Multi-channel SJ
Old SJ

MPJ Express

Fig. 11. SJ with and without multi-channel primitives and MPJ Express (left: 3-nodes n-Body
simulation, right: 9-nodes Jacobi solution)

5 Performance Evaluation

This section presents performance results for several implementations of the n-Body
simulation (details in [6, § A.1]), and Jacobi solution presented in § 3. We evaluated our
implementations on a 9-node cluster for our benchmark, and each of the points is an
average of 4 runs of the benchmark. All of them comprise an AMD PhenomX4 9650
2.30GHz CPU with 8GB RAM. The main objectives of these benchmarks is (1) to in-
vestigate the benefits of the new multi-channel primitives, comparing Old SJ (without
the new primitives) and Multi-channel SJ (with the new primitives); and (2) compare
those with MPJ Express [15] for reference. Fig. 11 shows a clear improvement when
using the new multi-channel primitives in SJ. Multi-channel SJ also performs compet-
itively against MPJ Express in both benchmarks. Hence SJ can be a viable alternative
to MPI programming in Java, with the additional assurances of communication-safety
and deadlock-free.

6 Related and Future Work

Due to space limitations, we focus on comparisons with extensions of Java with session
types and MPI. Other related work, including functional languages with session types
as well as HPC and PGAS languages can be found in the full version [6].
Implementations of session types in Java. SJ was introduced in [13] as the first
general-purpose session-typed distributed programming language. Another recent ex-
tension of SJ added event-based programming primitives [12], for a different target do-
main: scalable and type-safe event-driven implementation of applications that feature
a large number of concurrent but independent threads (e.g. Web servers). The prelimi-
nary experiments with parallel algorithms in SJ were reported in a workshop paper [1].
This early work considered only simple iteration chaining without analysis of deadlock-
freedom, and without the general multi-channel primitives required for efficient repre-
sentation of the complex topologies tackled here. The present paper also presents the
formal semantics, type system, and proofs for type soundness and deadlock-freedom
for the new primitives, which have not been studied in [1].

The Bica language [7] is an extension of Java also implementing binary sessions,
which focuses on allowing session channels to be used as fields in classes. Bica does not
support multi-channel primitives and does not guarantee deadlock-freedom across mul-
tiple sessions. See [11, 12] for more comparisons with [7]. A recent work [18] extends
SJ-like primitives with multiparty session types and studies type-directed optimisations
for the extended language. Their design is targeted at more loosely-coupled distributed
applications than parallel algorithms, where processes are tightly-coupled and typically
communicate via high-bandwidth, low-latency media; their optimisations, such as mes-
sage batching, could increase latency and lower performance. It does not support fea-
tures such as session delegation, session thread programming and transport indepen-
dence [11, § 4.2.3], which are integrated into SJ. The latter in particular, together with
SJ alias typing [11, § 3.1] (for session linearity), offers transparent portability of SJ par-
allel algorithm code over TCP and shared memory with zero-copy optimisations.
Message-based parallel programming. The present paper focuses on language and
typing support for communications programming, rather than introducing a supple-
mentary API. In comparison to the standard MPI libraries [8, §4], SJ offers structured
communication programming from the natural abstraction of typed sessions and the as-
sociated static assurance of type and protocol safety. Recent work [20] applies model-
checking techniques to standard MPI C source code to ensure correct matching of sends
and receives using a pre-existing test suite. Their verifier, ISP, exploits independence
between thread actions to reduce the state space of possible thread interleavings of an
execution, and checks for deadlocks in the remaining states. In contrast, our session
type-based approach does not depend on external testing, and a valid, compiled pro-
gram is guaranteed communication-safe and deadlock-free in a matter of seconds. SJ
thus offers a performance edge even in the cases of complex interactions (cf. [6]). The
MPI API remains low-level, easily leading to synchronisation errors, message type er-
rors and deadlocks [8]. From our experiences, programming message-based parallel
algorithms with SJ are much easier than programming based on MPI functions, which,
beside lacking type checking for protocol and communication safety, often requires ma-
nipulating numerical process identifiers and array indexes (e.g. for message lengths in
the n-Body program) in tricky ways. Our approach gives a clear definition of a class of
communication-safe and deadlock-free programs as proved in Theorems 4.2 and 4.3,
which have been statically checked without exploring all execution states for all possi-
ble thread interleavings. Finally, benchmark results in §5 demonstrate how SJ programs
can deliver the above benefits and perform competitively against a Java-based MPI [15].
Future work. Our previous work [21] shows type-checking for parallel algorithms
based on parameterised multiparty sessions requires type equality, so type checking
is undecidable in the general case. The method developed in this paper is not only
decidable, but also effective in practice as we can reuse the existing binary SJ lan-
guage, type-checker and runtime, with extensions to the new multi-channel inwhile and
outwhile primitives for structuring message-passing communications and iterations. To
validate more general communication topologies beyond the well-formed condition and
typical parallel algorithms, we plan to incorporate new primitives into multiparty ses-
sion types [10, 18] by extending the end-point projection algorithm based on roles [4].
Preliminary results from a manual SJ-to-C translation have shown large performance

gains for FPGA implementations [16]. Future implementation efforts will include a
natively compiled, C-like language targeted at low overheads and efficiency for HPC
and systems programming. We also plan to incorporate recent, unimplemented theo-
retical advances, including logical reasoning [2] to prove the correctness of parallel
algorithms.

References

1. A. Bejleri, R. Hu, and N. Yoshida. Session-Based Programming for Parallel Algorithms. In
PLACES, EPTCS, 2009.

2. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR’10, volume 6269 of LNCS, pages 162–176.

3. H. Casanova, A. Legrand, and Y. Robert. Parallel Algorithms. Chapman & Hall, 2008.
4. P.-M. Deniélou and N. Yoshida. Dynamic Multirole Session Types. In POPL ’11, pages

435–446. ACM, 2011.
5. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Com-

munications. In TGC ’07, volume 4912 of LNCS, pages 257–275. Springer, 2008.
6. On-line appendix. http://www.doc.ic.ac.uk/~cn06/pub/2011/sj_parallel/.
7. S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira. Modular Session

Types for Distributed Object-Oriented Programming. In POPL ’10, pages 299–312. ACM,
2010.

8. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1999.

9. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for
Structured Communication-based Programming. In ESOP ’98, volume 1381 of LNCS, pages
122–138. Springer, 1998.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL,
pages 273–284. ACM, 2008.

11. R. Hu. Structured, Safe and High-level Communications Programming with Session Types.
PhD thesis, Imperial College London, 2010.

12. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-Safe Eventful Sessions in
Java. In T. D’Hondt, editor, ECOOP, volume 6183 of LNCS, pages 329–353, 2010.

13. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
J. Vitek, editor, ECOOP, volume 5142 of LNCS, pages 516–541. Springer, 2008.

14. Message Passing Interface. http://www.mcs.anl.gov/research/projects/mpi/.
15. MPJ Express homepage. http://mpj-express.org/.
16. N. Ng. High Performance Parallel Design based on Session Programming. MEng thesis,

Department of Computing, Imperial College London, 2010.
17. A. Shafi, B. Carpenter, and M. Baker. Nested Parallelism for Multi-core HPC Systems using

Java. Journal of Parallel and Distributed Computing, 69(6):532 – 545, 2009.
18. K. Sivaramakrishnan, K. Nagaraj, L. Ziarek, and P. Eugster. Efficient Session Type Guided

Distributed Interaction. In COORDINATION, volume 6116 of LNCS, pages 152–167.
Springer, 2010.

19. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-Throughput Stream
Programming in Java. In OOPSLA ’07, pages 211–228. ACM, 2007.

20. A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and R. Thakur. Formal
Verification of Practical MPI Programs. In PPoPP ’09, pages 261–270. ACM, 2009.

21. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised Multiparty Session Types.
In C.-H. L. Ong, editor, FOSSACS, volume 6014 of LNCS, pages 128–145. Springer, 2010.

22. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Discipline for Struc-
tured Communication-Based Programming Revisited: Two Systems for Higher-Order Ses-
sion Communication. ENTCS, 171(4):73–93, 2007.

Table of Contents

1 Introduction . 1
2 Session-Typed Programming in SJ . 2
3 Parallel Algorithms in SJ . 6
4 Multi-channel Session π-Calculus . 7

4.1 Syntax . 9
4.2 Types, Typing System and Well-Formed Topologies 10
4.3 Subject Reduction, Communication Safety and Deadlock Freedom 13

5 Performance Evaluation . 14
6 Related and Future Work . 14
A Appendix to Section 3 . 18

A.1 n-Body simulation: Ring Topology . 18
A.2 Linear Equation Solver: Wraparound Mesh Topology 19
A.3 n-Body Processes . 22
A.4 Jacobi Processes . 22

B Appendix to Section 4 . 23
B.1 Structural Congruence and Typing Rules . 23
B.2 Well-Formed Ring and Mesh Topologies . 26

C Appendix - Proofs . 27

A Appendix to Section 3

We present here an additional parallel algorithm implementation in SJ, which further
demonstrates the benefits of our multi-channel primitives.

A.1 n-Body simulation: Ring Topology

The parallel n-Body algorithm organises the constituent processes into a circular pipeline,
an example of the ring communication topology. The ring topology is used by many
other parallel algorithms, like matrix multiplication and LU matrix decomposition [3].

The n-Body problem involves finding the motion, according to classical mechanics,
of a system of particles given their masses and initial positions and velocities. Paral-
lelisation of the simulation algorithm is achieved by dividing the particle set among a
set of m worker processes. The idea is that each simulation step involves a series of
inner steps, which perform a running computation while forwarding the data from each
process around the ring one hop at a time; after m−1 inner steps, each process has seen
all the data from every other, and the current simulation step is complete.

The following session type describes the communication protocol of our implemen-
tation. This is the session type for a Worker’s interaction with its left neighbour.

protocol WorkerToLeft

sbegin. // Accept session request from left neighbour

!<int>. // Forward init counter to determine number of processes

?[// Main loop (loop controlled by left neighbour)

?[// Pipeline stages within each simulation step

!<Particle[]> // Pass current particle state along the ring

]*]*

The interaction with the right neighbour follows the dual protocol. The WorkerLast and
Master nodes follow slightly different protocols, in order to close the ring structure and
bootstrap the pipeline interaction.

In the SJ implementation, each node establishes two sessions with the left and right
neighbours, and the iteration of every session in the pipeline is centrally controlled by
the Master node. Without the multi-channel iteration primitives, there is no adequate
way of closing the ring (sending data from the WorkerLast node to the Master); the
only option is to open and close a temporary session with each iteration (Fig. 12) [1], an
inefficient and counter-intuitive solution, as depicted on the left in Fig. 14 (the loosely
dashed line indicates the temporary connection).

By contrast, Fig.13 gives the implementation of the ring topology using a multi-
outwhile at the Master node, and a multi-inwhile at WorkerLast. Data is still passed
left-to-right, but the final iteration control link (the bold arrow on the right in Fig. 14)
is reversed. This allows the Master to create the final link just once (at the start of the
algorithm) like the other links, and gives the Master full control over the whole pipeline.

The full process definition of an n-Body simulation is listed as follows

A.2 Linear Equation Solver: Wraparound Mesh Topology

Linear equations are at the core of many engineering problems. Solving a system of
linear equations consists in finding x such that Ax = b, where A is an n×n matrix and x
and b are vectors of length n.

A whole range of methods for solving linear systems are available. One of the most
amenable to parallelisation is the Jacobi method. It is based on the observation that the
matrix A can be decomposed into a diagonal component and a remainder: A = D+R.
The equation Ax = b is then equivalent to x = D−1(b−Rx), again equivalent to finding
the solution to the n equations ∑

n
j=1 αi jx j = bi for i = 1, ...,n. Solving the i-th equation

for xi yields: xi =
1

αii
(bi−∑ j 6=i αi jx j), which suggests the iterative method: x(k+1)

i =

1
aii
(bi−∑ j 6=i αi jx

(k)
j), where k ≥ 0 and x(0) is an initial guess at the solution vector. The

algorithm iterates until the normalised difference between successive iterations is less
than some predefined error.

Our parallel implementation of this algorithm uses p2 processors in a p× p wrap-
around mesh topology to solve an n× n system matrix. The matrix is partitioned into
submatrix blocks of size n

p ×
n
p , assigned to each of the processors (see Fig.15).

Each iteration of the algorithm requires multiplications (in the term αi jx j) and sum-
mation. Multiplications dominate execution time here, hence the parallelisation concen-
trates on them. The horizontal part of the mesh acts as a collection of circular pipelines

Master :
right.outwhile(cond) {

left = chanLast.request();

right.send(data);

processData();

newData = left.receive();

}

Worker :
right.outwhile(left.inwhile) {

right.send(data);

processData();

newData = left.receive();

}

WorkerLast :
left.inwhile {

right = chanFirst.accept();

right.send(data);

processData();

newData = left.receive();

}

Fig. 12. Implementation of the ring topology,
single-channel primitives only.

Master :
<left,right>.outwhile(cond) {

right.send(data);

processData();

newData = left.receive();

}

Worker :
right.outwhile(left.inwhile) {

right.send(data);

processData();

newData = left.receive();

}

WorkerLast :
<left,right>.inwhile {

right.send(data);

processData();

newData = left.receive();

}

Fig. 13. Improved implementation of the ring
topology using multi-channel primitives.

Master

Worker

Worker
Last

Worker Master

Worker

Worker
Last

Worker

Repeated session open/close

Iteration control msg.

Data transfer

Iteration control msg.
(emphasis, difference between impl.)

Fig. 14. Communication patterns in n-Body implementations.

for multiplications. Their results are collected by the diagonal nodes, which perform the
summation and the division by αii.

This gives the updated solution values for the iteration. These need to be communi-
cated to other nodes for the next iteration. The vertical mesh connections are used for
this purpose: the solution values are sent down by the diagonal node, and each worker
node picks up the locally required solution values, and passes on the rest. The transmis-
sion wraps around at the bottom of the mesh, and stops at the node immediately above
the diagonal, hence the lack of connectivity between the two in Fig.15.

Master (is also on the diagonal):

<under,right>.outwhile(

hasNotConverged()) {

prod = computeProducts();

// horizontal ring, pass results

to diagonal node

ringData = prod;

<left,right>.outwhile(count <

nodesOnRow) {

right.send(ringData);

ringData = left.receive();

computeSums(ringData);

count++;

}

newX = computeDivision();

under.send(newX);

}

Worker :
<under,right>.outwhile(<left,over

>.inwhile) {

prod = computeProducts();

ringData = prod;

right.outwhile(left.inwhile) {

right.send(ringData);

ringData = left.receive();

}

newX = over.receive();

under.send(newX);

}

WorkerDiagonal :
<under,right>.outwhile(left.

inwhile) {

prod = computeProducts();

ringData = prod;

right.outwhile(left.inwhile) {

right.send(ringData);

ringData = left.receive();

computeSums(ringData);

}

newX = computeDivision();

under.send(newX);

}

WorkerEastLast :
<right,left,over>.inwhile {

prod = computeProducts();

ringData = prod;

<left,right>.inwhile {

right.send(ringData);

ringData = left.receive();

}

newX = over.receive();

}

Worker
East

Worker
LastMaster

Worker
East
Last

Worker
Diagonal

Worker
West

Worker
East

Diagonal
WorkerWorker

SouthWest

Fig. 15. Linear Equations Solver implementation using a wraparound mesh.

Note that contrary to the non-wraparound 2D-mesh of § 3, the sink of this well-
formed topology (§ 4.2) is not the last node on the diagonal, but instead the node
just above, called WorkerEastLast. This is because the diagonal nodes transmit up-
dated values as explained above, and this transmission stops just before a complete

wraparound. Fig.18 shows node ranks for the wraparound mesh topology, along with
the other topologies presented in the paper.

A.3 n-Body Processes

This appendix gives the full definition of n-Body processes.

P1 ≡ 〈k(1,2),k(1,3)〉.outwhile(e){k(1,2)〈Particle[]〉;k(1,3)(x). 0 }

P2 ≡ k(2,3).outwhile(k(1,2).inwhile){k(2,3)〈Particle[]〉;k(1,2)(x). 0 }

P3 ≡ 〈k(1,3),k(2,3)〉.inwhile{k(1,3)〈Particle[]〉;k(2,3)(x). 0 }

where the typing of the processes are (omitting end):

Γ ` P1 .{k(1,2) : ![![U]]∗, k(1,3) : ![?[U]]∗}

Γ ` P2 .{k′(1,2) : ?[?[U]]∗, k(2,3) : ![![U]]∗}

Γ ` P3 .{k′(1,3) : ?[![U]]∗, k′(2,3) : ?[?[U]]∗}

A.4 Jacobi Processes

This appendix gives the full definition of Jacobi processes.

P1 = PNW =〈k(1,2),k(1,4)〉.outwhile(e){k(1,2)〈double[]〉;k(1,2)(x).k(1,4)〈double[]〉;k(1,4)(y). 0 }

P2 = PN =〈k(2,4),k(2,5)〉.outwhile(k′(1,2).inwhile){

k′(1,2)(x).k
′
(1,2)〈double[]〉;k(2,4)〈double[]〉;k(2,4)(y).k(2,5)〈double[]〉;k(2,5)(z). 0 }

P4 = PNE =k(4,7).outwhile(k
′
(2,4).inwhile){

k′(2,4)(x).k
′
(2,4)〈double[]〉;k(4,7)〈double[]〉;k(4,7)(y). 0 }

P3 = PW =〈k(3,5),k(3,6)〉.outwhile(k′(1,3).inwhile){

k′(1,3)(x).k
′
(1,3)〈double[]〉;k(3,5)〈double[]〉;k(3,5)(y).k(3,6)〈double[]〉;k(3,6)(z). 0 }

P5 = PC =〈k(5,7),k(5,8)〉.outwhile(〈k′(2,5),k
′
(3,5)〉.inwhile){

k′(2,5)(w).k
′
(2,5)〈double[]〉;k′(3,5)(x).k

′
(3,5)〈double[]〉;

k(5,7)〈double[]〉;k(5,7)(y).k(5,8)〈double[]〉;k(5,8)(z). 0 }

P7 = PE =k(7,9).outwhile(〈k′(4,7),k
′
(5,7)〉.inwhile){

k′(4,7)(x).k
′
(4,7)〈double[]〉;k′(5,7)(y).k

′
(5,7)〈double[]〉;k(7,9)〈double[]〉;k(7,9)(z). 0 }

P6 = PSW =k(6,8).outwhile(k
′
(3,6).inwhile){k

′
(3,6)(x).k

′
(3,6)〈double[]〉;k(6,8)〈double[]〉;k(6,8)(y). 0 }

P8 = PS =k(8,9).outwhile(〈k′(5,8),k
′
(6,8)〉.inwhile){

k′(5,8)(x).k
′
(5,8)〈double[]〉;k′(6,8)(y).k

′
(6,8)〈double[]〉;k(6,8)〈double[]〉;k(6,8)(z). 0 }

P9 = PSE =〈k′(7,9),k
′
(8,9)〉.inwhile{k

′
(7,9)(x).k

′
(7,9)〈double[]〉;k′(8,9)(y).k

′
(8,9)〈double[]〉}

where the typing of the processes are (omitting end):

Γ ` P1 .{k(1,2) : ![![]; ?[]]∗,k(1,3) : ![![]; ?[]]∗}

Γ ` P2 .{k′(1,2) : ?[?[].![]]∗,k(2,4) : ![![]; ?[]]∗,k(2,5) : ![![]; ?[]]∗}

Γ ` P4 .{k′(2,4) : ?[?[].![]]∗,k(4,7) : ![![]; ?[]]∗}

Γ ` P3 .{k′(1,3) : ?[?[].![]]∗,k(3,5) : ![![]; ?[]]∗,k(3,6) : ![![]; ?[]]∗}

Γ ` P5 .{k′(2,5) : ?[?[].![]]∗,k′(3,5) : ?[?[].![]]∗,k(5,7) : ![![]; ?[]]∗,k(5,8) : ![![]; ?[]]∗}

Γ ` P7 .{k′(4,7) : ?[?[].![]]∗,k′(5,7) : ?[?[].![]]∗,k(7,9) : ![![]; ?[]]∗}

Γ ` P6 .{k(3,6) : ?[?[].![]]∗,k(6,8) : ![![]; ?[]]∗}

Γ ` P8 .{k′(5,8) : ?[?[].![]]∗,k′(6,8) : ?[?[].![]]∗,k(8,9) : ![![]; ?[]]∗}

Γ ` P9 .{k′(7,9) : ?[?[].![]]∗,k′(8,9) : ?[?[].![]]∗}

We can easily check Jacobi processes satisfy the well-formed topology condition.

B Appendix to Section 4

B.1 Structural Congruence and Typing Rules

This section lists the omitted definitions from Section 4. Structural congruence rules
are defined in Fig. 16; full typing rules can be found in Fig. 17. In this context, fn(Q)
denotes a set of free shared and session channels, and fpv(D) stands for a set of free
process variables. In the typing system, ∆ is complete means that ∆ includes only end
or ⊥. Further explanations can be found in [16].

P≡ Q if P≡α Q P | 0 ≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)
(νu)P | Q≡ (νu)(P | Q) if u 6∈ fn(Q)

(νu) 0 ≡ 0 def D in 0 ≡ 0 0 ; P ≡ P

(νu)def D in P≡ def D in (νu)P if u 6∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if fpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if fpv(D)∩ fpv(D′) = /0.

Fig. 16. Structural congruence.

Definition B.1. A process is under a well-formed intermediate topology if:

1. (inwhile and outwhile)

P1 = 〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}
Pi = 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} | k(i,i+1) † [b] | k(1,i) † [b] | . . . | k(i−1,i) † [b]

when i ∈ {2..M−1}, b ∈ {true,false}
Pj = 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) | k(1, j) † [b] | . . . | k(j−1, j) † [b]

when j ∈ {M..N}∀b ∈ {true} or ∀b ∈ {false}
and

Γ ` Q1 .{k(1,2) : T(1,2), . . . ,k(1,N) : T(1,N)}

Γ ` Qi .{k(i,i+1) : T(i,i+1), . . . ,k(i,N) : T(i,N),k(1,i) : T ′(1,i)
†, . . . ,k(i−1,i) : T ′i−1i†}

Γ ` Q j .{k(1, j) : T ′(1, j)
†, k(j−1, j) : T ′(j−1, j)

†}

and

Γ ` Q1 | Q2 | . . . | Qn .{k̃ : ⊥̃†}

with T(i, j) = T ′
(i, j)

2. (sequencing) Pi = Q1i; ...;Qmi where (Q j1 |Q j2 | · · · |Q jn) conforms a well-formed
intermediate topology for each 1≤ j ≤ m.

3. (base) (1) session actions in Pi follows the order of the index (e.g. the session actions
at k(i, j) happens before k(h,g) if (i, j) < (h,g)), then the rest is a base process P′i ;
and (2) Pi includes neither shared session channels, inwhile nor outwhile.

Γ ` 1.nat Γ ` true,false.bool

Γ ` ei .nat

Γ ` e1 + e2 .nat
[NAT],[BOOL],[SUM]

Γ ·a : S ` a.S
Γ ; ∆ ` e.S

Γ ; ∆ ,∆ ′ ` e.S
[NAME],[EVAL]

∆ = k1 : ?[τ1]
∗.end, ...,kn : ?[τn]

∗.end

Γ ;∆ ` 〈k1 . . .kn〉.inwhile.bool
[EINWHILE]

Γ ` P.∆ · k : ε.end

Γ ` P.⊥
∆ complete
Γ ` 0 .∆

[BOT],[INACT]

Γ ` a. 〈α,α〉 Γ ` P.∆ · k : α

Γ ` a(k).P.∆

Γ ` a. 〈α,α〉 Γ ` P.∆ · k : α

Γ ` a(k).P.∆
[REQ],[ACC]

Γ ` e.S
Γ ` k〈e〉.∆ · k : ![S].end

Γ · x : S ` P.∆ · k : α

Γ ` k(x).P.∆ · k : ?[S]; α
[SEND],[RCV]

Γ ` P1 .∆ · k : τ1.end · · · Γ ` Pn .∆ · k : τn.end

Γ ` k�{l1 : P1[] · · · []ln : Pn}.∆ · k : &{l1 : τ1, . . . , ln : τn}.end
[BR]

Γ ` P.∆ · k : τ j.end 1≤ j ≤ n
Γ ` k� l .∆ · k : ⊕{l1 : τ1, . . . , ln : τn}.end

[SEL]

Γ ` k〈k′〉.∆ · k : ![α].end · k′ : α

Γ ` P.∆ · k : β · k′ : α

Γ ` k(k′).P.∆ · k : ?[α]; β
[THR],[CAT]

Γ ` e.bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
[IF]

Γ ; ∆ ` e.bool Γ ` P.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.outwhile(e){P}.∆ · k1 : ![τ1]∗.end · · · · · kn : ![τn]∗.end
[OUTWHILE]

Γ ` Q.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.inwhile{Q}.∆ · k1 : ?[τ1]∗.end · · · · · kn : ?[τn]∗.end
[INWHILE]

Γ ` bi .bool

Γ `Πi∈{1..n}ki † [bi]. k1 : †, ...,kn : †
Γ ·a : S ` P.∆

Γ ` (νa)P.∆

Γ ` P.∆ · k : ⊥
Γ ` (νk)P.∆

[MESSAGE],[NRES],[CRES]

Γ ; /0 ` e.S
Γ ·X :Sα ` X [ek].∆ · k : α

Γ ·X :Sα · x : S ` P. k : α Γ ·X :Sτ ` Q.∆

Γ ` def X(xk) = P in Q.∆
[VAR],[DEF]

Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P; Q.∆ ;∆ ′
Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P | Q.∆ ◦∆ ′
[SEQ],[CONC]

Fig. 17. Typing rules.

B.2 Well-Formed Ring and Mesh Topologies

Master

Worker

Worker
Last

Worker

Source: 1

2

Sink: 4

3

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

Source:
1 2 4

7

Sink: 9

3

6

5

8

Worker
East

Worker
LastMaster

Worker
East
Last

Worker
Diagonal

Worker
West

Worker
East

Diagonal
WorkerWorker

SouthWest

Source: 1

2

4

3

5

7

6

8

Sink:
9

Fig. 18. Ring, mesh, and wraparound mesh topologies, with rank annotations.

We define well-formed ring and mesh topologies. We can check that they conform
to the general definition of well-formed topology (Definition 4.1). Fig. 18 shows the
rank of each process for each topology, indicating how both rings and meshes map to
the general definition.

Definition B.2. A process group

PNW | PNE | PSW | PSE | PN1 . . . | PNm | PS1 . . . | PSm

| PE1 . . . | PEn | PW1 . . . | PWn | PC22 . . . | PCn−1m−1

conforms to a well-formed mesh topology if:

PNW =〈t1, l1〉.outwhile(e){QNW [t1, l1]}
PN j =〈t j+1,vc1 j〉.outwhile(t j.inwhile){QN j [t j+1,vc1 j, t j]}
PNE =r1.outwhile(tm.inwhile){QNE [r1, tm]}
PWi =〈hci1, li+1〉.outwhile(li.inwhile){QW [hci1, li+1, li]}
PCi j =〈vci+1 j,hci j+1〉.outwhile(〈hci j,vci j〉.inwhile){

QCi j [vci+1 j,hci j+1,hci j,vci j]}
PEi =ri+1.outwhile(〈hcim,ri〉.inwhile){

QEi [ri+1,hcim,ri]}
PSW =b1.outwhile(ln.inwhile){QSW [b1, ln]}
PS j =b j+1.outwhile(〈b j,vcn j〉.inwhile){

QS j [b j+1,b j,vcn j]}
PSE =〈bm,rn〉.inwhile{QSE [bm,rn]}

where 1≤ i≤ n,1≤ j ≤ m, and

Γ ` QNW .{t1 : Tt1 , l1 : Tl1}
Γ ` QN j .{t j+1 : Tt j+1 ,vc1 j : Tvc1 j , t j : T ′t j

}

Γ ` QNE .{r1 : Tr1 , tm : T ′tm}
Γ ` QW .{hci1 : Thci1 , li+1 : Tli+1 , li : T ′li}
Γ ` QCi j .{vci+1 j : Tvci+1 j ,hci j+1 : Thci j+1 ,hci j : T ′hci j

,vci j : T ′vci j
}

Γ ` QEi .{ri+1 : Tri+1 ,hcim : Thcim ,ri : T ′ri
}

Γ ` QSW .{b1 : Tb1 , ln : T ′ln}
Γ ` QS j .{b j+1 : Tb j+1 ,b j : T ′b j

,vcn j : T ′vcn j
}

Γ ` QSE .{bm : T ′bm
,rn : T ′rn}

with Ti = T ′i

C Appendix - Proofs

Definition C.1. Sequential composition of session type are defined as [5]:

τ; α =

{
τ.α if τ is a partial session type and α is a completed session type
⊥ otherwise

∆ ; ∆
′ = ∆ \ dom(∆ ′) ∪ ∆

′ \ dom(∆) ∪ {k : ∆(k) \ end; ∆
′(k) | k ∈ dom(∆)∩dom(∆ ′)}

The first rule concatenates a partial session type τ with a completed session type α

to form a new (completed) session type. The second rule can be decomposed to three
parts:

1. ∆ \ dom(∆ ′) extracts session types with sessions unique in ∆

2. ∆ ′ \ dom(∆) extracts session types with sessions unique in ∆ ′

3. {k : ∆(k) \ end; ∆ ′(k) | k ∈ dom(∆)∩ dom(∆ ′)} modifies session types with a
common session k in ∆ and ∆ ′ by removing end type from ∆(k) and concatenates
the modified ∆(k) (which is now a partial session type) with ∆ ′(k) as described in
the first rule.

Example C.1. Suppose ∆ = {k1 : ε.end, k2 : ![nat].end} and ∆ ′= {k2 : ?[bool].end, k3 : ![bool].end}
. Since k1 is unique in ∆ and k3 is unique in ∆ ′, we have

∆\dom(∆ ′) = {k1 : ε.end} and ∆
′\dom(∆) = {k3 : ![bool].end}

A new session type is constructed by removing end in ∆(k2), so the composed set of
mappings is

∆ ; ∆
′ = {k1 : ε.end, k2 : ![nat]; ?[bool].end, k3 : ![bool].end}

Definition C.2. Parallel composition of session and runtime type is defined as:

∆ ◦∆
′ =∆ \ dom(∆ ′)∪∆

′ \ dom(∆)∪ {k : β ◦β
′ | ∆(k) = β and ∆

′(k) = β
′}

where β ◦β
′ :

α ◦† = α†

α ◦α = ⊥
α ◦α

† = ⊥†

The parallel composition relation ◦ is commutative as the order of composition do not
impact the end result.

We now present some auxiliary results for subject reduction, the following proofs
are modified from [22], and adapted to our updated typing system.

Lemma C.1 (Weakening Lemma). Let Γ ` P.∆ .

1. If X 6∈ dom(Γ), then Γ ·X :Sα ` P.∆ .
2. If a 6∈ dom(Γ), then Γ ·a :S ` P.∆ .
3. If k 6∈ dom(∆) and α =⊥ or α = ε.end, then Γ ` P.∆ · k :α .

Proof. A simple induction on the derivation tree of each sequent. For 3, we note that in
[INACT] and [VAR], ∆ contains only ε.end.

Lemma C.2 (Strengthening Lemma). Let Γ ` P.∆ .

1. If X 6∈ fpv(P), then Γ \X ` P.∆ .
2. If a 6∈ fn(P), then Γ \a ` P.∆ .
3. If k 6∈ fn(P), then Γ ` P.∆ \ k.

Proof. Standard.

Lemma C.3 (Channel Lemma).

1. If Γ ` P.∆ · k : α and k 6∈ fn(P), then α =⊥,ε.end.
2. If Γ ` P.∆ and k ∈ fn(P), then k ∈ dom(∆).

Proof. A simple induction on the derivation tree for each sequent.

We omit the standard renaming properties of variables and channels, but present the
Substitution Lemma for names. Note that we do not require a substitution lemma for
channels or process variables, for they are not communicated.

Lemma C.4 (Substitution Lemma). If Γ ·x :S ` P.∆ and Γ ` c:S, then Γ ` P{c/x}.
∆

Proof. Standard.

We write ∆ ≺ ∆ ′ if we obtain ∆ ′ from ∆ by replacing k1 :ε.end, ...,kn :ε.end (n≥ 0)
in ∆ by k1 :⊥, ...,kn :⊥. If ∆ ≺ ∆ ′, we can obtain ∆ ′ from ∆ by applying the [BOT]-rule
zero or more times.

Theorem C.1. Subject congruence is defined by

Γ ` P.∆ and P≡ P′ implies Γ ` P′ .∆

Proof. Case P | 0 ≡ P. We show that if Γ ` P | 0 .∆ , then Γ ` P.∆ . Suppose

Γ ` P.∆1 and Γ ` 0 .∆2.

with ∆1◦∆2 =∆ . Note that ∆2 only contains ε.end or⊥, hence we can set: ∆1 =∆ ′1◦{k:
ε.end} and ∆2 = ∆ ′2 · {k : ε.end} with ∆ ′1 ◦∆ ′2 = ∆ ′1 ·∆ ′2 and ∆ = ∆ ′1 ·∆ ′2 · {k :⊥}. Then
by the [BOT]-rule, we have:

Γ ` P.∆
′
1 · {k :⊥}

Notice that, given the form of ∆ above, we know that dom(∆ ′2)∩dom(∆ ′1) · {k : ⊥}) =
/0. Hence by applying Weakening, we have:

Γ ` P.∆
′
1 ·∆ ′2 · {k :⊥}

as required.
For the other direction, we set ∆ = /0 in [INACT].
Case P | Q≡ Q | P.◦ relation is commutative by the definition of ◦ (Definition C.2)
Case (P | Q) | R≡ P | (Q | R). To show (P | Q) | R≡ P | (Q | R), where

Γ ` P.∆1 Γ ` Q.∆2 Γ ` R.∆3

We assume (∆1 ◦∆2)◦∆3 is defined
Suppose k : β1 ∈ ∆1 and k : β2 ∈ ∆2, then we have

β1 = α β2 = †
β1 = α β2 = α

β1 = α β2 = α
†

β1 = † β2 =⊥

Now suppose k : β3 ∈ ∆3,
if β1 = α β2 = †, then β3 = α

(β1 ◦β2)◦β3 = ({k : α}◦{k : †})◦{k : α}= {k : ⊥†}
≡β1 ◦ (β2 ◦β3) = {k : α}◦ ({k : †}◦{k : α}) = {k : ⊥†}

if β1 = α β2 = α , then β3 = †

(β1 ◦β2)◦β3 = ({k : α}◦{k : α})◦{k : †}= {k : ⊥†}
≡β1 ◦ (β2 ◦β3) = {k : α}◦ ({k : α}◦{k : †}) = {k : ⊥†}

in all other cases, k /∈ dom(∆3) and therefore no parallel composition is possible.

Case (νu)P | Q ≡ (νu)(P | Q) if u 6∈ fn(Q). The case when u is a name is standard.
Suppose u is channel k and assume Γ ` (νk)(P | Q).∆ . We have

Γ ` P.∆ ′1 Γ ` Q.∆ ′2
Γ ` P | Q.∆ ′ · k :⊥

with ∆ ′ · k :⊥ = ∆ ′1 ◦∆ ′2 and ∆ ′ ≺ ∆ by [BOT]. First notice that k can be in either ∆ ′i or
in both. The interesting case is when it occurs in both; from Lemma C.3(1) and the
fact that k 6∈ fn(Q) we know that ∆ ′1 = ∆1 · k : ε.end and ∆ ′2 = ∆2 · k : ε.end. Then, by
applying the [BOT]-rule to k in P, we have Γ ` P .∆1 · k :⊥, and by applying [CRES] we
obtain Γ ` (νk)P.∆1. On the other hand, by Strengthening, we have Γ `Q.∆2. Then,
the application of [CONC] yields Γ ` (νk)P | Q.∆ ′. Then by applying the [BOT]-rule, we
obtain Γ ` (νk)P | Q.∆ , as required. The other direction is easy.

Case (νu) 0 ≡ 0 . Standard by Weakening and Strengthening.

Case def D in 0 ≡ 0 . Similar to the first case using Weakening and Strengthening.

Case (νu)def D in P ≡ def D in (νu)P if u 6∈ fn(D). Similar to the scope opening
case using Weakening and Strengthening.

Case (def D in P) | Q ≡ def D in (P | Q) if fpv(D)∩ fpv(Q) = /0. Similar with the
scope opening case using Weakening and Strengthening.

Case 0 ;P≡ P. We show that if Γ ` 0 ;P.∆ , then Γ ` P.∆ . Suppose

Γ ` 0 .∆1 and Γ ` P.∆2.

with ∆1;∆2 = ∆ . ∆2 only contains ε.end or ⊥, by definition of sequential composition
(Definition C.1), ∆(k) = ∆1(k).∆2(k) = ε.∆2(k) = ∆2(k) as required.

Theorem 4.1 (Subject reduction) The following subject reduction rules hold for a
well-formed topology (Definition 4.1).

Γ ` P.∆ and P −→ P′ implies Γ ` P′ .∆
′ such that

∆(k) = α ⇒
{

∆ ′(k) = α

∆ ′(k) = α†

∆(k) = α†⇒
{

∆ ′(k) = α

∆ ′(k) = α†

Under a well-formed intermediate topology (Definition B.1)

Γ ` P.∆ and P −→∗ P′ implies Γ ` P′ .∆
′ such that

∆(k) = α ⇒
{

∆ ′(k) = α

∆ ′(k) = α†

∆(k) = α†⇒
{

∆ ′(k) = α

∆ ′(k) = α†

Proof. We assume that

Γ ` e.S and e ↓ c implies Γ ` c.S (1)

and prove the result by induction on the last rule applied. For simplicity, assume all
nodes are fully connected.

Case inwhile/outwhile for N processes (ν k̃)(P1 | . . . | PN). Assume well-formed
topology (Definition 4.1) Case E[e]−→ E[true]

By [OW1],

(ν k̃) (〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (Q1[k(1,2), . . . ,k(1,N)]; 〈k(1,2), . . . ,k(1,N)〉.outwhile(e′){Q1[k(1,2), . . . ,k(1,N)]}

| k(1,2) † [true] | . . . | k(1,N) † [true]

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | k(1,2) † [true] | . . . | k(1,N) † [true] | Pi∈2..M−1 | Pj∈M..N)

.{k(1,2) : T(1,2); ![T(1,2)]
∗◦?[T ′(1,2)]

∗†, . . . ,k(1,N) : T(1,N); ![T(1,N)]
∗◦?[T ′(1,N)]

∗†,

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗, . . . ,k(i,N) : ![T(i,N)]
∗◦?[T ′(i,N)]

∗}

By [IWE1],

(ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(1,2) † [true] | . . . | k(1,N) † [true]

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(1,3) † [true] | . . . | k(1,N) † [true]

| 〈k(2,3), . . . ,k(2,N)〉.outwhile(true){ Q2[k(2,3), . . . ,k(2,N),k(1,2)] }

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Pi∈2..M−1 | Pj∈M..N | k(1,3) † [true] | . . . | k(1,N) † [true])

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦T ′(1,2); ?[T ′(1,2)]

∗,

k(1,3) : T(1,3); ![T(1,3)]
∗ ◦T ′(1,3); ?[T ′(1,3)]

∗†, . . . ,k(1,N) : T(1,N); ![T(1,N)]
∗ ◦T ′(1,N); ?[T ′(1,N)]

∗†,

k(2,3) : ![T(2,3)]
∗◦?[T ′(2,3)]

∗, . . . ,k(N−1,N) : ![T(N−1,N)]
∗◦?[T ′(N−1,N)]

∗

By [OW1],

(ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(1,3) † [true] | . . . | k(1,N) † [true]

| 〈k(2,3), . . . ,k(2,N)〉.outwhile(true){ Q2[k(2,3), . . . ,k(2,N),k(1,2)] }

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(2,3) † [true] | . . . | k(2,N) † [true] | k(1,3) † [true] | . . . | k(1,N)

| Q2[k(2,3), . . . ,k(2,N),k(1,2)]; 〈k(2,3), . . . ,k(2,N)〉.outwhile(k(1,2).inwhile){

Q2[k(2,3), . . . ,k(2,N),k(1,2)] }

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Q2;P2 | Pi∈2..M−1 | Pj∈M..N | k(2,3) † [true] | . . . | k(2,N) † [true] | k(1,3) † [true] | . . . | k(N−1,N) † [true])

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦T ′(1,2); ?[T ′(1,2)]

∗,

k(2,3) : T(2,3); ![T(2,3)]
∗ ◦T ′(2,3); ?[T ′(2,3)]

∗†, . . . ,k(2,N) : T(2,N); ![T(2,N)]
∗ ◦T ′(2,N); ?[T ′(2,N)]

∗†

k(1,3) : T(1,3); ![T(1,3)]
∗ ◦T ′(1,3); ?[T ′(1,3)]

∗†, . . . ,k(1,N) : T(1,N); ![T(1,N)]
∗ ◦T ′(1,N); ?[T ′(1,N)]

∗†,

k(3,4) : ![T(3,4)]
∗◦?[T ′(3,4)]

∗, . . . ,k(N−1,N) : ![T(N−1,N)]
∗◦?[T ′(N−1,N)]

∗

By repeatedly apply [OW1] and [IWE1] as above on processes P3..PM−1

(ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(2,3) † [true] | . . . | k(2,N) † [true] | k(1,3) † [true] | . . . | k(N−1,N)

| Q2[k(2,3), . . . ,k(2,N),k(1,2)];〈k(2,3), . . . ,k(2,N)〉.outwhile(k(1,2).inwhile){

Q2[k(2,3), . . . ,k(2,N),k(1,2)] }

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Qi[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗−→∗ (ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(1, j) † [true] | . . . | k(j−1, j) † [true]

| Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)];〈k(i,i+1), . . . ,k(i,N)〉.outwhile(k(1,i), . . . ,k(i−1,i).inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)] } when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Qi;Pi∈2..M−1 | Pj∈M..N | k(1, j) † [true] | . . . | k(j−1, j) † [true])

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦T ′(1,2); ?[T ′(1,2)]

∗, . . . ,k(1,N) : T(1,N); ![T(1,N)]
∗ ◦T ′(1,N); ?[T ′(1,N)]

∗,

k(i,i+1) : T(i,i+1); ![T(i,i+1)]
∗ ◦T ′(i,i+1); ?[T ′(i,i+1)]

∗, . . . ,k(i,M−1) : T(i,M−1); ![T(i,M−1)]
∗ ◦T ′(i,M−1); ?[T ′i,M−1]

∗,

k(1, j) : ![T(1, j)]
∗◦?[T ′(1, j)]

∗†, . . . ,k(j−1, j) : ![T(j−1, j)]
∗◦?[T ′(j−1, j)]

∗†}

Finally apply [IW1],

(ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| k(1, j) † [true] | . . . | k(j−1, j) † [true]

| Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)];〈k(i,i+1), . . . ,k(i,N)〉.outwhile(k(1,i), . . . ,k(i−1,i).inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)] } when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (Q1[k(1,2), . . . ,k(1,N)];〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)];

〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| Q j[k(1, j), . . . ,k(j−1, j)]; 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Qi;Pi∈2..M−1 | Q j;Pj∈M..N)

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦T ′(1,2); ?[T ′(1,2)]

∗, . . . ,k(1,N) : T(1,N); ![T(1,N)]
∗ ◦T(1,N); ?[T(1,N)]

∗,

k(i,i+1) : T(i,i+1); ![T(i,i+1)]
∗ ◦T ′(i,i+1); ?[T ′(i,i+1)]

∗, . . . ,k(i,N) : T(i,N); ![T(i,N)]
∗ ◦T ′(i,N); ?[T ′(i,N)]

∗}

Γ ` (Q1;P1 | Qi;Pi∈2..M−1 | Q j;Pj∈M..N)

.{k(1,2) : ⊥, . . . ,k(1,N) : ⊥,k(i,i+1) : ⊥, . . . ,k(i,N) : ⊥}

Case E[e]−→ E[false]
By [OW2],

(ν k̃) (〈k(1,2), . . . ,k(1,N)〉.outwhile(e){Q1[k(1,2), . . . ,k(1,N)]}

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Qi[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (0 | k(1,2) † [false] | . . . | k(1,N) † [false]

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Qi[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (0 | Pi∈2..M−1 | Pj∈M..N | k(1,2) † [false] | . . . | k(1,N) † [false])

.{k(1,2) : τ.end◦?[T(1,2)]∗†, . . . ,k(1,N) : τ.end◦?[T(1,N)]
∗†,

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗, . . . ,k(i,N) : ![T(i,N)]
∗◦?[T ′(i,N)]

∗}

By [IWE2],

(ν k̃) (0 | k(1,2) † [false] | . . . | k(1,N) † [false]

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {2..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Qi[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (0 | k(1,3) † [false] | . . . | k(1,N) † [false]

| 〈k(2,3), . . . ,k(2,N)〉.outwhile(false){

Qi[k(2,3), . . . ,k(2,N),k(1,2)]}

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (0 | Pi∈2..M−1 | Pj∈M..N)

.{k(1,2) : τ.end◦ τ.end,k(1,3) : τ.end◦?[T ′(1,3)]
∗† . . . ,k(1,N) : τ.end◦?[T ′(1,N)]

∗†

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗, . . . ,k(i,N) : ![T(i,N)]
∗◦?[T ′(i,N)]

∗}

By [OW2],

(ν k̃) (0 | k(1,3) † [false] | . . . | k(1,N) † [false]

| 〈k(2,3), . . . ,k(2,N)〉.outwhile(false){

Qi[k(2,3), . . . ,k(2,N),k(1,2)]}

| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (0 | k(2,3) † [false] | . . . | k(2,N) † [false] | k(1,3) † [false] | . . . | k(1,N) † [false]

| 0
| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

Γ ` (0 | k(2,3) † [false] | . . . | k(2,N) † [false] | k(1,3) † [false] | . . . | k(1,N) † [false]

| 0 | Pi when i ∈ {3..M−1} | Pj when j ∈ {M..N})

.{k(1,2) : τ.end,k(1,3) : τ.end◦?[T ′(1,3)]
∗† . . . ,k(1,N) : τ.end◦?[T ′(1,N)]

∗†

k(2,3) : τ.end◦?[T ′(2,3)]
∗†, . . . ,k(2,N) : τ.end◦?[T ′(2,N)]

∗†,

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗, . . . ,k(i,N) : ![T(i,N)]
∗◦?[T ′(i,N)]

∗}

By repeatedly apply [OW2] and [IWE2] as above on processes P3..PM−1

(ν k̃) (0 | k(2,3) † [false] | . . . | k(2,N) † [false] | k(1,3) † [false] | . . . | k(1,N) † [false]

| 0
| 〈k(i,i+1), . . . ,k(i,N)〉.outwhile(〈k(1,i), . . . ,k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . ,k(i,N),k(1,i), . . . ,k(i−1,i)]} when i ∈ {3..M−1}

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗−→∗ (ν k̃) (0 | 0 when i ∈ {2..M−1} | k(1, j) † [false] | . . . | k(j−1, j) † [false]

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]} when j ∈ {M..N})

Γ ` (0 | 0 when i ∈ {2..M−1} | k(1, j) † [false] | . . . | k(j−1, j) † [false] | Pj∈M..N)

.{k(1,2) : τ.end, . . . ,k(1,N) : τ.end,k(i,i+1) : τ.end, . . . ,k(i,M−1) : τ.end◦?[T ′(i,M−1)]
∗,

k(1, j) : τ.end◦?[T ′(1, j)]
∗†, . . . ,k(j−1, j) : τ.end◦?[T ′j−1, j]

∗†}

Finally apply [IW2],

(ν k̃) (0 | 0 when i ∈ {2..M−1} | k(1, j) † [false] | . . . | k(j−1, j) † [false]

| 〈k(1, j), . . . ,k(j−1, j)〉.inwhile{Q j[k(1, j), . . . ,k(j−1, j)]}) when j ∈ {M..N}

−→∗ (ν k̃) (0 | 0 when i ∈ {2..M−1} | 0 when j ∈ {M..N})

Γ ` (0 | 0 when i ∈ {2..M−1} | 0 when j ∈ {M..N})
.{k(1,2) : τ.end, . . . ,k(1,N) : τ.end,k(i,i+1) : τ.end, . . . ,k(i,N) : τ.end}

Finally, apply [BOT].
For other cases, the proof is similar to [16, P. 56-60]

Theorem 4.3 (Deadlock freedom) Assume P forms a well-formed topology and Γ `
P.∆ . Then P is deadlock-free.

Proof. Assume Γ ` ΠiPi .~k : ~⊥ for all cases below. Suppose group of n parallel com-
posed processes ΠiPi = P1 | . . . | Pn conforms to a well-formed topology (Definition
4.1).

Case 1.1 inwhile and outwhile, condition true.
P1 = 〈~k1〉.outwhile(true){Q1} Pi = 〈~ki〉.outwhile(〈~k′i〉.inwhile){Qi} (2≤ i < n)
Pn = 〈~k′n〉.inwhile{Qn} ~ki ⊂ k(i,i+1) · · ·k(i,n),~k′i ⊂ k(1,i) · · ·k(i−1,i)

If the outwhile condition is true, the iteration chain passes the true condition
from the Master process, P1 to all other processes, at the end of the iteration chain, all
processes reduce to Qi;Pi where Qi is the loop body and Pi is the next iteration of the
outwhile/inwhile loop. We will show inductively that Qi is deadlock free in other cases
listed below. The session channel interaction sequence is shown below.

P1 =
k(1,2)−−−→

∗ k(1,i)−−→
∗ k(1,n)−−−→

∗
Q1;P1

Pi =
k′(1,i)−−→

∗ k′(i−1,i)−−−−→
∗

k(i,i+1)−−−−→
∗ k(i,n)−−→

∗
Qi;Pi

Pn =
k′(1,n)−−−→

∗ k′(i,n)−−→
∗

Qn;Pn

The Master process P1 initiates the interactions in each outwhile/inwhile iteration chain.
All session interactions in each process happen after all interactions on the left is com-
pleted. From above interaction sequence, there are no processes that can only proceed
depending on an interaction step not readily available. Therefore a correct process Pi
will always reduce to Qi;Pi for a true condition.
Case 1.2 inwhile and outwhile, condition false.
P1 = 〈~k1〉.outwhile(false){Q1} Pi = 〈~ki〉.outwhile(〈~k′i〉.inwhile){Qi} (2≤ i < n)
Pn = 〈~k′n〉.inwhile{Qn} ~ki ⊂ k(i,i+1) · · ·k(i,n),~k′i ⊂ k(1,i) · · ·k(i−1,i)

Suppose group of parallel composed processes ΠiPi = P1 | . . . | Pn conforms to a
well-formed topology (Definition 4.1). If the outwhile condition is false, the itera-
tion chain passes the false condition from the Master process, P1 to all other processes,
at the end of the iteration chain, all processes reduces to 0 to exit from the outwhile/in-
while loop. The session channel interaction sequence is shown below:

P1 =
k(1,2)−−−→

∗ k(1,i)−−→
∗ k(1,n)−−−→

∗
0

Pi =
k′(1,i)−−→

∗ k′(i−1,i)−−−−→
∗

k(i,i+1)−−−−→
∗ k(i,n)−−→

∗
0

Pn =
k′(1,n)−−−→

∗ k′(i,n)−−→
∗

0

The interaction sequence is same as the first case, therefore all processes Pi can reduce
to 0 with similar reasoning.
Case 2. sequencing. Suppose for a simple case Pi = Q1i;Q2i, and both ΠiQ1i and ΠiQ2i
are deadlock free. By Definition C.1, sequential composition will not permute the order
of communication of each of the processes. Therefore ΠiPi is deadlock free.

We can show that ΠiPi with Pi = Qi1;Qi2; ...;Qin is deadlock free if all the subpro-
cesses are deadlock free by induction.

Case 3. base. This case considers a group of processes Pi which do not include shared
session channels, inwhile nor outwhile. The session actions in each of Pi follows the
order of the index, similar to Case 1.1 and Case 1.2. The session channel interaction
sequence is shown below:

P1 =
k(1,2)−−−→

∗ k(1,i)−−→
∗ k(1,n)−−−→

∗
P′1

Pi =
k′(1,i)−−→

∗ k′(i−1,i)−−−−→
∗

k(i,i+1)−−−−→
∗ k(i,n)−−→

∗
P′i

Pn =
k′(1,n)−−−→

∗ k′(i,n)−−→
∗

P′n

The body of the process is deadlock free with same reasoning in Case 1.1, which
then reduces to a base process P′i , and ΠiP′i reduces to 0 by the reason described in
§ 4.2.

