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Abstract. Session types are types for distributed communicating pro-
cesses. They were born from process encodings of data structures and
typical interaction scenarios in an asynchronous version of the π-calculus,
and are being studied and developed as a potential basis for structuring
concurrent and distributed computing, as well as in their own right. In
this paper, we introduce basic ideas of sessions and session types, outline
their key technical elements, and discuss how they may be usable for
programming, drawing from our experience and comparing with existing
paradigms, especially concurrent objects such as actors. We discuss how
session types can offer a programming framework in which communica-
tions are structured both in program text and at run-time.

1 Introduction

This paper illustrates a structuring method for distributed computing based on
session types [19, 20, 29]. We take the standpoint that communication is an es-
sential building block for concurrent and distributed computation and that there
is a strong prospect that both software and hardware engineers need to position
this notion as a foundation of their design activities. Under this assumption, we
seek a general principle for structuring communications as a basis to facilitate
the development of correct and efficient programs. Computation based on com-
munication is so rich – it certainly includes the whole of sequential and shared
variable computation – that it looks hopeless to identify a principle which may
apply to its different realisations. There is also a difficulty inherent in com-
munication as we discuss in the next section. Given these potential difficulties,
instead of looking for general principles, we may be content with having different
techniques depending on different classes of use cases and different levels of ex-
pertise. But we believe this difficulty should not deter us from our quest towards
a unifying foundation since only with such a foundation we can start to harness
the richness of the large class of behaviours realisable through communication
and concurrency, providing a guide for individual problems and giving a basis
upon which different techniques can be positioned and integrated with greater
benefits than isolated solutions.

A central idea for structuring communications in session types is to divide
them into chunks of inter-related interactions forming logical units, called ses-
sions. Each session, in its own temporal-spatial confine, consists of messages



which are clearly identifiable as belonging to that session. The term “session”
comes from the networking community where such a classification has been prac-
tised for a long time, albeit informally. Each session is associated with its pro-
tocol, specifying how its participants may interact with each other, which gives
a type for the session in the sense that it classifies interaction structures, and
that they are directly linked to programming primitives as a formal specification,
just as types for functions and methods are directly linked to their underlying
primitive. This is how protocols arise as types when programming with sessions.
We illustrate this framework more concretely in Section 2.

The study of session types over the past two decades has extensive interac-
tions with other threads of research. Session types were born from a desire to
articulate the abstract structures arising from idioms that repeatedly occur when
we encode high-level data types and programs in the asynchronous version of the
π-calculus [23], which in turn was influenced by actor model. Theories of con-
currency, in particular process algebras such as ACP [3], CCS [21] and CSP [16],
offered mathematical foundations of session types: the research on concurrent
languages based on actors and concurrent objects also played an important role
in the inception of session types. These languages include the ABCL family of
programming languages starting from [32], developed by Akinori Yonezawa and
his team, which is one of the prominent accomplishments in the study of con-
current languages and formed a cultural background of the initial introduction
of session types.

This paper is intended for a concise presentation of key ideas as well as some
of the open topics. We also provide comparisons with related programming and
software development methodologies. For technical details, we hope the reader
can consult citations in each section. Section 2 gives the background of session
types. Section 3 introduces its programming methodology informally through
examples. Section 4 discusses one of its application examples. Section 5 compares
our approach with other framework for concurrent programming with a focus
on concurrent objects and actors, and concludes.

2 Background

2.1 Structuring Sequential Programs

Computing in its modern sense started from the discoveries in 1930s and 1940s
of abstract and concrete machines which are in nature sequential. Among them,
the abstract machine by Turing and its crystallisation as an engineering design
by Von Neumann offered the combination of striking simplicity and universality
with a finite state automaton as the processing unit and a linear array of memory
cells as the workspace for the automata (designated as a “tape” containing many
squares in Turing’s model: symbols are read from and written to these squares
by an automata). This simple machine model was to be explored extensively by
generations of engineers, developing faster processing units and larger memories
with high-bandwidth for reading and writing. By Turing’s result, engineers know
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that, just by focusing on these two key elements (the processor and the memory)
and enlarging their capabilities, the machine can simply get better.

It is on this stable hardware model that the fundamental programming ab-
stractions for sequential computing were developed, from assemblers to a sim-
ple notion of control flows and data types, to procedures and the structured
programming discipline, to dynamically created data structures with multiple
operations (objects), to higher-order procedures. The stable and universal hard-
ware model makes it possible, assisted by other fundamental theories including,
among others, the λ-calculus and its type theories, to incrementally build up
layers of abstractions that assist designers and programmers to describe the in-
tended behaviour with clear structures understandable by the programmer and
his/her fellow colleagues, as well as by compilers which perform static checking
of programs. Without good structures, it is hard for both humans and machines
to understand programs’ semantics.

This point is well-articulated by Dijkstra, when he advocates the structures
programming discipline in his famous communication [13]:

Our intellectual powers are rather geared to master static relations. [...]
For that reason we should do (as wise programmers aware of our lim-
itations) our utmost to shorten the conceptual gap between the static
program and the dynamic process, to make the correspondence between
the program (spread out in text) and the process (spread out in time)
as trivial as possible.

Implicit in this observation is that the dynamic process realisable by the struc-
tured presentation of programs has the same expressive power as the “unstruc-
tured” method. Another observation underlying Dijkstra’s remark is the fact
that a formal basis for the structuring method, such as Hoare logic for struc-
tured programming constructs, can pinpoints the status of the method.

The quote above also indicates a crucial element for any effective structuring
method for programming: we obtain abstraction and good structure so that we
can map the resulting program text tractably into efficient code, since without
the existence of such a mapping, it is hardly expected that we can make the
correspondence between program text and how it will be executed “as trivial as
possible.”1 And for this correspondence to be judged to be effective for a high-
level programming language, we needed a stable machine model which not only
underlies the existing hardware products but also would underlie for potential
ones.

2.2 Communication and Concurrency

Communicating processes are at the heart of computing since early days of
computing. While, as we have just discussed, computing has been based on the

1 Note that this correspondence is preserved, albeit not too trivially, even for dy-
namic data structures such as objects, by a stable compilation strategy based on
class tables. Such a basic correspondence is a basis for individual optimisations for
architectures.

3



most effective sequential model, scientists and engineers quickly found the use of
networking in combination with computing machinery, especially in the shape
of packet-switching networks that deliver digital data throughout networks with
effective use of the capacity of wires and flexibility which is not possible through
circuit-based networks. This is done through the help of intermediate nodes
which act as exchanges of data packets.

On this basis, at the network engineering level, we saw the emergence of the
idea of inter-networking, which links multiple networks, born and crystallised as
the TCP/IP combination of protocols [7]. This protocol was later split into the
two components as we know now based on the understanding on the end-to-end
principle [26], leading to the scalable inter-network infrastructure now known as
Internet, which was eventually to span the globe. Around the time when TCP/IP
was being engendered and incorporated as part of the then nascent Internet,
many studies on communicating processes, in abstract models, programming
languages and verifications were initiated, on which we shall discuss later.

In Internet, after several notable applications had been developed such as
electronic mails based on corresponding application-layer protocols, we saw an
invention of a simple but useful idea to implement hyperlinks over Internet,
embodied in the document format HTML and the application-layer protocol
HTTP. HTTP, a simple protocol based on server-client interactions performed
in a TCP-connection, has turned out to be a great medium for providing services
to users, by which the user base of Internet has undergone an explosive growth.
Later we found other applications of Internet, such as Internet Telephony as well
as social networking, leading to the proliferation of web services, where many
businesses become Internet-based and have global presence, be they bookshops,
music or flower delivery. The resulting socio-technical complex is to be called
World-Wide Web.

Global services in the World-Wide Web need to cope with a large number of
clients. This in turn necessitated the development of server technologies, to be
used for the backend of these web services. Combined with virtualisation tech-
nologies of OSes and networks, this has led to a set of technologies by which
multiple users can share a gigantic interconnected network of commodity hosts
as if each has its own network and computing resources, leading to cloud com-
puting. Cloud computing is giving at least three impacts. First it allows every
user an opportunity to use large amount of computing resources economically.
Second, it allows diverse networking technologies to be experimented without in-
terfering with other users. Thirdly, it offers users an economical platform where
an embarrassing amount of concurrency and distribution are the norm rather
than a marginal concern.

The cloud computing has become prominent in the first decade of the 21st
century. Not neglecting other factors, an insight which the cloud computing
may give us is that, to share computation, that computation had better be
distributed. This is a physical problem, having the same root as the following
observation by Hoare on multi-processor architecture several decades ago [16]:
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[...] Where the desire for greater speed has led to the introduction of
parallelism, every attempt has been made to disguise this fact from the
programmer [...]. However, developments of processor technology suggest
that a multiprocessor machine, constructed from a number of similar
self-contained processors (each with its own store), may become more
powerful, capacious, reliable, and economical than a machine which is
disguised as a monoprocessor.

In brief, there is a limit to share a large amount of computing power in the
sequential form (or, in Hoare’s words, to “disguise” it to be sequential), due to the
existence of latency. In spite of all the engineering efforts to achieve the contrary,
we see a clear slowing-down of sequential performance of representative CPUs at
the beginning of the 21st century, fulfilling Hoare’s prediction in a globally aware
form. Since then, the architectural development centres on increasing parallel
performance through many cores. This is also in line with the architectural
evolution of super computers, which, after prominent instances such as Blue-
gene showed their performance merits, have turned into communication-centred
designs.

2.3 Structuring Communication

Thus, in all scales of computing, communication is becoming one of the major el-
ements. And theoretical results such as Milner’s embedding of the λ-calculus into
the π-calculus [22] confirms their status as an expressive computing primitive.
However, as Hoare himself observed when he introduced CSP, communication is
hard to harness, in both design and formal verifications, which is one of the rea-
sons why Hoare and Milner have chosen synchronous interaction. Can we find
a tractable way to specify and manage communication in program texts and
runtime?

There is however subtlety in this question itself: what is it to which we aim
to give a good structure? Sequential computation has a stable execution basis, in
the abstract models and in concrete machine instructions. But communication
is different. Either inside a chip, among different machines in a cluster or across
continents, communication is always mediated by intermediate infrastructure,
be it on-chip interconnect and buffering facilities in a manycore chip, Ethernet
bus and drivers, or IP routers. Communication is not a hardware primitive at
the same level of assignment, and never will be. Thus it is hard to determine
and agree on what would count as basic primitives for communication. And if
we cannot identify primitives, how can we think of the structuring method for
them?

Answering this problem is hard because communication is useful, after all,
because it is between two computing machines: there may not be only one way to
realise it. Session types started from a theory of processes based on asynchronous
communication based on the π-calculus which is also close to the actor model.
This theory, introduced in [5, 18], is interesting in that it is a sub-set of the π-
calculus, which itself is based on synchronous, handshake computation, but just
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by taking its subset, now represents asynchrony. This also suggests all theories
developed in CSP, CCS and the π-calculus are now applicable to asynchronous
theory. These theories show that, at the foundational level, we can indeed have
a rigorous theory of asynchronously communicating processes, with an exact
notion of behaviours, their equivalence, and logical specifications. But having a
general theory does not dispel the theoretical intractability, and accompanying
mental intractability, of asynchrony: assuming we use large or infinite buffering
in communication, it looks hard to reason about behaviours (consider model
checking interactional behaviours with infinite buffering).

It is here that the notion of protocols and session types comes in, on which
we shall discuss in the next section.

3 Multiparty Protocols and Sessions

3.1 Session Types

One of the outcomes of using very large-scale integration for implementing a
central processor of a computer is that, to link “remote” areas of a single chip
(since we want different cores to share data), we need to rely on asynchronous
communication. This is for the following simple reason: if we need to have two
computations to be not too closely synchronised, that is (as we want when two
different cores to calculate two parts of computation) if we want their compu-
tations to proceed independently unless absolutely necessary, the only way is to
link them with a buffered communication medium, which an on-chip intercon-
nect in VLSI readily provides. Note that a relative independence in processing
also means that we can overlap computation and communication, which is a
major method to make the most of distributed computing resources.

But this very asynchrony also poses a problem in understanding computation:
the “dynamic process”, as Dijkstra called it, of asynchronously communicating
processes looks hard to harness, because, simply put, all different ways in which
the messages can be buffered add new states in potential computations, making
the reasoning extremely difficult. For example, if a process changes its state on
each occasion when a new message is received, and each sending action depends
on this state, then unbounded buffering means unbounded states and behaviours.

It is to harness this untenable nature of asynchronous communicating pro-
cesses that has led to the birth of the structuring method for communications
programming based on sessions and session-based primitives (creating sessions
and communication through sessions), together with the underlying types which
offer a way to specify protocols for sessions as types, drawing from the study of
the π-calculus and its type theories as well as the foregoing studies on types in
programming languages. By restricting asynchrony by protocols, we can reduce
the size of state space to be considered, for each session and interleaved sessions,
ensuring safe interactions by static checking and giving a basis for understanding
and verifying behaviour. It has the equivalent expressive power as the original
primitive of the π-calculus, which is known to possess a universal computing
power for interactions in a certain technical sense.
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The original session typed π-calculi are based on synchronous communica-
tion primitives, assumed to be compiled into asynchronous interaction: later
researchers found that, if we assume ordered asynchronous communications for
binary interactions inside a session, the original synchronous theory of safety
can be preserved while directly expressing asynchronous interaction. This safety
theory includes the simple fact that the type of a message by a sender coincides
with what a receiver expects inside a multiparty dialogue, which is practically
important because such an error costs a lot more in asynchronous communicating
processes than in sequential computing.

3.2 Writing Protocols

Session types describe a way, or a pattern, in which interactions can take place in
sessions. Session types have been called protocols for many years in network and
other engineering disciplines which need to treat such patterns. For this reason,
and because session types are sufficiently different in nature from data types, we
know in sequential computing (although the former share the key principle from
data types as we shall discuss later), hereafter we often use the term “protocols”
instead of “session types” when discussing their use for programming.

One of the key ingredients of session-based programming is the use of proto-
cols as an essential element of design and programming, because a clear under-
standing of an interaction scenario is an essential ingredient of communications
programming. For this reason, one of the key features of programming with ses-
sions is a protocol description language, the language with which engineers read
and write their protocols. They are close to types in sequential programming:
like data and function types, there is a tight linkage to language primitive. Like
data and function types, protocols may be inferred from programs or declared
by programmers so that programs may be checked against them. A difference
is that a protocol describes interactions for a session, and that, for this rea-
son, each session involves a sequence of interactions (which may not necessarily
be contiguous, since interactions in other sessions or internal computation may
interleave).

A Simple Protocol. To illustrate how we can specify a protocol, we take
a simple scenario, and show how the corresponding protocol can be specified
using an experimental protocol description language we are developing, called
Scribble [17, 27, 28] (the name comes from our desire to create an effective tool
for architects, designers and developers alike to quickly and accurately write
down protocols).

A key feature of Scribble is that all of its constructs are fully founded on the
formal theory of multiparty session types, starting from the core language fea-
tures for message passing, choice and recursion [4, 20], to more advanced features,
such as parallel [10], interrupts [6], sub-sessions [9] and run-time monitoring [8],
and studies relating session types to alternatives such as communicating au-
tomata [10]. The development of Scribble is a collaboration between researchers
and industry partners [24, 27]. Most of the examples presented in this section are
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1 type <ysd> "ListingFormat" from "ListingFormat.ysd" as Format;
2

3 protocol ListResources(role client as cl, role resource_registry as rr) {
4 request(resource_kind:String) from cl to rr;
5 rec loop {
6 choice at rr {
7 response(element:Format) from rr to cl;
8 continue loop;
9 } or {

10 completed() from rr to cl;
11 }
12 }
13 }

Fig. 1. A protocol for the List Resources use case

supported by the current working version of Scribble [28], with a few exceptions
that we note as being planned for future release.

The initial scenario we treat is called “List Resources”, where a Client obtains
a list of resources of some kind from a Resource Registry. This is a basic use case
applicable to many environments where a user may be provided with a variety
of resources by the infrastructure, e.g. remotely operable instruments or systems
resources such as bandwidth. The scenario consists of two steps:

Step 1: Client asks Registry to send her a resource list, specifying the kind of
resources it is interested in.

Step 2: Registry responds by sending the list of the resources of the kind spec-
ified, until the list is exhausted.

It is a simple elaboration of a remote procedural call. Note, however, that Step 2
involves a repetition of sending actions. This use case may be further elaborated
in various ways, but this simple version is sufficient for our first exercise.

Writing down a protocol goes through a natural flow, practised for decades
in the networking community. We first list the message formats, followed by the
participating actors (and other parameters). Then we scribble away the structure
of the conversation between the actors. The result for our mini use case is given
in Figure 1.

Line 1 starts from importing an message type ListingFormat, specified in
YAML (ysd), from the external source (file) ListingFormat.ysd. This message
type can then be referred to in this Scribble protocol specification by the given
alias Format. (In the coloured presentation of this paper, the import and as are
coloured blue, signifying they are keywords.) Message type imports allow Scrib-
ble to be used in conjunction and orthogonally with externally defined message
formats: here we are using a YAML schema, but any data format given in a well-
defined schema/type language may be used as far as the protocol validator is
notified. Data format is of course fundamental in protocols to ensure interacting
parties understand what the other is saying.

In Line 3, we give the name to the protocol, ListResources, followed by its
parameters. The parameters consist of the names of the two actors roles which
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participants can play, client and resource registry, aliased as cl and rr (short
names are often good for scribbling away protocols). This completes the header
of the protocol.

The remaining lines (Lines 4–13) constitute the protocol body, which describes
the structured flow of the conversation in a session. We have the first interaction
described in Line 4, which reads:

A request message whose content, annotated as resource kind and typed
as String, is sent from cl to rr asynchronously.

In Line 4, request is the message operator ; String (which is a built-in type for
strings) is a message payload type, and resource kind is the payload annota-
tion (a simple name). Finally from and to specify the source and destination,
respectively.

Line 4 is reminiscent of a method/function declaration found in APIs and
modules of high-level sequential programming languages: an interaction signa-
ture is a symmetric, peer-to-peer version of the familiar notion of “interface” of
functions and objects. As such, Line 4 does not specify constraints on concrete
values a message may carry, but specifies only the type of an interaction. For this
reason, we call the description in Line 4 as a whole, an interaction signature.

Registry now responds through a sequence of one or more messages: in the
protocol, we use a light form of labelled recursion for such repetition. Line 5
declares the recursion label loop that names the recursion body starting from
Line 6 and reaching Line 12. The recursion body consists of a single choice
statement.

The choice construct starts from Line 6, which first declares the choice: at rr

says that it is the Registry who will be the deciding party of this choice, through
a subsequent send action.

Lines 7–8 and Line 10 are respectively two distinct branches of the choice,
separated by or on Line 9. In the first branch, Line 7 says that Registry sends
a response message to Client, with message content annotated as (list) element

and typed as Format. Again we specify only a sender, a receiver and a message
signature. This is followed by Line 8, a recurrence denoted by the continue

keyword, which says that the protocol flow at this point returns to the start of
the recursion body labelled by loop, i.e. to Line 5.

The other branch consists of a single interaction, Line 10, where a completed

message with an empty payload is sent from Registry to Client, indicating the
end of the list, i.e. the end of the recursion – since there is no recurrence, the
loop terminates if this branch is chosen. As described in Step 2 above, at the
level of the application logic, the repetition should terminate only when all the
resource data for the specified kind has been sent by Registry: our protocol
description again abstracts from exactly how this may be determined in the
program logic (although the protocol assertions we discuss later can constrain
this behaviour in some way or another). After this action, the flow exits the
choice and the recursion, and (since no further interactions are specified) the
session terminates.
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1 protocol ListResources<type ListingFormat as Format>
2 (role client as cl, role resource_registry as rr) {
3 request(resource_kind:String) from cl to rr;
4 rec loop {
5 choice at rr {
6 response(element:Format) from rr to cl;
7 continue loop;
8 } or {
9 completed() from rr to cl;

10 }
11 }
12 }

Fig. 2. A refined List Resources protocol (1)

Nature of Protocols. We have seen a simple but self-contained protocol (ses-
sion type), ListResources. Even from this simple example, we can find unique
features of protocols. First, a protocol is like an API in that it defines a con-
tract, but this contract is not just between a function and its user, but among
conversing agents. Further, a protocol describes a series of interactions, with con-
ditional and repeated segments, because conversations among distributed agents
will often involve more elaborate structures than call-return. Like APIs, a pro-
tocol only offers a bare minimal behavioural specification, without constraining
values nor conditions for actions. This paucity has a practical merit: minimal
notations are needed for reading and writing basic protocols; they are amenable
for efficient validation at both compilation time and at runtime; and they can
serve as a minimal sufficient basis for elaborating them with refined behavioural
constraints through, among others, assertions.

Elaborating Protocols. For protocols to assist computer software develop-
ment, be it a newly built system or an upgrade of an existing system, they had
better be reusable, i.e. once you author a protocol, it should be able to be used for
many concrete applications. From this viewpoint, the ListResources protocol in
Figure 1 may not be fully satisfactory. In particular, it works only for the message
type defined in the specification by the concrete ListingFormat YAML schema.
Even if only one listing format is known now, new formats may arise later. Why
should we write different protocols for all different formats, given the structure
of interactions is identical? We use a basic technique from programming theory,
parametrisation, to solve the problem.

There are at least two different, and natural, ways we may employ parame-
tericity in the protocol of this this example. The first approach, supported in the
current version of Scribble, is given in Figure 2. Here, we directly abstract the
message type as a parameter to the protocol. In Line 1, the protocol has gotten
an additional parameter, <type ListingFormat>, as well as dispensing with the
“import” statement. This additional parameter means, with the keyword <type>,
that ListingFormat (again aliased as Format) is now a type name to be instanti-
ated each time this protocol is instantiated as a whole into a run-time session.
Later, in the response interaction in Line 6, Registry is obliged to send the list
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1 protocol ListResources(role client as cl, role resource_registry as rr) {
2 request(resource_kind:String, type ListingFormat) from cl to rr;
3 rec loop {
4 choice at rr {
5 response(element:ListingFormat) from rr to cl;
6 continue loop;
7 } or {
8 completed() from rr to cl;
9 }

10 }
11 }

Fig. 3. A refined List Resources protocol (2)

elements according to the concrete type known at run-time, while the Client
should be ready to receive them. The protocol again gives a contract among
participants, while now flexibly catering for arbitrary data formats.

A second approach, based on a dynamic form of parametrisation [25, 30], is
presented in Figure 3. This time, we elaborate the initial request interaction, in
Line 2 (the import clause is again dispensed with), so that the type ListingFormat

is now explicitly communicated from the Client to the Registry as the value of
a message, signifying its kind as type. This communicated type is then used
in Line 5, specifying that Registry should send the datum using the format it
has received from Client in Line 2. Scribble may be extended to support this
alternative technique for achieving the necessary parametrisation in a future
release, as the underlying theory is already well established.

Nested protocols. Consider the protocol given in Figure 4. It has two actors,
a Requester and an Authority. In Lines 2–3, Requester sends a check message
to query on whether a subject is permitted to do an operation on a resource,
carrying the identities of a subject and a resource, the name of an operation, and
the certificate of Requester (for authentication, possibly validated via a separate
protocol) in its payload. In Lines 4–10, Authority responds, saying the operation
is allowed or not, or else by saying other, to deal with cases when the answer
cannot be delivered for some reason, such as an unqualified Requester.

Now consider the following elaboration of our original “List Resources” use
case:

Step 1: Client asks Resource Registry to send a resource list (as before).
Step 2: Registry checks if Client has sufficient privileges.
Step 3: If everything is fine, the Registry replies by a sequence of data for

resources of the specified kind to Client.

This use case incorporates a privilege check as part of the protocol, as an exten-
sion to the original use case. Note this use case composes two previous use cases,
by nesting a protocol inside another protocol. Can we realise such composite use
cases as a protocol?

In Figure 5, we show how such a composition is done in Scribble, by com-
bining the previously specified CheckPrivileges and ListResources (the Figure 1
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1 protocol CheckPrivileges(role requester as req, role authority as au) {
2 check(subject:URI, resource:URI, operation:String, certificate:String)
3 from req to au;
4 choice at au {
5 allowed() from au to req;
6 } or {
7 not_allowed(reason:String) from au to req;
8 } or {
9 other(reason:String) from au to req;

10 }
11 }

Fig. 4. A protocol for the Check Privileges use case

version). In Line 5, we use the introduces keyword to indicate that Registry will
“introduce” a new actor, authority. After this preparation, the CheckPrivileges

protocol is launched (spawn) by Registry (at rr) in Line 6. Note the argu-
ments include Authority which has just been introduced, as well as Registry
(who will play the requester role in the spawned session). We call the nested
CheckPrivileges session spawned during the execution of the ListResources pro-
tocol a child session, or a sub-session, of the parent ListResources session. The
lifetime of a child session is, in the standard run-time semantics [9], dependent on
its parent (e.g. if a parent session aborts, its child session(s) should also abort).
Where such causal dependency is not desired, these unrelated protocols may well
be specified separately, to be instantiated into distinct sessions at run-time.

Returning to Figure 5, after the CheckPrivileges sub-session is carried out,
Registry, now knowing the qualification of Client for this query, responds to
Client with either an ok or an error message with the reason (a String payload).
When ok, the remainder of the protocol is the same as in Figure 1 (and also
Figures 2 and 3). Note that the result of running CheckPrivileges is likely to
related to whether ok or error is selected at the application logic but, at this
type level, we do not specify such detailed constraints.

As mentioned earlier, there are other constructs in Scribble, and in session
types in general. Among them are parallel composition, where two concurrent
threads of conversations can occur; interrupts, where a participant can asyn-
chronously interrupt an ongoing session using a message with one of the declared
signatures; and other modes of interactions beyond simple unicast. Additional
features supported by Scribble, and founded on formal theory, include nested
protocols, which is based on recent work introduced in [9] studying a general
form of nesting and instantiating session types.

3.3 Writing Programs with Sessions

We next take a brief look at how we can use the proposed concept of protocols
and sessions to implement clear and understandable communication programs,
taking a Python implementation of the List Resources protocol from Figure 1
as an example. We cannot give a full implementation in its entirety here, but we
hope the reader can get the flavour.
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1 import Authentication.CheckPrivilege as CheckPrivilege;
2

3 protocol ListResources(role client as cl, role resource_registry as rr) {
4 request(resource_kind:String, type ListingFormat) from cl to rr;
5 rr introduces au;
6 spawn CheckPrivilege(rr as requester, au as authority) at rr;
7 choice at rr {
8 ok() from rr to cl;
9 rec loop {

10 choice at rr {
11 response(list:ListingFormat) from rr to cl;
12 continue loop;
13 } or {
14 completed() from rr to cl;
15 }
16 }
17 } or {
18 error(reason:String) from rr to cl;
19 }
20 }

Fig. 5. A refined List Resources protocol (3)

Preliminaries. A protocol describes interactions among two or more agents.
While the running agents are often distributed in terms of run-time locality, the
implementation of the agent programs is also often “distributed” in terms of
development. Indeed, one of the primary purposes of protocols is to provide a
minimal interface against which each agent program may be independently im-
plemented, by different parties using different languages and techniques, while
ensuring full interoperability when global application is executed as a whole.
Therefore, the basic but general protocol- and session-oriented methodology for
developing programs is based on designing and implementing one program for
each endpoint. These programs interact with each other inside run-time conver-
sations via asynchronous messages following the specified protocols.

At run-time, a multiparty session functions like a network of TCP connec-
tions between the multiple endpoints, enabling them to communicate with each
other following the stipulated protocol. However, the concept of session also insu-
lates interactions among its participants from the underlying concrete transport
mechanisms, so that developers can (mostly) stay unaware of the particular net-
working technologies that may be employed at run-time. Our session-oriented
programs are constructed using “socket” abstractions that can be seen as stan-
dard TCP sockets generalised for multiparty messaging. Explicit structuring of
conversation flows makes the description of multiple flows of interactions within
an endpoint implementation clear with regards to the dependencies within each
flow and between flows. Since interactions in a session are ensured to never vio-
late the underlying protocol, either by static checking [4, 20] or through run-time
monitoring (by protocol machines) [8], each endpoint knows what kinds of mes-
sages are coming from which other participants at each stage of a conversation.

To demonstrate the description of multiple conversation flows, our exam-
ple implementation shall integrate the List Resources protocol with a sepa-
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1 protocol RequestResponse(role Client as cl, role Server as sr) {
2 choice at cl {
3 GET() from cl to sr;
4 choice at sr {
5 sc200(s:String) from sr to cl;
6 } or {
7 sc500(reason:String) from sr to cl;
8 ...
9 } or {

10 POST() from cl to sr;
11 ...
12 ...
13 }

Fig. 6. A HTTP-like request-response protocol (extract)

rately specified HTTP-like request-response protocol (simply called Request-
Response). We first give the relevant part of the Scribble for Request-Response
in Figure 6 before proceeding to the code. In the figure, “sc” in e.g. sc200 stands
for the “status code” of a message.

Program. We now consider a Python program that uses the ListResources

and RequestResponse protocols (the latter for transparently receiving user re-
quests) in combination. The program is an implementation of a service proxy
that obtains data from the Registry on behalf of the User. We call this endpoint
program simply “Proxy” from now on. Proxy needs to carry out two kinds of
conversations:

1. As a Request-Response server, it will engage in sessions with Users, accepting
the User query and returning the results from the Registry.

2. As a List Resources client, it will engage in sessions with the Registry, passing
on the User query and receiving the list of resources following Figure 1.

Proxy will return the results to User in HTML format, in a similar manner to
a standard CGI application. The main Python code for Proxy related to imple-
menting these sessions is given in Figure 7 (in the version with colours, the blue

and red indicate Python keywords and conversation programming constructs,
respectively).

Line 2 declares a try block for handling exceptions that may arise during
session execution. In Line 3, Proxy (receives and) accepts an invitation to inter-
act in the Request-Response session with User. The proxy uri object represents
Proxy as a network principal, and may roughly be considered as a conversation
programming counterpart to a TCP server socket. Proxy can then accept an
invitation through this interface, with respect to the RequestResponse protocol,
playing the role of Server to User. Specifying the protocol and role for this end-
point prescribes the local programming interface for c1, by which Proxy will
interact with User.

In Line 4, through c1, Proxy receives from User (denoted by its role name
Client in the protocol), a message msg. The basic attributes of a session message
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1 c1 = None
2 try:
3 c1 = proxy_uri.accept("RequestResponse", "Server")
4 msg = c1.receive("Client")
5 if msg.op == "GET":
6 resource_kind = parse_query(msg.value) # fun def omitted
7 c2 = None
8 try:
9 c2 = Conversation("ListResources")

10 c2.join("client")
11 registry_uri.invite(c2, "resource_registry")
12 c2.send("resource_registry", "request", resource_kind)
13 html_str = ""
14 def loop():
15 msg = c2.receive("resource_registry")
16 if msg.operator == "response":
17 html_str = html_str + yaml2html(msg.value)
18 loop()
19 elif msg.operator == "completed":
20 return
21 loop()
22 c1.send("HTTPClient", "sc200", html_str) # All went well
23 except Exception as e:
24 if c1.alive():
25 c1.send("HTTPClient", "sc500", "internal error")
26 raise e
27 finally:
28 if c2 != None:
29 c2.close()
30 else:
31 c1.send("HTTPClient", "sc501", "internal error")
32 except ConversationException as e:
33 print("Error({0})@{1}:{2}".format(e.errno, e.cid, e.strerror))
34 except:
35 print("Error({0}):{1}".format(e.errno, e.strerror))
36 finally:
37 if c1 != None:
38 c1.close();

Fig. 7. Conversation endpoint program for a service proxy program in Python (extract)

include op, the operation name for the message (i.e. the message label or header),
and the value array, the message payload. In Line 5, we check if the operation
of msg is GET. We assume the kind of resources is specified by the message value,
parsed by the parse query function and the result stored in resource kind.

This example demonstrates the interleaving of multiple sessions in a sin-
gle application. Here we introduce a second session in which Proxy now acts as
client according to ListResources. Line 8 declares a nested try block for this ses-
sion. In Line 9, we initialises a new session, using the class named Conversation.
When creating a session, we specify the protocol name ListResources (taken to
be simplest version presented earlier, in Figure 1). In Line 10, after initialisation,
Proxy “joins” the session as the client role specified in the protocol.

In Line 11, Proxy invites the remote registry uri principal to this newly
created session (to play the role resource registry). The method returns when
an acknowledgement is returned by the principal to accept the invitation. Now
that both roles have joined, in Line 12, Proxy sends to Registry (role name
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resource registry), a message with the request operation and the kind of re-
sources it is interested in. Note the message format precisely follows the protocol.

The next part of the code gives a tail recursive routine for repeated data deliv-
ery, whose flow exactly matches that in the ListResources protocol. Lines 14–20
define a function loop. In its body, first in Line 15, the client receives a msg from
Registry. Then we have two cases, depending on the operation of the message:

– If the operation is response (Line 16), a HTML-formatted version of the orig-
inal message (which was specified in the protocol to have a YAML format)
is appended to the string (Line 17), and the recursion is enacted (Line 18).

– If the operation is completed, the recursion is terminated (Line 19).

Line 21 executes this recursive function, and Line 22 returns the HTML request
to User, concluding the inner try-block.

Line 23 catches exceptions. Line 24 checks if c1 is alive (i.e. if it can still send
a message), and if so, sends the Request-Response status code for an internal
error before re-raising the exception. In this simple example, Line 30 handles the
case when the request is not a GET by returning another error message. Finally
Line 32 catches exceptions specific to sessions, signified by the exception class
named ConversationException, whose content is printed in Line 33 (when an in-
terrupt signature is specified in a protocol level, an endpoint program can use this
signature to raise the interrupt, which can be caught in the same way). Line 33
shows that session exceptions contain the cid field, not present in standard ex-
ceptions (Line 35). Finally, either in the normal completion or not, Lines 27 and
36 clean up the sessions upon exiting their respective try blocks.

Discussions. We have illustrated above a simple use of sessions in communica-
tions programming. The use of sessions in programs makes it possible to build
the application logic with a clear understanding on explicit conversation flows.
These flows are clearly visible: by going through how conversation channels are
mentioned in a given program (the red part in Figure 7), one can clearly capture
these flows.

Having distinct flows of interactions explicitly expressed in your program
help modular development, in the sense that one flow can be tweaked because
e.g. we wish to offer better user experience, while keeping other flows intact.
For example, we may consider a variation of the client in Figure 7, with more
asynchronous interactions with the web server following more programmatic (e.g.
Javascript-based) user-level interactions at the browser. A client can send data
incrementally to the web server following repeated messages from the registry,
which will be sent and displayed in the browser. We may also enrich the Request-
Response protocol in Figure 7 to reflect the interactions at the user interface
level. These refinements however do not affect the other protocol, for interactions
between the client and the resource registry: so, in the program, we may only
refine the interactions at c1, keeping those at c2 intact.

Our purpose in our introduction to session programming in this section was
to illustrate the core ideas of session programming, to see how it looks like
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to structure communications with (typed) sessions. There are other basic con-
structs for sessions, such as those for sending interrupts; creating a sub-session;
inviting participants from the parent session in a child session; and others. Fur-
ther, in practice, we often naturally wish to combine two or more consecutive
sending actions, such as the invitation to join a session as a role and the ini-
tial sending action to that role. However the central idea is the same: to clearly
present, in a communication program, how a flow of interactions – a session –
proceeds through a sequence of program actions and their composition, possibly
interleaved with actions in other sessions.

The resulting organisation of communication actions enable not only pro-
grams with a clear presentation of interaction structures, but also static valida-
tion of conformance to the underlying protocols through type checking; and its
dynamic counterpart through finite state machine based protocols monitors. In
the latter (dynamic) validation, it is assumed that we can identify the under-
lying session by inspecting a message, if that message belongs to a session. In
this way the runtime messages also get organised, dividing numerous message
exchanges in distributed computing environments into different chunks with a
binding to underlying protocols. This is how sessions structure communication-
centred computing.

4 Using Session Types

4.1 Session Types in Distributed Systems

Unlike in sequential computing, where a piece of software can often be regarded
as a self-contained mathematical function, software in distributed computing en-
vironments evolve over long periods of time, interacting with other applications
and services with disparate origins and histories. A piece of software interacts
with other pieces of software, and their mutual interactions critically affect their
behaviour to e.g. users. Because different endpoints should communicate with
each other to realise a certain function, we need an infrastructure by which all
this software can interact with each other. The global Internet is a typical and
prominent example, which provides an infrastructure for communications in the
shape of the TCP/IP protocol suite and, building on the end-to-end principle,
enables diverse software and services to evolve and inter-relate with each other,
creating the web of mutually dependent and evolving services. Partly overlapping
with Internet but forming their own networks, we see many distributed comput-
ing environments designed and evolve, with different geographic expanses, shapes
and functions, such as the corporate backbone networks, the backends of popular
web services, and networked infrastructures for sciences and engineering.

Session types were introduced to structure distributed communicating pro-
cesses. By different endpoints communicating with typed sessions, their inter-
actions follow the stipulated scenarios, without inducing communication error:
when a sender sends a message, the receiver can understand what it is, and in
turn will send messages in an expected way. That is, we expect all parties to be-
have properly in their interactions following the protocols of sessions. It is then
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a natural question how we ensure proper communication behaviours of systems
at run-time.

For example, we may realise typed sessions without having session informa-
tion at run-time (for example, we may use a set of TCP connections to realise
a session), with each program being type checked statically and whose session
primitives invokes actions on such connections. In this case, there is no explicit
session (wrt. the concept of session being proposed here – i.e. beyond that im-
plicit to TCP) at run-time – except in our mind’s eye. The freedom to realise
sessions in this way is certainly the merit of having high-level abstraction in
the shape of sessions assisted by static verification made possible by that very
abstraction.

Another method is having sessions and protocols explicitly incorporated as
part of the infrastructure in a distributed computing environment: a web of
distributed runtimes, by which we can create and use sessions, become part of
the infrastructure and applications use these runtimes to communicate with each
other. Some of the practical motivations to use such a configuration include to
track errors, to dynamically share protocols, and to optimise communication
paths on the fly using information on sessions and their protocols. But the most
prominent reason to choose this explicit approach is to insulate the specification,
design and runtime behaviour of software systems in a distributed computing
environment from low-level transport details. It leads to an environment where
all or most communication behaviours in that environment are governed by
explicitly declared protocols, and messages exchanged at runtime are marked by
distinct sessions so that they can be multiplexed over communication channels
and are checked against state machines induced by the underlying protocols
(just as TCP and other transport and higher protocols are checked at endpoint
network stacks). On this basis, we may build a machinery to assure high-level
behavioural constraints such as conformance to security policies.

4.2 Using Session Types for End-to-end Cyberinfrastructure

Ocean Observatories Initiative [24], often abbreviated as OOI, is a large-scale
NSF-funded project to build a cyberinfrastructure for observing oceans in the
United States and beyond, with usage span of 30 years. It integrates real-time
data acquisition, processing and data storage for ocean research (e.g. sensor ar-
rays, underwater gliders, high-resolution under-water cameras), providing access
for a wide ranging user community under different administrative domains. It
consists of multiple marine networks where we lay cables over a large area under
the sea, which are integrated by a distributed cyberinfrastructure. This cyber-
infrastructure, called OOI CI (CI for CyberInfrastructure), is itself a network,
consisting of distributed infrastructural services whose main sites are two large
clouds but whose distributed components in the shape of containers also re-
side all over its distributed sites residing in hundreds of universities and marine
institutions.

One of the central features of the OOI CI is its end-to-end nature, in the sense
that its design allows and encourages scientists to register data (which often takes
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the form of real-time streaming data from sensors over different time scales) and
data products (which are derivatives from raw data by application of models).
Just as scientists publish their papers, they may as well publish their data and
data products, shared by other scientists, as well as by teachers for educational
purposes. In the same spirit, the OOI CI should allow an easy and well-regulated
sharing of instruments and other resources, each under a specific administrative
control. For example, a seabed camera owned by one institution may be used by a
scientist in the other. Thus, in this system, multiple heterogeneous organisations
and individuals participate, run their software (such as simulation models for
sensor data) inside the system, and we need to ensure a high-level quality of
usage including transparency, partly because marine data play a critical role at
the time of calamity such as earthquakes and tsunami.

One of the architectural decisions of OOI CI is to regulate the behaviours
of heterogeneous participants in the OOI CI by imposing high-level abstrac-
tions based on interaction patterns, which are in turn regulated by high-level
policies through runtime monitors. The catalogue of interaction patterns will in
turn assist developers to implement their distributed services with ease and clar-
ity. Thus we need a descriptive means to write down these interaction patterns
clearly and without ambiguity, use them for software development, and regulate
communications behaviour of participating endpoints at runtime through in-
duced protocol machines, augmented with regulation by policies on their basis.
For the description of interaction patterns, the use of session types (and Scrib-
ble) is considered, building a framework to regulate interaction behaviour based
on policies on its basis. This policy-based regulation is called “governance” by
the OOI CI architects, conceived by Munindar Singh and the OOI CI architects,
centring on the notion of commitments [11]. To use session types as a basis of
regulating behaviour in this distributed computing platform, several technical
challenges were identified, which include (restricted to those proper to session
types):

– Can we accurately describe interaction patterns which are and will poten-
tially be used in distributed applications in OOI CI?

– Can we ground them to programming? Can we help developers to build safe
and robust systems with ease?

– Can we have a simple and efficient execution framework for these programs?
– Can we guarantee their communication safety at runtime? What would be

a simplest mechanism?

The research team on session types in Imperial College London and Queen
Mary, including the present authors, are contributing to the OOI CI development
through, among others, the following technical elements:

– A protocol description language, Scribble, and development/execution envi-
ronments centring on this language.

– A tool chain for protocol validation, endpoint projection, FSM translations,
APIs and runtimes.

– Part of the monitor architecture based on the protocol machines (FSM)
translated from protocols.
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As we have already observed, Scribble is fully based on research on session types.
The FSM translation is a direct application of the theory which links automata
theory (communication automata) and session types, recently introduced in [10],
where a session type can be directly translated into a communication automaton.

The development efforts are producing several interesting findings. For ex-
ample, one of the methods for facilitating the use of session types for developers
who are not accustomed to session types is to use the interface of the standard
communication APIs such as RPC. These libraries were independently devel-
oped in the OOI CI to support application development based on traditional
technologies: the idea is to replace them with distributed runtimes for session
types. What we found is that this approach, where we implement libraries using
session primitives, has rewarding practical merits in the tractability and trans-
parency in engineering. For instance, each library is now a short scripting code by
using the underlying session machinery, automatically monitored by the corre-
sponding protocol. As one example, RPCs with diverse signatures are now based
on a single parametrised protocol, and its interactions are checked by a generic
monitor for general session types. This conversion is feasible because not even a
single line of application code needs be changed: the resulting behaviour is the
same, we can use the same interface file, with a formal foundation automatically
assuring correctness of interactions. The layer for typed sessions is called Con-
versation Layer in OOI CI. As well as the extensive experiments on Conversation
Layer itself, our development efforts are focusing on the governance functions to
be realised on top of Conversation Layer.

5 Conclusion

In this work we have examined the motivations and backgrounds of the introduc-
tion of session types and associated programming methodology, together with
illustration of how we may design and implement a program centring on ses-
sion types. For organising communicating processes, there are other approaches
which address different aspects of abstractions for communicating processes.

One basic approach centres on the notion of concurrent objects [33], where
objects communicate with each other by sending messages to their object iden-
tities, starting from the actor model [1, 15], which also gives one of the simplest
forms of this paradigm. In concurrent objects in general, there is a strong inte-
gration of the idea of objects and concurrency, where concurrency is considered
to be a default rather than an exception. While programming languages based
on concurrent objects may not have treated sessions and session type beyond
request-response patterns, the use of constraints on interaction patterns in such
languages should certainly be feasible, as a recent work shows [14]. Similarly,
the identities as found in actors and concurrent objects may as well be part of
the session-based programming (for example, distributed infrastructures such as
the OOI CI demand the use of identities for principals which act as endpoints of
communications). Different experiments in such integrations will deepen our un-
derstanding on the relationships between these two paradigms. How the pursuit
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towards flexible programming abstraction in concurrent objects (e.g. reflection)
may interact with the type-based approach in session types is another interesting
future topic.

Concurrency and communication are a rich realm for which many different
approaches exist. Occam-Pi [31] is a highly efficient systems-level concurrent
programming language centring on synchronous communication channels, based
on CSP and the π-calculus. Erlang [2] is a communication-centred programming
language with emphasis on reliability whose central programming and execu-
tion paradigm is based on actors. Session types are an approach to structuring
communications programs based on session abstraction and protocol description,
with its formal basis in the π-calculus and its type theories. Protocols, arising
as types for dialogue among endpoints, are used to constrain behaviour so that
the resulting programs and runtime configurations are easy to understand and
reason. For fully identifying its possibilities and limitations, we need to explore
the use of typed sessions in various stages of software development, ranging from
high-level modelling to execution, as well as formal specifications and verifica-
tions. Not restricted to session types, we need to identify a wide range of concrete
methods usable to address these problems, as well as a unifying foundation for
them, to reach a truly effective methodology for distributed computing systems.

We refer the reader to [12] for more detailed comparison of session type theory
and session-based implementations against other related works.
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