
Laura Bocchi, Weizhen Yang, Nobuko Yoshida

ABCD@ London, 20 April 2015

Timed Multiparty Session Types

CONCUR 2014

• Independent programs realise global tasks through network interactions

The problem (1)

• Participants need to agree on protocol, on data semantics …

Multiparty Session Types

Global Type project
Process

type check

Local Type  
(Aggregator)

Local Type  
(Worker)

Local Type  
(Master)

[Honda et al, Bettini et al, 2008]  

• Efficient, local verification of global properties (session fidelity & progress)

• Web Services: “Reconnect no more than twice every four minutes …”  
 [Twitter Streaming API]

• Sensor Networks (on busy waiting): “Main sources of energy inefficency in Sensor
Networks are collisions and listening on idle channels” [Ye, Heidemann & Estrin, 2002]

• Protocol specification: deadlines, timeouts, repeated constraints (resets), …

The problem (2)

x = 0 y := 0

y ≤ W

Delays (in milliseconds)  
L = 400 (latency)
W = 300,000 (sampling time)
D = 2000 (decision time)

x y z

• Web Services: “Reconnect no more than twice every four minutes …”  
 [Twitter Streaming API]

• Sensor Networks (on busy waiting): “Main sources of energy inefficency in Sensor
Networks are collisions and listening on idle channels” [Ye, Heidemann & Estrin, 2002]

• Protocol specification: deadlines, timeouts, repeated constraints (resets), …

The problem (2)

x = 0

x = 2L+W, x := 0

L ≤ y < L+1, y := 0

y ≤ W

0 ≤ x ≤ D

x := 0 y = 2L+D

y = 2L+D

3L+W+D ≤ z

3L+W+D ≤ z

 x, y, z := 0

Delays (in milliseconds)  
L = 400 (latency)
W = 300,000 (sampling time)
D = 2000 (decision time)

x y z

• In general it is hard to verify properties such as reachability

• upper bound on channels [S. Akshay et al. FSTTCS’94]

• some topologies e.g., polyforests [Clemente et al. FOSSACS’13]

Communicating Timed Automata (CTAs)

• Timed automata [Alur & Dill ‘94]: set of clocks, guarded transitions, resets

• CTA [Krcal & Yi ‘06]: network of timed automata asynchronously communicating
on unbounded channels and synchronizing over time actions

Overview

 

• Correspondence between global types and Communicating Finite States
Machines (CFSMs) [Denielou & Yoshida, ICALP’13]

• Decidable conditions for progress and liveness for CTAs

time

Communicating  
Timed Automata Multiparty Session Types

• Verification of real-time interactions with Multiparty Session Types

• time-error freedom: interactions are punctual

• time-progress: a deadlock state is not reachable and time can diverge

Timed Global Types

Clock constraint

Resets

Transitions & satisfiability of ready actions

15

1.99

Specified semantics:

Transitions & satisfiability of ready actions

Specified semantics:

15

1.99

✘

Communication actions at times that
violate the constraints are not allowed

Transitions & satisfiability of ready actions

15

1.99

✘

Communication actions at times that
violate the constraints are not allowed

✘
Time actions that make constraints of some
ready action unsatisfiable are not allowed

Specified semantics:

Transitions & satisfiability of ready actions

15

1.99

✘

Communication actions at times that
violate the constraints are not allowed

✘
Time actions that make constraints of some
ready action unsatisfiable are not allowed

Specified semantics:

✔

Process P Type T

• Calculi with time: inspired by CTAs [Saeedloei et al ‘13], with timeouts
[Laneve et al. 05, Berger et al. ’07, Lopez et al. ‘12], for SOC [Lapadula et al. ’07]
…

A (very) simple timed calculus

• We use a very simple calculus

Type-safety

• We give a type system for timed processes based on judgments:

 
 

An action has been executed at a time
that violates the specification

Time progress

• Time-progress (for well-typed timed processes):

• each reachable state is not a deadlock state (it is final or it can reduce)

• time can diverge (the only possible way forward must not be Zeno)

• Well-typedness of timed processes does not guarantee progress in general

• We give two decidable sufficient conditions:

• Feasibility

• Wait-freedom

Feasbility

✘

A constraint in a timed global type may not be satisfiable  

✔

✔

Feasibility: for each partial execution allowed by a specification
there is a correct complete one [Apt, Francez & Katz, POPL’87]

Wait-freedom

P can send the message
only after 6 time units
elapse Q needs to receive now … but

the message is not ready!

Wait-freedom: The constraint of each receive action must not admit, as a solution, a
time which is earlier than some solution of the corresponding send action.

Some well-typed distributed implementation of feasible timed types may lead
to inconsistent views of the timing of actions by different participants.  
 
The receiver may not find the message ready when reading the channel

Progress for t-MPSTs

✘

✔

• Well-typed processes of feasible and wait-free MPSTs enjoy global progress
(if their untimed counter-part does so)

• processes in single sessions (e.g., [Honda et al. POPL’08])

• processes in interleaved sessions (e.g., [Bettini et al. CONCUR’08])  
where session initiations do not occur after delays

Correspondence with CTAs

• In the timed setting we give correspondence between timed global types, and
basic and multiparty compatible CTAs with a specified semantics

• In the untimed setting [Denielou & Yoshida, ICALP’13] gives correspondence
between global types, and basic and multiparty compatible CFSMs

• A CTA that is basic, multiparty compatible, with specified semantics and
corresponds to a feasible timed global type ensures

• progress: each reachable state is non-deadlock and allows time divergence

• liveness: a final state can be reached from all reachable states

Conclusion & future work

• Timed Multiparty Session Types & typing system for timed processes ensuring  
time-error freedom

• Progress of well-typed implementations of feasible and wait-free types

• Feasibility and wait-freedom decidable for infinite satisfiable timed global types

• Implementation in [Neykova et al. BEAT’14]

• Future work: can we extend timed MPSTs with parallel operation?

M
PS

T
s

C
TA

s

• Correspondence between CTAs and MPSTs

• A class of CTAs enjoying progress and liveness (based on feasibility)

• We used CTAs as types. Progress of CTAs only requires feasibility

• Recently, we convert from CTAs to timed MPSTs

Questions?

