
Session-ocaml: 
a Session-based Library with 

Polarities and Lenses

Shoji Yuen  
Nagoya University, JP

Nobuko Yoshida
Imperial College London, UK

Keigo Imai  
Gifu University, JP

COORDINATION 2017

Neuchâtel, Switzerland

20th June, 2017



Introduction

• Implementation of distributed software is notoriously difficult 

• OCaml: a concise language with fast runtime 

• Various concurrent/distributed applications 
− High freq. trading in Jane Street Capital 

− Ocsigen/Eliom [web server/framework], BuckleScript [translates to 
JavaScript] 

− MirageOS, MLDonkey [P2P] 

• Aim: to give a static assuarance for communicating software

2



• Session types guarantee communication safety and session fidelity in OCaml 

• Two novel features:

Session-ocaml: A Session Type implementation in OCaml

#1. Session-Type (Duality) Inference  
→  Equality-based duality checking by polarised session types

#2. Linearity in  (non-linear) OCaml types  
→  Statically-typed delegation with slot-oriented programming

3



val main:  
  req[string];resp[τ];close

let main () =  
 send "Hello" >>  
 let%s x = recv () in  
 close ()

Type signature  
(inferred):

Session-ocaml in a Nutshell: (1) Session-type inference

Session-ocaml 　　 
program:

 (much simplified than reality)

#1: 
Session-type inference solely  

done by OCaml compiler

via  

"Polarised session types"  
(explained later)

4



Session-ocaml in a Nutshell: (2) Linearity by slot-oriented programming

Slot-oriented session programming:GV-style session programming:

1. A new session endpoint is created for 

each communication step 

2. Every endpoint must be linearly used 
(not checkable by OCaml types)

(in FuSe [Padovani'16] and GVinHS [Lindley&Morris,'16]) (in Session-ocaml)

send _0 "Hello" >>  
let%s x = recv _0 in  
close _0

let s'     = send s "Hello" in  
let x, s'' = recv s' in  
close s''

5



Session-ocaml in a Nutshell: (2) Linearity by slot-oriented programming

Slot-oriented session programming:GV-style session programming:

1. A new session endpoint is created for 

each communication step 

2. Every endpoint must be linearly used 
(not checkable by OCaml types)

(in FuSe [Padovani'16] and GVinHS [Lindley&Morris,'16]) (in Session-ocaml)

send _0 "Hello" >>  
let%s x = recv _0 in  
close _0

let s'     = send s "Hello" in  
let x, s'' = recv s' in  
close s''

a few  
syntactic extensions

use monads

5



Session-ocaml in a Nutshell: (2) Linearity by slot-oriented programming

Slot-oriented session programming:GV-style session programming:

1. A new session endpoint is created for 

each communication step 

2. Every endpoint must be linearly used 
(not checkable by OCaml types)

(in FuSe [Padovani'16] and GVinHS [Lindley&Morris,'16]) (in Session-ocaml)

send _0 "Hello" >>  
let%s x = recv _0 in  
close _0

let s'     = send s "Hello" in  
let x, s'' = recv s' in  
close s''

#2: Provides linearity on top of  
NON-linear type system

Use "slot" numbers (_0, _1,..) 
as place-holders

a few  
syntactic extensions

use monads

5



History of Session type implementation (in Haskell & OCaml)

Very few OCaml-based session types --  
Duality and Linearity were the major obstacles 

(which Haskell coped with various type-level features)

Neubauer & Thiemann '06
Pucella & Tov, '08

Sackman & Eisenbach, '08
Imai, Yuen & Agusa, '10
Orchard & Yoshida, '16

Lindley & Morris, '16 Padovani, '16

Imai, Yoshida & Yuen, '17

H
as

ke
ll

O
C

am
l

Pucella & Tov, '08

6



History of Session type implementation (in Haskell & OCaml)

Very few OCaml-based session types --  
Duality and Linearity were the major obstacles 

(which Haskell coped with various type-level features)

Neubauer & Thiemann '06
Pucella & Tov, '08

Sackman & Eisenbach, '08
Imai, Yuen & Agusa, '10
Orchard & Yoshida, '16

Lindley & Morris, '16 Padovani, '16

Imai, Yoshida & Yuen, '17

H
as

ke
ll

O
C

am
l

Pucella & Tov, '08

FuSe

Session-ocaml

6



Presentation structure

L1: state transition 
Parameterised monad

L2: ownership 

Slot monads and Lenses

Feature #1: 

Polarised Session Types

Session-ocaml

Introduction

Discussion

Summary

Feature #2: Mimicked Linearity

7



Original session types and polarised session types

Original session types [Honda '97]:

!int;close

?string;!bool;close

μα.!ping;?pong;α

Duality:

req[int];closecli

resp[string];req[bool];closecli

μα.resp[ping];req[pong];αserv

Polarised session types:

!v;S =?v;S &{li : Si} = �{li : Si}
?v;S =!v;S �{li : Si} = &{li : Si}
µ↵.S = µ↵.S[↵/↵] close = close

Duality is too complex to have in 

OCaml type

Duality:

P serv = P cli   P cli = P serv

8



Original session types and polarised session types

Original session types [Honda '97]:

!int;close

?string;!bool;close

μα.!ping;?pong;α

Duality:

req[int];closecli

resp[string];req[bool];closecli

μα.resp[ping];req[pong];αserv

Polarised session types:

!v;S =?v;S &{li : Si} = �{li : Si}
?v;S =!v;S �{li : Si} = &{li : Si}
µ↵.S = µ↵.S[↵/↵] close = close

Duality is too complex to have in 

OCaml type

Duality:

P serv = P cli   P cli = P serv

Use {req, resp} instead of {!,?}

8



Original session types and polarised session types

Original session types [Honda '97]:

!int;close

?string;!bool;close

μα.!ping;?pong;α

Duality:

req[int];closecli

resp[string];req[bool];closecli

μα.resp[ping];req[pong];αserv

Polarised session types:

!v;S =?v;S &{li : Si} = �{li : Si}
?v;S =!v;S �{li : Si} = &{li : Si}
µ↵.S = µ↵.S[↵/↵] close = close

Duality is too complex to have in 

OCaml type

Duality:

P serv = P cli   P cli = P serv

Use {req, resp} instead of {!,?}

Polarity {cli, serv} gives  

modality

8



Original session types and polarised session types

Original session types [Honda '97]:

!int;close

?string;!bool;close

μα.!ping;?pong;α

Duality:

req[int];closecli

resp[string];req[bool];closecli

μα.resp[ping];req[pong];αserv

Polarised session types:

Duality is much simpler and  

type-inference friendly

!v;S =?v;S &{li : Si} = �{li : Si}
?v;S =!v;S �{li : Si} = &{li : Si}
µ↵.S = µ↵.S[↵/↵] close = close

Duality is too complex to have in 

OCaml type

Duality:

P serv = P cli   P cli = P serv

Use {req, resp} instead of {!,?}

Polarity {cli, serv} gives  

modality

8



Session-type inference in Session-ocaml

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



(req[int*int];  
 resp[bool];  

 close)cli

Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



(req[int*int];  
 resp[bool];  

 close)cli

val eqch: req[int*int];resp[bool];close

(protocol type)

inferred

Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



let eqserv () =

  accept_ eqch (fun () ->

    let%s x,y = recv () in

    send (x=y) >>

    close ())) ()

(req[int*int];  
 resp[bool];  

 close)cli

val eqch: req[int*int];resp[bool];close

(protocol type)

inferred

Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



let eqserv () =

  accept_ eqch (fun () ->

    let%s x,y = recv () in

    send (x=y) >>

    close ())) ()

(req[int*int];  
 resp[bool];  

 close)cli

val eqch: req[int*int];resp[bool];close

(protocol type)

inferred

Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

serv
(Server)

reactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



(req[int*int];  
 resp[bool];  

 close)serv

let eqserv () =

  accept_ eqch (fun () ->

    let%s x,y = recv () in

    send (x=y) >>

    close ())) ()

(req[int*int];  
 resp[bool];  

 close)cli

val eqch: req[int*int];resp[bool];close

(protocol type)

inferred

Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

serv
(Server)

reactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



(req[int*int];  
 resp[bool];  

 close)serv

duality is checked
by type equality

let eqserv () =

  accept_ eqch (fun () ->

    let%s x,y = recv () in

    send (x=y) >>

    close ())) ()

(req[int*int];  
 resp[bool];  

 close)cli

val eqch: req[int*int];resp[bool];close

(protocol type)

inferred

Session-type inference in Session-ocaml

resp

reqcli
(Client)

proactive

serv
(Server)

reactive

let eqclient () =  

  connect_ eqch (fun () ->  

    send (123, 456) >>  

    let%s ans = recv () in  

    close ()) ()

9



Branching & recursion

let rec eq_loop () =
  match%branch () with
  | `bin -> let%s x,y = recv () in  
            send (x=y) >>=  
            eq_loop  
  | `fin -> close ()  
in accept_ eqch2 eq_loop ()

10



Branching & recursion

let rec eq_loop () =
  match%branch () with
  | `bin -> let%s x,y = recv () in  
            send (x=y) >>=  
            eq_loop  
  | `fin -> close ()  
in accept_ eqch2 eq_loop ()

val eqch2: μα.req{ bin: req[int*int];resp[bool];α,  
                   fin: close }

10



Branching & recursion

let rec eq_loop () =
  match%branch () with
  | `bin -> let%s x,y = recv () in  
            send (x=y) >>=  
            eq_loop  
  | `fin -> close ()  
in accept_ eqch2 eq_loop ()

val eqch2: μα.req{ bin: req[int*int];resp[bool];α,  
                   fin: close }

10



Branching & recursion

let rec eq_loop () =
  match%branch () with
  | `bin -> let%s x,y = recv () in  
            send (x=y) >>=  
            eq_loop  
  | `fin -> close ()  
in accept_ eqch2 eq_loop ()

val eqch2: μα.req{ bin: req[int*int];resp[bool];α,  
                   fin: close }

10



Session type subtyping in Session-ocaml

• OCaml's polymorphic variant types [Garrigue '00] 

simulates subtyping on session-type branchings

  match%branch () with
  | `bin -> ...  
  | `fin -> close () 

  [%select () `fin] 

(selects fin label)

11



Session type subtyping in Session-ocaml

• OCaml's polymorphic variant types [Garrigue '00] 

simulates subtyping on session-type branchings

  match%branch () with
  | `bin -> ...  
  | `fin -> close () 

  [%select () `fin] 

 [`branch of req * [`bin of ...  
                   |`fin of [`close]]]

 [`branch of req * [> `fin of [`close]]]

inferred

inferred
(Session-ocaml type in the actual OCaml syntax)

(selects fin label)

11



Session type subtyping in Session-ocaml

• OCaml's polymorphic variant types [Garrigue '00] 

simulates subtyping on session-type branchings

  match%branch () with
  | `bin -> ...  
  | `fin -> close () 

  [%select () `fin] 

 [`branch of req * [`bin of ...  
                   |`fin of [`close]]]

 [`branch of req * [> `fin of [`close]]]

inferred

inferred
(Session-ocaml type in the actual OCaml syntax)

"open" variant type

(selects fin label)

11



Session type subtyping in Session-ocaml

• OCaml's polymorphic variant types [Garrigue '00] 

simulates subtyping on session-type branchings

  match%branch () with
  | `bin -> ...  
  | `fin -> close () 

  [%select () `fin] 

 [`branch of req * [`bin of ...  
                   |`fin of [`close]]]

 [`branch of req * [> `fin of [`close]]]

inferred

inferred
(Session-ocaml type in the actual OCaml syntax)

OCaml's type unification checks subsumption!

"open" variant type

(selects fin label)

11



• Problem: two types for one modality

Small caveat in polarised session types

resp[int];closeserv
send 100 has either type: or

req[int];closecli

depending on the polarity.

12



• Problem: two types for one modality

Small caveat in polarised session types

resp[int];closeserv
send 100 has either type: or

req[int];closecli

depending on the polarity.

12

send 100 : ∀γ1γ2.γ1[int];closeγ1*γ2

cli  ≡ req*resp

serv ≡ resp*req
where

("partial" since OCaml only allow ∀ at the prenex-position, though we think it works fine in many cases)

• (Partial) Solution:  Polarity polymorphism!



Comparing with FuSe's duality [Padovani, '16]

• Quite simple, however, nesting t's becomes quite cumbersome to read by 
humans:

(binop * ((bool*bool) * (_0, bool*(_0,_0) t) t,_0) t, _0) t 

[`msg of req * binop * [`msg of req * (bool*bool) * [`msg of resp * bool * [`close]]]] 

(hence FuSe comes with "type decoder" Rosetta.) 

• Equivalent protocol type in Session-ocaml would be:

which is a bit longer, but much more understandable due to its "prefixing" manner.

• Duality in FuSe [Padovani, '16]:

(Dardha's encoding ['12])(α, β) t  =  (β, α) t

13

(Session-ocaml type in the actual OCaml syntax)



Presentation structure

L1: state transition 
Parameterised monad

L2: ownership 

Slot monads and Lenses

Feature #1:

Polarised Session Types

Session-ocaml

Introduction

Discussion

Summary

Feature #2: Mimicked Linearity

14



(L2) Tracking ownership of a session endpoint

(L1) Enforcing state transition in types

Linearity in session types is two-fold 

let s1 = send "Hello" s0 in  
let s2, x = recv s1 in 

close s2;  
send s2 "Blah"

s2 is closed

let s1 = delegate s0 t0 in  
send t0 "Blah" 

ownership of t0 is transferred  
to other thread

send

!str;?int;  
close

?int;  
close

closeε

receive

close

send

xx

x

15



Solution to (L1): use a parameterised monad [Neubauer and Thiemann, '06]

type (ρ1, ρ2, τ) monad

is a type of an effectful computation with state transition:

ρ1 ρ2

with return value of type τ.

val return : α -> (ρ, ρ, α) monad

ρ

is a "pure" (i.e. effect-less) computation with no state transition:

16



A parameterised monad (cont.)

val (>>=) : (ρ1, ρ2, α) monad -> (α -> (ρ2, ρ3, β) monad)  

         -> (ρ1, ρ3, β) monad

ρ1 ρ2

combines two actions:

ρ2 ρ3

ρ1 ρ3

m1: with return value of type α

m2: with return value of type β

m1  >>=  m2: with return value of type β

into:

ρ2

using value of type α  
from m1

17



Session types as state transitions

val send : τ -> (!τ;α, α, unit) monad

!τ;σ σ

val recv : (?τ;α, α, τ) monad

?τ;σ σ

val close : (close, ε, unit) monad

... (* other primitives *) ...

close ε

The parameterised monad serves part of Linearity (L1) in session types:

18



Presentation structure

L1: state transition 
Parameterised monad

L2: ownership 

Slot monads and Lenses

Feature #1:

Polarised Session Types

Session-ocaml

Introduction

Discussion

Summary

Feature #2: Mimicked Linearity

19



L2: Ownership and delegation

type (ρ1, ρ2, τ) monad

ρ1 ρ2

... only tracks a single session.

delegate s0 t0

Delegation involves two sessions:

!θ;σ σ

θ ε

progresses the state of s0, and

releases the ownership of t0

s0

t0

20



Garrigue's method (Safeio) ['06]: tracking multiple file handles

To track multiple file handles' states:

val a_file_op: ( ρ11*(ρ12*(ρ13*...)), ρ21*(ρ22*(ρ23*...)), τ) monad

Embed vector of types (slots) in the parameterised monad (using cons-style):

a_file_op:

ρ11

ρ12

ρ13

…

ρ21

ρ22

ρ23

…

Pictorially:

closed input

open_in

close_in

read
closed input

open_in

close_in

read …

closed

input

input

…

input

input

closed

…

ex)

21



Solution to (L2): Lens to handle slots

progresses the state of m-th, and
releases the ownership of n-th

…

θ
…

σ

…

ε
…

… …

m

n

!θ;σ

delegate s0 t0 :

!θ;σ σ

θ ε

progresses the state of s0, and

releases the ownership of t0

s0

t0

delegate _m _n :

Use lenses _m, _n, ... to specify the position m, n, ... in a vector:

... and keep the rest of slots untouched

22



Lenses [Foster et al.'05], [Pickering et al.'17]

type (θ1, θ2, ρ1, ρ2) lens

A lens is a function to update the n-th element of a type vector ρ1 from θ1 to θ2. 

val _0: (θ1, θ2, θ1 * ρ, θ2 * ρ) lens

val _1: (θ1, θ2, ρ1 * (θ1 * ρ), ρ1 * (θ2 * ρ)) lens

See that the rest of vector remains unchanged.

θ1 θ2

θ1ρ1 θ2ρ1

ρ ρ

ρ ρ

23



let rec main () =
  accept eqch _0   >>
  connect wrkch _1 >>
  delegate _1 _0 >>=
  close _1
  main

let rec worker () =
  accept wrkch _0  >>
  deleg_recv _0 _1 >>
  close _0 >>  
  match%branch _0 with
  | `bin -> let%s x,y = recv _0 in  
            send _0 (x=y) >>=  
            worker  
  | `fin -> close _0

Putting them altogether: Polarities and slots & lenses

24



1: θserv =  μα.req{ bin: req[int*int];resp[bool];α,  
                    fin: close }serv

0: req[θserv];closecli 

1: θserv " ε

0: (θreq[θserv];
    close)serv 

1: ε " θserv

polarised 
session types

let rec main () =
  accept eqch _0   >>
  connect wrkch _1 >>
  delegate _1 _0 >>=
  close _1
  main

let rec worker () =
  accept wrkch _0  >>
  deleg_recv _0 _1 >>
  close _0 >>  
  match%branch _0 with
  | `bin -> let%s x,y = recv _0 in  
            send _0 (x=y) >>=  
            worker  
  | `fin -> close _0

Putting them altogether: Polarities and slots & lenses

24



Lenses

1: θserv =  μα.req{ bin: req[int*int];resp[bool];α,  
                    fin: close }serv

0: req[θserv];closecli 

1: θserv " ε

0: (θreq[θserv];
    close)serv 

1: ε " θserv

polarised 
session types

let rec main () =
  accept eqch _0   >>
  connect wrkch _1 >>
  delegate _1 _0 >>=
  close _1
  main

let rec worker () =
  accept wrkch _0  >>
  deleg_recv _0 _1 >>
  close _0 >>  
  match%branch _0 with
  | `bin -> let%s x,y = recv _0 in  
            send _0 (x=y) >>=  
            worker  
  | `fin -> close _0

Putting them altogether: Polarities and slots & lenses

24



Lenses
statically-typed
delegation

1: θserv =  μα.req{ bin: req[int*int];resp[bool];α,  
                    fin: close }serv

0: req[θserv];closecli 

1: θserv " ε

0: (θreq[θserv];
    close)serv 

1: ε " θserv

polarised 
session types

let rec main () =
  accept eqch _0   >>
  connect wrkch _1 >>
  delegate _1 _0 >>=
  close _1
  main

let rec worker () =
  accept wrkch _0  >>
  deleg_recv _0 _1 >>
  close _0 >>  
  match%branch _0 with
  | `bin -> let%s x,y = recv _0 in  
            send _0 (x=y) >>=  
            worker  
  | `fin -> close _0

Putting them altogether: Polarities and slots & lenses

24



Lenses

session-type
inference

val eqch  : μα.req{ bin: req[int*int];resp[bool];α,  
                     fin: close }

val wrkch : req[ ... ];close

statically-typed
delegation

1: θserv =  μα.req{ bin: req[int*int];resp[bool];α,  
                    fin: close }serv

0: req[θserv];closecli 

1: θserv " ε

0: (θreq[θserv];
    close)serv 

1: ε " θserv

polarised 
session types

let rec main () =
  accept eqch _0   >>
  connect wrkch _1 >>
  delegate _1 _0 >>=
  close _1
  main

let rec worker () =
  accept wrkch _0  >>
  deleg_recv _0 _1 >>
  close _0 >>  
  match%branch _0 with
  | `bin -> let%s x,y = recv _0 in  
            send _0 (x=y) >>=  
            worker  
  | `fin -> close _0

Putting them altogether: Polarities and slots & lenses

24



Presentation structure

L1: state transition 
Parameterised monad (done)

L2: ownership 

Slot monads and Lenses

Feature #1:

Polarised Session Types

Session-ocaml

Introduction

Discussion

Summary

Feature #2: Mimicked Linearity

25



Comparing OCaml implementations

L1) State transition in types  

L2) Tracking ownership of a session endpoint

L1 L2 Static/Dynamic Duality Infer.

Imai et al. ✔ ✔ static Polarised

Padovani (1) ✔ ✔ dynamic Dardha's encoding

Padovani (2) ✔ × static Dardha's encoding

Pucella & Tov ✔ × static Manual

26



OCaml v.s. Haskell; implementing languages
• OCaml implementation results in 

simpler one 
• Only use parametric polymorphism 

• Exportable to other languages 

• Slight notational overhead to use 
slots (_0, _1, ...) 

• Portable to other functional languages 
(Standard ML) or even other non-FP 
languages

('s,'t,'p,'q) slot -> ... ->  
('p,'q,'a) monad

[Imai, Yoshida & Yuen, '17]

• Haskell uses much complex type-
features 
• 'Complex' features like type 

functions, functional dependencies, 
higher-order types and so on. 

• More natural and idiomatic to use

(GV ch repr, DualSession s) =>  
... -> repr v i o (ch s)

(Pickup ss n s,  
 Update ss n t ss',  
 IsEnded ss f) =>  
... -> Session t ss ss' ()

[Imai et al., '10]

[Lindley & Morris, '16]

27



The paper includes

• Details of lens-typed communication primitives 

• Examples 

• Travel agency [Hu et al, 2008] 
with delegation and make use of type inference 

• SMTP client (Session-typed SMTP protocol) 
Practical network programing, no delegation 

• A database server 
With delegation 

• Session-ocaml clearly describes these examples!

28



Summary

• Session-ocaml: a full-fledged session type implementation in OCaml 

• Polarised session types

• Slot monad and lenses -- Linearity! 
 
 
 

• Session-ocaml is a simple yet powerful playground for session-typed 
programming 

• Further work:  
Extension to multiparty session types, Java and C# implementation,  
and so on

Available at: https://github.com/keigoi/session-ocaml/

29

https://github.com/keigoi/session-ocaml/


• Supplemental slides

30



Dynamic checking on Linearity

• Trying to send "*" repeatedly in FuSe [Padovani '16], but fails:

let rec loop () =  

  let s' = send "*" s  

  in  

  match branch s' with  

  | `stop s'' -> close s''  

  | `cont _ -> loop () 

• Session-ocaml's Slot-Oriented Programming offers a statically-checked 
alternative.

31



Dynamic checking on Linearity

• Trying to send "*" repeatedly in FuSe [Padovani '16], but fails:

let rec loop () =  

  let s' = send "*" s  

  in  

  match branch s' with  

  | `stop s'' -> close s''  

  | `cont _ -> loop () 

discarding the new 
session endpoint

• Session-ocaml's Slot-Oriented Programming offers a statically-checked 
alternative.

31



Dynamic checking on Linearity

• Trying to send "*" repeatedly in FuSe [Padovani '16], but fails:

let rec loop () =  

  let s' = send "*" s  

  in  

  match branch s' with  

  | `stop s'' -> close s''  

  | `cont _ -> loop () 

discarding the new 
session endpoint

runtime-error on 
second iteration

• Session-ocaml's Slot-Oriented Programming offers a statically-checked 
alternative.

31



Dynamic checking on Linearity

• Trying to send "*" repeatedly in FuSe [Padovani '16], but fails:

let rec loop () =  

  let s' = send "*" s  

  in  

  match branch s' with  

  | `stop s'' -> close s''  

  | `cont _ -> loop () 

discarding the new 
session endpoint

runtime-error on 
second iteration

let rec loop s =  

  let s' = send "*" s  

  in  

  match branch s' with  

  | `stop s'' -> close s''  

  | `cont s'' -> loop s''

Correct version:

• Session-ocaml's Slot-Oriented Programming offers a statically-checked 
alternative.

31



Two versions of Session-ocaml: Session0 and SessionN

match%branch0 () with  
| `Apple -> ...  
| `Banana -> ...

deleg_recv _n ~bindto:_m

module Session0 module SessionN

establishing  
a session

sending a value

receive a value

label selection

labelled branching

delegation

accepting delegation

accept_ ch (fun () -> ...)

connect_ ch (fun () -> ...)

accept ch ~bindto:_n

connect ch ~bindto:_n

send "Hello" send _n "Hello"

let%s x = recv _n in ...let%s x = recv () in

[%select0 `Apple] [%select _n `Apple]

match%branch _n with  
| `Apple -> ...  
| `Banana -> ...

deleg_send _n ~release:_m

single- 
session

multiple- 
sessions

slot 
specifier  

(lens)

delegation
supported

32


