
Timed Multiparty Session Types?

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida

Imperial College London, London, UK

Abstract. We propose a typing theory, based on multiparty session types, for
modular verification of real-time choreographic interactions. To model real-time
implementations, we introduce a simple calculus with delays and a decidable
static proof system. The proof system ensures type safety and time-error freedom,
namely processes respect the prescribed timing and causalities between interac-
tions. A decidable condition on timed global types guarantees time-progress for
validated processes with delays, and gives a sound and complete characterisation
of a new class of CTAs with general topologies that enjoys progress and liveness.

1 Introduction

Communicating timed automata (CTAs) [14] extend the theory of timed automata [3]
to enable a precise specification and verification of real-time distributed protocols. A
CTA consists of a finite number of timed automata synchronising over the elapsing
of time and exchanging messages over unbound channels. In spite of its simplicity,
the combination of timed automata [3] and communicating automata (CAs) [8] can
represent many different temporal aspects from a local viewpoint. On the other hand, the
model is known to be computationally hard, and it is difficult to directly link its idealised
semantics to implementations of programming languages and distributed systems.

On a parallel line of research, multiparty session types (MPSTs) [13, 6] have been
proposed to describe communication protocols among two or more participants from a
global viewpoint. Global types are projected to local types, against which programs can
be type-checked and verified to behave correctly without deadlocks. This framework is
applied in industry projects [19] and to the governance of large cyberinfrastructures [17]
via the Scribble project (a MPST-based tool chain) [20].

From the theoretical side, in the untimed setting recent work brings CAs into chore-
ographic frameworks, by seeking a correspondence with projected local types [11]. We
proceed along these lines by applying the idealised mathematical semantics of CTAs to
the design of MPSTs with clocks, clock constraints, and resets, in order to fill the gap
between the abstract specification by CTAs and the verification of real-time programs.
Surprisingly, since MPSTs inherently capture relative temporal constraints by imposing
an order on the communications, they enable effective verification without limitations
on topology or buffer-boundedness, unlike existing work on CTAs.

We organise our results in two parts. First we show that although time annotations
increase the expressive power of global types, time-error freedom is guaranteed with-
out additional time analysis of the types. In § 3 we give the semantics of timed global
? This work has been partially sponsored by EPSRC EP/K034413/1 and EP/K011715/1. We

thank Viviana Bono and Mariangiola Dezani-Ciancaglini for their insightful comments.

types (TGs) and prove soundness and completeness of the projection onto timed local
types (TLs) (Theorem 3). In § 4 we give a simple π-calculus for programs (running as
processes) with delays that can be used to synchronise the communications in a ses-
sion. A compositional proof system enables modular verification of time-error freedom
(Theorem 7): if all programs in a system are validated, then the global conversation will
respect the prescribed timing and causalities between interactions. In the second part we
investigate the conditions for an advanced property – time-progress – ensuring that if a
process deadlocks, then its untimed counter-part would also deadlock (i.e., deadlock is
not caused by time constraints). The fact that untimed processes in single sessions are
deadlock-free [13] yields progress for timed processes. Time-progress is related to two
delicate issues: (1) some time constraints in a TG may be unsatisfiable and (2) there
may exist some distributed implementation of the TG which deadlocks. We give two
sufficient conditions on TGs (§5) to prevent (1) and (2): feasibility (for each partial exe-
cution allowed by a TG there is a correct complete one) and wait-freedom (if all senders
respect their time constraints, then no receiver has to wait for a message). Feasibility
and wait-freedom are decidable (Proposition 8), and if we start from feasible and wait-
free TGs, then the proof system given in part one guarantees time-progress for processes
(Theorem 11). We give a sound and complete characterisation (Theorem 13) yielding a
new class of CTAs which enjoys progress and liveness (Theorem 14). Conclusion and
related work are in § 6. Full definitions can be found in the technical report [22].

2 Running Example: a Use-Case of a Distributed Timed Protocol

The motivating scenario developed with our partner, the Ocean Observatories Initiative
(OOI) [17], is directed towards deploying a network of sensors and ocean instruments
used/controlled remotely via service agents. In many OOI use-cases requests are aug-
mented with deadlines and services are scheduled to execute at certain time intervals.
These temporal requirements can be expressed by combining global protocol descrip-
tions from MPSTs and time from CTAs. We show a protocol to calculate the average
water temperature via sensor sampling. The protocol involves three participants: a mas-
ter M that initiates the sampling, a worker/sensor W with fixed response time w, and an
aggregator A for accumulating the data; their time constraints are expressed using clocks
xM, xW, and xA, initially set to 0. Each clocks can be reset many times. Delays l (average
latency of the network) and w (sampling time) are expressed in milliseconds. As in [14]
(synchronous semantics) time elapses at the same pace for all the parts of the system.

M

<task>

⊕

more<data>

(1)

(2)

(3)
(4)

(5)

iterate

 l = 400 (latency), w = 300,000 (sampling)Delays (in ms):

W A

xM = 0

<data>

more<task>

stop<data>

stop

xM := 0 l ≤ xW < 2l

xM =2l+w xW ≤ w
xW := 0

xM =2l+w

xM := 0

xM := 0

xW = 2l
xW := 0

xW = 2l
xW := 0

3l+w ≤ xA
xA := 0

3l+w ≤ xA
xA := 0

(1): M sends W a message of type task and resets xM (xM:=0).
After at least l and at most 2l, W receives the message.

(2): W completes the task and replies to M with the temperature
(of type data) at any time satisfying xW ≤ w and resets xW. M
receives the message at time xM = 2l +w.

(3): M immediately sends A a message of type data with either
label more (the sampling continues for another iteration) or stop
(enough results have been aggregated).

(4): If more was selected then M sends W a new task with label
more, resets xM and another iteration is executed.

(5): If stop was selected, M notifies W and the session ends.

2

3 Timed Multiparty Session Types

Global types [6, 13] are specifications of the interactions (causalities and carried data
types) of multiparty sessions. A global type can be automatically projected onto a set
of local types describing the session from the perspective of each single participant
and used for local verification of processes. We extend global and local types with
constraints on clocks, yielding timed global types (TGs) and local session types (TLs).

We use the definitions from timed automata (see [3, § 3.3], [14, § 2]): let X be
a set of clocks ranging over x1, . . . ,xn and taking values in R≥0. A clock assignment
ν : X 7→ R≥0 returns the time of the clocks in X . We write ν+ t for the assignment
mapping all x ∈ X to ν(x)+ t. We write ν0 for the initial assignment mapping all clocks
to 0. The set Φ(X) of clock constraints over X is:

δ ::= true | x > c | x = c | ¬δ | δ1∧δ2

where c is a bound time constant taking values in Q≥0 (we derive false, <,≤,≥, ∨ in
the standard way). The set of free clocks in δ, written fn(δ), is defined inductively as:
fn(true) = /0, fn(x > c) = fn(x = c) = {x}, fn(¬δ) = fn(δ), and fn(δ1∧δ2) = fn(δ1)∪
fn(δ2). We write δ(#»x) if fn(δ) = #»x and let ν |= δ denote that δ is satisfied by ν. A
reset λ over X is a subset of X . When λ is /0 then clocks are not reset, otherwise the
assignment for each x ∈ λ is set to 0. We write [λ 7→ 0]ν for the clock assignment that
is like ν except 0 is assigned to all clocks in λ.

Participants (p,q,p1, . . .∈N) interact via point-to-point asynchronous message pass-
ing. An interaction consists of a send action and a receive action, each annotated with
a clock constraint and a reset. The clock constraint specifies when that action can be
executed and the reset specifies which clocks must be set to 0.

Syntax. The syntax for sorts S, timed global types G, and timed local types T is:

S ::= bool | nat | . . . | G | (T,δ)
G ::= p→ q : {li〈Si〉{Ai}.Gi}i∈I | µt.G | t | end A ::= {δO,λO,δI,λI}
T ::= p⊕{li : 〈Si〉{Bi}.Ti}i∈I | p&{li : 〈Si〉{Bi}.Ti}i∈I | µt.T | t | end B ::= {δ,λ}
The sorts S include base types (bool, nat, etc.), G for shared name passing (used for
the initiation of sessions of type G, cf. § 4), and (T,δ) for session delegation. Sort (T,δ)
allows a participant involved in a session to delegate the remaining behaviour T ; upon
delegation the sender will no longer participate in the delegated session and receiver
will execute the protocol described by T under any clock assignment satisfying δ. G
and T in sorts do not include free type variables.

In G, type p→ q : {li〈Si〉{Ai}.Gi}i∈I models an interaction: p chooses a branch i∈ I,
where I is a finite set of indices, and sends q the branching label li along with a message
of sort Si. The session then continues as prescribed by Gi. Each branch is annotated
with a time assertion Ai = {δOi,λOi,δIi,λIi}, where δOi and λOi are the clock constraint
and reset for the output action, and δIi and λIi are for the input action. We will write
p→ q : 〈S〉{A}.G′ for interactions with one branch. Recursive type µt.G associates a
type variable t to a recursion body G; we assume that type variables are guarded in the
standard way and end occurs at least once in G (this is a common assumption e.g., [9]).
We denote by P (G) the set of participants of G and write G′ ∈G when G′ appears in G.

3

As in [14] we assume that the sets of clocks ‘owned’ (i.e., that can be read and reset)
by different participants in a TG are pair-wise disjoint, and that the clock constraint and
reset of an action performed by a participant are defined only over the clocks owned by
that participant. The example below violates this assumption.

G1 = p→ q : 〈int〉{xp < 10,xp,xp < 20,xp}

since both the constraints of the (send) action of p and of the (receive) action of q
are defined over xp, and xp can be owned by either p or q (similarly for the resets
{xp}). Formally, we require that for all G there exists a partition {X(p,G)}p∈P (G) of X
such that p→ q : {li〈Si〉{δOi,λOi,δIi,λIi}.Gi}i∈I ∈G implies fn(δOi),λOi ⊆ X(p,G) and
fn(δIi),λIi ⊆ X(q,G) for all i ∈ I.

In T , interactions are modelled from a participant’s viewpoint either as selection
types p⊕{li : 〈Si〉{Bi}.Ti}i∈I or branching types p&{li : 〈Si〉{Bi}.Ti}i∈I . We denote
the projection of G on p ∈ P (G) by G ↓p; the definition is standard except that each
{δOi,λOi,δIi,λIi} is projected on the sender (resp. receiver) by keeping only the output
part {δOi,λOi} (resp. the input part {δIi,λIi}), e.g., if G = p→ q : {li〈Si〉{Bi,B′i}.Gi}i∈I
then G ↓p= q⊕{li : 〈Si〉{Bi}.Gi ↓p}i∈I and G ↓q= p&{li : 〈Si〉{B′i}.Gi ↓q}i∈I .

Example 1 (Temperature calculation) We show below the global timed type G for
the protocol in § 2 and its projection G ↓M onto M. We write for empty resets.
G = M→ W : 〈task〉{B1

O,B
1
I}.µt.G′

G′ = W→ M : 〈data〉{B2
O,B

2
I}.

M→ A : {more〈data〉{B3
O,B

3
I}. M→ W : more〈task〉{B4

O,B
4
I}.t,

stop〈data〉{B3
O,B

3
I}. M→ W : stop〈〉{B4

O,B
4
I}.end}

G ↓M = W⊕〈task〉{B1
O}.

µt. W&〈data〉{B2
I}.

A⊕{more : 〈data〉{B3
O}.W⊕more : 〈task〉{B4

O}.t,
stop : 〈data〉{B3

O}.W⊕ stop : 〈〉{B4
O}.end}

B1
O = {xM = 0,xM}

B1
I = {l ≤ xW < 2l, }

B2
O = {xW ≤ w,xW}

B2
I = {xM = 2l +w, }

B3
O = {xM = 2l +w, }

B3
I = {3l +w≤ xA,xA}

B4
O = {xM = 2l +w,xM}

B4
I = {xW = 2l,xW}

Remark 1 (On the importance of resets). Resets in timed global types play an impor-
tant role to model the same notion of time as the one supported by CTAs, yielding a
more direct comparison between types and CTAs. Resets give a concise representa-
tion of several scenarios, e.g., when time constraints must be repeatedly satisfied for
an unbounded number of times. This is clear from Example 1: the repetition of the
same scenario across recursion instances (one for each sampling task) is modelled by
resetting all clocks before starting a new recursion instance (e.g., B3

I, B4
O and B4

I on the
second line of G′ in Example 1).

Semantics of timed global types. The LTS for TGs is defined over states of the form
(ν,G) and labels ` ::= pq!l〈S〉 | pq?l〈S〉 | t where pq!l〈S〉 is a send action (i.e., p sends
l〈S〉 to q), pq?l〈S〉 is the dual receive action, and t ∈R≥0 is a time action modelling time
passing. We denote the set of labels by L and let subj(pq!l〈S〉) = p, subj(qp?l〈S〉) = p

and subj(t) = /0.
We extend the syntax of G with p q : l〈S〉{A}.G to describe the state in which

message l〈S〉 has been sent by p but not yet received by q (as in [11, § 2]). The sep-
aration of send and receive actions is used to model the asynchronous behaviour in
distributed systems, as illustrated by the following example.

4

p→ q : 〈int〉{xp < 10, ,xq ≥ 10, }.p→ r : 〈int〉{xp ≥ 10, ,true, }
pq!〈int〉−−−−−→ p q : 〈int〉{xp < 10, ,xq > 20, }.p→ r : 〈int〉{xp < 10, ,true, }
pr!〈int〉−−−−−→ p q : 〈int〉{xp < 10, ,xq > 20, }.p r : 〈int〉{xp ≥ 10, ,true, }

After the first action pq!〈int〉 the TG above can reduce by one of the following actions:
a send pr!〈int〉 (as illustrated), a receive of q, or a time step. By using intermediate
states, a send action and its corresponding receive action (e.g., pq!〈int〉 and pq?〈int〉)
are separate, hence could be interleaved with other actions, as well as occur at dif-
ferent times. This fine-grained semantics corresponds to local type semantics where
asynchrony is modelled as message exchange through channels (see Theorem 3).

TGs are used as a model of the correct behaviour for distributed implementations in
§ 4. Therefore their semantics should only include desirable executions. We need to take
special care in the definition of the semantics of time actions: if an action is ready to be
executed and the associated constraint has an upper bound, then the semantics should
prevent time steps that are too big and would make that clock constraint unsatisfiable.
For instance in p→ q : 〈int〉{xp ≤ 20, ,true, } (assuming xp = 0) the LTS should
allow, before the send action of p occurs, only time steps that preserve xp ≤ 20.

More generally, we need to ensure that time actions do not invalidate the constraint
of any action that is ready to be executed, or ready action. A ready action is an action
that has no causal relationship with other actions that occur earlier, syntactically. A TG
may have more than one ready action, as shown by the following example.

p→ q : 〈int〉{xp ≤ 20, ,true, }.k→ r : 〈int〉{xk < 10, ,xr = 10, }

The TG above has two ready actions, namely the send actions of p and of k which can
happen in any order due to asynchrony (i.e., an order cannot be enforced without extra
communications between p and k). In this case a desirable semantics should prevent the
elapsing of time intervals that would invalidate either {xp ≤ 20} or {xk < 10}.

Below, function rdy(G,D) returns the set, for each ready actions in G, of elements
of the form {δi}i∈I which are the constraints of the branches of that ready action. D
is a set of participants, initially empty, used to keep track of the causal dependencies
between actions. We write rdy(G) for rdy(G, /0).

(1)
rdy(p→ q : {li〈Si〉{Ai}.Gi}i∈I ,D)

(with Ai = {δOi,λOi,δIi,λIi})
=

{
{{δOi}i∈I}

⋃
i∈I rdy(Gi,D∪{p,q}) if p 6∈ D⋃

i∈I rdy(Gi,D∪{p,q}) otherwise

(2) rdy(p q : l〈S〉{δO,λO,δI,λI}.G,D) =

{
{{δI}}∪rdy(G,D∪{q}) if q 6∈ D
rdy(G,D∪{q}) otherwise

(3) rdy(µt.G,D) = rdy(G,D) (4) rdy(t,D) = rdy(end,D) = /0

In (1) the send action of p is ready, hence the singleton including the constraints {δOi}i∈I
are added to the solution and each Gi is recursively checked. Any action in Gi involving
p or q is not ready. Adding {p,q} to D ensures that the constraints of actions that
causally depend from the first interaction are not included in the solution. (2) is similar.

Definition 2 (Satisfiability of ready actions) We write ν |=∗ rdy(G) when the con-
straints of all ready actions of G are eventually satisfiable under ν. Formally, ν |=∗
rdy(G) iff ∀{{δi}i∈I} ∈ rdy(G)∃ t ≥ 0, j ∈ I. ν+ t |= δ j.

5

j ∈ I A j = {δO,λO,δI,λI} ν |= δO ν′ = [λO 7→ 0]ν

(ν,p→ q : {li〈Si〉{Ai}.Gi}i∈I)
pq!l j〈S j〉−−−−−→ (ν′,p q : l j〈S j〉{A j}.G j)

bSELECTc

ν |= δI ν′ = [λI 7→ 0]ν

(ν,p q : l〈S〉{δO,λO,δI,λI}.G)
pq?l〈S〉−−−−→ (ν′,G)

(ν,G[µt.G/t]) `−→ (ν′,G′)

(ν,µt.G)
`−→ (ν′,G′)

bBRANCHc/bRECc

∀k ∈ I (ν,Gk)
`−→ (ν′,G′k) p,q 6∈ sub j(`) ` 6= t

(ν,p→ q : {li〈Si〉{Ai}.Gi}i∈I)
`−→ (ν′,p→ q : {li〈Si〉{Ai}.G′i}i∈I)

bASYNC1c

(ν,G)
`−→ (ν′,G′) q 6∈ sub j(`)

(ν,p q : l〈S〉{A}.G)
`−→ (ν′,p q : l〈S〉{A}.G′)

ν+ t |=∗ rdy(G)

(ν,G)
t−→ (ν+ t,G)

bASYNC2c/bTIMEc

Fig. 1. Labelled transitions for timed global types

The transition rules for TGs are given in Figure 1. We assume the execution always
begins with initial assignment ν0. Rule bSELECTc models selection as usual, except that
the clock constraint of the selected branch j is checked against the current assignment
(i.e., ν |= δO) which is updated with reset λO. Rules bASYNC1c and bASYNC2c model inter-
actions that appear later (syntactically), but are not causally dependent on the first in-
teraction. Rule bTIMEc models time passing by incrementing all clocks; the clause in the
premise prevents time steps that would make the clock constraints of some ready action
unsatisfiable. Note that bTIMEc can always be applied to (ν,end) since ν+t |=∗ rdy(end)
for all t. By Definition 2, ν+ t |=∗ rdy(G) requires the satisfiability of the constraints of
some of the branches of (each ready action of) G, while some other branches may be-
come unsatisfiable. In this way, the semantics of TGs specifies the full range of correct
behaviours. For instance in p→ q : {l1 : {xp < c, ,true, }, l2 : {xp > c, ,true, }}
one can, in some executions, let time pass until xp > c so that l2 can be chosen.

Semantics for timed local types. The LTS for TLs is defined with states (ν,T), labels L
and by the following rules:

(ν,q⊕{li : 〈Si〉{Bi}.Ti}i∈I)
pq!l j〈S j〉−−−−−→ (ν′,Tj) (j ∈ I B j = {δ,λ} ν |= δ ν′ = [λ 7→ 0]ν) bLSELc

(ν,q&{li : 〈Si〉{Bi}.Ti}i∈I)
qp?l j〈S j〉−−−−−→ (ν′,Tj) (j ∈ I B j = {δ,λ} ν |= δ ν′ = [λ 7→ 0]ν) bLBRAc

(ν,T [µt.T/t]) `−→ (ν′,T ′) implies (ν,µt.T) `−→ (ν′,T ′) bLRECc
ν+ t |=∗ rdy(T) implies (ν,T) t−→ (ν′,T) bLTIMEc

Rule bLSELc is for send actions and its dual bLBRAc for receive actions. In rule bLTIMEc for
time passing, the constraints of the ready action of T must be satisfiable after t in ν. Note
that T always has only one ready action. The definitions of rdy(T) and ν+t |=∗ rdy(T)
are the obvious extensions of the definitions we have given for TGs.

Given a set of participants {1, . . . ,n} we define configurations (T1, . . . ,Tn,
#»w) where

#»w ::= {wi j}i 6= j∈{1,...,n} are unidirectional, possibly empty (denoted by ε), unbounded
channels with elements of the form l〈S〉. The LTS of (T1, . . . ,Tn,

#»w) is defined as fol-
lows, with ν being the overriding union (i.e., ⊕i∈{1,...,n}νi) of the clock assignments νi

6

of the participants. (ν,(T1, . . . ,Tn,
#»w))

`−→ (ν′,(T ′1 , . . . ,T
′

n ,
#»w ′)) iff:

(1) ` = pq!l〈S〉 ⇒ (νp,Tp)
`−→ (ν′p,T

′
p)∧w′pq = wpq · l〈S〉∧ (i j 6= pq⇒ wi j = w′i j ∧Ti = T ′i)

(2) ` = pq?l〈S〉 ⇒ (νq,Tq)
`−→ (ν′q,T

′
q)∧ l〈S〉 ·w′pq = wpq∧ (i j 6= pq⇒ wi j = w′i j ∧Tj = T ′j)

(3) ` = t⇒∀i 6= j ∈ {1, . . . ,n}.(νi,Ti)
`−→ (νi + t,Ti)∧wi j = w′i j

with p,q, i, j ∈ {1, . . . ,n}.
We write TR(G) for the set of visible traces obtained by reducing G under the initial

assignment ν0. Similarly for TR(T1, . . . ,Tn,
#»
ε). We denote trace equivalence by ≈.

Theorem 3 (Soundness and completeness of projection) Let G be a timed global type
and {T1, . . . ,Tn}= {G ↓p}p∈P (G) be the set of its projections, then G≈ (T1, . . . ,Tn,

#»
ε).

4 Multiparty Session Processes with Delays

We model processes using a timed extension of the asynchronous session calculus [6].
The syntax of the session calculus with delays is presented below.

P ::= u[n](y).P Request
| u[i](y).P Accept
| c[p]/ l〈e〉;P Select
| c[p].{li(zi).Pi}i∈I Branching
| delay(t).P Delay
| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| µX .P Recursion
| X Variable

| (νa)P Hide Shared
| (νs)P Hide Session
| s : h Queue

h ::= /0 | h · (p,q,m) (queue content)
m ::= l〈v〉 | (s[p],ν) (messages)
c ::= s[p] | y (session names)
u ::= a | z (shared names)
e ::= v | ¬e | e′op e′ (expressions)
v ::= c | u | true | . . . (values)

u[n](y).P sends, along u, a request to start a new session y with participants 1, . . . ,n,
where it participates as 1 and continues as P. Its dual u[i](y).P engages in a new session
as participant i. Select c[p]/ l〈e〉;P sends message l〈e〉 to participant p in session c and
continues as P. Branching is dual. Request and accept bind y in P, and branching binds
zi in Pi. We introduce a new primitive delay(t).P that executes P after waiting exactly
t units of time. Note that t is a constant (as in [5, 16]). The other processes are standard.
We often omit inaction 0, and the label in a singleton selection or branching, and denote
with fn(P) the set of free variables and names of P.

We define programs as processes that have not yet engaged in any session, namely
that have no queues, no session name hiding, and no free session names/variables.

Structural equivalence for processes is the least equivalence relation satisfying the
standard rules from [6] – we recall below (first row) those for queues – plus the follow-
ing rules for delays:
(νs)s : /0≡ 0 s : h · (p,q,m) · (p′,q′,m′) ·h′ ≡ s : h · (p′,q′,m′) · (p,q,m) ·h′ if p 6= p′ or q 6= q′

delay(t + t ′).P≡ delay(t).delay(t ′).P delay(0).P≡ P
delay(t).(νa)P≡ (νa)delay(t).P delay(t).(P | Q)≡ delay(t).P | delay(t).Q

In the first row: (νs)s : /0 ≡ 0 removes queues of ended sessions, the second rule per-
mutes causally unrelated messages. In the second row: the first rule breaks delays into

7

a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}Pi[s[i]/y] | s : /0) (s 6∈ fn(Pi)) bLINKc
s[p][q]/ l〈e〉;P | s : h −→ P | s : h · (p,q, l〈v〉) (e ↓ v) bSELc

s[p][q].{li(zi).Pi}i∈J | s : (p,q, l j〈v〉) ·h −→ Pj[v/z j] | s : h (j ∈ J) bBRAc
delay(t).P |∏ j∈J s j : h j −→ P |∏ j∈J s j : h j bDELAYc

P−→ P′ (not by bDELAYc) imply P | Q−→ P′ | Q bCOMc
if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) bIFT/IFFc
P≡ P′ P′ −→ Q′ Q≡ Q′ imply P−→ Q P−→ P′ imply (νn)P−→ (νn)P′ bSTR/HIDEc

Fig. 2. Reduction for processes

smaller intervals, and delay(0).P≡ P allows time to pass for idle processes. The rules
in the third row distribute delays in hiding and parallel processes.

The reduction rules are given in Figure 2. In bSELc we write e ↓ v when expression
e evaluates to value v. Rule bDELAYc models time passing for P. By combining bDELAYc
with rule delay(t).(P | Q) ≡ delay(t).P | delay(t).Q we allow a delay to elapse si-
multaneously for parallel processes. The queues in parallel with P always allow time
passing, unlike other kinds of processes (as shown in rule bCOMc which models the syn-
chronous semantics of time in [14]). Rule bCOMc enables part of the system to reduce as
long as the reduction does not involve bDELAYc on P. If P reduces by bDELAYc then also
all other parallel processes must make the same time step, i.e. the whole system must
move by bDELAYc. The other rules are standard (n stands for s or a in bHIDEc).

Example 4 (Temperature calculation) Process PM is a possible implementation of par-
ticipant M of the protocol in Example 1, e.g., G ↓M. Assuming that at least one task is
needed in each session, we let task() be a local function returning the next task and
more tasks() return true when more tasks have to be submitted and false otherwise.

PM = s[M][W]/ 〈task()〉;µX .delay(2l +w). s[M][W]. (y);if more tasks()
then s[M][A]/more〈y〉;s[M][W]/more〈task()〉;X else s[M][A]/ stop〈y〉;s[M][W]/ stop〈〉;end

Proof rules. We validate programs against specifications based on TLs, using judge-
ments of the form Γ ` P.∆ and Γ ` e : S defined on the following environments:

Γ ::= /0 | Γ,u : S | Γ,X : ∆ ∆ ::= /0 | ∆,c : (ν,T)
The type environment Γ maps shared variables/names to sorts and process variables to
their types, and the session environment ∆ holds information on the ongoing sessions,
e.g., ∆(s[p]) = (ν,T) when the process being validated is acting as p in session s speci-
fied by T ; ν is a virtual clock assignment built during the validation (virtual in the sense
that it mimics the assignment associated to T by the LTS) .

Resets can generate infinite time scenarios in recursive protocols. To ensure sound
typing we introduce a condition, infinite satisfiability, that guarantees a regularity across
different instances of a recursion.

Definition 5 (Infinitely satisfiable) G is infinitely satisfiable if either: (1) constraints
in recursion bodies have no equalities nor upper bounds (i.e., x < c or x ≤ c) and no
resets occur, or (2) all participants reset at each iteration.

In the rest of this section we assume that TGs are infinitely satisfiable. As usual (e.g., [13]),
in the validation of P we check Γ ` P′ .∆ where P′ is obtained by unfolding once all

8

bVREQc

Γ,u : G ` P.∆,y[1] : (ν0,G ↓1)
dom(ν0) = {x1}

Γ,u : G ` u[n](y).P.∆
bVACCc

Γ,u : G ` P.∆,y[i] : (ν0,G ↓i)
dom(ν0) = {xi} i 6= 1
Γ,u : G ` u[i](y).P.∆

bVBRAc
∀i ∈ I ν |= δi

{
Γ,zi : Si ` Pi .∆,c : ([λi 7→ 0]ν,Ti) (Si 6= (Td ,δd))
Γ ` Pi .∆,c : ([λi 7→ 0]ν,Ti),zi : (νd ,Td) νd |= δd (Si = (Td ,δd))

Γ ` c[p].{li(zi).Pi}i∈I .∆,c : (ν,p&{li : 〈Si〉{δi,λi}.Ti}i∈I)

bVSELc j ∈ I Γ ` e : S j ν |= δ j Γ ` P.∆,c : ([λ j 7→ 0]ν,Tj) (S j 6= (Td ,δd))

Γ ` c[p]/ l j〈e〉;P.∆,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I)

bVDELc j ∈ I Γ ` e : S j ν |= δ j νd |= δd Γ ` P.∆,c : ([λ j 7→ 0]ν,Tj) (S j = (Td ,δd))

Γ ` c[p]/ l j〈e〉;P.∆,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I),c′ : (νd ,Td)

bVPARc dom(∆1)∩dom(∆2) = /0 Γ ` Pi .∆i i ∈ {1,2}
Γ ` P1 | P2 .∆1,∆2

bVCONDc Γ ` e : bool Γ ` Pi .∆ i ∈ {1,2}
Γ ` if e then P1 else P2 .∆

bVTIMEc Γ ` P.{ci : (νi + t,Ti)}i∈I
Γ ` delay(t).P.{ci : (νi,Ti)}i∈I

bVENDc∀c ∈ dom(∆) ∆(c) = (ν,end)
Γ ` 0.∆

bVDEFcΓ,X : ∆ ` P.∆

Γ ` µX .P.∆
bVCALLc∀c ∈ dom(∆′) ∆

′(c) = (ν,end)
Γ,X : ∆ ` X .∆,∆′

Fig. 3. Proof rules for programs

recursions µX .P′′ occurring in P. This ensures that both the first instance of a recursion
and the successive ones (all similar by infinite satisfiability) satisfy the specification.

We show in Figure 3 selected proof rules for programs. Rule bVREQc for session
request adds a new instance of session for participant 1 to ∆ in the premise. The newly
instantiated session is associated with an initial assignment ν0 for the clock of partici-
pant 1. Rule bVACCc for session accept is similar but initiates a new session for partic-
ipant i with i > 1. Rule bVBRAc is for branching processes. For all i ∈ I, σi must hold
under ν and the virtual clock assignments used to validate Pi is reset according to λi. If
the received message is a session (i.e., Si = (Td ,δd)) a new assignment zi : (νd ,Td) is
added to ∆ in the premise. This can be any assignment such that νd |= δd . Rule bVSELc
for selection processes checks the constraint δ j of the selected branch j against ν. In
the premise, ν is reset as prescribed by λ j. Rule bVDELc for delegation requires δd to be
satisfied under νd (of the delegated session) which is removed from the premise. Rule
bVTIMEc increments the assignments of all sessions in ∆. Rule bVENDc validates 0 if there
are no more actions prescribed by ∆. Rule bVDEFc extends Γ with the assignment for
process variable X . Rules bVPARc and bVCONDc are standard. Rule bVCALLc validates, as
usual, recursive call X against Γ(X) (and possibly some terminated sessions ∆′).

Theorem 6 (Type preservation) If Γ ` P. /0 and P−→ P′, then Γ ` P′ . /0.

In the above theorem, P is a process reduced from a program (hence ∆ is /0). A stan-
dard corollary of type preservation is error freedom. An error state is reached when
a process performs an action at a time that violates the constraints prescribed by its
type. To formulate this property, we extend the syntax of processes as follows: selection
and branching are annotated with clock constraints and resets (i.e., c[p] / l〈e〉{δ,λ};P
and c[p].{li(zi){δi,λi}.Pi}i∈I); two new processes, error and clock process (s[p],ν),
are introduced. Process error denotes a state in which a violation has occurred, and

9

(s[p],ν) associates a clock assignment ν to ongoing session s[p]. The reduction rules for
processes are extended as shown below.

∀i ∈ {1, ..,n} s 6∈ fn(Pi)

a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}(Pi[s[i]/y] | (s[i],ν0)) | s : /0)
bLINKc

delay(t).P |∏ j∈J(s j : h j |∏k∈K j (s j[pk],νk))−→ P |∏ j∈J(s j : h j |∏k∈K j (s j[pk],νk + t)) bDELAYc
e ↓ v ν

′ = [λ 7→ 0]ν δ |= ν

s[p][q]/{δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ P | s : h · (p,q, l〈v〉) | (s[p],ν′)
bSELc

¬δ |= ν

s[p][q]/{δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ error | s : h | (s[p],ν)
bESELc

bLINKc introduces a clock process (s[i],ν0) with initial assignment for each participant
i in the new session; bDELAYc increments all clock assignments, bSELc checks the clock
constraints against clock assignments and appropriately resets (the rule for branching is
extended similarly); bESELc is an additional rule which moves to error when a process
tries to perform a send action at a time that does not satisfy the constraint (a similar rule
is added for violating receive actions). Note that bSELc only resets the clocks associated
to participant p in session s and never affects clocks of other participants and sessions.
The proof rules are adapted straightforwardly, with error not validated against any ∆.

Theorem 7 (Time-error freedom) If Γ ` P.∆, and P→∗ P′ then P′ 6≡ error.

5 Time-progress of timed processes and CTAs

This section studies a subclass of timed global types characterised by two properties,
feasibility and wait-freedom and states their decidability; it then shows that these are
sufficient conditions for progress of validated processes and CTAs.

Feasibility. A TG G is feasible iff (ν0,G0) −→∗ (ν,G) implies (ν,G) −→∗ (ν′,end)
for some ν′. Intuitively, G0 is feasible if every partial execution can be extended to
a terminated session. Not all TGs are feasible. The specified protocol may get stuck
because a constraint is unsatisfiable, for example it is false, or the restrictions posed
by previously occurred constraints are too strong. We give below a few examples of
non-feasible (1,5) and feasible (2,3,4,6) global types:

1. p→ q : 〈int〉{xp > 3, ,xq = 4, }
2. p→ q : 〈int〉{xp > 3∧ xp ≤ 4, ,xq = 4, } 3. p→ q : 〈int〉{xp > 3, ,xq ≥ 4, }
4. q→ r : {l1 : {xq > 3, ,true, }, l2 : {xq < 3, ,true, }}
5. µt.p→ q : 〈int〉{xp < 1,xp,xq = 2,xq}.p→ r : 〈int〉{xp < 5, ,true,xr}.t
6. µt.p→ q : 〈int〉{xp < 1,xp,xq = 2,xq}.p→ r : 〈int〉{xp < 1, ,true,xr}.t

In (1) if p sends 〈int〉 at time 5, which satisfies xp > 3, then there exists no xq satisfying
xq = 4 (considering that xq must be greater than or equal to 5 to respect the global
flowing of time); (2) amends (1) by restricting the earlier constraint; (3) amends (1) by
relaxing the unsatisfiable constraint. In branching and selection at least one constraint
associated to the branches must be satisfiable, e.g., we accept (4). In recursive TGs,
a constraint may become unsatisfiable by constraints that occur after, syntactically, in
the same recursion body. In the second iteration of (5) xq = 2 is made unsatisfiable by
xp < 5 occurring in the first iteration (e.g., p may send q the message when xq > 2); in
(6) this problem is solved by restricting the second constraint on xp.

10

Wait-freedom. In distributed implementations, a party can send a message at any time
satisfying the constraint. Another party can choose to execute the corresponding receive
action at any specific time satisfying the constraint without knowing when the message
has been or will be sent. If the constraints in a TG allow a receive action before the
corresponding send, a complete correct execution of the protocol may not be possible
at run-time (as we will illustrate later with an example). We introduce a condition on
TGs called wait-freedom, ensuring that in all the distributed implementations of a TG,
a receiver checking the queue at any prescribed time never has to wait for a message.

Formally (and using ⊃ for logic implication): G0 is wait-free iff (ν0,G0) −→∗
pq!l〈S〉−−−−→

(ν,G) and p q : l〈S〉{δO,λO,δI,λI}.G′ ∈ G imply δI ⊃ ν(x)≤ x for all x ∈ fn(δI).
We show below a process P | Q whose correct execution cannot complete despite

P | Q is the well-typed implementation of a feasible (but not wait-free) TG.

G = p→ q : 〈int〉{xp < 3∨ xp > 3, ,xq < 3∨ xq > 3, }.
q→ p : {l1 : {xq > 3, ,xp > 3, }, l2 : {xq < 3, ,xp < 3, }}

G ↓p = q⊕〈int〉{xp < 3∨ xp > 3, }.q&{l1 : {xp > 3, }, l2 : {xp < 3, }}
G ↓q = p&〈int〉{xq < 3∨ xq > 3, }.p⊕{l1 : {xq > 3, }, l2 : {xq < 3, }}
P = delay(6).s[p][q]/ 〈10〉;s[q][p].{l1.0, l2.0} Q = s[p][q]. (x).s[q][p]/ l2〈〉;0

P implements G ↓p: it waits 6 units of time, then sends q a message and waits for the
reply. Q implements G ↓q: it receives a message from p and then selects label l2; both
interactions occur at time 0 which satisfies the clock constraints of G ↓q. By Theorem 7,
since /0 ` P |Q. s[p] : (ν0,G ↓p),s[q] : (ν0,G ↓q), no violating interactions will occur in
P |Q. However P |Q cannot make any step and the session it stuck. This scenario, unlike
errors in § 4 representing violations, models the fact that a non wait-free specification
allows participants to have incompatible views of the timings of action.

Decidability. If G is infinitely satisfiable (as also assumed by the typing in § 4), then
there exists a terminating algorithm for checking that it is feasible and wait-free. The
algorithm is based on a direct acyclic graph annotated with clock constraints and re-
sets, and whose edges model the causal dependencies between actions in (the one-time
unfolding of) G. The algorithm yields Proposition 8.

Proposition 8 (Decidability) Feasibility and wait-freedom of infinitely satisfiable TGs
are decidable.

Time-progress for processes. We study the conditions under which a validated program
P is guaranteed to proceed until the completion of all activities of the protocols it im-
plements, assuming progress of its untimed counterpart (i.e., erase(P)). The erasure
erase(P) of a timed processes P is defined inductively by removing the delays in P
(i.e., erase(delay(t).P′) = erase(P′)), while leaving unchanged the untimed parts
(e.g., erase(u[n](y).P′) = u[n](y).erase(P′)); the other rules are homomorphic.

Proposition 9 (Conformance) If P−→ P′, then erase(P)−→∗ erase(P′).

Processes implementing multiple sessions may get stuck because of a bad timing of
their attempts to initiate new sessions. Consider P = delay(5).a[2](v).P1 | a[2](y).P2;

11

erase(P) can immediately start the session, whereas P is stuck. Namely, the delay of
5 time units introduces a deadlock in a process that would otherwise progress. This
scenario is ruled out by requiring processes to only initiate sessions before any delay
occurs, namely we assume processes to be session delay. All examples we have exam-
ined in practice (e.g., OOI use cases [17]) conform session delay.

Definition 10 (Session delay) P is session delay if for each process occurring in P of
the form delay(t).P′ (with t > 0), there are no session request and session accept in P′.

We show that feasibility and wait-freedom, by regulating the exchange of messages
within established sessions, are sufficient conditions for progress of session delay pro-
cesses. We say that P is a deadlock process if P−→∗ P′ where P′ 6−→ and P′ 6≡ 0, and
that Γ is feasible (resp. wait-free) if Γ(u) is feasible (resp. wait-free) for all u∈ dom(Γ).

Theorem 11 (Timed progress in interleaved sessions) Let Γ be a feasible and wait-
free mapping, Γ ` P0 . /0, and P0 −→+ P. If P0 is session delay, erase(P) is not a
deadlock process and if erase(P)−→ then P−→.

Several typing systems guarantee deadlock-freedom, e.g. [6]. We use one instance from
[13] where a single session ensures deadlock-freedom. We characterise processes im-
plementing single sessions, or simple, as follows: P is simple if P0 −→∗ P for some
program P0 such that a : G ` P0 . /0, and P0 = a[n](y).P1 | ∏i∈{2,..,n} a[i](y).Pi where
P1, . . . ,Pn do not contain any name hiding, request/accept, and session receive/delegate.

Corollary 12 (Time progress in single sessions) Let G be feasible and wait-free, and
P be a simple process with a : G ` P . /0. If erase(P) −→, then there exist P′ and P′′

such that erase(P)−→ P′, P−→+ P′′ and erase(P′′) = P′.

Progress for CTAs. Our TGs (§ 3) are a natural extension of global types with timed no-
tions from CTAs. This paragraph clarifies the relationships between TGs and CTAs. We
describe the exact subset of CTAs that corresponds to TGs. We also give the conditions
for progress and liveness that characterise a new class of CTAs.

We first recall some definitions from [3, 14]. A timed automaton is a tuple A =
(Q,q0,Act,X ,E,F) such that Q are the states, q0 ∈ Q is the initial state, Act is the al-
phabet, X are the clocks, and E ⊆ (Q×Q×Act×2X×Φ(X)) are the transitions, where
2X are the resets, Φ(X) the clock constraints, and F the final states. A network of CTAs
is a tuple C = (A1, . . . ,An,

#»w) where #»w = {wi j}i6= j∈{1,..,n} are unidirectional unbounded
channels. The LTS for CTAs is defined on states s = ((q1,ν1), . . . ,(qn,νn),

#»w) and la-
bels L and is similar to the semantics of configurations except that each Ai can make a
time step even if it violates a constraint. For instance, assume that A1 can only perform
transition (q1,q′1, i j!l〈S〉, /0,xi ≤ 10) from a non-final state q1, and that ν1 = 10, then
the semantics in [14] would allow a time transition with label 10. However, after such
transition A1 would be stuck in a non-final state and the corresponding trace would not
be accepted by the semantics of [14].

In order to establish a natural correspondence between TGs and CTAs we introduce
an additional condition on the semantics of C , similar to the constraint on ready actions

12

in the LTS for TG (rule bTIMEc in § 3). We say that a time transition with label t is spec-
ified if ∀i ∈ {1, ..,n}, νi + t |=∗ rdy(qi) where rdy(qi) is the set {δ j} j∈J of constraints
of the outgoing actions from qi. We say that a semantics is specified if it only allows
specified time transitions. With a specified semantics, A1 from the example above could
not make any time transition before action i j!l〈S〉 occurs.

The correspondence between TGs and CTAs is given as a sound and complete en-
coding. The encoding from T into A , denoted by A(T), follows exactly the definition
in [11, § 2], but adds clock constraints and resets to the corresponding edges, and sets
the final states to {end}. The encoding of a set of TLs {Ti}i∈I into a network of CTAs,
written A({Ti}i∈I), is the tuple (A(T1), . . . ,A(Tn),

#»
ε). Let G have projections {Ti}i∈I ,

we write A(G) for as (A(T1), . . . ,A(Tn),
#»
ε).

Before stating soundness and completeness, we recall and adapt (to the timed set-
ting), two conditions from [11]: the basic property (timed automata have the same shape
as TLs) and multiparty compatibility (timed automata perform the same actions as a set
of projected TG). A state s is stable when all its channels are empty. More precisely: C is
basic when all its timed automata are deterministic, and the outgoing actions from each
(qi,Ci) are all sending or all receiving actions, and all to/from the same co-party. C is
multiparty compatible when in all its reachable stable states, all possible (input/output)
action of each timed automaton can be matched with a corresponding complementary
(output/input) actions of the rest of the system after some 1-bounded executions (i.e.,
executions where the size of each buffer contains at most 1 message).1

A session CTA is a basic and multiparty compatible CTA with specified semantics.

Theorem 13 (Soundness and completeness) (1) Let G be a (projectable) TG then A(G)
is basic and multiparty compatible. Furthermore with a specified semantics G≈A(G).
(2) If C is a session CTA then there exists G such that C ≈ A(G).

Our characterisation does not directly yields transparency of properties, differently
from the untimed setting [11] and similarly to timed processes (§ 4). In fact, a session
CTA itself does not satisfy progress. In the following we give the conditions that guar-
antee progress and liveness of CTAs. Let s = ((q1,ν1), . . . ,(qn,νn),

#»w) be a reachable
state of C : s is a deadlock state if (i) #»w = #»

ε , (ii) for all i ∈ {1, . . . ,n}, (qi,νi) does
not have outgoing send actions, and (iii) for some i ∈ {1, . . . ,n}, (qi,νi) has incoming
receiving action; s satisfies progress if for all s′ reachable from s: (1) s′ is not a deadlock
state, and (2) ∀t ∈ N, ((q1,ν1 + t), . . . ,(qn,νn + t), #»w) is reachable from s in C . We say
C satisfies liveness if for every reachable state s in C , s−→∗ s′ with s′ final.

Progress entails deadlock freedom (1) and, in addition, requires (2) that it is always
possible to let time to diverge; namely the only possible way forward cannot be by
actions occurring at increasingly short intervals of time (i.e., Zeno runs).2

We write TR(C) for the set of visible traces that can be obtained by reducing C . We
extend to CTAs the trace equivalence ≈ defined in § 3.

Theorem 14 (Progress and liveness for CTAs) If C is a session CTA and there exists
a feasible G s.t. C ≈ A(G), then C satisfies progress and liveness.

1 Note that multiparty compatibility allows scenarios with unbounded channels e.g., the channel
from p to q in µt.p→ q : l〈S〉{A}.t

2 The time divergence condition is common in timed setting and is called time-progress in [3].

13

6 Conclusion and Related Work

We design choreographic timed specifications based on the semantics of CTAs and
MPSTs, and attest our theory in the π-calculus. The table below recalls the results for
the untimed setting we build upon (first row), and summarises our results: a decidable
proof system for π-calculus processes ensuring time-error freedom and a sound and
complete characterisation of CTAs (second row), and two decidable conditions ensuring
progress of processes (third row). These conditions also characterise a new class of
CTAs, without restrictions on the topologies, that satisfy progress and liveness. We
verified the practicability of our approach in an implementation of a timed conversation
API for Python. The prototype [1] is being integrated into the OOI infrastructure [17].

TGs π-calculus session CTAs
untimed type safety, error-freedom, Sound, complete characterisation,

progress [13] progress [11]
timed type safety (Theorem 6) Sound, complete characterisation,

error-freedom (Theorem 7) (Theorem 13)
feasible, wait-free progress (Theorems 11 and 12) progress (Theorem 14)

Literature on MPSTs. The extension of the semantics of types with time is delicate as
it may introduce unwanted executions (as discussed in § 3). To capture only the correct
executions (corresponding to accepted traces in timed automata) we have introduced a
new condition on time reductions of TGs and TLs: satisfiability of ready actions (e.g.,
bTIMEc in Figure 1). Our main challenge was extending the progress properties of un-
timed types [6] and CAs [11] to timed interactions. We introduced two additional neces-
sary conditions for the timed setting, feasibility and wait-freedom, whose decidability
is non trivial, and their application to time-progress is new. The theory of assertion-
enhanced MPSTs [7] (which do not include progress) could not be applied to the timed
scenario due to resets and the need to ensure consistency w.r.t. absolute time flowing.

Reachability and verification. In our work, if a CTA derives from a feasible TG then
error and deadlock states will not be reached. Decidability of reachability for CTAs has
been proven for specific topologies: those of the form (A1,A2,w1,2) [14] and poly-
forests [10]. A related approach [2] extends MSCs with timed events and provides veri-
fication method that is decidable when the topology is a single strongly connected com-
ponent, which ensures that channels have an upper bound. Our results do not depend on
the topology nor require a limitation of the buffer size (e.g., the example in § ?? is not
a polyforest and the buffer of A is unlimited). On the other hand, our approach relies on
the additional restrictions induced by the conversation structure of TGs.

Feasibility. Feasibility was introduced in a different context (i.e., defining a not too
stringent notion of fairness) in [4]. This paper gives a concrete definition in the context
of real-time interactions, and states its decidability for infinitely satisfiable TGs. [21]
gives an algorithm to check deadlock freedom for timed automata. The algorithm, based
on syntactic conditions on the states relying on invariant annotations, is not directly
applicable to check feasibility e.g., on the timed automaton derived from a TG.

14

Calculi with time. Recent work proposes calculi with time, for example: [18] includes
time constraints inspired by timed automata into the π-calculus, [5, 16] add timeouts,
[12] analyses the active times of processes, and [15] for service-oriented systems. The
aim of our work is different from the work above: we use timed specifications as types
to check time properties of the interactions, rather than enriching the π-calculus syntax
with time primitives and reason on examples using timed LTS (or check channels lin-
earity as [5]). Our aim is to define a static checker for time-error freedom and progress
on the basis of a semantics guided by timed automata. With this respect, our calculus is
a small syntactic extension from the π-calculus and is simpler than the above calculi.

References
1. Timed conversation API for Python. www.doc.ic.ac.uk/˜lbocchi/TimeApp.html.
2. S. Akshay, P. Gastin, M. Mukund, and K. N. Kumar. Model checking time-constrained

scenario-based specifications. In FSTTCS, volume 8 of LIPIcs, pages 204–215, 2010.
3. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126:183–235, 1994.
4. K. R. Apt, N. Francez, and S. Katz. Appraising fairness in distributed languages. In POPL,

pages 189–198. ACM, 1987.
5. M. Berger and N. Yoshida. Timed, distributed, probabilistic, typed processes. In APLAS,

volume 4807 of LNCS, pages 158–174. 2007.
6. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,

volume 5201 of LNCS, pages 418–433, 2008.
7. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-

tributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages 162–176, 2010.
8. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30:323–342,

1983.
9. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-party

session. Logical Methods in Computer Science, 8(1), 2012.
10. L. Clemente, F. Herbreteau, A. Stainer, and G. Sutre. Reachability of communicating timed

processes. In FOSSACS, volume 7794 of LNCS, pages 81–96. Springer, 2013.
11. P.-M. Deniélou and N. Yoshida. Multiparty compatibility in communicating automata: Char-

acterisation and synthesis of global session types. In ICALP, volume 7966 of LNCS, pages
174–186, 2013.

12. M. Fischer et al. A new time extension to π-calculus based on time consuming transition
semantics. In Languages for System Specification, pages 271–283. 2004.

13. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL,
pages 273–284. ACM, 2008.

14. P. Krcal and W. Yi. Communicating timed automata: The more synchronous, the more diffi-
cult to verify. In CAV, volume 4144 of LNCS, pages 243–257, 2006.

15. A. Lapadula, R. Pugliese, and F. Tiezzi. Cows: A timed service-oriented calculus. In ICTAC,
volume 4711 of LNCS, pages 275–290, 2007.

16. H. A. López and J. A. Pérez. Time and exceptional behavior in multiparty structured inter-
actions. In WS-FM, volume 7176 of LNCS, pages 48–63. 2012.

17. Ocean Observatories Initiative (OOI). http://oceanobservatories.org/.
18. N. Saeedloei and G. Gupta. Timed π-calculus. In TGC, LNCS, 2013. to appear.
19. Savara JBoss Project. http://www.jboss.org/savara.
20. Scribble Project homepage. www.scribble.org.
21. S. Tripakis. Verifying progress in timed systems. In Formal Methods for Real-Time and

Probabilistic Systems, volume 1601 of LNCS, pages 299–314. 1999.
22. Technical report, department of computing, imperial college london, May 2014. 2014/3.

15

