
Safe Session-Based Asynchronous Coordination
in Rust

Zak Cutnerr0000�0001�7180�4530s and Nobuko Yoshidar0000�0002�3925�8557s

Imperial College London, London, UK

Abstract. Rust is a popular systems language focused on performance
and reliability, with an emphasis on providing “fearless concurrency”.
Message passing has become a widely-used pattern by Rust develop-
ers although the potential for communication errors leaves developing
safe and concurrent applications an unsolved challenge. In this ongo-
ing work, we use multiparty session types to provide safety guarantees
such as deadlock-freedom by coordinating message-passing processes. In
contrast to previous contributions [22,21,20], our implementation targets
asynchronous applications using async/await code in Rust. Specifically,
we incorporate asynchronous subtyping theory, which allows program op-
timisation through reordering input and output actions. We evaluate our
ideas by developing several representative use cases from the literature
and by taking microbenchmarks. We discuss our plans to support full
API generation integrating asynchronous optimisations.

Keywords: Rust · Asynchronous communication · Deadlock-freedom ·

Session types

1 Introduction

Rust is a statically typed language designed for systems software development.
It is rapidly growing in popularity and has been voted “most loved language”
over five years of surveys by Stack Overflow [12]. Rust aims to offer the safety of
a high-level language without compromising on the performance enjoyed by low-
level languages. Message passing over typed channels is widely used in concurrent
Rust applications, whereby (low-level) threads or (high-level) actors communi-
cate efficiently and safely by sending each other messages containing data.

This paper proposes a new implementation framework (Rumpsteak) for ef-
ficiently coordinating concurrent processes using asynchronous message-passing
communication in Rust based on multiparty session types (MPST) [31,16,17].
MPST coordinate interactions through linearly typed channels, where each chan-
nel must be used exactly once, ensuring protocol compliance without deadlocks or
communication mismatches. Rust’s affine type system is particularly well-suited
to MPST by statically guaranteeing a linear usage of session channels.

Previous implementations based on session types for Rust [22,21,20] oper-
ate under a synchronous model—that is upon attempting to receive a message,
a thread is blocked until the operation has completed. Although simple, this

2 Z. Cutner and N. Yoshida

model can cause significant computational resources to be wasted while a thread
is blocked and, moreover, many systems are inherently not synchronous. An
asynchronous model instead makes no assumptions about how long an opera-
tion will take. After beginning to receive a message, a process can continue with
its execution and be notified when the operation is complete. In practice, Rust
supports the monadic async/await syntax to perform asynchronous operations.
Functions that are asynchronous are annotated with async, causing them to re-
turn futures; and await is attached to futures, denoting that execution should
continue elsewhere until the future is completed. Unfortunately, as shown in the
Rust Survey 2020 [29], “async” and “concurrency” are ranked as the 5th and
7th most “tricky” or “very difficult” features among Rust programmers.

To improve both the safety and efficiency of communications in Rust, our
work provides a Rust MPST toolchain (Rumpsteak), which supports asynchronous
execution. We focus on two key challenges: (C1) how to correctly integrate
MPST with Rust’s async/await syntax, preserving safety and deadlock-free-
dom; and (C2) how to improve performance by using asynchronous execu-
tion. For (C1), we develop a set of async/await primitives to build up MPST

(see § 2); and, for (C2), we evaluate the efficiency of our primitives using mi-
crobenchmarks and develop several representative examples from the literature
[10,24] with asynchronous communication optimisations (see § 3). Finally, we
discuss design choices for integration with advanced MPST theories, such as
asynchronous subtying [14] and asynchronous multiparty compatibility [24] to
maximise communication speed-up, while still preserving safety between asyn-
chronous components in Rust (see § 4). We include further examples, source
code and benchmarks in our repository [2] and the full version [11].

2 Overview

G

M1 M2 ... Mn

M1
1 M1

2 ... M1
n

A1 A2 ... An

P1 P2 ... Pn

[Step 1]

[Step 2]

[Step 3]

[Step 4]

Workflow. Rumpsteak uses the top-down ap-
proach to ensure correctness by design. In [Step
1] we write a global type G to describe the in-
teractions between all roles, and project it onto
each role to obtain an endpoint finite state ma-
chine (EFSM) Mi; in [Step 2] we optimise each
Mi to obtain M 1

i ; in [Step 3] we generate an API
Ai from each M 1

i ; and in [Step 4] we use each Ai

to create an asynchronous Rust process Pi. The
group of processes P1...Pn created in this way are
free from communication errors such as deadlocks.

Projection. For [Step 1], Rumpsteak uses νScr [3]: a new lightweight and ex-
tensible Scribble toolchain implemented in OCaml. The Scribble language [27,32]
is widely used to describe multiparty protocols, agnostic to target languages.
For illustration, we use a ring protocol extended with choice (ring-choice [11]),

Safe Session-Based Asynchronous Coordination in Rust 3

G � µt.A Ñ B :

"
addpi32q.B Ñ C :

"
addpi32q.C Ñ A : taddpi32q.tu
subpi32q.C Ñ A : tsubpi32q.tu

**

Fig. 1: Global type for the ring-choice protocol

whose global type G is given in Fig. 1. Role B chooses between sending an add
and sub message to role C, which must in turn send the same label to role A.

A B C

A B C

A B C

A B C

.

A B C

A B C

A B C

A B C

.

I (projected
interactions)

I 1 (optimised
interactions)

Asynchronous Optimisation. Since G is
synchronous, näıvely projecting it onto B

produces an overly synchronised EFSM MB
1.

If A is slow to send its value to B then the
entire interaction is blocked (as shown in I).
Instead, assuming each process begins with
its own initial value, B could send its value
to C in the meantime, allowing C to begin its
next iteration (as shown in I 1).

Therefore, in [Step 2], we transform MB into the more optimal M 1
B. Im-

portantly, we ensure that (1) no data dependencies exist between interactions,
allowing their order to be changed; and (2) M 1

B is an asynchronous subtype [14]
of MB, allowing it to safely be used as a substitution while preserving deadlock-
-freedom. Presently, these steps are performed manually (see § 4).

0 1

C!addpi32q

A?addpi32q

C!subpi32q

MB (projected)

0 1

C!addpi32q

A?addpi32q

C!subpi32q

M 1
B (optimised)

Code Generation. Rumpsteak includes a code genera-
tor to produce an API in [Step 3]. Listing 1 shows the API
AB corresponding to the EFSM M 1

B, from which we have
elided other participants. To ensure that our API remains
readable by developers and to eliminate extensive boiler-
plate code, we make use of Rust procedural macros [28].
By decorating types with #[...], these macros perform
additional compile-time code generation. For each role, we
generate a struct storing its communication channels with
other roles. For example, B (line 3) contains unidirectional
channels from A and to C as per the protocol. We use
#[derive(Role)] to retrieve channels from the struct.

Following the approach of [22], we build a set of generic primitives to con-
struct a simple API—reducing the amount of generated code and avoiding ar-
bitrarily named types. For instance, the Receive primitive (line 22) takes a role,
label and continuation as generic parameters. For readability, we elide two ad-
ditional parameters used to store channels at runtime with #[session].

1 We use session type syntax [31] where ! and ? denote send and receive respectively.

4 Z. Cutner and N. Yoshida

1 #[derive(Role)]
2 #[message(Label)]
3 struct B {
4 #[route(A)] a: Receiver,
5 #[route(C)] c: Sender,
6 }
7

8 #[derive(Message)]
9 enum Label {

10 Add(Add),
11 Sub(Sub),
12 }
13

14 struct Add(i32);
15 struct Sub(i32);
16

17 #[session]
18 type RingB = Select<C, RingBChoice>;
19

20 #[session]
21 enum RingBChoice {
22 Add(Add, Receive<A, Add, RingB>),
23 Sub(Sub, Receive<A, Add, RingB>),
24 }

Listing 1: Rust session type API
for M 1

B (AB)

1 async fn ring_b(
2 role: &mut B,
3 mut input: i32,
4) -> Result<Infallible> {
5 try_session(
6 role,
7 |mut s: RingB<'_, _>| async {
8 loop {
9 let x = input * 2;

10 s = if x > 0 {
11 let s = s.select(Add(x)).await?;
12 let (Add(y), s) = s.receive().await?;
13 input = y + x;
14 s
15 } else {
16 let s = s.select(Sub(x)).await?;
17 let (Add(y), s) = s.receive().await?;
18 input = y - x;
19 s
20 };
21 }
22 },
23).await
24 }

Listing 2: Possible Rust implementation for
process B (PB) using AB

Each choice generates an enum, as seen in RingBChoice (line 21), allowing pro-
cesses to pattern match when branching to determine which label was received.
Methods allowing the enum to be used with Branch or Select primitives are also
generated with #[session]. An enum is required since Rust’s lack of variadic
generics means choice cannot be easily implemented as a primitive. We show
how the RingBChoice type can be used with selection in the Ring type (line 18).

Our API requires only one session type for each role, internally sending a
Label enum (line 9) over reusable channels. We create a type for each label
(lines 14 and 15) and use #[derive(Message)] to generate methods for converting
to and from the Label enum. In contrast, [22] requires a tuple of binary sessions
for each role and communicates using typed, one-shot channels. Our approach
is simpler, requiring fewer definitions, and also more performant (see § 3).

Process Implementation. Using the API AB, we suggest a possible imple-
mentation of the process PB, shown in Listing 2, for [Step 4]. Linear usage of
channels is checked by Rust’s affine type system to prevent channels from being
used multiple times. When a primitive is executed, it consumes itself, prevent-
ing reuse, and returns its continuation. While [21] and [22] use compiler hints
to warn the programmer when a session is discarded without use, we ensure
this statically by harnessing the type checker. Developers are prevented from
constructing primitives directly using visibility modifiers and must instead use
try session (line 5). Its closure argument accepts the input session type and re-
turns the terminal type End. If a session is discarded, breaking linearity, then the
developer will have no End to return and the type checker will complain. Even

Safe Session-Based Asynchronous Coordination in Rust 5

adder ring db

0

50

100

150

200
M

e
a
n

ru
n
n
in

g
ti

m
e

(µ
s)

[22]

Rumpsteak

Fig. 2: Comparison of
Rumpsteak and [22]

1 2 3 4 5
0

2

4

6

Number of repetitions
M

e
a
n

ru
n
n
in

g
ti

m
e

(µ
s)

adder + oneshot

adder + reuse

ring + oneshot

ring + reuse

db + oneshot

db + reuse

Fig. 3: Comparison of oneshot and reuse under asyn-
chronous execution

so, we can implement processes with infinitely recursive types (containing no
End) such as RingB. We use an infinite loop (line 8) which is assigned Infallible:
Rust’s never (or bottom) type. Infallible can be implicitly cast to any other
type, including End, allowing the closure to pass the type checker as before.

We allow roles to be reused across sessions since the channels they contain
can be expensive to create. Crucially, to prevent communication mismatches
between different sessions, try session takes a mutable reference to the role.
The same role, therefore, cannot be used multiple times at once because Rust’s
borrow checker enforces this requirement for mutable references.

3 Evaluation

Microbenchmarks. We investigate Rumpsteak’s performance, comparing it
with the most recent related work [22]. We introduce three protocols from [11]:

– (adder) an adder protocol between three participants;

G � A Ñ B : taddpi32q.B Ñ A : taddpi32q.A Ñ C : taddpi32q.

B Ñ C : taddpi32q.C Ñ A : tsumpi32q.C Ñ B : tsumpi32q.enduuuuuu

– (ring) a simpler version of ring-choice; and

G � A Ñ B : tvaluepi32q.B Ñ C : tvaluepi32q.C Ñ A : tvaluepi32q.enduuu

– (db) a double buffering protocol [19] between source S, kernel K and sink T.

G � K Ñ S : tready .S Ñ K : tcopypi32q.T Ñ K : tready .

K Ñ T : tcopypi32q.K Ñ S : tready .S Ñ K : tcopypi32q.

T Ñ K : tready .K Ñ T : tcopypi32q.enduuuuuuuu

6 Z. Cutner and N. Yoshida

Only terminating protocols are used so that we can practically measure their
running times. Most previous session type implementations in Rust [21,20] sup-
port only binary protocols. Our contribution and benchmarks instead target
multiparty protocols, therefore we compare Rumpsteak only against [22] which
has a similar scope. Since [22] is built upon [21], we expect both to have similar
performance for binary protocols. We execute all benchmarks using an 8-core
Intel® CoreTM i7-7700K CPU @ 4.20 GHz with hyperthreading, 16GB RAM,
Ubuntu 20.04.2 LTS and Rust 1.51.0. We use version 0.3.4 of the Criterion.rs
library [15] to perform microbenchmarking and a single-threaded asynchronous
runtime from version 1.5.0 of the Tokio library [30].

Our first benchmark (Fig. 2) performs a direct comparison between Rump-

steak and [22] for all three protocols. It shows that Rumpsteak can run these
protocols around 50-150 times faster. We attribute this to our approach of using
asynchronous execution. Asynchronous tasks are significantly more lightweight
than kernel threads and so incur much lower overheads. We note that blocking
operations do not contribute to weaker synchronous performance as we bench-
mark with significantly more cores than the number of roles.

As discussed previously (see § 2), Rumpsteak uses reusable channels in con-
trast to one-shot channels used by [22]. To compare both approaches fairly,
Fig. 3 benchmarks Rumpsteak (reuse) against a subset of [22] ported to use
asynchronous execution (oneshot). We simulate a longer protocol by reusing
the same channels for a parameterised number of repetitions, although one-shot
channels, by design, cannot be reused. In adder and ring, oneshot performs better
than reuse for a single iteration. However, as the number of repetitions increases,
constructing a growing number of one-shot channels quickly outweighs the one-
time instantiation penalty of reusable channels. By the second iteration, reuse
overtakes the performance of oneshot in adder and db. Only for ring (which con-
tains the least number of exchanges) is oneshot still faster after five iterations,
although the gradients suggest that reuse will eventually overtake. We conclude
that reuse is more efficient than oneshot in all but the shortest protocols.

0

5

10

M
e
a
n

ru
n
n
in

g
ti

m
e

(m
s) Projected

A Optimised

B Optimised

A & B Optimised

Fig. 4: Comparison of
ring optimisations

We explore an asynchronous optimisation to ring

in Fig. 4 by swapping A/B’s input and output ac-
tions. We also insert artificial 1ms communication
delays to simulate a more realistic scenario. We ob-
serve a significant performance improvement by ap-
plying the optimisation to either A or B. Moreover,
the effect is compounded by optimising both partic-
ipants at once, resulting in a 2{3 speed-up.

Fig. 5 shows an asynchronous optimisation to db

whereby K sends S both ready messages at once, fur-
ther discussed in the full version [11]. We insert sim-
ilar artificial communication delays between S and K

for our experimental setup. Interestingly, this opti-
misation causes duality between S and K to break. Since [22] uses a tuple of
binary session types for each role, it is crucially unable to express this optimi-

Safe Session-Based Asynchronous Coordination in Rust 7

sation. Therefore, we further propose a weaker optimisation for [22] by sending
the second ready message only after K has received the first copy message to
preserve duality. Fig. 5 shows that while this weaker optimisation has little ef-
fect on performance, the original and stronger optimisation which is expressable
by Rumpsteak results in around a 25% improvement.

0

5

10

15

M
e
a
n

ru
n
n
in

g
ti

m
e

(m
s) Projected

Weakly Optimised

Optimised

Fig. 5: Comparison of db

optimisations

Expressiveness. We further illustrate the expres-
siveness of Rumpsteak compared with [22] in Fig. 6.
We implement several examples of protocols from
the literature using Rumpsteak. For each example,
we detail its key features, particularly if it makes
use of asynchronous optimisations, and whether we
can also express the protocol using [22].

Our results demonstrate that [22] is less expres-
sive than Rumpsteak for asynchronously-optimised
protocols since its workflow does not include an
optimisation step. Some optimisations, which are
marked with , can nevertheless be expressed in [22]
by implementing them directly using its endpoint
API. However, this method does not benefit from using the workflow in [22].
Even then, as discussed for db, [22] uses a tuple of binary session types for each
role and therefore any optimisation must not break duality between each pair of
participants. Unfortunately, this prohibits it from performing most asynchronous
optimisations, even in this more limited way. In contrast, Rumpsteak enjoys
complete flexibility to perform more complex optimisations in a wide-ranging
number of examples from the literature.

Conclusion. By using asynchronous execution, Rumpsteak is around two or-
ders of magnitude faster than [22], and this benefit is even greater in longer-
running protocols due to our use of reusable channels. We observe the need
for asynchronous optimisation by demonstrating several significant performance
improvements and show that, in several cases, Rumpsteak can express stronger
and more valuable optimisations than are expressable in [22].

4 Related and Future Work

There are a vast number of studies on session types, some of which are imple-
mented in programming languages [4] and tools [13]. A code generation toolchain
takes a protocol description and produces well-typed APIs, conforming to that
protocol. Several implementations use an EFSM-based approach to generate
APIs from Scribble [27,32,3] for target programming languages such as Java [18],
F# [26], Go [9], F� [33] and TypeScript [25]. We closely compared with previ-
ous work on API generation in Rust from MPST protocols [22] (see detailed
comparisons with [21] and [20] in [22]). We justify our work is (1) robust, using

8 Z. Cutner and N. Yoshida

Protocol
Features Expressable

C R IR AO [22] Rumpsteak

Two Adder [3]

adder [11]

ring [10,11] a a

Optimised ring [10,11] a a

ring-choice [10,11]

Optimised ring-choice [10,11]

db [10,11] a a

Optimised db [10,19,11] a a

Alternating Bit [24,1]

Elevatorb [24,5]

FFT [10]

C Contains choice R Recursive IR Infinitely recursive AO Uses asynchronous optimisations

a Although non-recursive, we can easily extend the protocol to make it recursive.
b We use the communicating session automata variation from [24].

Fig. 6: Expressiveness of [22] and Rumpsteak

affine typing, while providing a simpler API (see § 2) and (2) faster and more
expressive by using async/await and reusable channels (see § 3). Here, our aim is
ensuring correctness/safety by construction, maximising asynchrony for gaining
efficiency of message passing in Rust applications.

Our main remaining challenge is how to validate the well-formedness of a set
of optimised EFSMs, i.e. tM 1

iuiPI generated in [Step 2] of the workflow presented
in § 2. One possible approach is the use of multiparty asynchronous subtyping
[14] to validate M 1

i ¤ Mi for each participant. Asynchronous session subtyping
was shown to be undecidable, even for binary sessions [23,8], hence, in general,
checking M 1

i ¤ Mi is undecidable. Various limited classes of session types for
which M 1

i ¤ Mi is decidable [6,7,23,10] are proposed but not applicable to our
use cases since (1) the relations in [6,8,23] are binary and the same limitations
do not work for multiparty; and (2) the relation in [10, Def. 6.1] does not handle
subtyping across unrolling recursions, e.g. the relation is inapplicable to the
double buffering algorithm [19] (see [10, Remark 8.1]). Hence, we need to find
non-trivial decidable approximations of our multiparty asynchronous subtyping
relation. The second approach is to use k-multiparty compatibility developed in
[24] to analyse a whole set of tM 1

iuiPI . We investigate both options and report
our findings at the conference presentation.

Acknowledgements. We thank Nicolas Lagaillardie and Fangyi Zhou for their
helpful comments and suggestions. The work is supported by EPSRC, grants
EP/T006544/1, EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/1,
EP/N028201/1, EP/T014709/1, and EP/V000462/1 and by NCSS/EPSRC VeTSS.

Safe Session-Based Asynchronous Coordination in Rust 9

References

1. Introduction to Protocol Engineering. http://cs.uccs.edu/�cs522/pe/pe.htm, [Ac-
cessed 19 February 2021]

2. Rumpsteak. https://github.com/zakcutner/rumpsteak
3. νScr. https://github.com/nuscr/nuscr
4. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P.M.,

Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi,
V., Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida,
N.: Behavioral Types in Programming Languages. Foundations and Trends Pro-
gramming Languages 3(2–3), 95–230 (2016)

5. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the Completeness of Verifying
Message Passing Programs Under Bounded Asynchrony. In: Computer Aided Ver-
ification. pp. 372–391. CAV, Springer (2018)

6. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A Sound Algo-
rithm for Asynchronous Session Subtyping 140, 38:1–38:16 (2019)

7. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of Asynchronous Session
Subtyping. Information and Computation 256, 300–320 (2017)

8. Bravetti, M., Carbone, M., Zavattaro, G.: On the Boundary between Decidabil-
ity and Undecidability of Asynchronous Session Subtyping. Theoretical Computer
Science 722, 19–51 (2018)

9. Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed Programming
Using Role-parametric Session Types in Go: Statically-typed Endpoint APIs for
Dynamically-instantiated Communication Structures. Proceedings of the ACM on
Programming Languages 3(POPL), 29:1–29:30 (2019)

10. Castro-Perez, D., Yoshida, N.: CAMP: Cost-Aware Multiparty Session Protocol.
Proceedings of the ACM on Programming Languages 4(OOPSLA), 1–30 (2020)

11. Cutner, Z., Yoshida, N.: Safe Session-Based Asynchronous Coordination in Rust.
https://github.com/zakcutner/coordination-2021

12. Donovan, R.: Why the Developers Who Use Rust
Love It so Much. https://stackoverflow.blog/2020/06/05/
why-the-developers-who-use-rust-love-it-so-much/ (2020), [Accessed 31 Jan-
uary 2021]

13. Gay, S., Ravara, A.: Behavioural Types: from Theory to Tools. River Publisher
(2017)

14. Ghilezan, S., Pantovic, J., Prokic, I., Scalas, A., Yoshida, N.: Precise Subtyping for
Asynchronous Multiparty Sessions. In: Proceedings of the ACM on Programming
Languages. POPL, vol. 5, pp. 16:1–16:28. ACM (2021)

15. Heisler, B.: Criterion.rs. https://github.com/bheisler/criterion.rs
16. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:

Proceedings of the ACM on Programming Languages. pp. 273–284. POPL, ACM
(2008)

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
JACM 63, 1–67 (2016)

18. Hu, R., Yoshida, N.: Hybrid Session Verification through Endpoint API Genera-
tion. In: FASE. LNCS, vol. 9633, pp. 401–418. Springer (2016)

19. Huang, H., Pillai, P., Shin, K.G.: Improving Wait-Free Algorithms for Interpro-
cess Communication in Embedded Real-Time Systems. In: 2002 USENIX Annual
Technical Conference (USENIX ATC 02). USENIX Association (2002)

http://cs.uccs.edu/~cs522/pe/pe.htm
https://github.com/zakcutner/rumpsteak
https://github.com/nuscr/nuscr
https://github.com/zakcutner/coordination-2021
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://github.com/bheisler/criterion.rs

10 Z. Cutner and N. Yoshida

20. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session Types for Rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming. p. 13–22.
WGP, ACM (2015)

21. Kokke, W.: Rusty Variation: Deadlock-free Sessions with Failure in Rust. Elec-
tronic Proceedings in Theoretical Computer Science 304, 48–60 (2019)

22. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing Multiparty Session Types
in Rust. In: COORDINATION. LNCS, vol. 12134, pp. 127–136. Springer (2020)

23. Lange, J., Yoshida, N.: On the Undecidability of Asynchronous Session Subtyping.
In: FoSSaCS. LNCS, vol. 10203, pp. 441–457 (2017)

24. Lange, J., Yoshida, N.: Verifying Asynchronous Interactions via Communicating
Session Automata. In: CAV. LNCS, vol. 11561, pp. 117–97. Springer (2019)

25. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-Safe Web Program-
ming in TypeScript with Routed Multiparty Session Types. In: Proceedings of
the 30th ACM SIGPLAN International Conference on Compiler Construction. p.
94–106. CC, ACM (2021)

26. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A Session Type Provider:
Compile-time API Generation of Distributed Protocols with Refinements in F#.
In: 27th International Conference on Compiler Construction. pp. 128–138. CC,
ACM (2018)

27. Scribble Authors: Scribble: Describing Multi Party Protocols. http://www.scribble.
org/ (2015)

28. The Rust Project Developers: Procedural Macros. https://doc.rust-lang.org/
reference/procedural-macros.html

29. The Rust Survey Team: Rust Survey 2020 Results. https://blog.rust-lang.org/
2020/12/16/rust-survey-2020.html (2020), [Accessed 31 January 2021]

30. Tokio Contributors: Tokio. https://github.com/tokio-rs/tokio
31. Yoshida, N., Gheri, L.: A Very Gentle Introduction to Multiparty Session Types. In:

16th International Conference on Distributed Computing and Internet Technology.
LNCS, vol. 11969, pp. 73–93. Springer (2020)

32. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble Protocol Language. In: 8th
International Symposium on Trustworthy Global Computing. LNCS, vol. 8358, pp.
22–41. Springer (2013)

33. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically Verified Re-
finements for Multiparty Protocols. Proceedings of the ACM on Programming
Languages 4(OOPSLA) (2020)

http://www.scribble.org/
http://www.scribble.org/
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://github.com/tokio-rs/tokio

Safe Session-Based Asynchronous Coordination in Rust 11

A Three Adder Protocol

The three adder protocol (adder) is a simple protocol previously introduced in
§ 3. It consists of three participants: A, B and C. A and B each pick an integer
and send it to one another, then send the other’s selection to C. C adds both
integers and sends the result to both A and B. We show the Scribble protocol in
Listing 3 and a Rust implementation in Listings 4 and 5.

1 global protocol ThreeAdder(role A, role B, role C) {
2 add(i32) from A to B; add(i32) from B to A;
3 add(i32) from A to C; add(i32) from B to C;
4 sum(i32) from C to A; sum(i32) from C to B;
5 }

Listing 3: Scribble representation of adder

1 #[derive(Roles)]
2 struct Roles(A, B, C);
3

4 #[derive(Role)]
5 #[message(Label)]
6 struct A(#[route(B)] Channel, #[route(C)] Channel);
7

8 #[derive(Role)]
9 #[message(Label)]

10 struct B(#[route(A)] Channel, #[route(C)] Channel);
11

12 #[derive(Role)]
13 #[message(Label)]
14 struct C(#[route(A)] Channel, #[route(B)] Channel);
15

16 #[derive(Message)]
17 enum Label {
18 Add(Add),
19 Sum(Sum),
20 }
21

22 struct Add(i32);
23 struct Sum(i32);
24

25 #[session]
26 type AdderA = Send<B, Add, Receive<B, Add, Send<C, Add, Receive<C, Sum, End>>>>;
27

28 #[session]
29 type AdderB = Receive<A, Add, Send<A, Add, Send<C, Add, Receive<C, Sum, End>>>>;
30

31 #[session]
32 type AdderC = Receive<A, Add, Receive<B, Add, Send<A, Sum, Send<B, Sum, End>>>>;

Listing 4: Rust session type API for adder

12 Z. Cutner and N. Yoshida

1 async fn adder_a(role: &mut A, x: i32) -> Result<i32> {
2 try_session(role, |s: AdderA<'_, _>| async {
3 let s = s.send(Add(x)).await?;
4 let (Add(y), s) = s.receive().await?;
5 let s = s.send(Add(y)).await?;
6 let (Sum(z), s) = s.receive().await?;
7 Ok((z, s))
8 })
9 .await

10 }
11

12 async fn adder_b(role: &mut B, x: i32) -> Result<()> {
13 try_session(role, |s: AdderB<'_, _>| async {
14 let (Add(y), s) = s.receive().await?;
15 let s = s.send(Add(x)).await?;
16 let s = s.send(Add(y)).await?;
17 let (Sum(z), s) = s.receive().await?;
18 Ok((z, s))
19 })
20 .await
21 }
22

23 async fn adder_c(role: &mut C) -> Result<()> {
24 try_session(role, |s: AdderC<'_, _>| async {
25 let (Add(x), s) = s.receive().await?;
26 let (Add(y), s) = s.receive().await?;
27 let z = x + y;
28 let s = s.send(Sum(z)).await?;
29 Ok(((), s.send(Sum(z)).await?))
30 })
31 .await
32 }

Listing 5: Possible Rust process implementations for adder

B Ring Protocol

The ring protocol [10], discussed in § 2, allows three processes—A, B and C—
arranged in a ring to perform a distributed computation. Each process begins
with an initial input, performs a computation on its input and sends the result
of the computation to the succeeding process in the ring. The protocol then
repeats, using the value received from the preceding process as the new input.

We implement two variants of the ring protocol. ring-choice (see § 2) is
infinitely recursive and includes a choice at B while ring has no choice and runs
only for a single iteration (see § 3).

B.1 ring-choice

We show the Scribble protocol in Listing 6. In addition to the EFSMs and Rust
implementation for B shown in § 2, we show the EFSMs for A and B in Figs. 7
and 8 and a complete Rust implementation in Listings 7 and 8.

Safe Session-Based Asynchronous Coordination in Rust 13

1 global protocol RingChoice(role A, role B, role C) {
2 add(i32) from A to B;
3 choice at B {
4 add(i32) from B to C;
5 add(i32) from C to A;
6 do Ring(A, B, C);
7 } or {
8 subtract(i32) from B to C;
9 subtract(i32) from C to A;

10 do Ring(A, B, C);
11 }
12 }

Listing 6: Scribble representation of ring-choice

0 1

C?addpi32q

B!addpi32q

C?subpi32q

Fig. 7: MA for ring-choice

0

1

2

B?a
dd

pi3
2qA!ad

dp
i3
2q

B?subpi32qA!subpi32q

Fig. 8: MC for ring-choice

14 Z. Cutner and N. Yoshida

1 #[derive(Roles)]
2 struct Roles(A, B, C);
3

4 #[derive(Role)]
5 #[message(Label)]
6 struct A(#[route(B)] Sender, #[route(C)] Receiver);
7

8 #[derive(Role)]
9 #[message(Label)]

10 struct B(#[route(A)] Receiver, #[route(C)] Sender);
11

12 #[derive(Role)]
13 #[message(Label)]
14 struct C(#[route(A)] Sender, #[route(B)] Receiver);
15

16 #[derive(Message)]
17 enum Label {
18 Add(Add),
19 Sub(Sub),
20 }
21

22 struct Add(i32);
23 struct Sub(i32);
24

25 #[session]
26 type RingA = Send<B, Add, Branch<C, RingAChoice>>;
27

28 #[session]
29 enum RingAChoice {
30 Add(Add, RingA),
31 Sub(Sub, RingA),
32 }
33

34 #[session]
35 type RingB = Select<C, RingBChoice>;
36

37 #[session]
38 enum RingBChoice {
39 Add(Add, Receive<A, Add, RingB>),
40 Sub(Sub, Receive<A, Add, RingB>),
41 }
42

43 #[session]
44 type RingC = Branch<B, RingCChoice>;
45

46 #[session]
47 enum RingCChoice {
48 Add(Add, Send<A, Add, RingC>),
49 Sub(Sub, Send<A, Sub, RingC>),
50 }

Listing 7: Rust session type API for ring-choice

Safe Session-Based Asynchronous Coordination in Rust 15

1 async fn ring_a(role: &mut A, mut input: i32) -> Result<Infallible> {
2 try_session(role, |mut s: RingA<'_, _>| async {
3 loop {
4 let x = input * 2;
5 s = match s.send(Add(x)).await?.branch().await? {
6 RingAChoice::Add(Add(y), s) => {
7 input = x + y;
8 s
9 }

10 RingAChoice::Sub(Sub(y), s) => {
11 input = x - y;
12 s
13 }
14 };
15 }
16 })
17 .await
18 }
19

20 async fn ring_b(role: &mut B, mut input: i32) -> Result<Infallible> {
21 try_session(role, |mut s: RingB<'_, _>| async {
22 loop {
23 let x = input * 2;
24 s = if x > 0 {
25 let s = s.select(Add(x)).await?;
26 let (Add(y), s) = s.receive().await?;
27 input = y + x;
28 s
29 } else {
30 let s = s.select(Sub(x)).await?;
31 let (Add(y), s) = s.receive().await?;
32 input = y - x;
33 s
34 };
35 }
36 })
37 .await
38 }
39

40 async fn ring_c(role: &mut C, mut input: i32) -> Result<Infallible> {
41 try_session(role, |mut s: RingC<'_, _>| async {
42 loop {
43 let x = input * 2;
44 s = match s.branch().await? {
45 RingCChoice::Add(Add(y), s) => {
46 let s = s.send(Add(x)).await?;
47 input = x + y;
48 s
49 }
50 RingCChoice::Sub(Sub(y), s) => {
51 let s = s.send(Sub(x)).await?;
52 input = x - y;
53 s
54 }
55 };
56 }
57 })
58 .await
59 }

Listing 8: Possible Rust process implementations for ring-choice

16 Z. Cutner and N. Yoshida

B.2 ring

We show the Scribble protocol in Listing 9 and a Rust implementation in List-
ings 10 and 11. As described in § 3, we can perform an asynchronous optimisation
to B and C by swapping their input and output actions.

1 global protocol Ring(role A, role B, role C) {
2 value(i32) from A to B;
3 value(i32) from B to C;
4 value(i32) from C to A;
5 }

Listing 9: Scribble representation of ring

1 #[derive(Roles)]
2 struct Roles(A, B, C);
3

4 #[derive(Role)]
5 #[message(Value)]
6 struct A(#[route(B)] Sender, #[route(C)] Receiver);
7

8 #[derive(Role)]
9 #[message(Value)]

10 struct B(#[route(A)] Receiver, #[route(C)] Sender);
11

12 #[derive(Role)]
13 #[message(Value)]
14 struct C(#[route(A)] Sender, #[route(B)] Receiver);
15

16 #[derive(Message)]
17 struct Value(i32);
18

19 #[session]
20 type RingA = Send<B, Value, Receive<C, Value, End>>;
21

22 #[session]
23 type RingB = Send<C, Value, Receive<A, Value, End>>;
24

25 #[session]
26 type RingC = Send<A, Value, Receive<B, Value, End>>;

Listing 10: Rust session type API for ring

Safe Session-Based Asynchronous Coordination in Rust 17

1 async fn ring_a(role: &mut A, x: i32) -> Result<i32> {
2 try_session(role, |s: RingA<'_, _>| async {
3 let s = s.send(Value(x)).await?;
4 let (Value(y), s) = s.receive().await?;
5 Ok((y, s))
6 })
7 .await
8 }
9

10 async fn ring_b(role: &mut B, x: i32) -> Result<()> {
11 try_session(role, |s: RingB<'_, _>| async {
12 let s = s.send(Value(x)).await?;
13 let (Value(y), s) = s.receive().await?;
14 Ok((y, s))
15 })
16 .await
17 }
18

19 async fn ring_c(role: &mut C, x: i32) -> Result<()> {
20 try_session(role, |s: RingC<'_, _>| async {
21 let s = s.send(Value(x)).await?;
22 let (Value(y), s) = s.receive().await?;
23 Ok((y, s))
24 })
25 .await
26 }

Listing 11: Possible Rust process implementations for ring

C Double Buffering Protocol

In high-performance computing, safely and efficiently sending data from a source
to a sink running concurrently is a well-known problem. For example, many
media applications require efficiently streaming data to or from external devices
such as graphics or sound cards. When the sink is not ready to receive messages
that the source has prepared this problem becomes challenging—blocking the
source is not acceptable since this reduces the parallelism of the application.
Instead, the use of buffers is a common technique used to improve performance.
Rather than sending directly to the sink, the source puts values into a buffer.
When the sink is ready to receive, it simply reads values from the buffer or waits
for a value to be added if the buffer is empty. Importantly, putting values in the
buffer allows the source to continue with other work rather than waiting for the
sink to become ready to receive.

However, buffer implementations themselves must be safe to be read from and
written to concurrently, requiring the use of locking. If both the source and sink
are ready to exchange data at the same time, they will, unfortunately, become
blocked at this locking stage as they transfer data to and from the buffer. Instead,
the double buffering algorithm makes use of two buffers controlled by a kernel
[19]. Both the source and sink alternate between using the first and second buffer
such that they never use the same buffer at once. This conveniently sidesteps
the issue of locking since the source and sink operate on different buffers so do
not compete for the same lock.

18 Z. Cutner and N. Yoshida

Previously presented in § 3, we use a variation of the double buffering pro-
tocol (db) from [10]. Our algorithm, consisting of a source S, a kernel K and a
sink T, is modified to have a single iteration so that it can be practically bench-
marked. Importantly, K communicates on behalf of both buffers allowing the
implementations of S and T to be agnostic of how many buffers K holds.

A

B

ready ready

(a)

A

B

copy

ready

ready

(b)

A

B

copy

copy

(c)

A

B

copy ready

(d)

A

B

copy

(e)

Fig. 9: Illustration of the interactions in db

We use Fig. 9 to illustrate the execution of the protocol and describe the
interactions between participants.

(a) K notifies S that it is ready to receive a value.
(b) S copies its first value to K while K notifies S that it is ready for the second

value. Meanwhile, T has notified K that it is ready to receive its first value.
(c) K copies the first value to T while S copies the second value to K.
(d) T notifies K that it is ready to receive the second value.
(e) K copies the second value to T.

We could then extend the protocol, allowing additional values to be sent if we
wished to facilitate more than a single iteration.

1 global protocol DoubleBuffering(role S, role K, role T) {
2 ready() from K to S;
3 copy(i32) from S to K;
4 ready() from T to K;
5 copy(i32) from K to T;
6 ready() from K to S;
7 copy(i32) from S to K;
8 ready() from T to K;
9 copy(i32) from K to T;

10 }

Listing 12: Scribble representation of db

In particular, we note the asynchrony of the protocol; for example, S sends
its first value to K while T notifies K that it is ready to receive. In contrast, the
Scribble representation of this protocol, presented in Listing 12, is synchronous;
S copies to K (line 3) before T notifies K (line 4).

Therefore, projecting the Scribble protocol onto each role will produce the
EFSMs MS, MK and MT, shown in Fig. 10. However, as previously discussed in

Safe Session-Based Asynchronous Coordination in Rust 19

0 1 2

34

K?readypq K!copypi32q

K?readypq
K!copypi32q

(a) MS

0 1 2

34

K!readypq K?copypi32q

K!readypq
K?copypi32q

(b) MT

0 1 2

345

6 7 8

S!readypq S?copypi32q

T?readypq
T!copypi32qS!readypq

S?copypi32q
T?readypq T!copypi32q

(c) MK (projected)

Fig. 10: EFSMs for the double buffering protocol

§ 3, we note that MK is overly synchronised. It waits to send its second ready
message to S (coloured in blue) until the first value has been copied to T although
both buffers are in fact ready from the start.

0 1 2

345

6 7 8

S!readypq S!readypq

S?copypi32q
T?readypqT!copypi32q

S?copypi32q
T?readypq T!copypi32q

(a) M 1
K (optimised)

0 1 2

345

6 7 8

S!readypq S?copypi32q

S!readypq
T?readypqT!copypi32q

S?copypi32q
T?readypq T!copypi32q

(b) M2
K (weakly optimised)

Fig. 11: Optimised EFSMs for the double buffering protocol

By performing the optimisation described in § 3, we send the second ready
message immediately to allow S to send both values before K has even commu-
nicated with T. We show this optimised EFSM, M 1

K, in Fig. 11a. Unfortunately,
this optimisation is not possible with the one-shot approach; the binary session
types between S and K no longer satisfy duality using MS and M 1

K. For its sec-

20 Z. Cutner and N. Yoshida

ond interaction, S expects to send a copy message to K, but simultaneously K is
expecting to send a ready message to S.

However, it is still possible to perform a weaker, albeit less performant (see
§ 3) optimisation that does preserve duality. As shown in Fig. 11b, we can
produce M2

K by sending the second ready message after the first value has been
copied to K, which is still earlier than before. We show a Rust implementation
of the protocol in Listings 13 and 14.

1 #[derive(Roles)]
2 struct Roles(S, K, T);
3

4 #[derive(Role)]
5 #[message(Label)]
6 struct S(#[route(K)] Channel, #[route(T)] Nil);
7

8 #[derive(Role)]
9 #[message(Label)]

10 struct K(#[route(S)] Channel, #[route(T)] Channel);
11

12 #[derive(Role)]
13 #[message(Label)]
14 struct T(#[route(S)] Nil, #[route(K)] Channel);
15

16 #[derive(Message)]
17 enum Label {
18 Ready(Ready),
19 Copy(Copy),
20 }
21

22 struct Ready;
23 struct Copy(i32);
24

25 #[session]
26 type Source = Receive<K, Ready, Send<K, Copy, Receive<K, Ready, Send<K, Copy, End>>>>;
27

28 #[session]
29 type Kernel = Send<S, Ready, Send<S, Ready, Receive<S, Copy, Receive<T, Ready, Send<T,

Copy, Receive<S, Copy, Receive<T, Ready, Send<T, Copy, End>>>>>>>>;
30

31 #[session]
32 type Sink = Send<K, Ready, Receive<K, Copy, Send<K, Ready, Receive<K, Copy, End>>>>;

Listing 13: Rust session type API for db

Safe Session-Based Asynchronous Coordination in Rust 21

1 async fn source(role: &mut S, x: i32, y: i32) -> Result<()> {
2 try_session(role, |s: Source<'_, _>| async {
3 let (Ready, s) = s.receive().await?;
4 let s = s.send(Copy(x)).await?;
5

6 let (Ready, s) = s.receive().await?;
7 let s = s.send(Copy(y)).await?;
8

9 Ok(((), s))
10 })
11 .await
12 }
13

14 async fn kernel(role: &mut K) -> Result<()> {
15 try_session(role, |s: Kernel<'_, _>| async {
16 let s = s.send(Ready).await?;
17 let s = s.send(Ready).await?;
18

19 let (Copy(x), s) = s.receive().await?;
20 let (Ready, s) = s.receive().await?;
21 let s = s.send(Copy(x)).await?;
22

23 let (Copy(y), s) = s.receive().await?;
24 let (Ready, s) = s.receive().await?;
25 let s = s.send(Copy(y)).await?;
26

27 Ok(((), s))
28 })
29 .await
30 }
31

32 async fn sink(role: &mut T) -> Result<(i32, i32)> {
33 try_session(role, |s: Sink<'_, _>| async {
34 let s = s.send(Ready).await?;
35 let (Copy(x), s) = s.receive().await?;
36

37 let s = s.send(Ready).await?;
38 let (Copy(y), s) = s.receive().await?;
39

40 Ok(((x, y), s))
41 })
42 .await
43 }

Listing 14: Possible Rust process implementations for db

	Safe Session-Based Asynchronous Coordination in Rust

