
SPY: Local Verification of Global Protocols

Rumyana Neykova, Nobuko Yoshida, and Raymond Hu

Imperial College London, UK

Abstract. This paper presents a toolchain for designing deadlock-free
multiparty global protocols, and their run-time verification through au-
tomatically generated, distributed endpoint monitors. Building on the
theory of multiparty session types, our toolchain implementation vali-
dates communication safety properties on the global protocol, but en-
forces them via independent monitoring of each endpoint process. Each
monitor can be internally embedded in or externally deployed alongside
the endpoint runtime, and detects the occurrence of illegal communica-
tion actions and message types that do not conform to the protocol. The
global protocol specifications can be additionally elaborated to express
finer-grained and higher-level requirements, such as logical assertions on
message payloads and security policies, supported by third-party plugins.
Our demonstration use case is the verification of choreographic commu-
nications in a large cyberinfrastructure for oceanography [10].

1 Introduction

The application-level interactions in distributed systems and Web services often
involve complex, high-level communication patterns between multiple parties.
It is common for implementations of each participant to be written separately,
or for a system to be constructed by composing separate services managed by
different administrative domains. Implementations are also commonly based on
informal protocol specifications, and thus informal verification mechanisms, and
can be prone to concurrency errors such as communication mismatch (e.g. the
arrival of an unexpected message or request of an unsupported service opera-
tion) and deadlock (e.g. party A waits to receive a message from B while B is
waiting for a message from A). This is why the need for rigorous description and
verification of protocols has been observed in many different contexts.

The Scribble language [6,12] (foundation of the JBoss Savara project [13])
is a formal protocol description language developed towards tackling this chal-
lenge. The goal of Scribble is to provide an intuitive engineering language and
tools, based on the theory of multiparty session types (MPST) [7], for spec-
ifying and reasoning about message passing protocols and their implementa-
tions. As a verification technique, the previously published implementations
of MPST focus on static type checking of protocol specifications against end-
point processes. Well-typed processes are guaranteed to enjoy properties such
as communication-safety (all processes conform to a globally agreed commu-
nication protocol) and deadlock-freedom. Static session type checking in these

2 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu

mainstream languages, however, requires support in the form of the language
extensions and pre-compiler processing to be tractable.

In this paper, we demonstrate a toolchain (SPY: Session Python) for runtime
verification of distributed Python programs against Scribble protocol specifica-
tions. Our aim is to adapt the MPST protocol verification techniques to runtime
verification in order to be directly applicable to standard mainstream languages.
Due to the distributed setting, our toolchain works to enforce a global proto-
col by decomposing it into local specifications to be independently monitored
at each endpoint. Runtime verification can also be more practical for enforc-
ing advanced protocol features, e.g. we have extended our version of Scribble to
support annotations for logical assertions, which would be more complicated to
verify statically, even conservatively and with language extensions.

Given a Scribble specification of a global protocol, our toolchain validates
consistency properties, such as race-free branch paths, and generates Scribble
(i.e. syntactic) local protocol specifications for each participant (role) defined
in the protocol. At runtime, an independent monitor (internal or external) is
assigned to each Python endpoint. When a session between the endpoints is
initiated, each monitor retrieves the local protocol for its endpoint, and generates
the corresponding finite state machine (by an extension of the algorithm in [4])
to verify the local trace of communication actions executed during the session.
The evaluation of assertions is handled through a third-party engine.

To summarise the main features and characteristics of our toolchain: (1) it
is based on a specification language [6,12] with a formal semantics [3,2] (with
proof of the soundness of local monitoring of global protocols), and is the first
implementation of runtime verification for this theory; (2) protocol specifications
can be decorated to perform third-party validation of constraints beyond the core
message passing protocol; (3) monitoring is decentralised with each participant
verified locally and therefore no synchronisation between monitors is needed;
(4) two kinds of monitor, internal (synchronous) and external (asynchronous),
are implemented; and (5) the toolchain has been integrated into an industry
project [10] for the verification of RPC services and multiagent protocols [11].

The rest of the paper illustrates the key steps of the toolchain, outline its
usage requirements and discusses current applications. A discussion of related
work and additional examples can be found within the same volume [8]. The
source code of the tools and performance benchmarks are available from the
project website [9].

2 Multiparty Session Types and Runtime Verification

We illustrate our toolchain through an introductory example, an online pay-
ment application, which we call OnlineWallet (Fig. 1). The scenario involves
three parties: a Client (C), a Payment Server (S) and a separate Authentica-
tor (A). At the start of a session, C sends its login details to A, and A replies
to inform C and S whether the authentication is successful or not. If so, C and

SPY: Local Verification of Global Protocols 3

global protocol OnlineWallet
(role S, role C, role A) {

login(id:string , pw:string)
from C to A;

choice at A {
login_ok () from A to C, S;
rec LOOP {

account(balance:int ,
overdraft:int) from S to C;

choice at C {
@<amount <= balance+overdraft >
pay(payee:string , amount:int)

from C to S;
continue LOOP;

} or {
quit() from C to S; }}

} or {
login_fail(error:string)

from A to C, S; }}

Fig. 1. OnlineWallet protocol in Scribble

S enter a loop: in each iteration, S
sends C the current account status,
and C has the choice to make a pay-
ment (but only for an amount that
would not overdraw the account) or
end the session. In the first case, C
sends the payee and amount to S, and
the loop is repeated. In the other case,
or if the authentication failed, the ses-
sion ends.

Our toolchain performs the veri-
fication across several levels, as ex-
plained below.

Global protocol correctness The
first level of verification is in the de-
sign of the global protocol. The Scribble in Fig. 1 describes interactions between
session participants from the global perspective using message passing sequences,
branching (choice) and recursion. Each message has an operator (a label) and a
payload. The toolchain validates that the protocol is coherent and deadlock-free,
and thus projectable [7] for each role. For example, in each case of a choice con-
struct, the deciding party (e.g. at A) must correctly communicate the decision
outcome unambiguously to all other roles involved; a choice is badly-formed if
the actions of the deciding party would cause a race condition on the selected
case between the other roles, or if it is ambiguous to another role whether the
decision has already been made or is still pending. The interested reader may
refer to [6,12] for a comprehensive overview of the Scribble syntax, a tutorial,
and further references to the formal conditions for protocol correctness.

Local protocol conformance The second level is runtime verification to en-
sure that each endpoint program conforms to the core protocol structure ac-
cording to its role. There are two main factors. First, we verify that the type
(operation and payload) of each message matches its specification (operations
can be mapped directly to message headers, or to method calls, class names or
other relevant artefacts in the program). Second, we verify that the flow of in-
teractions is correct, i.e. interaction sequences, branches and recursions proceed
as expected, respecting the explicit dependencies (e.g. m1() from A to B; m2()

from B to C; imposes an input-output causality at B). These measures rule out
errors, e.g. communication mismatches, that violate the permitted protocol flow.

Fig. 2 outlines the concrete verification steps. First, local protocols are me-
chanically generated from the validated global protocol. A local protocol is essen-
tially a view of the global protocol from the perspective of one role. The projec-
tion algorithm works by identifying the message exchanges where the participant
is involved, and disregarding the rest while preserving the overall structure of
the global protocol. Each local protocol has a corresponding FSM, generated
by the monitor at runtime. When a party requests to start or join a session,
the initial message specifies which role it intends to play. Its monitor retrieves

4 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu

local protocol OnlineWallet at C(role S, role C, role A) {
 login(id:string, pw:string) to A;
 choice at A {
 login_ok() from A;
 rec LOOP {
 account(balance:int, overdraft:int) from S;

 choice at C {

 @<amount ≤ balance + overdraft>
 pay(payee:string, amount:int) to S;

 continue LOOP;
 } or {

 quit() to S; }}
 } or {
 login_fail(error:string) from A; }}

login
login_ok

login_failed

pay

quit

account

Global Protocol PROJECTION
(At design time)

FSM GENERATION
(At runtime)

PROGRAM FOR S

Verification

FSM FOR S

LOCAL PROTOCOL FOR S LOCAL PROTOCOL FOR C LOCAL PROTOCOL FOR A

FSM FOR A

PROGRAM FOR APROGRAM FOR C

Fig. 2. Global specification to local runtime verification methodology

the local specification based on the protocol name and the role. Fig. 2 gives the
local protocol and associated FSM for the client role C (we omit the protocols
for S and A). The FSM encodes the flow of local communication actions, with
transitions fired by the input and output of the permissible messages.
Policy validation The final level of verification enables the elaboration of
Scribble protocols using annotations (@<...> in Fig. 1 and 2). The annotations
function as API hooks to the verification framework: they are not verified by
the MPST monitor itself, but delegated to a third-party engine. Various pol-
icy domains (e.g. security policies) can be enforced by integrating engines for
predicates on endpoint state, automata-based properties, etc., as extensions to
the core protocol monitor. Our current implementation uses a Python library for
evaluating basic predicates (e.g. the overdraft check in Fig. 1), which is sufficient
for the application protocols we have developed with [11]. At runtime, the moni-
tor passes the annotation information, along with the FSM state information, to
the appropriate policy engine to perform the additional checks or calculations.
To plug in an external validation engine, our toolchain API requires modules for
parsing and evaluating the annotation expressions specified in the protocol.

3 Toolchain Requirements and Evaluation

3.1 Monitor Requirements

Positioning The network monitoring in our theory imposes complete mediation
of communications: no communication action should have an effect unless the
message is mediated by the monitor. The tool implements this principal for both

SPY: Local Verification of Global Protocols 5

inline and outline monitor configurations. Inline monitoring relies on internal
message interception: the local conversation runtime, in place at each endpoint,
synchronously passes every message (on arrival or prior to dispatch) through the
monitor component. Outline monitoring is realised by dynamically modifying the
application-level network configuration to (asynchronously) route every message
through a monitor. Our prototype is built over an Advance Messaging Queue
Protocol (AMQP) [1] transport, where we use the AMQP exchange-to-exchange
binding functionality to perform the message rerouting. A monitor dispatcher
is assigned to each network endpoint as a conversation gateway. The dispatcher
can create new routes and spawn new monitor processes if needed, to ensure the
scalability of this approach.
Message format To monitor Scribble conversations, our toolchain relies on a
small amount of message meta data that we refer to as the Scribble header, but
is actually embedded into the message payload (for more flexible interoperabil-
ity). Messages are processed depending on the message type, as recorded in the
header. There are two kinds of conversation messages: initialisation (exchanged
when a session is started, carrying information such as the protocol name and
the role of the monitored process) and in-session (carrying the message opera-
tion and the sender/receiver roles). Initialisation messages are used for routing
reconfiguration, while in-session messages are checked for protocol conformance.
Conversation API Our toolchain is accompanied by a message-passing li-
brary for implementing Python endpoint applications, that augments message
payloads with the conversation information required for monitoring. The library
API concisely exposes the core MPST primitives [3,2] for (1) initiating and join-
ing a conversation and (2) asynchronous message dispatch and consumption by
the participants. The API can be used directly by the programmer as a stan-
dalone conversation library, or as a complementary support module by another
library to handle the formatting of conversation messages for monitoring.

3.2 Evaluation

Our work is applied to and running within the Ocean Observatories Initiative
(OOI) [10,11], an ongoing project to establish a cyberinfrastructure for the de-
livery, management and analysis of scientific data from a large network of ocean
sensor systems. The OOI architecture relies on the combination of high-level pro-
tocol specifications (to express how the infrastructure services should be used)
and distributed run-time monitoring to regulate the behaviour of every appli-
cation within the system, for which the present toolchain is used. Performance
measurements for our current implementation (the project is at release two of
a planned four) show a reasonable overhead (13% percent per message call, see
[9] for the full benchmarks). The overhead is mostly due to just-in-time FSM
generation, which we believe can be reduced by caching or pre-generation of the
FSM for each protocol. We also note that the relative overhead due to FSM
generation decreases as the length of the conversation increases.

Our collaboration in the OOI project has had interesting impacts on our
work and research. First, the practical requirements, emerging from their use

6 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu

cases, led to the several advances of the MPST theory and the Scribble language
(interruptible conversations [8], generic protocols [5] and protocol annotations).
Second, we found that many OOI use cases can be categorised into a small set of
parameterised protocols. As an example, the majority of service-oriented proto-
cols, with diverse message signatures, are now derived from a single parametrised
RPC service protocol; rather than requiring a Scribble protocol per application
instance, one parameterised protocol can be provided per application library.
This is a convenient approach because we have observed that developers are (so
far) often not accustomed to writing protocols explicitly and formally. Finally,
the integration of our toolchain proceeded from the specification and verification
of the smaller, lower-level protocols in the OOI system, such as RPC. In general,
the kinds of bugs detected by our toolchain (e.g. messages to/from the wrong
participant) did not frequently arise for these smaller protocols; however, this
starting point enabled a straightforward, non-intrusive integration (not a single
line of existing application code was changed) that eased the adoption of the tool
by the developers. The next phase of the ongoing integration is to port the more
complex application protocols to Scribble, given the monitoring infrastructure
(independent of the protocol size) is already in place: our toolchain is able to
verify any Scribble protocol using the single generic monitor implementation.

References

1. Advanced Message Queuing Protocol homepage. http://www.amqp.org/.
2. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring

networks through multiparty session types. In FMOODS, volume 7892 of LNCS,
pages 50–65, 2013.

3. T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida. Asynchronous
distributed monitoring for multiparty session enforcement. In TGC’11, volume
7173 of LNCS, pages 25–45, 2012.

4. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of LNCS, pages 194–213. Springer, 2012.

5. K. Honda, R. Hu, R. Neykova, T.-C. Chen, R. Demangeon, P.-M. Deniélou, and
N. Yoshida. Structuring Communication with Session Types. In COB’12, LNCS,
2012. To appear.

6. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida. Scribbling
interactions with a formal foundation. In ICDCIT, volume 6536 of LNCS, pages
55–75. Springer, 2011.

7. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL’08, pages 273–284. ACM, 2008.

8. R. Hu, R. Neykova, N. Yoshida, and R. Demangeon. Towards practical interruptible
conversations. This volume.

9. Session Python (SPY) resource page. http://www.doc.ic.ac.uk/~rn710/spy/.
10. Ocean Observatories Initiative. http://www.oceanobservatories.org/.
11. Scribble-OOI collaboration. https://confluence.oceanobservatories.org/

display/CIDev/OOI+Use+Cases+in+Scribble.
12. Scribble project home page. http://www.scribble.org.
13. JBoss Scribble site. http://www.jboss.org/scribble.

http://www.amqp.org/
http://www.doc.ic.ac.uk/~rn710/spy/
http://www.oceanobservatories.org/
https://confluence.oceanobservatories.org/display/CIDev/OOI+Use+Cases+in+Scribble
https://confluence.oceanobservatories.org/display/CIDev/OOI+Use+Cases+in+Scribble
http://www.scribble.org
http://www.jboss.org/scribble

	Lecture Notes in Computer Science
	Introduction
	Multiparty Session Types and Runtime Verification
	Toolchain Requirements and Evaluation
	Monitor Requirements
	Evaluation

