
Session-ocaml: a Session-based Library with Polarities
and Lenses

Keigo Imaia, Nobuko Yoshidab, Shoji Yuenc

aGifu University, Japan
bImperial College London, UK

cNagoya University, Japan

Abstract

We propose session-ocaml, a novel library for session-typed concurrent/dis-
tributed programming in OCaml. Our technique solely relies on parametric
polymorphism, which can encode core session type structures with strong
static guarantees. Our key ideas are: (1) polarised session types, which give an
alternative formulation of duality enabling OCaml to automatically infer an
appropriate session type in a session with a reasonable notational overhead;
and (2) a parameterised monad with a data structure called ‘slots’ manip-
ulated with lenses, which can statically enforce session linearity including
delegations. We introduce a notational extension to enhance the session lin-
earity for integrating the session types into the functional programming style.
We show applications of session-ocaml to a travel agency use case and an
SMTP protocol implementation. Furthermore, we evaluate the performance
of session-ocaml on a number of benchmarks.
Keywords: Session types, Functional programming, Behavioural types,
Parametric polymorphism, Polarity, Lenses, OCaml

1. Introduction

Session types [2], from their origins in the 𝜋-calculus [3], serve as rigorous
specifications for coordinating link mobility in the sense that a communication
link can move among participants, ensuring type safety. In session type

IAn earlier version of this article was presented at COORDINATION 2017 [1]

Email address: keigoi@gifu-u.ac.jp (Keigo Imai)

Preprint submitted to Science of Computer Programming 2018-07-20

systems, such link mobility is called delegation. Once the ownership of a
session is delegated (transferred) to another participant, the session cannot be
used anymore at the sender. This property is ensured by linearity of sessions
and appears in all session type systems. Furthermore, most session type
implementations with delegation [4, 5, 6] explicitly rely on linearity to ensure
the correct usage of each channel.

Linearity of session channels, however, is a major obstacle to adopt the
session type disciplines in mainstream programming languages, as it requires
special syntax extensions for session communications [7], or it depends on
specific language features, such as type-level functions in Haskell [5, 8, 9, 4],
or affine types in Rust [10]. In [6, 11, 12, 13], the check for linearity falls back
to run-time and dynamic checking. For instance, a common technique in the
Haskell implementations is to track linear channels using extra symbol tables
to bookkeep the types of resources conveyed by a parameterised monad. A
Haskell type for a session-typed function is of the form:

𝑡1 → · · · → M {𝑐1 ↦→ 𝑠1, 𝑐2 ↦→ 𝑠2, · · · } {𝑐1 ↦→ 𝑠′
1, 𝑐2 ↦→ 𝑠′

2, · · · } 𝛼

where M is a monad type constructor of arity three; 𝛼 is the result type and
the two mappings {· · · } are symbol tables before (and after) evaluation which
assign each channel 𝑐𝑖 to its session type 𝑠𝑖 (and 𝑠′

𝑖 respectively). This symbol
table is represented at the type level, hence the channel 𝑐𝑖 is not a value, but
a type which reflects an identity of the channel. Since this static encoding
is Haskell-specific using type-level functions, it is not directly extensible to
other languages.

This paper proposes the session-ocaml library, which provides a fully
static implementation of session types in OCaml (i.e. sessions are checked
at compile-time) without any extra mechanisms nor any tools to the OCaml
compiler. We extend the technique posted to the OCaml mailing list by
Garrigue [14] where the linear usage of resources is enforced solely by the
parametric polymorphism mechanism. According to [14], the type of a file
handler guarantees linear accesses to multiple resources using a symbol table
in a monad-like structure. Adopting this technique to session types, in
session-ocaml, multiple simultaneous sessions are statically encoded in a
parameterised monad. More specifically, we extend the monad structure to
the slot monad and the file handlers to lenses. The slot monad is based
on a type (𝑝𝑟𝑒,𝑝𝑜𝑠𝑡,𝑎)monad (hereafter we use postfix type constructors
of OCaml) where 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 are called slots which act like a symbol
table. Slots are represented as a sequence of types represented by nested pair

2

types 𝑠1 *(𝑠2 * · · ·). Lenses are proposed as combinators for bi-directional
transformations [15, 16]. A lens consists of two functions: get that extracts
a view from a given source, and put that updates the source for a given
view. session-ocaml uses lenses to manipulate a symbol table of the slot
monad. These mechanisms provide an idiomatic way (i.e. codes do not
require interposing combinators to replace standard syntactic elements of
functional languages) to declare session delegations and labelled session
branching/selections with the static guarantee of type safety and linearity.
FuSe [6], another implementation of session types on top of OCaml, combines
static and dynamic checking for linearity (see § 6).

This paper is a revised version extended significantly from the previous
conference paper [1].

• In § 2, we give an overview on the session types and the polarised session
types in session-ocaml.

• In § 3.4, we show the technical details to implement session-ocaml

modules.
• In § 3.5, we develop macros with the slot pattern. The macros provide

useful idioms and extensions for session-based programming.
• In § 3.6, we present the implementation technique with communication

APIs utilising ad hoc polymorphism.
• In § 4.2, we use the extensions in § 3.5 and § 3.6 for the SMTP example.

We illustrate how they improve the description compared to the version
shown in [1].

• In § 5, we show the performance evaluation through a number of bench-
marks. The benchmarks confirm that session-ocaml runs comparable
to FuSe with the advantage of static type checking. We also discuss a
performance issue of the the monadic computations in our framework.

Outline. The rest of the paper is as follows. Section 2 introduces session types
and outlines programming with session-ocaml. Section 3 shows the design
and implementation of session-ocaml with the polarised session types and
the slot monads. Section 4 presents two examples, a travel agency use case
and an implementation of the SMTP protocol. Section 5 gives performance
benchmarks of session-ocaml in comparison with FuSe. Section 6 discusses
session type implementations in functional languages. Section 7 concludes and
discusses further applications of our technique. For an additional example,

3

Appendix A shows an example of a database server. session-ocaml is available
at https://github.com/keigoi/session-ocaml and the benchmark programs
are available at https://github.com/keigoi/FuSe-clone/.

2. Programming with session-ocaml

In this section, we overview session types and the session-typed program-
ming with session-ocaml, and summarise communication primitives in the
library.

2.1. Session types and polarised session types
For readers who are not familiar with session types, we provide an overview

on session types as follows. The original syntax of session types [2] is defined
by the following grammar:

𝑆 ::= !𝑉 ; 𝑆 | ?𝑉 ; 𝑆 | end | 𝜇𝛼.𝑆 | 𝛼 | ![𝑆 ′]; 𝑆 | ?[𝑆 ′]; 𝑆

| &{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} | ⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}

!𝑉 ; 𝑆 and ?𝑉 ; 𝑆 are sending and receiving of a value type 𝑉 with the contin-
uation of 𝑆, respectively. end is the terminated session. 𝜇𝛼.𝑆 is a recursive
session which is equivalent to 𝑆[𝜇𝛼.𝑆/𝛼] (the type obtained by replacing free
occurrences of 𝛼 in 𝑆 with 𝜇𝛼.𝑆 itself); ![𝑆 ′]; 𝑆 and ?[𝑆 ′]; 𝑆 are delegation
of a session 𝑆 ′ with the continuation of 𝑆. &{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} offers la-
bels 𝑙1, . . . , 𝑙𝑛 to its counterpart and continues to one of 𝑆1, . . . , 𝑆𝑛 according
to the selected label. Conversely, ⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} selects a label 𝑙𝑖
and continues to 𝑆𝑖. The duality is a one-to-one relation on session types
which ensures that two parties perform complementary actions. It is defined
inductively as follows:

!𝑉 ; 𝑆 =?𝑉 ; 𝑆 ?𝑉 ; 𝑆 =!𝑉 ; 𝑆 end = end
![𝑆 ′]; 𝑆 =?[𝑆 ′]; 𝑆 ?[𝑆 ′]; 𝑆 =![𝑆 ′]; 𝑆 𝜇𝛼.𝑆 = 𝜇𝛼.𝑆[𝛼/𝛼]
&{𝑙𝑖 : 𝑆𝑖} = ⊕{𝑙𝑖 : 𝑆𝑖} ⊕{𝑙𝑖 : 𝑆𝑖} = &{𝑙𝑖 : 𝑆𝑖}

where (𝛼) = 𝛼.
One of the problems in implementing session types is how to include the

duality in the type inference mechanism of the target language. To enable
session-type inference solely by the built-in type unification in OCaml, session
-ocaml relies on polarised session types in order to reduce duality checking to

4

https://github.com/keigoi/session-ocaml
https://github.com/keigoi/FuSe-clone/

Listing 1 The xor server and its client
1 let xor_ch = new_channel ();;
2 Thread.create
3 (accept_ xor_ch (fun () ->
4 recv s >>= fun (x,y) ->
5 send s (xor x y) >>
6 close s)) ();;

7 connect_ xor_ch (fun () ->
8 send s (false,true) >>
9 recv s >>= fun b ->

10 print_bool b;
11 close s) ()

unification. In a polarised session type 𝑝𝑞, the polarity 𝑞 is either serv (server)
or cli (client). When a session is being initiated, polarities are assigned
to each end of the session according to the primitives, namely cli for the
proactive peer and serv for the passive peer. 𝑝 is the protocol type (defined
later) as an objective view of a communication. The duality of polarised
session is defined as follows:

𝑝cli = 𝑝serv 𝑝serv = 𝑝cli

The type inference in polarised session types is driven solely by type unification
which checks whether a protocol type matches its counterpart or not. A
protocol type is defined by the following grammar using two communication
directions of req (request; client to server) and resp (response; server to
client).

𝑝 ::= req[𝑉]; 𝑝 | resp[𝑉]; 𝑝 | close | 𝜇𝛼.𝑝 | 𝛼 | req[𝑝𝑞]; 𝑝′ | resp[𝑝𝑞]; 𝑝′

| req{𝑙1 : 𝑝1, . . . , 𝑙𝑛 : 𝑝𝑛} | resp{𝑙1 : 𝑝1, . . . , 𝑙𝑛 : 𝑝𝑛}

req[𝑉]; 𝑝 is a transmission of a message type 𝑉 from a client to a server
and resp[𝑉]; 𝑝 is from a server to a client. 𝜇𝛼.𝑝 is recursion and close is
the terminated session. req[𝑝𝑞]; 𝑝′ and resp[𝑝𝑞]; 𝑝′ are delegation. Note that
a delegated type is annotated with polarities, and in § 3.3 we discuss the
impact of having polarities in types rather than having them in the syntax,
as in [17, 18]. req{𝑙1 : 𝑝1, . . . , 𝑙𝑛 : 𝑝𝑛} is the selection on the client side and
the branching on the server side. Similarly, resp{𝑙1 : 𝑝1, . . . , 𝑙𝑛 : 𝑝𝑛} is the
branching on the client side and the selection on the server side.

2.2. Send and receive primitives
Listing 1 shows a server and a client which communicate boolean values.

The variable xor_ch (line 1) is a shared channel (or service channel) used to
start the communication between a client and a server. Thread.create 𝑓 𝑥 in
the OCaml standard library creates a thread which evaluates the expression

5

(𝑓 𝑥), and is used to start the server thread (lines 2-6). The function accept_1

accepts a session from a client (line 3) at xor_ch, then runs the body of the
session inside (fun () -> ..) (lines 4-6). The global variable s used in the
session refers to a session endpoint (or session channel) which is connected to
the other endpoint2. At the beginning of the session, the server thread receives
(recv) a pair of booleans (line 4). For inferring session types in OCaml, the
communication primitives are concatenated by the bind operators >>= and >>

of a parameterised monad [19] which conveys session endpoints. Intuitively,
an expression op1 >>= fun x -> op2 executes 𝑜𝑝1 and 𝑜𝑝2 in order, binding
free occurrences of x in 𝑜𝑝2 to the result of 𝑜𝑝1. 𝑜𝑝1 >> 𝑜𝑝2 is a shorthand of
𝑜𝑝1 >>= fun _ -> 𝑜𝑝2 discarding the result of 𝑜𝑝1. The thread calculates the
exclusive-or of the received values, transmits (send) back the resulting boolean,
and finishes the session (close) (lines 5-6). The client (lines 7-11) connects to
the server at xor_ch using connect_3 (line 7), sends a pair of boolean values
(false,true) (line 8), receives the exclusive-or of them from the server (line
9), prints it on the screen and finishes the session (lines 10-11).

A channel type of the form 𝛼 channel is assigned to shared channels
(e.g. xor_ch) where 𝛼 is a protocol type. Protocol types are the primary
language of communication specification in session-ocaml. The protocol type
of xor_ch is req[bool*bool];resp[bool];close in the syntax introduced in § 1.
It indicates that the server receives a request of type bool * bool before it
sends a response of type bool back to the client. The channel type at xor_ch

is represented in OCaml as follows:
[`msg of req * (bool * bool) * [`msg of resp * bool * [`close]]] channel

Type [`𝑡𝑎𝑔 of 𝜏] and [`𝑡𝑎𝑔] are the polymorphic variant types in OCaml. We
use polymorphic variant type [`msg of 𝑟 * 𝑣 * 𝑝] to represent a protocol type
𝑟[𝑣];𝑝. The first component 𝑟 is req (or resp) which indicates a communication
direction from a client to a server (or from a server to a client, respectively).
The second component 𝑣 is the type of a message and the last component 𝑝
is a protocol type denoting the continuation. [`close] is the end of a session.

1The suffixed underscore means that it runs immediately instead of returning a monadic

action (see later). The sub-expression accept_ (fun () -> ..) is a partial application
and the rest is fully applied in the new thread by Thread.create with argument ().

2The variable s is a slot specifier which we will introduce later in this section.
3We use the keyword connect instead of request used in most literature to avoid

confusion with req in protocol types.

6

Listing 2 A logical operation server
1 let log_ch = new_channel ()
2 type binop = And | Or | Xor | Imp
3 let eval_op = function
4 | And -> (&&)
5 | Or -> (||)
6 | Xor -> xor
7 | Imp -> (fun a b -> not a || b)
8 let rec logic_server () =
9 branch ~left:(s, fun () ->

10 recv s >>= fun op ->
11 recv s >>= fun (x,y) ->
12 send s (eval_op op x y) >>= fun () ->

13 logic_server ())
14 ~right:(s, fun () -> close s);;
15 Thread.create
16 (accept_ log_ch logic_server) ();;
17 connect_ log_ch (fun () ->
18 select_left s >>
19 send s And >>
20 send s (true, false) >>
21 recv s >>= fun ans ->
22 (print_bool ans;
23 select_right s >>
24 close s)) ()

The reason for using the polymorphic variant types rather than normal
type constructors like (𝑟, 𝑣, 𝑝) msg in protocol types is that it allows equi-
recursive types to directly implement session type recursion in OCaml type.

2.3. Branching and recursion
A combination of branching and recursion provides various useful idioms.

Listing 2 shows a logical operation server. The channel type inferred for
log_ch (line 1) is:
([`branch of req *
[`left of [`msg of req * binop * [`msg of req * (bool * bool) *

[`msg of resp * bool * 'a]]]

|`right of [`close]]] as 'a) channel

The type [`branch of 𝑟 * [· · · |`lab𝑖 of 𝑝𝑖 | · · ·]] (𝑟 ∈ {req, resp}) repre-
sents a protocol type 𝑟{· · · , lab𝑖 : 𝑝𝑖, · · · } that continues to 𝑝𝑖 when label
lab𝑖 is communicated with a communication direction 𝑟. 𝑡 as 'a is an equi-
recursive type [20] of OCaml that represents recursive structure of a session
where 'a in 𝑡 is instantiated by 𝑡 as 'a. Lines 2-7 define a type and a func-
tion for logical operations over boolean values. The function logic_server

(lines 8-14) describes the body of the server. An expression branch ~left

:(s, 𝑐𝑜𝑛𝑡1) ~right:(s, 𝑐𝑜𝑛𝑡2) offers a choice between labels left and right

to the peer4, and it continues to 𝑐𝑜𝑛𝑡1 when label left is selected, or to
𝑐𝑜𝑛𝑡2 when right is selected. The evaluation of 𝑐𝑜𝑛𝑡1 and 𝑐𝑜𝑛𝑡2 is deferred
by (fun () -> ..). Upon receipt of left, the server receives a request for a
logical operation of type binop (line 10) and its operands of type bool * bool

4The reason two s’s are required will be explained in § 3.3.

7

(line 11), sends back a response (line 12), and calls logic_server recursively
(line 13). The recursive call of logic_server is again deferred inside (fun ()

-> ..). Receiving right terminates the session (line 14). Lines 15-16 start
the server in a new thread.

The function select_left (and select_right) selects the label left (and
right) from the offered choices, respectively. A client using selection is shown
in lines 17-24: It selects the label left (line 18), then it requests conjunction
(line 19), sends the two operands (line 20), receives the response and prints it
(lines 21-22). Then, it selects right (line 23) and the session ends (line 24).

Syntax extensions for the generalised choice. Although the branching among
more than two labels can be simulated by the nested use of binary branches,
it is more pragmatic if we have a generalised choice for an arbitrary number
of labels. session-ocaml provides a syntax extension match%branch as follows:
match%branch s with

| `𝑙𝑎𝑏1 -> 𝑒1
| ..

| `𝑙𝑎𝑏𝑛 -> 𝑒𝑛

The expression above offers labels 𝑙𝑎𝑏1, . . . , 𝑙𝑎𝑏𝑛 and continues to 𝑒𝑖 when 𝑙𝑎𝑏𝑖

is selected. The symbol % stands for an extension point of the OCaml syntax
handled by the session-ocaml preprocessor. Similarly, the selection of 𝑙𝑎𝑏𝑖 is
done by [%select s `𝑙𝑎𝑏𝑖]. The Travel Agency usecase in § 4.1 demonstrates
the use of the generalised choices.

2.4. Handling multiple sessions
We explain how multiple sessions are handled in session-ocaml, and exhibit

an interesting communication pattern of link mobility, called session delegation.
Session delegation dynamically changes the communication counterparts
during a session. A typical pattern utilising delegations incorporates a main
thread accepting a connection with worker threads doing the actual work to
increase responsiveness of a service.

To handle multiple sessions, we explicitly assign each session endpoint to
a distinct slot via slot specifiers _0, _1, In the xor server (Listing 1) and
the logical operation server (Listing 2), a special identifier s has been used
for referring a single session endpoint in that context as the 0-th slot.

Listing 3 shows an example of a responsive server using delegation. The
server accepts repeated connection requests on the channel log_ch defined
in Listing 2, with six worker threads. The main thread (lines 2-7) accepts

8

Listing 3 A responsive server using delegation (log_ch is from Listing 2)
1 let worker_ch = new_channel ()
2 let rec main () =
3 accept log_ch ~bindto:_0 >>
4 connect worker_ch ~bindto:_1 >>
5 deleg_send _1 ~release:_0 >>
6 close _1 >>= fun () ->
7 main ();;
8 Thread.create (run main) ();;
9

10 let rec worker () =
11 accept worker_ch ~bindto:_1 >>
12 deleg_recv _1 ~bindto:_0 >>
13 close _1 >>
14 logic_server () >>= fun () ->
15 worker ();;
16 for i = 0 to 5 do
17 Thread.create (run worker) ()
18 done

a connection from a client (accept) with log_ch and assigns the established
session to the 0-th slot (~bindto:_0)5. Next, it connects (connect) to a worker
waiting for a delegation at the channel worker_ch (line 1) and assigns the
session to the 1st slot (~bindto:_1). Finally, it delegates the 𝑚-th session
session with the client to the worker over the 𝑛-th session by deleg_send _𝑛 ~

release:_𝑚. Then the server ends the session for the worker and accepts the
next connection. Line 8 starts the main thread. Here run is a function that
executes a monadic action of session-ocaml.

A worker thread (lines 10-15) accepts a session from the main thread
(line 11). Then it receives the delegated session and assigns the session to the
0-th slot (line 12), calls logic_server in Listing 2 (line 14) and recurses to
itself (line 15). Note that the received session endpoint is implicitly passed to
logic_server via the 0-th slot and consumed by it. Lines 16-18 start the six
worker threads.

The type of worker_ch is inferred as follows:
[`deleg of req * (logic_p, serv) sess * [`close]] channel

where [`deleg of 𝑟 * (𝑝,𝑞) sess * 𝑝′] represents the protocol type for dele-
gation 𝑟[𝑝𝑞]; 𝑝′ with a communication direction 𝑟. (𝑝, 𝑞) sess is a polarised
session type for the delegated session which consists of protocol type 𝑝 and
polarity 𝑞, and 𝑝′ is a protocol type denoting the continuation. The type above
denotes the delegation of a session with the direction req and it continues
to the session [`close]. (logic_p, serv) sess is a polarised session type for

5The slot number starts from zero and we say the 0-th slot for the first slot in a slot

sequence. We use named arguments to indicate a slot to be allocated (bindto) or released
(release). Names can be omitted; e.g. deleg_send _0 _1 is equivalent to deleg_send
_0 ~release:_1. Hence the use of named arguments does not affect safety/correctness in

our encoding of session types.

9

Table 1: Correspondence between polarities and communication directions

send select deleg_send recv branch deleg_recv
cli req req req resp resp resp
serv resp resp resp req req req

Figure 1: Session type changes in xor_server

the delegated session as we explain the details next. logic_p is the protocol
and serv is the polarity of the delegated session, respectively. Here we as-
sume logic_p is the protocol type of log_ch. By inferring the protocol types,
session-ocaml can statically guarantee the safety of higher-order protocols
including delegations.

2.5. Tracking sessions with polarised session types
Communication safety is checked by matching the protocol types inferred

at both ends. In the polarised session type (𝑝, 𝑞) sess, 𝑝 is a protocol type,
and 𝑞 ∈ {serv,cli} is the polarity determined at session initiation. serv is
assigned to the accept side and cli to the connect side.

The polarised session type gives a simple way to let the type checker infer a
uniform protocol type according to a communication direction and a polarity
assigned to the endpoint. For example, as we have seen, we deduce resp

(response) from server transmission (send) and client reception (recv). Table 1
shows the correspondence between polarities and communication directions.

To track the entire session, a polarised session type changes in its protocol
part as the session progresses. Figure 1 shows the changes of the session type
in the 0-th slot of the xor server (here we use _0 instead of s). The server

10

first accepts a connection and assigns the session type to the 0-th slot, where
the type before acceptance is empty. The reception of the pair of booleans is
followed by the transmission of the xor of those booleans. This interaction
consumes req and resp, and the slot becomes empty again at the end of the
session. As for Listing 3, similar type changes occur on both main and worker

and their types are inferred as follows:
unit -> (empty * (empty * 'ss), 'tt, 'a) session

where the type (𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑎) session specifies that it expects a slot sequence
𝑝𝑟𝑒 at the beginning, and returns another slot sequence 𝑝𝑜𝑠𝑡 with a value of
type 𝑎. The nested pair type empty * (empty * 'ss) denotes that the 0-th and
1st slots are empty at the beginning. Since function main and worker never
return the answer (i.e. the recursion runs infinitely), the remaining types 'tt

and 'a are left as variables.
Table 2 summarises the communication behaviour of the session-ocaml

communication primitives, and shows the protocol types before and after
execution. A pre-type is the type required before execution and post-type
is the type guaranteed after execution. In the first column of “primitive”,
_𝑛 and _𝑚 are slot specifiers, 𝑒 is an expression of a base type, and `lab is
a polymorphic variant. In the second and third columns of “pre-type” and
“post-type”, 𝑣 is a base type, 𝑝 is a protocol type, 𝑠 is a polarised session
type (of any polarity), 𝑡 is either a polarised session type or empty and ch is
a shared channel. The protocol types shown in the table are at polarity cli

except for the rows of accept and connect which have a fixed polarity in the
allocated session. The protocol type at serv is obtained by simultaneously
replacing req with resp and resp with req. For example, the session send _𝑛 𝑒

has ([`msg of req * 𝑣 * 𝑝], cli) sess as the pre-type at cli and ([`msg of

resp * 𝑣 * 𝑝′], serv) sess as the pre-type at serv where _𝑛 is a slot specifier,
𝑒 is an expression, 𝑣 is the type of 𝑒, and 𝑝 and 𝑝′ are protocol types (where
𝑝′ is obtained from 𝑝 by swapping req and resp).

The primitives for the session initialisation accept_ 𝑐ℎ 𝑓 () and connect_

𝑐ℎ 𝑓 () in the previous listings are shorthands of “run (fun () -> accept

𝑐ℎ ~bindto:_0 >> 𝑓 ()) ()” and “run (fun () -> connect 𝑐ℎ ~bindto:_0 >> 𝑓

()) ()”, respectively. They establish a session at 𝑐ℎ and assign it to the 0-th
slot, then run the given monadic computation (𝑓 ()).

The selection primitives select_left, select_right and [%select _𝑛 `𝑙𝑎𝑏]

have open polymorphic variant type [>. . .] as the pre-type to simulate the
subtyping of the labelled branches. For example, in the session type theory,

11

Table 2: session-ocaml primitives and polarised session types at cli*1

Primitive Pre-type Post-type Synopsis

send _𝑛 𝑒 ([`msg of req * 𝑣 * 𝑝], cli) (𝑝, cli) Send 𝑒 : 𝑣 at the 𝑛-th slot

sess sess

recv _𝑛 ([`msg of resp * 𝑣 * 𝑝], cli) (𝑝, cli) Receive a value of type 𝑣
sess sess at the 𝑛-th slot.

select_left _𝑛 ([`branch of req * (𝑝, cli) Select left at the 𝑛-th
[> `left of 𝑝]], cli) sess sess slot

select_right _𝑛 ([`branch of req * (𝑝, cli) Select right at the 𝑛-th
[> `right of 𝑝]], cli) sess sess slot

[%select _𝑛 `labi] ([`branch of req * (𝑝𝑖, cli) Select lab𝑖 at the 𝑛-th
[> `lab𝑖 of 𝑝𝑖]], cli) sess sess slot

branch ([`branch of resp * 𝑡 branch offers left and right
~left:(_𝑛, 𝑓1) [`left of 𝑝0 and match%branch offers

~right:(_𝑛, 𝑓2) |`right of 𝑝1]], cli) sess 𝑙𝑎𝑏1, . . . , 𝑙𝑎𝑏𝑛 at the 𝑛-th
match%branch _𝑛 with ([`branch of resp * 𝑡 slot provided that each pre-

|`lab0 -> 𝑒0 [`lab0 of 𝑝0 type of 𝑓𝑖 () (or 𝑒𝑖) is

| · · · | · · · (𝑝𝑖, cli) sess and each

|`labm -> 𝑒𝑚 |`lab𝑚 of 𝑝𝑚]], cli) sess post-type of 𝑓𝑖 () (or 𝑒𝑖) is 𝑡.
deleg_send _𝑛 𝑛:([`deleg of req * 𝑠 * 𝑝], 𝑛:(𝑝, cli) Delegate session at the 𝑚-th

~release:_𝑚 cli) sess sess slot along the session at the

𝑚:𝑠*2 𝑚:empty*2 𝑛-th slot

deleg_recv _𝑛 𝑛:([`deleg of resp * 𝑠 * 𝑝], 𝑛:(𝑝, cli) Receive delegation

~bindto:_𝑚 cli) sess sess along the 𝑛-th slot and

𝑚:empty*2 𝑚:𝑠*2 assign it to the 𝑚-th slot

close _𝑛 ([`close], cli) sess empty Close session at the 𝑛-th slot

accept 𝑐ℎ empty (𝑝, serv) Accept a connection at

~bindto:_𝑛 sess channel 𝑐ℎ of protocol type

𝑝; assign a new session of po-

larity serv to 𝑛
connect 𝑐ℎ empty (𝑝, cli) Connect to channel 𝑐ℎ of

~bindto:_𝑛 sess protocol type 𝑝; assign a new

session of polarity cli to 𝑛

*1: accept and connect have the fixed polarity serv or cli in the post-type. *2: deleg_send and

deleg_recv involve two slots; hence each column contains types for the two slots.

⊕{left : 𝑆; right : 𝑆 ′} (a selection of either left or right) is a subtype
of ⊕{left : 𝑆} (selection of left). This is simulated in session-ocaml that
the protocol type [`branch of [`left of 𝑝 | `right of 𝑝′]] is subsumed by
[`branch of [>`left of 𝑝]] according to the OCaml type system.

3. Design and implementation of session-ocaml

In this section, we present the technical details of session-ocaml. We first
show the design of the polarised session types associated with the communica-
tion primitives (§ 3.1); then introduce the slot monad which conveys multiple
session endpoints in a sequence of slots (§ 3.2). In § 3.3, we introduce the

12

slot specifier to look up a particular slot in a slot sequence with lenses as a
polymorphic data manipulation technique known in functional programming
languages. We present the syntax extension for branching and selection,
and explain a restriction on the polarised session types6. In § 3.4, we show
the implementation details. In § 3.5, we introduce a macro for slot-based
linearity, and shows Gay-Vasconcelos style session programming based on the
macro, which unifies various aspects of session-ocaml including generalised
choice. In § 3.6, we introduce the distributed implementation using ad hoc
polymorphism.

3.1. Polarity polymorphism
In the framework of polarised session types, the type for sending would be

either [`msg of req * 'v * 'p] or [`msg of resp * 'v * 'p], and one of them
must be chosen according to the polarity from which the message is sent.

The ability of a session primitive to be used at both polarities is called
polarity polymorphism. In order to relate the polarities to the directions, we
define the types cli and serv as type aliases of communication direction pairs
in the form sending * receiving, as follows:

type cli = req * resp type serv = resp * req

In the type signature of a session primitive, we introduce fresh type variables
'r1 for sending and 'r2 for receiving, and put 'r1 * 'r2 in the polarity. We
further put 'r1 ('r2) in the communication direction if modality is sending
(receiving, respectively), so that the direction is consistent with both polarity
and modality described in Table 1. As a result, if the polarity of a session is
cli, 'r1 and 'r2 are unified with req and resp respectively; while when the
polarity is serv, 'r1 and 'r2 are unified with resp and req respectively. For
example, the pre-type of send is ([`msg of 'r1*'v*'p],'r1*'r2) sess because
sending is req at cli while it is resp at serv, and that of recv is ([`msg of 'r2

'v'p],'r1*'r2) sess because receiving is resp at cli while it is req at serv.
The same discipline applies to branching and delegation primitives.

3.2. The slot monad carrying multiple sessions
The key factor to achieve the session channel linearity is to keep session

endpoints securely inside a monad. In session-ocaml, multiple sessions are

6The Travel Agency usecase in § 4.1 depends only on the materials from § 3.1 to § 3.3;

thus readers can skip the subsequent sub-sections.

13

Listing 4 The slot monad
1 type ('pre,'post,'a) session
2 val return : 'a -> ('pre,'pre,'a) session
3 val (>>=) : ('pre,'mid,'a) session -> ('a -> ('mid,'post,'b) session)
4 -> ('pre,'post,'b) session
5 val (>>) : ('pre,'mid,'a) session -> ('mid,'post,'b) session -> ('pre,'post,'b) session
6 type empty and all_empty = empty * 'a as 'a
7 val run : ('a -> (all_empty,all_empty,'b) session) -> 'a -> 'b

conveyed in slots using the slot monad of type
(𝑠0 * (𝑠1 * · · ·), 𝑡0 * (𝑡1 * · · ·), 𝛼) session

where 𝛼 is the type of the result, 𝑠𝑖’s are pre-types and 𝑡𝑗’s are post-types of
the computation. Given a slot monad, we refer to the slots before and after
the computation as pre-slots and post-slots, respectively. The type signature
of the slot monad is shown in Listing 4. The operators >>= and >> (lines
3-5) compose the computation sequentially while enforcing consistent use of
the concatenated sessions in the slots by sharing 'mid appearing in the both
post-slots on the left-hand side and the pre-slots on the right-hand side. It
realises type changes in a session via unification. For example, in send s And

>> send s (true, false) (from Listing 2) the left-hand side (send s Add) has
the following type:
(([`msg of req * binop * 'p1], cli) sess * 'ss1, ('p1, cli) sess * 'ss1, unit)

session

The type of the right-hand side (send s (true, false)) is:
(([`msg of req * (bool*bool) * 'p2], cli) sess * 'ss2, ('p2, cli) sess * 'ss2, unit)

session

By unifying the post-type in the preceding computation with the pre-type in
the following computation (and the rest of slots 'ss1 with 'ss2), >>= produces
the protocol type in the pre- and post-slots, and value type, as follows:
(([`msg of req * binop * [`msg of req * (bool*bool) * 'p2]], cli) sess * 'ss2,

('p2, cli) sess * 'ss2, unit) session

In line 7, run takes a function returning a slot monad which requires
all slots being empty before and after the execution, thus it precludes the
use of unallocated slots and mandates that all sessions are finally closed.
The type all_empty (line 6) is a type alias for OCaml equi-recursive type
empty * 'a as 'a7, enabling use of arbitrarily many slots.

7In order to have such a type, we compile the code with the -rectypes option. If we

14

Table 3: Types for slot specifiers
Specifier Type

_0 ('a, 'b, 'a * 'ss, 'b * 'ss) slot
_1 ('a, 'b, 's0 * ('a * 'ss), 's0 * ('b * 'ss)) slot
_2 ('a, 'b, 's0 * ('s1 * ('a * 'ss)), 's0 * ('s1 * ('b * 'ss))) slot
_𝑛 ('a, 'b, 's0*(· · · *('s𝑛−1*('a*'ss))· · ·), 's0*(· · · *('s𝑛−1*('b*'ss))· · ·)) slot

3.3. Lenses focusing on linear channels
In order to provide accesses to session endpoints conveyed inside a slot

monad computation, we apply lenses [15, 16] to slot specifiers _0, _1, · · · to
manipulate polymorphic data structures. The following shows the type of a
slot specifier which modifies the 𝑛-th slot in a slot sequence (recall that the
slot number starts from zero):
('a, 'b, 's0 *(· · ·('s𝑛−1 *('a *'ss))· · ·), 's0 *(· · ·('s𝑛−1 *('b *'ss))· · ·)) slot

This type says that 'a of the 𝑛-th slot in the slot sequence 's0 *(· · ·('s𝑛−1 *('

a *'ss))· · ·) is replaced with 'b by the lens. The resulting slot sequence type
becomes 's0 *(· · ·('s𝑛−1 *('b *'ss))· · ·). The type of each slot specifier (_0, _1,
· · ·) is shown in Table 3. We only provide a small number of slot specifiers
(currently four) as default in session-ocaml. However, this is sufficient since in
reality the number of sessions in a thread is relatively small in many usecases.

We present how to embed slot type changes into a pair of slot sequences
in a slot monad where the position of the slot is specified by a slot specifier.
The following is the type of close which takes a slot specifier for the session
that will be terminated:
val close : (([`close],'r1*'r2) sess, empty, 'pre, 'post) slot

-> ('pre, 'post, unit) session

In this type, the first and second type arguments of type slot prescribe how
the slot type changes. The third and fourth arguments do not specify a slot
in the slot sequence conveyed by the slot monad. For example, the type of
close _1 is given by the following type substitution:
(change of the slot type specified by close)

'a ↦→ ([`close],'r1*'r2) sess, 'b ↦→ empty,

(change of the slot sequence type specified by _1)

'pre ↦→ 's0 * (([`close],'r1*'r2) sess * 'ss), 'post ↦→ 's0 * (empty * 'ss)

choose types for slots using objects or polymorphic variants, there is no need to use this

option.

15

Listing 5 Signatures for communication primitives in session-ocaml

1 val accept : 'p channel -> bindto:(empty, ('p, serv) sess, 'pre, 'post) slot
2 -> ('pre, 'post, unit) session
3 val connect : 'p channel -> bindto:(empty, ('p, cli) sess, 'pre, 'post) slot
4 -> ('pre, 'post, unit) session
5 val close : (([`close],'r1*'r2) sess, empty, 'pre, 'post) slot
6 -> ('pre, 'post, unit) session
7 val send : (([`msg of 'r1*'v*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'post) slot -> 'v
8 -> ('pre, 'post, unit) session
9 val recv : (([`msg of 'r2*'v*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'post) slot

10 -> ('pre, 'post, 'v) session
11 val deleg_send :
12 (([`deleg of 'r1*('pp,'qq) sess*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'mid) slot
13 -> release:(('pp,'qq) sess, empty, 'mid, 'post) slot -> ('pre, 'post, unit) session
14 val deleg_recv :
15 (([`deleg of 'r2*('pp,'qq) sess*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'mid) slot
16 -> bindto:(empty, ('pp,'qq) sess, 'mid, 'post) slot -> ('pre, 'post, unit) session
17 val select_left :
18 (([`branch of 'r1 * [>`left of 'p1]],'r1*'r2) sess, ('p1,'r1*'r2) sess, 'pre, 'post) slot
19 -> ('pre, 'post, unit) session
20 val select_right :
21 (([`branch of 'r1 * [>`right of 'p2]],'r1*'r2) sess, ('p2,'r1*'r2) sess, 'pre, 'post) slot
22 -> ('pre, 'post, unit) session
23 val branch :
24 left: (([`branch of 'r2 * [`left of 'p1 | `right of 'p2]],'r1*'r2) sess,
25 ('p1,'r1*'r2) sess, 'pre, 'mid1) slot
26 * (unit -> ('mid1, 'post, 'a) session)
27 -> right:(([`branch of 'r2 * [`left of 'p1 | `right of 'p2]],'r1*'r2) sess,
28 ('p2,'r1*'r2) sess, 'pre, 'mid2) slot
29 * (unit -> ('mid2, 'post, 'a) session)
30 -> ('pre, 'post, 'a) session

And the type completing the session in the first slot is:
close _1: ('s0 * ([`close],'r1*'r2) sess * 'ss), 's0 * (empty * 'ss), unit)

session

Listing 5 exhibits the type signatures of the communication primitives
by using lenses, the polarity polymorphism (§ 3.1), the slot monad (§ 3.2),
and pre- and post-types in Table 2 (§ 2.5). Note that release: in the type
of deleg_send and bindto: in the types of accept, connect, and deleg_recv are
the named parameters of each primitive.

The session-establishment primitives accept and connect (lines 1-4) assign
new session channels to the empty slot, whereas close (lines 5-6) finishes the
session and leaves the slot empty. send and recv (lines 7-10) remove the prefix
[`msg of 𝑟 * 𝑣 * 𝑝] by communicating a value to proceed a session to 𝑝.

The primitives for delegations deleg_send and deleg_recv (lines 11-16)
update a pair of slots; one is for the transmission/reception of the delegating

16

session and the other is for the delegated session. To update the slots at a
time, an intermediate slot sequence 'mid is shared in the pair of slot specifiers.
deleg_send releases the ownership of the delegated session by replacing the slot
type with empty, while deleg_recv allocates the slot for the acquired session.

The primitives for binary selection select_left and select_right commu-
nicate left and right labels with branching branch (lines 17-30), respectively.
The type signature of select_left (or select_right) says that they remove
the prefix [`branch of [>`left of 𝑝]] (or [`branch of [>`right of 𝑝]]) to pro-
ceed a session to 𝑝, where the symbol > of the open polymorphic variant (§ 2.5)
denotes that the counterpart offers other labels. The function branch takes
two pairs, each consists of a slot specifier and a continuation function either
for left or for right. It receives a branch label first using one of the two
slot specifiers8. Then, according to the received label, branch assigns the
continuation session to the slot, and invokes the continuation function. We
need distinct slot specifiers for different continuations because the pre-types
in the two continuations can be different from each other, and a slot specifier
assigning to the slot cannot have two different types in the third parameter.

Generalised choice. Since the OCaml type system does not allow to pa-
rameterise type labels, we provide macros for generalised choice. Listing 6
provides the helper functions for the macros. The type signatures in this
listing are not enough to ensure that the type checking is sound. The macro
[%select _𝑛 `labi] is expanded to _select _𝑛 (fun x -> `labi(x)), where the
helper function _select transmits label labi on the slot 𝑛. The expanded code
adopts FuSe’s style (§ 5.3 of [6]) which uses the 𝜂-expansion of a variant
tag (fun p -> `lab𝑖(p))

9. The macro “match%branch _𝑛 with | `lab1 -> 𝑒1 |

· · · | `lab𝑘 -> 𝑒𝑘” manually extracts the polarised session type at slot 𝑛 and
explicitly assigns it to a slot in the expanded code, as follows.
_recvlabel _𝑛 >>= ((function |`lab1(p1),q -> _set_sess _𝑛 (p1,q) >> 𝑒1 | · · ·

|`lab𝑘(p𝑘),q -> _set_sess _𝑛 (p𝑘,q) >> 𝑒𝑘)

: [`lab1 of _|· · ·|`lab𝑘 of _]*_ -> _)

8It does not matter whether branch uses the left or right slot specifier for reception

since they point to the same slot (i.e. the two slot specifiers has the same pre-type 'pre).
9Note that in the argument type 'p -> ([>] as 'br) of _select, the type ([>] as

'br) says that 'br can be an arbitrary polymorphic variant type and it does not force 'p
being the payload type of 'br, and the macro takes care of this.

17

Listing 6 The helper functions for a generalised choice
1 val _select : (([`branch of 'r1 * 'br],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'post) slot
2 -> ('p -> ([>] as 'br)) -> ('pre, 'post, unit) session
3 val _recvlabel : (([`branch of 'r2 * 'br], 'r1*'r2) sess, empty, 'pre, 'post) slot
4 -> ('pre, 'post, 'br * ('r1*'r2)) session
5 val _set_sess : (empty, ('p,'r1*'r2) sess, 'pre, 'post) slot
6 -> 'p * ('r1*'r2) -> ('pre, 'post, unit) session

The helper functions _recvlabel and _set_sess have the types shown in List-
ing 6. The function _recvlabel _𝑛 first receives lab𝑖 (𝑖 ∈ {1 . . . 𝑘}), and
then returns a pair of value `lab𝑖(p𝑖) of type [`lab1 of 𝑝𝑖 | · · · | `lab𝑘 of 𝑝𝑘]

(which is unified with 'br) and a value q of type 'r1*'r2. Here p𝑖 has type
𝑝𝑖 and 𝑝𝑖 is the protocol type for the continuation of `lab𝑖. q is a witness
value of the polarity 'r1*'r2. At the same time, the 𝑛-th slot is made empty.
After that, the anonymous function matches on the pair (`lab𝑖(p𝑖),q), then
by _set_sess _𝑛 (p𝑖,q) it assigns the session of type (𝑝𝑖,'r1*'r2) sess to the
𝑛-th slot and it continues to 𝑒𝑖. As for [%select ..], the expanded code above
plays a crucial role to enforce the type 'br of _recvlabel to be a polymorphic
variant type of branching labels.

The type annotation [`lab𝑖 of _|· · ·|`lab𝑘 of _]*_ -> _ in the expanded code
erases the row type variable [<· · ·] generated by the anonymous function. The
annotation is necessary because the row type variable turns into a useless
monomorphic row type variable _[<· · ·] in the inferred protocol type. This
may cause a problem since the compiler requires monomorphic type variables
not to escape from the compilation units.

The function branch is a specialised form of the macro match%branch, and
an analogous function can be defined in the same way as the expanded code
of the macro above, as follows (the type annotation is omitted).
let branch' _n0 ~left:(_n1,f1) ~right:(_n2,f2) =
_recvlabel _n0 >>= (function | `left(p1),q -> _set_sess _n1 (p1,q) >> f1 ()

| `right(p2),q -> _set_sess _n2 (p1,q) >> f2 ())

It takes an extra slot specifier _n0 which is used to receive a label by using
_recvlabel. This is mandatory since the type of the slot specifier passed to
_recvlabel cannot be the same as the ones passed to _set_sess. The reason
that branch does not need this extra slot specifier is that it internally uses
the unused getter component of the left slot specifier to receive a label. The
implementation of branch will appear in § 3.4.

18

A note on delegation. The type signature of deleg_send allows to use the
same slot in both arguments like deleg_send _0 ~release:_0. The expression
deleg_send _0 ~release:_0 delegates the continuation of the delegating session
itself, and its type is inferred as follows (at polarity cli):
deleg_send _0 ~release:_0

: ([`deleg of req * ('pp,cli) sess * 'pp], cli) sess * '_ss,

empty * '_ss, unit) session

where the type of the slot sequence is inferred as follows:
'pre ↦→ ([`deleg of req * ('pp,cli) sess * 'pp], cli) sess * 'ss

'mid ↦→ ('pp, cli) sess * 'ss

'post ↦→ empty * 'ss

On the other hand, deleg_recv _0 ~bindto:_0 is not typeable since by deleg_recv
_0 we would have
'pre ↦→ ([`deleg of req * ('pp,serv) sess * 'pp], serv) sess * 'ss

'mid ↦→ ('pp, serv) sess * 'ss

Because the 0-th type of 'mid is not empty, we cannot assign the delegated
session to that slot.

The delegation [`deleg of 𝑟 * 𝑠 * 𝑝] distinguishes the polarities in the
delegated session 𝑠. This results in a situation that two sessions exhibiting
the same communicating behaviour cannot be delegated at a single point in a
protocol, if they have different polarities from each other. This is illustrated
by the following untypeable example.
if b then connect ch1 ~bindto:_1 >> deleg_send _0 ~release:_1

else accept ch2 ~bindto:_1 >> deleg_send _0 ~release:_1

Recall that connect yields an endpoint of polarity cli while accept gives
polarity serv. Due to the different polarities in the delegated session types, the
types of then and else clause conflict, even if they have identical behaviour. In
[18], since a polarity is not a type but a syntactic construct, such a restriction
does not exist. A similar restriction to ours exists in GV [21] where polarity
in end exists as end! and end?.

In principle, it is possible to automatically assign numbers to slot specifiers
locally in a function instead of writing them explicitly. However, since the
sequential composition of the session monad requires each post- and pre-type
to be unified with each other, the global assignment of slot specifiers would
require a considerable amount of work.

19

Listing 7 Basic operations on slot monad
1 (* The slot monad *)
2 type ('pre,'post,'a) session = 'pre -> 'post * 'a
3 let return a = fun pre -> pre, a
4 let (>>=) m f = fun pre -> let mid, a = m pre in f a mid
5 (* Empty slots and the run function *)
6 type empty = Empty
7 type all_empty = empty * all_empty
8 let rec all_empty = Empty, all_empty
9 let run f x = snd (f x all_empty)

10 (* Slot specifiers *)
11 type ('a,'b,'pre,'post) slot = ('pre -> 'a) * ('pre -> 'b -> 'post)
12 let _0 = (fun (a,_) -> a), (fun (_,ss) b -> (b,ss))
13 let _1 = (fun (_,(a,_)) -> a), (fun (s0,(_,ss)) b -> (s0,(b,ss)))
14 let _2 = (fun (_,(_,(a,_))) -> a), (fun (s0,(s1,(_,ss))) b -> (s0,(s1,(b,ss))))

3.4. Implementing the slot monad and the communication primitives
3.4.1. Implementing the slot monad

Listing 7 shows an implementation of the basic operations for the slot
monad. The slot monad is defined as a varying-type state monad 'pre ->

'post * 'a (line 2) where 'pre and 'post are types of the initial and final
states, respectively, and 'a is the result type of a monadic action. return (line
3) is an operation that takes a value and returns a “pure” action without any
effects on the state. >>= (line 4) returns a composed action: >>= takes a state
pre, runs the action m, applies the result value a and the intermediate state
mid to the continuation f. run (line 9) takes the empty slots of type all_empty

(line 8) as the initial state to run the whole sessions.
The type of slot specifiers (line 11) is a pair of a getter and a setter for

accessing on a sequence of slots. Slot specifiers _0, _1, · · · (lines 12-14) are
defined as getters and setters for specific positions.

3.4.2. Implementing the communication primitives
Since session types allow channels to send and receive messages with

heterogeneous types, they cannot be implemented directly by OCaml types.
A solution is to use untyped channels as an underlying communication medium
as in FuSe [6], which we could adopt to achieve better run-time performance.
It is straightforward to extend the technique to slots.

Instead, we build session types based on the encoding of the linear types
by Kobayashi et al [22]. This implementation is inherently safe since it does
not use dangerous operations on untyped channels. A shortcoming is that
the encoding incurs some overhead to generate a channel each time when a

20

Listing 8 An implementation of polarised session types
1 (* Communication direction and polarity *)
2 type req = Req and resp = Resp
3 type cli = resp * req and serv = req * resp
4 (* The polarised session type and the message wrapper *)
5 type ('p, 'q) sess = 'p wrap Channel.t * 'q
6 and 'p wrap =
7 Msg : ('v * 'p wrap Channel.t) -> [`msg of 'r * 'v * 'p] wrap
8 | BranchL : 'p1 wrap Channel.t -> [`branch of 'r * [> `left of 'p1]] wrap
9 | BranchR : 'p2 wrap Channel.t -> [`branch of 'r * [> `right of 'p2]] wrap

10 | Chan : (('pp, 'qq) sess * 'p wrap Channel.t) -> [`deleg of 'r * ('pp, 'qq) sess * 'p] wrap
11 (* The service channel *)
12 type 'p channel = 'p wrap Channel.t Channel.t

Listing 9 Buffered channel module
1 module Channel : sig
2 type 'a t
3 val create : unit -> 'a t
4 val send : 'a t -> 'a -> unit
5 val receive : 'a t -> 'a
6 end

message is sent or received.
Listing 8 shows the definitions of service channels (line 12) and session

channels (line 5) where the signature of underlying Channel module is given
in Listing 9. Hereafter channels from the Channel module are called plain
channels. A session channel ('p, 'q) sess (line 5) is a pair of a plain channel
'p wrap Channel.t and a polarity 'q, where wrap (line 6) is the type of the
wrapper of the message payload (if any) and a plain channel for the subsequent
communications. The wrapper uses generalised algebraic data types (GADTs)
[23] to associate session messages with the three kinds of protocol types,
[`msg ..], [`branch ..] and [`deleg .]. The constructor Msg (lines 7) is
communicated by send and recv, and has the protocol type of [`msg ..] and
the payload is the OCaml’s value type ('v). BranchL and BranchR (lines 8-9)
is for branching (branch, select_left and select_right) and the protocol type
is [`branch of [`left .. | `right ..]]. The wrapper labels have no payload
since each constructor represents a branching label itself. Chan (line 10) is for
delegation (deleg_send and deleg_recv) and the protocol type is [`deleg ..].
It has a delegated session channel ('pp, 'qq) sess as a payload.

Listings 10 and 11 show the implementation of the communication primi-
tives. new_channel (line 1 in Listing 10) creates a new shared channel. connect

(lines 2-8) and accept (lines 9-11) create a new session channel and share

21

Listing 10 Implementation of communication in the slot monad (1)
1 let new_channel = Channel.create
2 let connect ch ~bindto:(_,set) = fun pre ->
3 (* Generates a session channel *)
4 let ch' = Channel.create () in
5 (* Establish a connection and share the session channel with the server *)
6 Channel.send ch ch';
7 (* Then put it in a slot and return *)
8 set pre (ch',(Resp,Req)), ()
9 let accept ch ~bindto:(_,set) = fun pre ->

10 let ch' = Channel.receive ch in
11 set pre (ch',(Req,Resp)), ()
12 let send (get,set) v = fun pre ->
13 (* Extract the session channel (q is polarity) *)
14 let ch,q = get pre
15 (* Generate a session channel for subsequent communication *)
16 and ch' = Channel.create () in
17 (* wrap the message and the above channel in Msg and transmit it *)
18 Channel.send ch (Msg(v,ch'));
19 (* Then put it in a slot and return *)
20 set pre (ch',q), ()
21 let recv (get,set) = fun pre ->
22 let ch,q = get pre in
23 let Msg(v,ch') = Channel.receive ch in
24 set pre (ch',q), v

the session over the service channel. send (lines 12-20), recv (lines 21-24),
select_left (lines 1-5 in Listing 11) and select_right (lines 6-10) take a session
channel from the slot using the lenses; and communicate using the wrapper,
storing the new session channel in the slot. branch (lines 11-15) matches on the
received message and branches to the appropriate continuation. deleg_send

(lines 16-21) transmits the session channel stored in the second slot and re-
moves it from the slot. deleg_recv (lines 22-26) receives the delegated channel
and stores it in the second slot. Finally, close just throws away the session
channel and fill in the slot with Empty.

3.5. Syntactic extension for functional programming
In this section, we integrate the syntax of session-ocaml with the functional

programming style in an idiomatic way. A slot assignment is of the form
𝑒𝑥𝑝𝑟 ~bindto:_𝑛 where 𝑛 is a slot number of a new session. We develop the
slot pattern10 #𝑠 which assigns a session to the slot indicated by a slot specifier
𝑠.

10Here we abuse and replace OCaml’s type pattern #typ for slot patterns.

22

Listing 11 Implementation of communication in the slot monad (2)
1 let select_left (get,set) = fun pre ->
2 let ch,q = get pre
3 and ch' = Channel.create () in
4 Channel.send ch (BranchL(ch'));
5 set pre (ch',q), ()
6 let select_right (get,set) = fun pre ->
7 let ch,q = get pre
8 and ch' = Channel.create () in
9 Channel.send ch (BranchR(ch'));

10 set pre (ch',q), ()
11 let branch ~left:((get1,set1),f1) ~right:((get2,set2),f2) = fun pre ->
12 let (ch1,q) = get1 pre in
13 match Channel.receive ch1 with
14 | BranchL(ch1') -> f1 () (set1 pre (ch1',q))
15 | BranchR(ch2') -> f2 () (set2 pre (ch2',q))
16 let deleg_send (get0,set0) ~release:(get1,set1) = fun pre ->
17 let ch0,q1 = get0 pre and ch0' = Channel.create () in
18 let mid = set0 pre (ch0',q1) in
19 let ch1,q2 = get1 mid in
20 Channel.send ch0 (Chan((ch1,q2),ch0'));
21 set1 mid Empty, ()
22 let deleg_recv (get0,set0) ~bindto:(get1,set1) = fun pre ->
23 let ch0,q0 = get0 pre in
24 let Chan((ch1',q1),ch0') = Channel.receive ch0 in
25 let mid = set0 pre (ch0',q0) in
26 set1 mid (ch1',q1), ()
27 let close (get,set) = fun pre ->
28 set pre Empty, ()

Based on these constructs, we propose a new idiomatic style, which is
reminiscent of Gay-Vasconcelos [24] where session types are reformulated
using linear types. With the new syntax, we can write let%lin #𝑠 = accept 𝑐ℎ

in which the intention of assigning a session to slot 𝑠 is much clearer than
merely writing accept 𝑐ℎ ~bindto:𝑠. In § 4.2, we illustrate how this extension
is integrated into the functional programming style.

3.5.1. Idioms in session-typed programming
The syntax extension for slot assignment. Through a few idioms in Gay-
Vasconcelos style, we describe the syntax extensions and sketch the new
communication primitives based on the new syntax. Firstly, we revise the slot-
assigning primitives like accept returning a new session, rather than assigning
it to a given slot, and utilise the let%lin syntax to assign a new session to a
slot. For example, to accept a session at shared channel 𝑐ℎ and assign it to
the slot specified by _𝑛, we previously wrote accept 𝑐ℎ ~bindto:_𝑛 >> 𝑒𝑥𝑝𝑟.
Instead, we now write it as follows:n

23

let%lin #_𝑛 = accept 𝑐ℎ in 𝑒𝑥𝑝𝑟

Equivalently,
accept 𝑐ℎ >>= (fun%lin #_𝑛 -> 𝑒𝑥𝑝𝑟)

The above code will be expanded to the following code:
accept 𝑐ℎ >>= _lbind (fun tmp -> _put _𝑛 tmp >> 𝑒𝑥𝑝𝑟)

where tmp is a fresh variable generated by the macro which is distinct from any
variables in that program. The inserted code is highlighted with red colour.
The operator >>= is a monadic bind operator as before, with the exception that
it accepts functions of type ((.. -> ..) lbind) in the right-hand side instead
of ordinary functions (.. -> ..). The function _lbind does nothing but wraps
the argument function type 𝑓 as (𝑓 lbind), as required by >>=. The inserted
_put _𝑛 tmp before 𝑒𝑥𝑝𝑟 assigns the new session bound to the variable tmp into
the 𝑛-th slot provided that the slot is empty beforehand. The type 𝑓 lbind

states that a function of that type puts its session parameter immediately into
a slot, thus ensures linearity. The operator >>= rejects normal (i.e. non-lbind)
OCaml functions because it would duplicate the endpoint returned by the
left-hand side.

Gay-Vasconcelos-style primitives. We further revise our library by following
the design principle of Gay-Vasconcelos style as follows: (1) Communication
primitives except for close returns a fresh session channel (or continuation)
for the subsequent interaction rather than re-using the existing channels, and
(2) output primitives (send, select and deleg_send) take a session channel as
their second arguments. Thus, for example, we write send 100 _𝑛 instead of
previous send _𝑛 100, and we write
let%lin #_𝑛 = send "Hello" _𝑛 in

let%lin #_𝑛 = send "World" _𝑛 in

𝑒𝑥𝑝𝑟

instead of send _𝑛 "Hello" >> send _𝑛 "World" >> 𝑒𝑥𝑝𝑟. This idiom is fre-
quently seen in ML programming. send consumes the argument _𝑛, and the
let-construct binds the continuation to another fresh variable _𝑛 which hides
the previous occurrence of _𝑛.

As in Gay-Vasconcelos style, we revise the primitive of reception to receive

which returns a pair of a received value and a continuation. We require
pattern 𝑝𝑎𝑡 for value wrapped by (W 𝑝𝑎𝑡) to prevent them from matched

24

against continuations. Thus, the value returned by receive is matched with a
pattern (W 𝑝𝑎𝑡), #_𝑛, as follows:
let%lin (W x), #_𝑛 = receive _𝑛
in 𝑒𝑥𝑝𝑟

Equivalently,
receive _𝑛 >>= (fun%lin ((W x), #_𝑛) -> 𝑒𝑥𝑝𝑟)

which binds the received value to the variable x. Both are expanded to
receive _𝑛 >>= _lbind (fun ((W x), tmp) -> _put _𝑛 tmp >> 𝑒𝑥𝑝𝑟)

as we have shown in the accept case above.

Generalised choice. The %lin extension also integrates generalised choice in a
consistent manner. We make the new branch function returning a continuation
wrapped by a selected label. Branching among labels lab1, . . . , lab𝑛 at session
_𝑛 is written as11:

match%lin branch _𝑛 with

`lab1(#_𝑛) -> 𝑒1
| ..

| `lab𝑛(#_𝑛) -> 𝑒𝑛

equivalently,
branch _𝑛 >>= (function%lin

`lab1(#_𝑛) -> 𝑒1
| ..

| `lab𝑛(#_𝑛) -> 𝑒𝑛)

Once branch is called, the 𝑛-th slot is made empty and it waits for the peer to
select a label. When lab𝑖 is selected, branch returns the continuation wrapped
with that label, and the slot pattern assigns the continuation to the slot 𝑛.
The code above is expanded to:

branch _𝑛 >>=
_lbind (function

`lab1(tmp) -> _put _𝑛 tmp >> 𝑒1
| ..

| `lab𝑛(tmp) -> _put _𝑛 tmp >> 𝑒𝑛)

11Note that the OCaml construct function 𝑝𝑎𝑡1 -> 𝑒1 | .. | 𝑝𝑎𝑡𝑛 -> 𝑒𝑛 is an

anonymous function which returns 𝑒𝑖 when the argument matches 𝑝𝑎𝑡𝑖.

25

Listing 12 The linearity monad
1 type ('pre, 'post, 'a) lmonad
2 type 'f lbind
3 val (>>=) : ('pre, 'mid, 'a) lmonad
4 -> ('a -> ('mid, 'post, 'b) lmonad) lbind
5 -> ('pre, 'post, 'b) lmonad

6 val return : 'a -> ('pre, 'pre, 'a) lmonad
7 type 'a data = W of 'a
8 val _lbind : 'f -> 'f lbind
9 val _put : (empty, 'a, 'pre, 'post) -> 'a

10 -> ('pre, 'post, unit) lmonad

Again, tmp is fresh. Note that the slot number in the patterns can be different
from 𝑛 and different from each other, provided that the slot of that position
is empty.

Selection. To select a label `L, we again adopt FuSe’s style (§ 3.3) which uses
the 𝜂-expansion of a variant tag (fun p -> `L(p)), as follows:
select (fun p -> `L(p)) _𝑛

It is the programmer’s responsibility to pass an appropriately 𝜂-expanded
function.

Furthermore, the current style generalises branching/selection to convey
payloads within labels. For example, if a web server receives a URL payload
with a _GET label, one can write

match%lin branch _𝑛 with

| `_GET(W url, #s) -> ..

The syntax extension requires W constructor pattern right before variable
pattern url. Similarly, on the selecting side, the payload can be sent along
with a label:

select (fun p -> `_GET(W "http://www.example.com", p)) _𝑛

where the payload must be wrapped with W constructor, as in the receiver
side.

3.5.2. Implementation by the linearity monad
We revise the type signature of the monad in Listing 12 and refer to this

as the linearity monad. The only difference from the slot monad (Listing 4
in § 3.2) is that >>= (line 4) requires that the right-hand function argument
must be %lin function of type lbind, as we have implied above. Thus, the
linearity monad is a restricted (or constrained [25]) monad. The constructor
of W has type data as defined in line 7. The signature of _lbind and _put are
given in lines 8-10.

26

Listing 13 Gay-Vasconcelos-based session primitives in session-ocaml

1 val accept : 'p channel -> ('pre, 'pre, ('p, serv) sess) monad
2 val connect : 'p channel -> ('pre, 'pre, ('p, cli) sess) monad
3 val close : (([`close], 'r1*'r2) sess, empty, 'pre, 'post) slot
4 -> ('pre, 'post, unit) monad
5 val send : 'v -> (([`msg of 'r1 * 'v * 'p], 'r1*'r2) sess, empty, 'pre, 'post) slot
6 -> ('pre, 'post, ('p, 'r1*'r2) sess) monad
7 val receive : (([`msg of 'r2 * 'v * 'p], 'r1*'r2) sess, empty, 'pre, 'post) slot
8 -> ('pre, 'post, 'v data * ('p, 'r1*'r2) sess) monad
9 val select : (('p,'r2*'r1) sess -> [>] as 'br)

10 -> (([`branch of 'r1 * 'br],'r1*'r2) sess, empty, 'pre, 'post) slot
11 -> ('pre, 'post, ('p,'r1*'r2) sess) monad
12 val branch : (([`branch of 'r2 * [>] as 'br], 'r1*'r2) sess, empty, 'pre, 'post) slot
13 -> ('pre, 'post, 'br) monad
14 val deleg_send : (('pp, 'qq) sess, empty, 'mid, 'post) slot
15 -> (([`deleg of 'r1 * ('pp, 'qq) sess * 'p], 'r1*'r2) sess, empty, 'pre, 'mid) slot
16 -> ('pre, 'post, ('p, 'r1*'r2) sess) monad
17 val deleg_recv :
18 (([`deleg of 'r2 * ('pp, 'qq) sess * 'p], 'r1*'r2) sess, empty, 'pre, 'post) slot
19 -> ('pre, 'post, ('pp,'qq) sess * ('p,'r1*'r2) sess) monad

Listing 13 shows type signatures of the Gay-Vasconcelos-style primitives.
The second type argument of each slot specifier type (slot) is empty, indicating
that the session channel is “consumed” according to the linearity typing
discipline.

3.5.3. A mathematical server example
Listing 14 shows a “mathematical server” example in FuSe [6]. We compare

the FuSe description in the left column with our session-ocaml description in
the right column. In FuSe (left), the server receives a tag labelled by one
of Quit, Plus and Eq, and each label conveys a continuation. Quit closes the
session. Plus and Eq receive a pair of integers and sends back the answer (of
type int for Plus, or bool for Eq). receive is the replacement for recv and it
returns a pair of a message and a continuation. send returns a continuation as
well. Each continuation is bound to a variable shadowing the session channel
variable used e.g. let n, s = receive s.

In the right column, the newly introduced extensions are highlighted with
red colour. Remember that we have a variable s as an alias to lens _0. The
argument to the server is changed to () because session channels are passed
implicitly via slots to the next recursive call. The slot specifier s cannot be
passed as an argument; otherwise polymorphism is lost and the slot specifier
cannot have a different type at each occurrence. The significant difference
lies in the syntactic extension %lin on the pattern matching (match) and the

27

Listing 14 The mathematical server in FuSe (left) and session-ocaml (right)
1 let rec server s =
2 match branch s with
3 | `Quit s -> close s
4 | `Plus s ->
5 let n, s = receive s in
6 let m, s = receive s in
7 let s = send (n+m) s in
8 server s
9 | `Eq s ->

10 let n, s = receive s in
11 let m, s = receive s in
12 let s = send (n=m) s in
13 server s

1 let rec server () =
2 match%lin branch s with
3 | `Quit #s -> close s
4 | `Plus #s ->
5 let%lin (W n), #s = receive s in
6 let%lin (W m), #s = receive s in
7 let%lin #s = send (n+m) s in
8 server ()
9 | `Eq #s ->

10 let%lin (W n), #s = receive s in
11 let%lin (W m), #s = receive s in
12 let%lin #s = send (n=m) s in
13 server ()

let-binding.
Thanks to polarised session types, we enjoy a natural, prefixing-style

session types while FuSe needs a translation tool between FuSe types and the
session type notation, as we will mention in Section 6.2.

We believe that this linear-pattern based syntax is idiomatic in the sense
that it is a functional formulation of session types. We write let%lin #s =

accept ch in 𝑒 and let%lin #s = connect ch in 𝑒 instead of accept ch ~bindto

:s >> 𝑒 and connect ch ~bindto:s >> 𝑒, respectively.

Notes on polarity. The resulting protocol type of Listing 14 is the following
(assuming that server’s polarity is serv):

[`branch of req *
[`Quit of ([`close], serv) sess

| `Plus of ([`msg of req * int * [`msg of req * int *
[`msg of resp * int * 's]]], serv) sess

| `Eq of ([`msg of req * int * [`msg of req * int *
[`msg of resp * bool * 's]]], serv) sess]] as 's

A drawback is that a polarity from the receiving endpoint is inserted in the
continuation type in the labels of the protocol type. The continuation types of
the labels above are polarised by serv. This is due to the fact that we cannot
say anything in the continuation of branch (type 'br in lines 12-13 of Listing 13)
since the pattern determines its whole structure, and the polarised session
type in the selecting side enforces the polarity in the session of the label. This
is regarded as a notational overhead since the polarity polymorphism (§ 3.1)
applies here.

28

3.6. Distributed implementation with ad hoc polymorphism
In the implementation of communications between processes over the

network stack such as TCP, the messages need to be treated uniformly as
packets in order to use existing communication APIs. Thus, communicating
messages are converted to a fixed type at sending and the type information
is recovered when received. This issue is solved via ad hoc polymorphism.
It offers a way to specify different behaviours depending on the type of
arguments, and widely utilised in functional programming, as in the type
classes in Haskell [26] and implicit parameters in Scala [27]. Recently, the
two implementations has been proposed for ad hoc polymorphism in OCaml
as follows: (1) Modular-implicits [28]; and (2) Ppx_implicits [29]. Although
Modular-implicits is planned to be finally integrated into mainstream OCaml,
but does not currently work in the latest OCaml equipped with Flambda
optimiser. On the other hand, Ppx_implicits works with Flambda optimiser.
In what follows, we use Ppx_implicits.

Ppx_implicits is a type-aware preprocessor of OCaml, which provides ad
hoc polymorphism based on the implicit parameters. It exploits optional
arguments in vanilla OCaml rather than extending the current syntax and
types. Implicit values are of type (𝜏, [%imp module]) Ppx_implicits.t where
𝜏 is the type of a function to be passed and module is the name of the module
where the implicit values are defined. Followings are the types for such
implicit values12:
type ('c,'v) sender = ('c -> 'v -> unit, [%imp Senders]) Ppx_implicits.t

type ('c,'v) receiver = ('c -> 'v, [%imp Receivers]) Ppx_implicits.t

('c, 'v) sender is for sending values and ('c, 'v) receiver are for receiving
values where 'c is the type of communication medium and 'v is the type of
the messages. The communication primitives are defined as follows:
val send : ?sender:('c, 'v) sender -> 'v

-> (([`msg of 'r1 * 'v * 'p], 'r1*'r2, 'c) dsess, empty, 'pre, 'post) slot

-> ('pre, 'post, ('p, 'r1*'r2, 'c) dsess) monad

val receive : ?receiver:('c ,'v) receiver

-> (([`msg of 'r2 * 'v * 'p], 'r1*'r2, 'c) dsess, empty, 'pre, 'post) slot

-> ('pre, 'post, ('v * ('p, 'r1*'r2, 'c) dsess) lin) monad

where the red part is the only difference from Listing 13. We extend the
lsess type to ('p, 'q, 'c) dsess to carry the medium type 'c. The named

12This description is based on version 0.3.0.

29

optional arguments ?sender in send and ?receiver in receive is filled by the
Ppx_implicits preprocessor.

For example, to implement the mathematical server shown in Listing 14
in the distributed processes, the arguments are inserted by looking up the
modules with the name Sender or Receiver.
module Sender = struct

let write_int (_,oc) (i:int) = output_value oc i

end

module Receiver = struct

let read_int (ic,_) : int = input_value ic

let read_bool (ic,_) : bool = input_value ic

end

4. Applications

We present two applications of session-ocaml: the Travel Agency usecase
and an SMTP client. The Travel Agency usecase (§ 4.1) involves session
delegation; and it is shown that static typing of session-ocaml can effectively
find errors in the protocol. The SMTP client (§ 4.2) captures a flow-sensitive
behaviour in a real-world network protocol and it uses message payloads in
the SMTP commands and response code based on the technique developed
in § 3.5. It is implemented on the distributed implementation in § 3.6. The
material in § 4.1 depends only on the materials from § 3.1 to § 3.3.

4.1. Travel agency
We demonstrate programming in session-ocaml using the Travel agency

scenario from [7], which consists of typical patterns found in business and
financial protocols. The scenario is played by three participants: customer,
agency and service (Listing 15). customer knows agency while customer and
service initially do not know each other, and agency mediates a deal between
customer and service by the session delegation.

(1) customer begins a session for ordering a ticket with agency and binds it
to the 0-th slot (line 2). Then customer requests and receives the price for
the desired journey after sending the quote label (lines 3-5). In our scenario,
customer requests "London to Paris" (line 4) and agency replies with a fixed
price 80.00 (lines 5 and 22).

Then customer might send the agree label to proceed the transaction with
the current price (lines 10-15). If customer does not agree with the price,

30

Listing 15 Travel agency
1 let customer cst_ch =
2 connect cst_ch ~bindto:_0 >>
3 [%select _0 `quote] >>
4 send _0 "London to Paris" >>
5 recv _0 >>= fun cost ->
6 if cost > 100. then
7 [%select _0 `reject] >>
8 close _0
9 else

10 [%select _0 `agree] >>
11 send _0 (Address("London")) >>
12 recv _0 >>= fun (d : date) ->
13 close _0 >>
14 (Printf.printf "cost: %f\n" cost;
15 return ())
16 let agency cst_ch svc_ch =
17 accept cst_ch ~bindto:_0 >>
18 let rec loop () =

19 match%branch _0 with
20 | `quote ->
21 recv _0 >>= fun dest ->
22 send _0 80.00 >>
23 loop ()
24 | `reject -> close _0
25 | `agree ->
26 connect svc_ch ~bindto:_1 >>
27 deleg_send _1 ~release:_0 >>
28 close _1
29 in loop ()
30 let service svc_ch =
31 accept svc_ch ~bindto:_1 >>
32 deleg_recv _1 ~bindto:_0 >>
33 recv _1 >>= fun (Address(addr)) ->
34 send _0 (now()) >>
35 close _0 >>
36 close _1

customer can cancel the transaction by sending the reject label (lines 7-8).
Alternatively, customer can send quote again and this will be repeated an
arbitrary number of times for different journeys. In our program, customer
agrees with agency at a price less than 100.0, or otherwise rejects it and
terminates the transaction.

Next, if customer agrees with the price, agency opens the session with
service and binds it to the 1st slot (line 26). Then it delegates the interactions
with customer remaining in the 0-th slot to service (line 27). customer sends
the billing address being unaware that the customer is now talking to service.
service replies with the dispatch date (now()) for the purchased tickets to
close the sessions (lines 33-36).

The type of protocol between customer and agency is inferred as:
[`branch of req *
[`quote of [`msg of req * string * [`msg of resp * float * 'a]]

|`reject of [`close]

|`agree of [`msg of req * addr * [`msg of resp * date * [`close]]]]] as 'a

Delegation from agency to service is inferred in the channel of service as:
[`deleg of req *
([`msg of 'r1 * addr * [`msg of 'r2 * date * [`close]]], 'r1*'r2) sess * [`close]]

The delegated type is polymorphic on the polarities and communication
directions (§ 3.1). Hence the service can handle both polarities. After agree

in the protocol above 'r1 becomes req and 'r2 becomes resp. Delegations

31

Listing 16 SMTP client session types
1 type 'p cont = ('p,cli,stream) dsess
2 type 'p contR = ('p,serv,stream) dsess
3 type smtp =
4 [`branch of resp * [`_200 of string list data *
5 [`branch of req * [`EHLO of string * [`branch of resp * [`_200 of string list data *
6 mailloop cont]] contR]] cont]]
7 and mailloop = [`branch of req *
8 [`MAIL of string * [`branch of resp * [`_200 of string list data * rcptloop cont]] contR
9 |`QUIT of [`close] contR]]

10 and rcptloop = [`branch of req *
11 [`RCPT of string * [`branch of resp *
12 [`_200 of string list data * rcptloop cont
13 |`_500 of string list data * [`branch of req * [`QUIT of [`close] contR]] cont]] contR
14 |`DATA of [`branch of resp *
15 [`_354 of string list data *
16 [`msg of req * mailbody * [`branch of resp * [`_200 of string list data *
17 mailloop cont]]] cont]] contR]]

with the polarised session types and slots effectively give a way to coordinate
higher order communications by the link mobility.

Static session type checking of delegations eases the protocol analysis even
with the indirect nature of delegation. Consider a case that service changes
its behaviour to receive the payment method in addition to the billing address
typed as addr * paymeth. Now the inferred protocol type at service would be:
[`deleg of req *
([`msg of 'r1 * (addr * paymeth) * [`msg of 'r2 * date * [`close]]], 'r1*'r2) sess *
[`close]]

If customer remains unchanged, there is a type error in the communication
between customer and service. session-ocaml detects this error by checking
the duality through slots. Without static typing, the run-time error would be
deferred until the beginning of actual client-service communication.

4.2. SMTP protocol
This section shows an SMTP client implementation using %lin extended

syntax as well as ad hoc polymorphism for the distributed implementation
introduced in § 3.5 and § 3.6. Listing 16 shows session types for a SMTP
client. Lines 1 and 2 declare the types cont and contR as a shorthand for
polarised session types with a specific polarity, which is required for the
continuation type of labelled branches (see § 3.5). The type stream specifies
TCP streams as a communication medium. In the SMTP, a client sends
a command and receives the reply code for the command from the server.

32

Listing 17 SMTP client
1 let sendmail from to_ mailbody ()
2 : (((smtp,cli,stream) dsess * 'p) lin, (empty * 'p) lin, unit lin) lmonad =
3 let%lin `_200(W _,#s) = branch s in (* 220 greeting *)
4 let%lin #s = select s (fun x -> `EHLO(W "me.example.com",x)) in (* send EHLO command *)
5 let%lin `_200(W _,#s) = branch s in (* 250 Ok *)
6 let%lin #s = select s (fun x -> `MAIL(W from,x)) in (* MAIL FROM: <sender> *)
7 let%lin `_200(W _,#s) = branch s in (* 250 Ok *)
8 let%lin #s = select s (fun x -> `RCPT(W to_,x)) in (* RCPT TO: <recipient> *)
9 begin match%lin branch s with (* branch according to reply *)

10 | `_200(W _,#s) -> (* if 250 Ok *)
11 let%lin #s = select s (fun x -> `DATA(x)) in (* DATA *)
12 let%lin `_354(W _, #s) = branch s in (* 354 end data with CRLF.CRLF*)
13 let%lin #s = send s (MailBody mailbody) in (* mail body *)
14 let%lin `_200(W _, #s) = branch s in (* 250 queued *)
15 let%lin #s = select s (fun x -> `QUIT(x)) in (* QUIT *)
16 return ()
17 | `_500 (W txt,#s) -> (* if 550 recipient rejected *)
18 (print_endline "Email sending failed. Detail:"; (* print error messages *)
19 List.iter print_endline txt; return ()) >>
20 let%lin #s = select s (fun x -> `QUIT(x)) in (* QUIT *)
21 return ()
22 end >> close s (* disconnect *)
23 let smtp_client host port from to_ mailbody () =
24 let%lin #s = tcp_connect ~host ~port in
25 sendmail from to_ mailbody ()

Since the reply codes are categorized by the hundreds digit, we write _𝑛00 for
the label to receive a reply code with the number of n-hundred. Lines 4-6
specify the initial negotiation in SMTP that comprises the first 220 greeting
reply matched by `_200 from the server (line 4), EHLO command from the
client (line 5) and continuation to the main part (line 6). Lines 7-9 are
branching between MAIL FROM (which specifies the sender) and QUIT commands.
Lines 10-17 specify arbitrary many RCPT TO (specifies a recipient) commands
and their replies. The reply can be either 250 Ok or an error like 550 Recipient

address rejected. Once an error occurs, the session terminates. 250 Ok is
followed by the DATA command, 354 reply, the body of e-mail, and recursion
until the next MAIL FROM or QUIT. Listing 17 shows the SMTP client. Lines 1-22
declare the function sendmail. Each line with branch matches a linear pattern
using either let%lin or match%lin constructs. Patterns for non-linear values
are surrounded by W, while linear values (for continuations) are prefixed by #.
After a TCP connection is established via tcp_connect on lines 23-25, sendmail
is invoked.

The introduction of the ad hoc polymorphism enables communications
to be implemented directly using APIs for TCP communication. This direct

33

Listing 18 SMTP client (de)serialisers
1 (* Instance declaration for SMTP command serialisers *)
2 module Senders = struct
3 let write out str = output_string out str; flush out
4 let _ehlo c (`EHLO (W v,_) : [`EHLO of _]) = write c "EHLO " ^ v ^ "\r\n"
5 let _mailbody c (MailBody s) = write c s ^ "\r\n.\r\n"
6 let _mail c : [`MAIL of _] -> unit = function
7 | `MAIL(W v,_) -> write c "MAIL FROM:" ^ v ^ "\r\n"
8 let _quit c : [`QUIT of _] -> unit = function
9 | `QUIT(_) -> write c "QUIT\r\n"

10 let _rcpt_or_data c = (function
11 | `RCPT(W v,_) -> write c "RCPT TO:" ^ v ^ "\r\n"
12 | `DATA(_) -> write c "DATA\r\n" : [`RCPT of _ | `DATA of _] -> unit)
13 let _mail_or_quit c = (function
14 | `MAIL(_) as m -> _mail c m
15 | `QUIT(_) as m -> _quit c m : [`MAIL of _ | `QUIT of _] -> unit)
16 end
17 (* Instance declaration for SMTP reply deserialisers *)
18 module Receivers = struct
19 let r200 = ('2', (fun tcp str -> `_200(W str, _mksess tcp)))
20 let r354 = ('3', (fun tcp str -> `_354(W str, _mksess tcp)))
21 let r500 = ('5', (fun tcp str -> `_500(W str, _mksess tcp)))
22 let _200 : stream -> [`_200 of _ * _] = fun c -> parse_reply [r200] c
23 let _200_or_500 : stream -> [`_200 of _ * _ | `_500 of _ * _] =
24 fun c -> parse_reply [r200; r500] c
25 let _354 : stream -> [`_354 of _ * _] = fun c -> parse_reply [r354] c
26 end

correspondence is important in the sense that reliable communications are
ensured by the session based programming. Listing 18 presents the serialiser
and the deserialiser for the SMTP commands and replies. Ad hoc polymor-
phism improves the implementation of the protocol in that there is no need
to write an adapter. Otherwise, we need an adapter to mediate between the
heterogeneous session-based stream and the homogeneous TCP streams, as
in [1].

One of the advantages of the OCaml implementation over the existing
Haskell implementation in [4] is that session-ocaml can utilise equi-recursive
types in OCaml to encode the session type recursion, keeping from adding
unwind annotations repeatedly to unfold iso-recursive types in Haskell.

5. Performance

In this section, we evaluate the run-time performance of session-ocaml.
We measure the performance of session-ocaml through benchmarks in two
different settings: Synchronous/inter-thread (§ 5.1) and asynchronous/inter-

34

Listing 19 The benchmark program in session-ocaml

0 let s = _0
1 let rec server ch () =
2 let rec aux () =
3 match%lin branch s with
4 | `True(#s) ->
5 let%lin W n, #s = receive s in
6 let%lin W m, #s = receive s in
7 let%lin #s = send (n + m) s in
8 aux ()
9 | `False(#s) ->

10 close s
11 in aux ()

12 let client ch cnt () =
13 let rec aux acc n =
14 if n = 0 then begin
15 let%lin #s =
16 select (fun x -> `False(x)) s in
17 close s >>
18 return acc
19 end else begin
20 let%lin #s =
21 select (fun x -> `True(x)) s in
22 let%lin #s = send acc s in
23 let%lin #s = send n s in
24 let%lin W res, #s = receive s in
25 aux res (n - 1)
26 end
27 in aux 0 cnt

process (§ 5.2). We present our benchmark results following the way shown
in [6].

The first benchmark is employed using the mathematical server program
in [6] and its transliteration to session-ocaml in Listing 19. The server first
offers branching (line 3) on the labels `True and `False. If the client selects
`False, the session finishes (lines 9-10). If the client selects `True (line 4-8),
the server receives two integers, sends back their sum, and recurs. The client
computes the sum of the first n numbers using the server. If n is 0, the client
selects `False and the session finishes (line 14-18). Otherwise (line 19-25), the
client selects `True, sends a pair of the accumulated sum and n, then receives
the new sum and recurs.

For delegation, we use the benchmark in Listing 20. This is a revised
version of Listing 19. Changes from Listing 19 are highlighted in red. After
communicating the first integer, the client creates a pair of new session
endpoints t and u (line 25) with create, then delegates u to the server
(line 26). It sends the second integer on t (line 27), receives the sum on
t (line 28) then closes t and recurs (lines 29-30). The server receives the
delegated session and assigns it to t (line 6), then receives the next integer
and sends back the sum on t (lines 7-8), and closes t then recurs (lines 9-10).

We measure throughputs of benchmark programs by the numbers of com-
municated messages per second. In Listing 19, each iteration communicates
four messages and the total number of communicated messages is 4𝑛 + 1
for calculating the first 𝑛 sum. We present the throughputs of 1,000 runs

35

Listing 20 The benchmark program with delegation
0 let s = _0 and t = _1 and u = _2
1 let rec server ch () =
2 let rec aux () =
3 match%lin branch s with
4 | `True(#s) ->
5 let%lin W n, #s = receive s in
6 let%lin #t, #s = deleg_recv s in
7 let%lin W m, #t = receive t in
8 let%lin #t = send (n + m) t in
9 close t >>

10 aux ()
11 | `False(#s) ->
12 close s
13 in aux ()

14 let client ch cnt () =
15 let rec aux acc n =
16 if n = 0 then begin
17 let%lin #s =
18 select (fun x -> `False(x)) s in
19 close s >>
20 return acc
21 end else begin
22 let%lin #s =
23 select (fun x -> `True(x)) s in
24 let%lin #s = send acc s in
25 let%lin #t, #u = create () in
26 let%lin #s = deleg_send u s in
27 let%lin #t = send n t in
28 let%lin W res, #t = receive t in
29 close t >>
30 aux res (n - 1)
31 end
32 in aux 0 cnt

where each run computes the sum of 8,000 numbers. We used the native
ocamlopt compiler of OCaml 4.05.0 with the new Flambda optimiser13. For
comparison with FuSe, we modified the original FuSe 0.7 to support asyn-
chronous and inter-process communications. The whole program is available
at https://github.com/keigoi/FuSe-clone/. The benchmark programs were
executed on MacBook Pro with 2.7 GHz quad core CPU and 16 GB of memory
(model MacBookPro10,1).

5.1. Synchronous and inter-thread communication
Figure 2 shows the results of the benchmark using the standard boxplot

diagram to illustrate the variance in execution time. The unit of throughput
is the numbers of messages per second. The throughputs of 500 runs are in
the boxes and the horizontal line in each box shows the median. The length
of each whisker is 1.5IQR and circles on the whiskers are outliers.

The first column of Figure 2 is the throughputs of FuSe with no run-time
checking. In this case, it should exhibit the ideal performance that could be
achieved if OCaml would be equipped with linear types. The second column
of Figure 2 is the throughputs of FuSe with the run-time linearity checking.
The third column of Figure 2 is the monadic version of FuSe which checks

13 It generates faster code than the previous optimiser in general.

36

https://github.com/keigoi/FuSe-clone/

types statically but creates a numerous number of closures. As reported in
[6], these three FuSe versions display little difference.

The fourth column of Figure 2 is the throughputs of session-ocaml. Its
performance is seen on par with the three FuSe versions. Although we
first suspected that function calls on lenses in session-ocaml slow down the
throughput, the benchmark result shows that the lens manipulations have
little impact on performance.

For delegation benchmark, the fifth column of Figure 2 is FuSe and the
sixth column is session-ocaml. Session-ocaml performs slightly less, and the
throughput difference is less than 1 percent. We argue that this performance
degradation does not have any significant effect; although we expect more
degradation for a very large number of slots due to the nested structure of
slots, Listing 20 uses three slots and we suspect that it is unrealistic to have
so many slots in a thread, as we discussed in § 3.3. Note that with delegation
FuSe possibly raises a run-time error when the linearity is violated, while
session-ocaml statically points out the error before execution.

Figure 2: Performance benchmark between FuSe and session-ocaml

5.2. Asynchronous and inter-process communication
The inter-process communication is instrumented using Unix.pipe. We in-

voke client process and server process is forked using Unix.fork with two inter

37

process pipes for both directions, where the communications are asynchronous.
OCaml messages are (de)serialised in a standard way (Pervasives.output_value
and input_value).

Figure 3 is the results of benchmarks for the three FuSe versions in § 5.1 and
session-ocaml. The overall throughputs in all programs are increased by ca.
60 percent than the benchmarks in the previous section, since communications
are asynchronous. Difference between the safe FuSe versions and session-

ocaml is less than 1 percent; however, the unchecked version is slightly faster
(ca. 4 percent). From this result, one can see that monadic operations still
incur a cost, although static checking of linearity removes runtime costs for
dynamic checking. This is the real cost paid for linearity checking in OCaml
statically, which is incurred by monads. By our benchmark results, we remark
that the dynamic linearity check affects the performance without using the
monad techniques.

Figure 3: Performance benchmark between FuSe and session-ocaml (IPC with pipes)

The reason for taking an additional inter-process benchmark is slightly
OCaml-specific: Two OCaml threads in a process cannot run simultaneously
in parallel because the garbage collector of OCaml does not run concurrently
(albeit it performs really well in single-threaded setting [30]). This fact would
improve the entire throughput of the system in an asynchronous setting. In

38

fact, the implementation using inter-process communication is a way to take
the advantage of performance by parallelism with the sequential garbage
collectors in OCaml.

In summary, session-ocaml enjoys performance equivalent to the dynamic
linearity checking, with the benefits of static checking on session types. It
does not make any significant difference in both synchronous/asynchronous
and inter-thread/inter-process setting. A comparison with an unsafe imple-
mentation highlighted the cost of monads, which can only be eliminated by
dropping linearity checking.

6. Related work

6.1. Implementations in Haskell
The first implementation of session types by Neubauer and Thiemann [31]

deals with the first-order single-channel session types with recursions. Using
parameterised monads, Pucella and Tov [9] provide multiple sessions, but
checking session types is not automatic where manual reordering of symbol
tables is required. Imai et al. [4] extend [9] with delegation, automatically
handling multiple sessions in a user-friendly manner by using type-level
functions. Orchard and Yoshida [8] use an embedding of the effect systems in
Haskell via graded monads by encoding the session-typed 𝜋-calculus into PCF
with an effect system. Lindley and Morris [5] provide an embedding of the GV
session-typed functional calculus [21] into Haskell, built on a linear 𝜆-calculus
embedding by Polakow [32]. In [5, 8, 9, 4], duality inference of session types is
represented by the multi-parameter type classes with functional dependencies
[33]; For instance, class Dual t t’| t -> t’, t’ -> t declares that t can
be inferred from its dual t’ and vice versa. Since all of the above works depend
on type-level features in Haskell, the techniques are not directly applicable to
OCaml. See [34] for a detailed survey.

6.2. Implementations in OCaml
Padovani [6] implements multiple sessions with dynamic linearity checking

and its single-session version with static checking in OCaml. FuSe is capable
of checking a single session statically, but for multiple sessions with delegation,
dynamic checking is necessary. Our session-ocaml achieves static typing for
multiple sessions with delegation by introducing session manipulations using
lenses. session-ocaml provides an idiomatic way to declare branching with
arbitrary labels. The FuSe implementation has been recently extended to

39

context-free session types [35] by adding an endpoint attribute to session
types [36]. Furthermore, Melgratti and Padovani [37] developed a monitoring
technique for higher-order sessions on top of FuSe.

The following example shows that session-ocaml can statically check a
linearity violation, while FuSe is only able to dynamically detect the violation
at the runtime.
let rec loop () = let s = send "*" s in

match branch s with `stop s -> close s |`cont _ -> loop ()

loop sends "*" repeatedly until it receives label stop. Although the endpoint
s should be used linearly, the condition is violated at the beginning of the
second iteration since the endpoint is disposed of by using the wildcard _

at the end of the loop. In FuSe 0.7, loop is well-typed but terminates in
error InvalidEndpoint at runtime. In session-ocaml, this results in an error
at static type checking as the slot s passed to the recursive call of loop is
empty, while loop expects s to have a session endpoint.

On duality inference, a simple approach in OCaml is introduced by Pucella
and Tov [9]. The idea in [9] is to keep a pair of the current session and its
dual at every step; therefore the notational size of a session type is twice
as big as that in [2]. FuSe [6] reduces its size by almost half using the
encoding technique in [38] by modelling binary session types as a chain of
linear channel types as follows. A session type in FuSe (’a,’b) t prescribes
input (’a) and output (’b) capabilities. A transmission and a reception of a
value ’v followed by a session (’a,’b) t are represented as (_0,’v*(’a,’b)
t) t and (’v*(’a,’b) t,_0) t respectively, where _0 means “no message”;
then the dual of a session type is obtained by swapping the top pair of the
type. For example, in a simplified variant of the logic operation server in
Listing 2, the protocol type of log_ch becomes:
[`msg of req * binop * [`msg of req * (bool*bool) * [`msg of resp * bool * [`close]]]]

In FuSe, at server side, the channel should be inferred as:
(binop * ((bool*bool) * (_0, bool * (_0,_0) t) t, _0) t, _0) t

Due to a sequence of flipping capability pairs, more effort is needed to
understand the protocol. The difficulty arises when multiple nestings are
present, which is inevitable even without recursion and branch. To recover
the readability, FuSe supplies the translation tool called Rosetta between
FuSe types and session type notation with the prefixing style. Our polarised
session types are directly represented in a prefixing manner with the slight
restriction shown in § 3.3.

40

7. Conclusion

We have shown session-ocaml, a library for session-typed communications
which supports multiple simultaneous sessions with static type checking
including delegation in OCaml. session-ocaml generalises the authors’ previous
work in Haskell [4] by replacing type-level functions in Haskell with lenses in
OCaml. Our contributions in this paper are summarised as follows. (1) Based
on lenses and the slot monad, we achieved fully static checking of session types
by the OCaml type system without adding any extension to the language.
To the authors’ knowledge, this is the first implementation which combines
lenses and a parameterised monad. In the existing implementations [9, 6],
static type checking has been limited to single sessions; (2) We proposed two
macros for arbitrarily labelled branches, %branch and %lin. The %branch macro
“patches up” only the branching part where linear variables are inevitably
exposed due to limitation on polymorphic variants, keeping the original
Honda-Vasconcelos-Kubo style [2] session programming which re-uses the
same session endpoints in a series of communications, while %lin macro offers
linear-pattern matching, aiming at a more idiomatic formulation based on
Gay-Vasconcelos style [24]; (3) We proposed the polarised session types for
the session type inference solely based on the built-in type unification of
OCaml. This encoding efficiently ensures communication safety by checking
the equivalence of protocol types inferred at both ends with different polarities;
and (4) We presented a performance comparison between FuSe and session-

ocaml, showing that our lens-based formulation for static checking does not
incur significant overhead in practice. Furthermore, we found that certain
overhead for linearity checking emerges in asynchronous communication,
which is not stated in [6].

Generalisability. The session-ocaml library without macros depends only on
the parametric polymorphism and is easily portable to functional programming
languages such as F#, Standard ML, and Haskell. Type inference plays a key
role in using lenses without the burden of writing any type annotations. These
languages have a nearly complete type inference system, hence it is relatively
easy to apply the method presented in this paper to such languages. For
recursive type definitions, since equi-recursive types appear only in OCaml,
we cannot directly encode recursive sessions of the form 𝜇𝛼.𝑝 and the type of
infinitely many slots all_empty = empty * all_empty in the other programming
languages. Following an iso-recursive encoding of the session type recursion

41

in a language-independent manner, it is possible to encode the recursive types
as required [9]. As for slots, a fixed number suffices for most cases. Other
programming languages such as Scala, Java and C# have a limited type
inference system, and our technique is not portable to these languages. Also,
it is not apparent how the macros in session-ocaml can be implemented in
the other programming languages. Notably, generalised-branching/selection
and linearity extensions are only possible with macros. The binary-labelled
choices are portable to functional programming languages and can be used in
place of the generalised choices.

Notational overhead. We discuss the notational overhead in session-ocaml,
in terms of the programming style in OCaml. (1) Monadic programming.
There is a notational overhead in using the bind operator 𝑒1 >>= fun 𝑥 -> 𝑒2

in a sequential composition, instead of standard let 𝑥 = 𝑒1 in 𝑒2 construct
of OCaml. As there are several well-known OCaml libraries using monads
such as Lwt [39] and Async [40], this style is gaining popularity among many
OCaml programmers. Then, we believe this is not a significant issue. (2)
Lenses and slots. Slot manipulation using lenses enables programmers to
flexibly specify slots storing sessions. Despite its conceptual indirectness, the
notational overhead on using lenses is minor. On the other hand, [9] requires
manual reordering of slots by swap and dig. (3) Branching. The construct for
generalised branching match%branch provides a handy way to write branching
sessions, sacrificing portability to the other programming languages. (4)
Linearity. In § 3.5 we developed a macro fun%lin which enables programming
with linear types, writing #_𝑛 for every linear pattern and W for other variable
patterns .

Our approach using slots to deal with simultaneous multiple sessions
resembles parameterised session types [41, 42], and it is smoothly extendable
to the multiparty session type framework [43]. For future work, we plan
to investigate code generations from Scribble [44] (a protocol description
language for the multiparty session types) along the line of [13, 12] integrating
session-ocaml with parameterised features [41, 42].

Acknowledgements
We thank the anonymous reviewers for the thorough review and con-

structive comments. We thank Raymond Hu for his comments on the early
version of the paper. We thank Jun Furuse for his advice on using his
ppx_implicits. The third author thanks the JSPS bilateral research with

42

NFSC for fruitful discussion. This work is partially supported by EPSRC
projects EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1
and EP/N028201/1; by EU FP7 612985 (UPSCALE), and COST Action
IC1405 (RC); by JSPS International Fellowships (S15051), and KAKENHI
JP17K12662, JP25280023 and JP17H01722 from JSPS, Japan.

References

[1] K. Imai, N. Yoshida, S. Yuen, Session-ocaml: A session-based library with
polarities and lenses, in: Coordination Models and Languages - 19th IFIP
WG 6.1 International Conference, COORDINATION 2017, Held as Part
of the 12th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017,
Proceedings, 2017, pp. 99–118. doi:10.1007/978-3-319-59746-1_6.

[2] K. Honda, V. T. Vasconcelos, M. Kubo, Language Primitives and Type
Discipline for Structured Communication-Based Programming, in: Pro-
gramming Languages and Systems - ESOP’98, 7th European Symposium
on Programming, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 -
April 4, 1998, Proceedings, 1998, pp. 122–138. doi:10.1007/BFb0053567.

[3] R. Milner, Communicating and Mobile Systems: the 𝜋-Calculus, Cam-
bridge University Press, 1999.

[4] K. Imai, S. Yuen, K. Agusa, Session Type Inference in Haskell, in:
Proceedings Third Workshop on Programming Language Approaches
to Concurrency and communication-cEntric Software, PLACES 2010,
Paphos, Cyprus, 21st March 2010., 2010, pp. 74–91. doi:10.4204/EPTCS.
69.6.

[5] S. Lindley, J. G. Morris, Embedding Session Types in Haskell, in: Haskell
2016: Proceedings of the 9th International Symposium on Haskell, ACM,
2016, pp. 133–145. doi:10.1145/2976002.2976018.

[6] L. Padovani, A simple library implementation of binary sessions, J. Funct.
Program. 27 (2017) e4. doi:10.1017/S0956796816000289.

[7] R. Hu, N. Yoshida, K. Honda, Session-Based Distributed Programming in
Java, in: ECOOP 2008 - Object-Oriented Programming, 22nd European

43

http://dx.doi.org/10.1007/978-3-319-59746-1_6
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.4204/EPTCS.69.6
http://dx.doi.org/10.4204/EPTCS.69.6
http://dx.doi.org/10.1145/2976002.2976018
http://dx.doi.org/10.1017/S0956796816000289

Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, 2008, pp.
516–541. doi:10.1007/978-3-540-70592-5_22.

[8] D. Orchard, N. Yoshida, Effects as sessions, sessions as effects, in: POPL
2016: 43th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ACM, 2016, pp. 568–581. doi:10.1145/

2837614.2837634.

[9] R. Pucella, J. A. Tov, Haskell Session Types with (Almost) No Class,
in: Haskell ’08: Proceedings of the first ACM SIGPLAN symposium on
Haskell, ACM, 2008, pp. 25–36. doi:10.1145/1411286.1411290.

[10] T. B. L. Jespersen, P. Munksgaard, K. F. Larsen, Session Types for Rust,
in: WGP 2015: Proceedings of the 11th ACM SIGPLAN Workshop on
Generic Programming, ACM, 2015, pp. 13–22. doi:10.1145/2808098.

2808100.

[11] A. Scalas, N. Yoshida, Lightweight Session Programming in Scala, in:
ECOOP 2016: 30th European Conference on Object-Oriented Pro-
gramming, Vol. 56 of LIPIcs, Dagstuhl, 2016, pp. 21:1–21:28. doi:

10.4230/LIPIcs.ECOOP.2016.21.

[12] R. Hu, N. Yoshida, Hybrid Session Verification Through Endpoint API
Generation, in: Fundamental Approaches to Software Engineering - 19th
International Conference, FASE 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, 2016, pp.
401–418. doi:10.1007/978-3-662-49665-7_24.

[13] R. Hu, N. Yoshida, Explicit connection actions in multiparty session
types, in: Fundamental Approaches to Software Engineering - 20th
International Conference, FASE 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, 2017, pp. 116–133.
doi:10.1007/978-3-662-54494-5_7.

[14] J. Garrigue, Safeio (a mailing-list post), available at https://github.com/
garrigue/safeio (2006).

44

http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1145/2837614.2837634
http://dx.doi.org/10.1145/2837614.2837634
http://dx.doi.org/10.1145/1411286.1411290
http://dx.doi.org/10.1145/2808098.2808100
http://dx.doi.org/10.1145/2808098.2808100
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-54494-5_7
https://github.com/garrigue/safeio
https://github.com/garrigue/safeio

[15] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt,
Combinators for Bi-directional Tree Transformations: A Linguistic Ap-
proach to the View Update Problem, in: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’05, ACM, New York, NY, USA, 2005, pp. 233–246.
doi:10.1145/1040305.1040325.
URL http://doi.acm.org/10.1145/1040305.1040325

[16] M. Pickering, J. Gibbons, N. Wu, Profunctor Optics: Modular Data
Accessors, The Art, Science, and Engineering of Programming 1 (2).
doi:10.22152/programming-journal.org/2017/1/7.

[17] S. Gay, M. Hole, Subtyping for Session Types in the Pi Calculus, Acta
Informatica 42 (2) (2005) 191–225. doi:10.1007/s00236-005-0177-z.

[18] N. Yoshida, V. T. Vasconcelos, Language Primitives and Type Disci-
pline for Structured Communication-Based Programming Revisited: Two
Systems for Higher-Order Session Communication, Electr. Notes Theor.
Comput. Sci. 171 (4) (2007) 73–93. doi:10.1016/j.entcs.2007.02.056.

[19] R. Atkey, Parameterised notions of computation, J. Funct. Program.
19 (3-4) (2009) 335–376. doi:10.1017/S095679680900728X.

[20] B. C. Pierce, Recursive Types, in: Types and Programming Languages,
MIT Press, 2002, Ch. 20, pp. 267–280.

[21] P. Wadler, Propositions as sessions, in: ICFP ’12: Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming,
ACM, 2012, pp. 273–286. doi:10.1145/2364527.2364568.

[22] N. Kobayashi, Type Systems for Concurrent Programs, in: 10th Anniver-
sary Colloquium of UNU/IIST, Vol. 2757 of Lecture Notes in Computer
Science, 2002, pp. 439–453. doi:10.1007/978-3-540-40007-3_26.

[23] J. Garrigue, J. L. Normand, Adding GADTs to OCaml: the direct
approach, in ACM SIGPLAN Workshop on ML 2011. Slides available
at https://www.math.nagoya-u.ac.jp/~garrigue/papers/ml2011-show.pdf
(Septempber 2011).

45

http://doi.acm.org/10.1145/1040305.1040325
http://doi.acm.org/10.1145/1040305.1040325
http://dx.doi.org/10.1145/1040305.1040325
http://doi.acm.org/10.1145/1040305.1040325
http://dx.doi.org/10.22152/programming-journal.org/2017/1/7
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1016/j.entcs.2007.02.056
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1145/2364527.2364568
http://dx.doi.org/10.1007/978-3-540-40007-3_26
https://www.math.nagoya-u.ac.jp/~garrigue/papers/ml2011-show.pdf

[24] S. j. Gay, V. T. Vasconcelos, Linear Type Theory for Asynchronous
Session Types, Journal of Functional Programming 20 (1) (2010) 19–50.
doi:10.1017/S0956796809990268.

[25] N. Sculthorpe, J. Bracker, G. Giorgidze, A. Gill, The Constrained-Monad
Problem, in: ACM SIGPLAN International Conference on Functional
Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013,
2013, pp. 287–298. doi:10.1145/2500365.2500602.

[26] M. J. Simon Peyton Jones, E. Meijer, Type classes: an exploration of
the design space, in: Proceedings of the Second Haskell Workshop, 1997.

[27] M. Odersky, Poor Man’s Type Classes, in: IFIP WG2.8 working group
meeting, 2006, available at http://scala-lang.org/old/sites/default/files/
odersky/wg2.8-boston06.pdf.

[28] L. White, F. Bour, J. Yallop, Modular implicits, in: ML’14: ACM
SIGPLAN ML Family Workshop 2014, Vol. 198 of Electronic Proceedings
in Theoretical Computer Science, 2015, pp. 22–63. doi:10.4204/EPTCS.
198.2.

[29] J. Furuse, Typeful PPX and Value Implicits, in: OCaml 2015: The
OCaml Users and Developers Workshop, 2015, available at https://
bitbucket.org/camlspotter/ppx_implicits.

[30] Y. Minsky, OCaml for the Masses, Commun. ACM 54 (11) (2011) 53–58.
doi:10.1145/2018396.2018413.

[31] M. Neubauer, P. Thiemann, An Implementation of Session Types, in:
Practical Aspects of Declarative Languages, 6th International Sympo-
sium, PADL 2004, Dallas, TX, USA, June 18-19, 2004, Proceedings,
2004, pp. 56–70. doi:10.1007/978-3-540-24836-1_5.

[32] J. Polakow, Embedding a Full Linear Lambda Calculus in Haskell, in:
Haskell ’15: Proceedings of the 2015 ACM SIGPLAN Symposium on
Haskell, ACM, 2015, pp. 177–188. doi:10.1145/2804302.2804309.

[33] M. P. Jones, Type Classes with Functional Dependencies, in: Program-
ming Languages and Systems, 9th European Symposium on Program-
ming, ESOP 2000, Held as Part of the European Joint Conferences

46

http://dx.doi.org/10.1017/S0956796809990268
http://dx.doi.org/10.1145/2500365.2500602
http://scala-lang.org/old/sites/default/files/odersky/wg2.8-boston06.pdf
http://scala-lang.org/old/sites/default/files/odersky/wg2.8-boston06.pdf
http://dx.doi.org/10.4204/EPTCS.198.2
http://dx.doi.org/10.4204/EPTCS.198.2
https://bitbucket.org/camlspotter/ppx_implicits
https://bitbucket.org/camlspotter/ppx_implicits
http://dx.doi.org/10.1145/2018396.2018413
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1145/2804302.2804309

on the Theory and Practice of Software, ETAPS 2000, Berlin, Ger-
many, March 25 - April 2, 2000, Proceedings, 2000, pp. 230–244.
doi:10.1007/3-540-46425-5_15.

[34] D. Orchard, N. Yoshida, Session types with linearity in Haskell, in: S. J.
Gay, A. Ravara (Eds.), Behavioural Types: from Theory to Tools, River
Publishers, 2017, pp. 219–241. doi:10.13052/rp-9788793519817.

[35] P. Thiemann, V. T. Vasconcelos, Context-Free Session Types, in: ICFP
’16: Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, 2016, pp. 462–475. doi:10.1145/2951913.
2951926.

[36] L. Padovani, Context-Free Session Type Inference, in: Programming
Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, 2017, pp. 804–830. doi:10.1007/978-3-662-54434-
1_30.

[37] H. C. Melgratti, L. Padovani, Chaperone contracts for higher-order
sessions, PACMPL 1 (ICFP) (2017) 35:1–35:29. doi:10.1145/3110279.

[38] O. Dardha, E. Giachino, D. Sangiorgi, Session Types Revisited, in: PPDP
’12: Proceedings of the 14th Symposium on Principles and Practice of
Declarative Programming, ACM, New York, NY, USA, 2012, pp. 139–150.
doi:10.1145/2370776.2370794.

[39] J. Vouillon, Lwt: a cooperative thread library, in: Proceedings of the
ACM Workshop on ML, 2008, Victoria, BC, Canada, September 21,
2008, 2008, pp. 3–12. doi:10.1145/1411304.1411307.

[40] Jane Street Developers, Core library documentation, available at https:
//ocaml.janestreet.com/ocaml-core/latest/doc/core/ (2016).

[41] M. Charalambides, P. Dinges, G. A. Agha, Parameterized, Concurrent
Session Types for Asynchronous Multi-Actor Interactions, Science of
Computer Programming 115-116 (2016) 100–126. doi:10.1016/j.scico.
2015.10.006.

47

http://dx.doi.org/10.1007/3-540-46425-5_15
http://dx.doi.org/10.13052/rp-9788793519817
http://dx.doi.org/10.1145/2951913.2951926
http://dx.doi.org/10.1145/2951913.2951926
http://dx.doi.org/10.1007/978-3-662-54434-1_30
http://dx.doi.org/10.1007/978-3-662-54434-1_30
http://dx.doi.org/10.1145/3110279
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1145/1411304.1411307
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
http://dx.doi.org/10.1016/j.scico.2015.10.006
http://dx.doi.org/10.1016/j.scico.2015.10.006

[42] N. Ng, J. G. de Figueiredo Coutinho, N. Yoshida, Protocols by Default
- Safe MPI Code Generation Based on Session Types, in: Compiler
Construction - 24th International Conference, CC 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, 2015, pp.
212–232. doi:10.1007/978-3-662-46663-6_11.

[43] K. Honda, N. Yoshida, M. Carbone, Multiparty Asynchronous Session
Types, J. ACM 63 (1) (2016) 9:1–9:67. doi:10.1145/2827695.

[44] Scribble Project homepage, www.scribble.org.

Appendix A. Further application: a database server

As a more practical application with the delegation, we show an imple-
mentation of a database server with a worker thread pool of queries for better
responses. The main thread authenticates client connections to server and
delegates a session established to one of the worker threads.

The database server in Listing 21 behaves as follows.

1. A client starts a session with the server on db_ch and sends the authen-
tication information (cred: credential) (line 8).

2. The main thread accepts or rejects the client according to the authenti-
cation result. If it rejects, the session ends (lines 10-11).

3. The main thread connects to a worker thread waiting for the connection
on worker_ch and delegates the session to the thread (line 15).

4. The worker thread either terminates the session (line 25) or receives
a query (query: query) (line 27). The worker thread returns the query
result (res: result) and repeats the loop (lines 29-30).

5. A client first communicates with the main thread, and once the con-
nection is authorised, a client starts communicating with the delegated
worker thread.

The protocol type of the database channel (db_ch) is shown in Listing 22.
Lines 2-5 are for receiving credential and branching between the label left for

48

http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1145/2827695
www.scribble.org

Listing 21 The implementation of a database server
1 let db_ch = new_channel ()
2 and worker_ch = new_channel ()
3
4 let rec main () =
5 accept db_ch ~bindto:_0 >>
6 recv _0 >>= fun cred ->
7 if bad_credential cred then
8 select_left _0 >>
9 close _0

10 else
11 select_right _0 >>
12 connect worker_ch ~bindto:_1 >>
13 deleg_send _1 ~release:_0 >>
14 close _1 >>=
15 main
16
17 let rec worker () =
18 accept worker_ch ~bindto:_0 >>
19 deleg_recv _0 ~bindto:_1 >>
20 close _0 >>
21 let rec loop () =
22 branch
23 ~left:(_1, fun () -> close _1)
24 ~right:(_1, fun () ->
25 recv _1 >>= fun query ->
26 let res = do_query query in
27 send _1 res >>=
28 loop)
29 in loop () >>= worker

rejection and the label right for acceptance. Lines 7-10 correspond to loop in
the Listing 21 (lines 23-31). The left branch finishes the protocol, while the
right branch is for communicating the repetition of a query and its result.

Delegation appears in the type of worker_ch as follows.
val worker_ch :

[`deleg of req * (dbprotocol, serv) sess * [`close]]

where the delegated session has the polarity serv, because the delegated
session is originally established by accept.

49

Listing 22 The protocol of a database server
1 type dbprotocol =
2 [`msg of req * credential *
3 [`branch of resp *
4 [`left of [`close],
5 | `right of query_loop]]]
6 and query_loop =
7 [`branch of req *
8 [`left of [`close]
9 | `right of [`msg of req * query *

10 [`msg of resp * result * query_loop]]]]

50

	Introduction
	Programming with !session-ocaml!
	Session types and polarised session types
	Send and receive primitives
	Branching and recursion
	changedHandling multiple sessions
	moreTracking sessions with polarised session types

	Design and implementation of !session-ocaml!
	Polarity polymorphism
	The slot monad carrying multiple sessions
	Lenses focusing on linear channels
	Implementing the slot monad and the communication primitives
	Implementing the slot monad
	Implementing the communication primitives

	Syntactic extension for functional programming
	Idioms in session-typed programming
	Implementation by the linearity monad
	A mathematical server example

	Distributed implementation with ad hoc polymorphism

	Applications
	Travel agency
	SMTP protocol

	Performance
	Synchronous and inter-thread communication
	Asynchronous and inter-process communication

	Related work
	Implementations in Haskell
	Implementations in OCaml

	Conclusion
	Further application: a database server

