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We study categories for reversible computing, focussing on reversible forms of event 
structures. Event structures are a well-established model of true concurrency. There exist a 
number of forms of event structures, including prime event structures, asymmetric event 
structures, and general event structures. More recently, reversible forms of these types of 
event structure have been defined. We formulate corresponding categories and functors 
between them. We show that products and coproducts exist in many cases.
We define stable reversible general event structures and stable configuration systems, and 
we obtain an isomorphism between the subcategory of the former in normal form and the 
finitely enabled subcategory of the latter.
In most work on reversible computing, including reversible process calculi, a causality 
condition is posited, meaning that the cause of an event may not be reversed before the 
event itself. Since reversible event structures are not assumed to be causal in general, we 
also define causal subcategories of these event structures.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Event structures are a well-known model of true concurrency. They consist of events and relations on events, describing 
the causes of events and conflict between events. Since the original introduction of prime event structures [16], related 
notions such as general event structures [25], often called simply event structures, which replace conflict with a set of 
consistent sets of events and causation with sets of enabling events, and asymmetric event structures [3], which make the 
conflict asymmetric, have been introduced. Winskel [24] defined a category of event structures, and used this to define 
event structure semantics of CCS.

Reversible process calculi are a well-studied field [14,8,9,17,6,13]. When considering the semantics of reversible pro-
cesses, the ability to reverse events leads to finer distinctions of a true concurrency character [18]. For instance, using CCS 
notation, the processes a | b and a.b + b.a are equivalent under interleaving semantics; however in a reversible setting we 
can distinguish them by noting that a | b allows us to perform (an event labelled by) a followed by b and then to reverse a, 
which is impossible for a.b + b.a. This motivates the study of reversible event structures.

Reversible versions of various kinds of event structures were introduced in [19,21]. Our aim here is to interpret these 
as objects in appropriate categories and study functors between them (as a foundation for using reversible event structures 
to give true concurrency semantics of reversible process calculi). Hitherto few reversible frameworks have been defined 
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categorically, though [10] used category theory to describe the relationship between RCCS processes and their histories, 
and [5] used dagger categories to define a reversible process calculus called �.

We formulate categories for the reversible prime event structures (RPESs) and reversible asymmetric event structures 
(RAESs) of [19] and for the reversible (general) event structures (RESs) of [21]. We define morphisms for each category and 
functors between them, which in some cases form adjunctions. We construct coproducts, and, in the case of RESs and a 
subcategory of RPESs (see Remark 4.22), products.

In the context of event structures and other models of concurrency, morphisms act as partial synchronisations. Event 
structure morphisms are partial functions mapping events from one event structure to events from another in such a way 
that (1) any acceptable configuration of events from the first structure is also an acceptable configuration in the second, 
and (2) if an event e1 from the first structure is enabled in such a configuration and mapped to an event e2 in the second 
structure, then applying the morphism to the configuration gives us a configuration in which e2 is enabled. When two 
functors F : B → A and G : A → B between a category of more powerful event structures A and a category of less powerful 
event structures B form an adjunction, we can say that G is an approximation which underestimates or overestimates the 
capabilities of the event structure described by the more powerful framework A when translating to B . We anticipate that 
products and coproducts will be useful when it comes to modelling reversible process calculi, as they were used by [24] to 
model parallel composition and choice respectively in the forward-only setting.

Although no functor is known from asymmetric event structures to general event structures such that the general event 
structure maps to the same domain as the asymmetric, we define a functor from reversible asymmetric event structures to 
reversible general event structures and show a correspondence between them (Theorem 6.23).

RPESs and RAESs differ from forward-only prime and asymmetric event structures by adding not only the ability for 
events to reverse, but also having a causality and prevention relation describing when events are allowed to reverse. RESs 
on the other hand modify their enablings, adding asymmetric conflict specific to each enabling in the form of a preventing 
set. Since the preventing set is specific to each enabling, RESs can have multiple different asymmetric conflicts associated 
with an event depending on the enabling being used. This is similar to how forward-only general event structures can have 
multiple different sets of causes, or enabling sets, associated with an event, unlike prime and asymmetric event structures, 
which can only have one.

We believe these variants of event structures may all prove useful for describing different reversible processes, as we 
shall illustrate in Examples 1.1, 1.2, and 1.3. Example 1.3 is related to the parallel switch of Example 1.1.7 of [25].

Having functors between the different variants of event structures improves our ability to compare systems modelled by 
different kinds of event structures. Examples 1.1 and 1.3 show reversible prime and general event structures being used to 
model CCS and π -calculus processes respectively. Having a functor which maps the RPES created by the CCS process to an 
RES allows us to compare the processes (e.g. by defining morphisms between their corresponding RESs). We can also use 
the product or coproduct of the RESs to get a parallel composition or choice between the processes if they are intended to 
be part of a larger system.

Example 1.1 (Using an RPES to model reversible CCS). The simple CCS process a | a.b can be modelled by an RPES which splits 
the b into two events, one caused by a and one caused by τ , wherein a and a are both in conflict with τ . We can also say 
that both b’s prevent τ and a from reversing before they do. We return to this in Example 4.2.

Example 1.2 (Using an RAES to model an error [19]). Suppose we wish to model a computation wherein a series of events, 
e0,e1,e2,. . . happens in a sequential fashion unless interrupted by an error event, which causes the computation to undo 
all events in reverse order and start over. We would need the error event to prevent the computation from continuing. 
However, we would not want any events from the computation to prevent the error from happening as we would have if 
we say error is in conflict with ei in an RPES. To model this we need asymmetric conflict: error prevents ei . We return to 
this in Example 5.2.

Example 1.3 (Using an RES to model π -calculus [6]). Consider the π -calculus process (νn)(a 〈n〉 | b 〈n〉 | c(x)), wherein a bound 
name n can be extruded on either channel a or b after which it can be received by c. This creates an action with two 
possible causes, which are not mutually exclusive. If c receives n after both outputs have been performed then either output 
could have caused the input, since either output could have been what caused n to become free and therefore available for 
c to receive. Hence one can argue that to describe this process with a reversible event structure, we would need a 〈n〉 or 
b 〈n〉 to be able to cause c(n). Also we would want either output to be able to reverse after c(n) has been performed as long 
as the other output has also been performed and not reversed. We return to this in Example 6.2.

We also create a category of configuration systems (CSs) [19]. CSs are a model of concurrency intended to serve a similar 
purpose as domains do for the forward-only event structures, letting the various kinds of reversible event structures be 
translated into one formalism. A CS consists of a set of events, a set of configurations of events, and transitions between 
them. We show that, just as domains can be modelled as event structures, so a subclass of CSs which we call finitely 
enabled can be modelled as RESs. We prove that our functors between RESs and finitely enabled CSs form an adjunction 
(Theorem 6.17). Furthermore they are inverses for finitely enabled CSs under certain conditions (Theorem 6.16). Having 
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these mappings in both directions is very useful, as modelling a system as a CS can often be more intuitive than an event 
structure, especially an RES with many enablings.

We further define a subcategory of the RESs which are stable (SRESs), meaning that the causes of an event cannot be 
ambiguous. While Example 1.3 required the use of a non-stable RES, Example 1.4 below describes a case where we would 
want to use an SRES to describe a reversible computation. We also define stable CSs, and functors between them and stable 
RESs.

Example 1.4 (Using an SRES to model multiple errors). Consider the scenario in Example 1.2, wherein a computation can be 
interrupted and forced to restart by an error event. We now modify it so that we have multiple error events, only one of 
which can happen at a time. Then we need to be able to say that an event ei in the computation can be reversed if one of 
the mutually exclusive error events has happened. We cannot achieve this with RAESs, as having multiple error events cause 
the same event to reverse would imply all the error events need to have occurred before we can reverse. However with 
SRESs we can realise the desired behaviour by creating a separate enabling for each error event. Since only one error event 
can exist in any given configuration, this will be stable. We return to this in Example 7.2.

We present a definition of normal form for RESs, which ensures that we only have the minimum enablings necessary to 
describe the corresponding CS. This in particular gives us mappings which are full inverses between stable finitely enabled 
CSs and stable RESs in normal form (Proposition 7.13). We also define a normaliser functor (Definition 7.17), which maps 
RESs to RESs in normal form. Some non-stable RESs become stable when normalised. Since there only exists one stable 
RES in normal form which describes any given stable CS, normalising two stable RESs which map to the same CS also 
gives us the same result. This makes normalising a useful tool for comparing stable RESs and to a lesser degree non-stable 
RESs.

With a few exceptions [20,22], reversible process calculi have always adopted causal reversibility, where an action can 
be reversed if and only if all the actions caused by it have been reversed first. By contrast, the reversible event structures 
of [19,21] that we consider here allow non-causal reversibility, inspired by bonding in biochemical processes. Hence causal 
subcategories are of interest.

We define subcategories of RESs which are (1) cause-respecting, meaning that no action can be reversed unless all the 
actions caused by it have been reversed first [19], which can be seen as a safety property for causal reversibility, and (2) 
causal, which means both cause-respecting and also that events whose consequences have all been reversed can themselves 
be reversed (a liveness property). Consider again Examples 1.1 and 1.2. The RPES in Example 1.1 is causal, but the error event 
in Example 1.2 makes the RAES non-causal, as the most recent ei event cannot reverse, despite not having caused any other 
events, unless the error event is also present in the configuration.

Our longer-term aim is to formulate event structure semantics for reversible process calculi. As a first step towards this, 
we have in subsequent work [12] defined event structure semantics of CCSK using causal reversible bundle event structures, 
and of CCSK with rollback using non-causal reversible extended bundle event structures. Bundle event structures are more 
expressive than prime event structures, but less expressive than general event structures. The causal reversible bundle event 
structures without cycles in their causation which we used to describe the semantics of CCSK could potentially have been 
expressed as causal reversible prime event structures, given that products exist in the latter (Remark 4.22), although the 
non-causal reversible extended bundle event structures we used to model rollback could not.

Other models of concurrency have also been used to define semantics of reversible process calculi. The reversible 
π -calculus has been modelled using rigid families [7], and RCCS has been modelled using configuration structures [1]. 
Both of these took advantage of the fact that categorical definitions of rigid families and configuration structures exist, 
as they used the products and coproducts to model parallel composition and choice. However, while both rigid families 
and configuration structures can model causality, since neither was designed to be reversible, they cannot model situations 
such as the ones seen in Examples 1.2 and 1.4, where the reverse transitions are not the exact inverse of the forwards 
transitions.

Structure of the paper Section 2 reviews forwards-only event structures, on which our reversible event structures are based. 
Section 3 describes the category of configuration systems, which we use to model reversible event structures. Section 4
describes the category of the reversible variant of prime event structures, while Sections 5 and 6 cover reversible asym-
metric and reversible general event structures. Section 7 investigates stable variants of general reversible event structures 
and configuration systems. Finally Section 8 describes cause-respecting and causal variants of general reversible event 
structures and configuration systems. Fig. 1 shows an overview of the categories and functors introduced in this pa-
per.

This paper is revised and extended from the preliminary workshop paper [11]. The differences can be summarised as 
follows:

• We present an additional mapping from finitely enabled configuration systems to reversible event structures in Def-
inition 6.14, which acts as a left adjoint to the mapping from reversible event structures to configuration systems 
(Theorem 6.17). It also functions as an inverse for a different group of configuration systems (Theorem 6.16).
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Fig. 1. Categories of event structures and functors between them, with the definitions where they are introduced. We use the prefix S to denote the stable 
variants, nf to denote the RESs in normal form, and F to denote the finitely enabled CSs. We use dashed lines to indicate functors which do not commute 
with the rest of the diagram and I to represent inclusions.

• We correct Definitions 7.9 and 7.6 and Proposition 7.13 because we found that some stable RESs did not correspond 
to stable CSs. We also move Definition 7.9 to Section 7, as the new functor is much better suited for dealing with 
non-stable cases, while the old one preserves stability (Propositions 7.10 and 7.11).
• We have added the notion of normal form for RESs mentioned above.
• We present revised definitions of causal and cause-respecting reversible event structures and configuration systems.
• We define reachable configuration systems as ones in which any configuration is reachable by a series of transitions 

from the empty configuration. We define a functor restricting CSs to their reachable parts, and show that it forms a 
right adjoint of an inclusion functor. Based on this we define reachably cause-respecting (resp. reachably causal) CSs as 
ones where the reachable part is cause-respecting (resp. causal).
• We provide proofs of all results.

2. Forwards-only event structures

Before describing the different categories of reversible event structures, we review the categories of forward-only event 
structures and domains, an overview of which can be found in Fig. 2. The only new work in this section is extending the 
mapping from asymmetric event structures to prime event structures into a functor, and proving that it forms the left 
adjunction of an established functor from prime event structures to asymmetric event structures (Proposition 2.20).

2.1. Domains

Forward-only event structures are based on, and map into, a kind of partial order called domains. To define domains we 
first need some notation on partially ordered sets 〈D, �〉 from [25]:

Given x ∈ D , ↓x = {x′ ∈ D | x′ � x}.
We write ↑X if X ⊆ D is compatible, meaning there exists a y ∈ D such that for all x ∈ X , x � y.
X ⊆ D is pairwise compatible if for all x, y ∈ X , ↑{x, y}.
X ⊆ D is directed if for any x, y ∈ X there exists z ∈ X such that x � z and y � z.
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Fig. 2. Categories of forward-only event structures and functors between them: PES were introduced in [16], and defined categorically along with Dom,
SES, ES, D p , Pd , P ps , and Ds in [25], AES, A, and Da were introduced in [3], and � as a mapping in [19]. The adjunction between A and � is new to this 
work. Dashed lines indicate functors which do not commute with the rest of the diagram.

〈D, �〉 is a complete partial order (CPO) if for any directed subset X ⊆ D , there exists a least upper bound  X ∈ D .
Element y ∈ D is compact if for any directed set X ⊆ D , if y � X then there exists an x ∈ X such that y � x.
K(D) is the set of compact elements of D .
A CPO 〈D, �〉 is finitary if for all x ∈ K(D), ↓x is finite.
A partial order 〈D, �〉 is coherent if for all pairwise compatible X ⊆ D , there exists a least upper bound  X ∈ D .
A complete prime of D is an element y ∈ D such that for any compatible X ⊆ D , if y � X then there exists an x ∈ X

such that y � x.
The set of complete primes of D is denoted Pr(D).
Given x ∈ D , Pr(x) =↓x∩ Pr(D).
A partial order 〈D, �〉 is prime algebraic if for any x ∈ D , x = Pr(x).

Definition 2.1. Domains are coherent, prime algebraic, finitary partial orders.

Complete primes are considered to be atomic events, which cannot be expressed as the upper bound of other elements, 
while non-prime elements x of domains are the states reached when the events of which x is the least upper bound have 
happened.

To define the category Dom, we need a notion of domain morphism, which we present in Definition 2.2.

Definition 2.2 (Domain Morphism [25]). Let 〈D0, �0〉 and 〈D1, �1〉 be domains. A domain morphism is a function f : D0→
D1 such that:

1. for all x0, y0 ∈ D0, if x �0 y then f (x) �1 f (y) where ≺ is defined as:

x≺ x′ if x� x′ and ∀x′′ ∈ D. (x� x′′ � x′ implies x= x′′ or x′ = x′′) ;
2. for all X ⊆ D0, if X is pairwise compatible then f ( X) = f (X);
3. for all X ⊆ D0, if X �= ∅ and is compatible then f (

�
X) =�

f (X).

We also define prime intervals in Definition 2.3 for use in future mappings.

Definition 2.3 (Prime Interval [25]). Let 〈D, �〉 be a domain. A prime interval is a pair [x, x′] of elements of D such that 
x ≺ x′ . We say [x, x′] ≤ [y, y′] if x = x′ � y and x  y = y′ , and ∼ is the transitive and symmetric closure of ≤.

We furthermore define the mapping [x, x′]∼ �→ p, where p is the unique element in Pr(x′) \ Pr(x), which is an iso-
morphism between the ∼-classes of prime intervals of 〈D, ⊆〉, and the complete primes of D , with the inverse function 
p �→ [ �{x ∈ D | x � p}, p]∼ .

2.2. Prime event structures

We now recall the definition of prime event structures.

Definition 2.4 (Prime Event Structure [16]). A prime event structure (PES) is a triple E = (E , <, #), where E is the set of 
events, and causality, <, and conflict, #, are binary relations on E such that

1. # is irreflexive and symmetric;
2. < is an irreflexive partial order such that for every e ∈ E , {e′ | e′ < e} is finite;
3. # is hereditary with respect to <, i.e. for all e, e′, e′′ ∈ E , if e # e′ and e < e′′ then e′′ # e′ .
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Fig. 3. Example of a PES and corresponding domain.

A PES consists of a set of events, and causality and conflict relations describing when these events can occur. If e < e′
then e′ cannot happen unless e has already happened. Moreover if e # e′ then e and e′ cannot both occur in the same 
computation. No event is allowed to have an infinite number of causes, as every event should be reachable in a finite 
number of steps. Furthermore, # is hereditary with respect to <, since if e and e′ never appear in the same configuration, 
and e′′ cannot appear in a configuration that does not contain e, then e′′ and e′ will never appear in the same configuration. 
This condition, along with # being irreflexive, also means that two events cannot be in conflict if they cause the same event.

Definition 2.5 (Configuration [16]). For any PES E = (E , <, #), we say that X ⊆ E is a configuration of E if X is left-closed 
under < and conflict-free, meaning no e, e′ ∈ X exist, such that e # e′ . We use Conf(E) to denote the set of all configurations 
of E .

We recall the definition of a PES morphism in Definition 2.6, giving us the category PES. Morphisms on event structures 
can be seen as a sort of synchronisation between the two structures, where if X is a configuration then f (X) is too, and 
two events e and e′ can only synchronise with the same image event f (e) = f (e′) if they are in conflict.

Definition 2.6 (PES morphism [25]). Let E0 = (E0, <0, #0) and E1 = (E1, <1, #1) be PESs. A morphism f : E0→ E1 is a partial 
function f : E0→ E1 such that

1. for all e ∈ E0, if f (e) �= ⊥ then {e1 | e1 <1 f (e)} ⊆ { f (e′) | e′ <0 e};
2. for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′) and f (e) #1 f (e′), then e #0 e′;
3. for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′), f (e) = f (e′), and e �= e′ , then e #0 e′ .

We can now describe functors between Dom and PES.

Definition 2.7 (From PES to Dom [25]). The functor D p : PES→ Dom is defined as:

1. D p(E) = (Conf(E), ⊆);
2. D p( f ) = f ′ where f ′(X) = { f (e) | e ∈ X}.

Definition 2.8 (From Dom to PES [25]). The functor Pd : Dom→ PES is defined as:

1. Pd(〈D, �〉) = 〈Pr(D), <, #〉 where p < p′ if p � p′ and p # p′ if not p ↑ p′;
2. Pd( f ) = f ′ where

f (p0)=
{

p1 if p0 �→ [x0, x′0]∼, f (x0)≤ f (x′0) and [ f (x0), f (x′0)]∼ �→ p1

⊥ otherwise.

Example 2.9 shows a PES modelled as a domain.

Example 2.9. The PES E , shown in Fig. 3a, with events a, b, c where a < b, a < c, and b # c, has configurations ∅, {a}, {a, b}, 
and {a, c}, and therefore D p(E) =DE is the domain seen in Fig. 3b.

2.3. Asymmetric event structures

Asymmetric event structures resemble prime event structures, with the difference being that the conflict relation e � e′1 is 
asymmetric, so that rather than e and e′ being unable to coexist in a configuration, e′ cannot be added to a configuration 

1 [3] uses the notation e ↗ e′ to denote the inverse of this.
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that contains e. The inverse of this relation, written e′ � e, may also be seen as a relation of precedence or weak causality, 
where if e′ � e (i.e. e � e′) and both events are in a configuration then e′ must have been added first. Definition 2.10
describes asymmetric event structures.

Definition 2.10 (Asymmetric Event Structure [3]). An asymmetric event structure (AES) is a triple E = (E, <, �) where E is 
a set of events, � is the precedence relation, < is the causality relation, which is an irreflexive partial order, and for all 
e, e′ ∈ E:

1. {e′′ ∈ E | e′′ < e} is finite and contains no � cycles;
2. if e < e′ then e � e′;
3. if e # e′ and e < e′′ then e′′ # e′ , where #=� ∩�.

The configurations of an AES are defined in Definition 2.11. It replaces the conflict-freeness condition in Definition 2.5
with requiring � to be well-founded, since the configuration would not otherwise be reachable in a finite number of steps, 
as e � e′ means e must have been performed before e′ if they are in the same configuration. This condition also prevents 
cycles of asymmetric conflict, which would make the configuration unreachable. Conditions 1 and 2 ensure that the partial 
order of an AES’s configurations will be finitary, which is necessary for mapping AESs to domains.

Definition 2.11 (AES Configuration [3]). Given an AES E = (E , <, �), A configuration of E is a set X ⊆ E such that

1. � is well-founded on X ;
2. for all e ∈ X , {e′ ∈ X | e′ � e} is finite;
3. X is left-closed with respect to <.

The set of all configurations of E is denoted by Conf(E).

We define a notion of morphism in Definition 2.12, giving us the category AES. This works very similarly to PES mor-
phisms, again creating a sort of synchronisation between two AESs.

Definition 2.12 (AES morphism [3]). Let E0 = (E0, <0, �0) and E1 = (E1, <1, �1) be AESs. A morphism f : E0→ E1 is a partial 
function f : E0→ E1 such that

1. for all e ∈ E0, if f (e) �= ⊥ then {e1 | e1 <1 f (e)} ⊆ { f (e′) | e′ <0 e};
2. for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′) and f (e) �1 f (e′), then e �0 e′;
3. for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′), f (e) = f (e′), and e �= e′ , then e �0 e′ .

We define a functor from AES to Dom in Definition 2.14, but to do this we first need an ordering of configurations, 
as defined in Definition 2.13. Like the functor from PES to Dom, the functor from AES to Dom maps event structures to 
their set of configurations; however, instead of ordering configurations by set inclusion, it orders them by the extension 
ordering, which allows new events to be added to a configuration only if they are not prevented by any of the existing 
events.

Definition 2.13 (� on configurations [3]). Given an AES E = (E , <, �), and configurations X, X ′ ∈ Conf(E), we say X ′ extends
X , written X � X ′ if:

1. X ⊆ X ′;
2. no e ∈ X and e′ ∈ X ′ \ X exist, such that e′ � e.

Definition 2.14 (From AES to Dom [3]). The functor Da : AES→ Dom is defined as:

1. Da(E) = 〈Conf(E), �〉;
2. given an AES morphism f : E0→ E1, Da( f ) = f ∗ where for all X ∈ Conf(E0), f ∗(X) = { f (e) | e ∈ X}.

Example 2.15 shows an AES modelled as a domain.

Example 2.15. Let the AES E = (E , <, �) be given by E = {a, b, c} and a < b and b � c. See Fig. 4a, where we use dotted 
arrows for weak causality �. Then E has configurations ∅, {a}, {c}, {a, b}, {a, c}, and {a, b, c}, and therefore Da(E) is the 
domain seen in Fig. 4b.

We define functors between AES and PES.
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a

b

c

(a) AES E

∅

{a} {c}

{a,b} {a, c}

{a,b, c}

(b) Domain of AES E

Fig. 4. Example of an AES and the corresponding domain.

Definition 2.16 (From PES to AES [3]). The functor A : PES→ AES is defined by:

1. A((E , <, #)) = (E, <, < ∪ #);
2. A( f ) = f .

The following functor from AES to PES is based on a mapping given in [19].

Definition 2.17 (From AES to PES). The functor � : AES→ PES is defined by:

1. �((E , <, �)) = (E, <, � ∩�);
2. �( f ) = f .

Proposition 2.18. � : AES→ PES is a functor.

Proof. [19] showed that � maps AESs to PESs, so we need to show that for an AES morphism f : E→ E ′ , �( f ) :�(E) →
�(E ′) is a PES morphism satisfying the conditions of Definition 2.6:

1. This is condition one of an AES morphism.
2. If �( f )(e) #′ �( f )(e′) then f (e) �′ f (e′) and f (e) �′ f (e′), which by definition of an AES morphism implies e � e′ and 

e � e′ . Hence e # e′ in �(E).
3. If �( f )(e) =�( f )(e′) and e �= e′ then, again by definition of an AES morphism, e � e′ and e � e′ .

Having established that � maps between the categories, we show it to be a functor. The proof is split in three parts:

�( f : E→ E ′) =�( f ) :�(E) →�(E ′):
Obvious since �( f ) = f , �(E) = E , and �(E ′) = E ′ .

�(1E ) = 1�(E):
Obvious since the identity function for all PES and AES objects is f (e) = e.

�( f ◦ f ′) =�( f ) ◦�( f ′):
Obvious since �( f ) = f and �( f ′) = f ′ . �
As our first result (Proposition 2.20) states, the two functors are not inverse, but form an adjunction. We shall rely on 

the following characterisation of adjunctions, based on Definition 9.1 of [2].

Definition 2.19. Let C and D be categories, and let F : D→ C and G : C→ D be functors. Then F is a left adjoint of G if one 
of the following holds:

1. there exists a natural transformation η : ID→ G ◦ F (the unit) such that for any c ∈ C, d ∈ D and morphism g : d → G(c)
there is a unique morphism ḡ : F (d) → c such that g = G(ḡ) ◦ ηd , where ηd is the component of η at d;

2. there exists a natural transformation ε : F ◦G → IC (the counit) such that for any c ∈ C, d ∈ D and morphism f : F (d) → c
there is a unique morphism f̄ : d → G(c) such that f = εc ◦ F ( f̄ ), where εc is the component of ε at c.

We shall write F � G to denote that F is left adjoint of G and G is right adjoint of F .

Proposition 2.20. � � A.
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Proof. For any AES E = (E, <, �), we have A(�(E)) = (E, <, �′) where �′ =< ∪(� ∩�).
Let the unit η : E → A(�(E)) be defined by η(e) = e for all e ∈ E . This is easily seen to be an AES morphism, noting 

that �′ ⊆� since �′ =< ∪(� ∩�) and <⊆�. Since η(e) = e, it is obviously a natural transformation. Let E be an AES and 
E ′ be a PES, and let g : E→ A(E ′) be an AES morphism. Let ḡ :�(E) → E ′ use the same mapping on events. Then clearly 
g(E) = A(ḡ) ◦ η(E) and ḡ is the only morphism with this property.

We then show that for any AES morphism g : E→ A(E ′), ḡ :�(E) → E ′ is a PES morphism, satisfying the conditions of 
Definition 2.6:

1. This is also a condition of an AES-morphism.
2. If ḡ(e) #′ ḡ(e′) then g(e) �′ g(e′) and g(e) �′ g(e′), implying that e � e′ and e � e′ , and therefore e # e′ .
3. If g(e) = g(e′) and e �= e′ then by definition of an AES morphism, e � e′ and e � e′ , and therefore e # e′ . �

Remark 2.21. In [3] it is shown that going from AES to PES via Dom gives the opposite adjunction, that is, A � Da ◦ Pd . 
Thus A has both left and right adjoints.

2.4. General event structures

General event structures, or simply event structures, work somewhat differently from PESs or AESs. Instead of causality 
they have an enabling relation, �, so that if a set of events X enables e, X � e, then e can happen in the configuration X
and any configurations X is a subset of. General event structures also replace conflict with a set of consistent sets of events, 
so that configurations cannot have any inconsistent finite subsets.

Definition 2.22 (Event structure [25]). An event structure (ES) is a triple E = (E , Con, �), where E is a set of events, Con⊆fin 2E

is the consistency relation, �⊆ Con× E is the enabling relation, and

1. if X ∈ Con and Y ⊆ X then Y ∈ Con;
2. if X � e and X ⊆ Y ∈ Con then Y � e.

ES configurations are defined in Definition 2.23. Since conflict has been replaced with consistent sets, we now require 
all finite subsets of a configuration to be consistent. In order to ensure that the configuration is reachable, we need there to 
exist a sequence in which the events could have happened.

Definition 2.23 (Configuration [25]). Given an ES E = (E , Con, �), a configuration of E is a set X ⊆ E such that

1. for all X ′ ⊆fin X , X ′ ∈ Con;
2. for all e ∈ X , there exists a sequence e0, e1, . . . , en such that en = e and for all 0 ≤ i ≤ n, {e0, . . . , ei−1} � ei .

Again, the set of all configurations of E is denoted Conf(E).

We define an ES morphism in Definition 2.24, giving us the category ES.

Definition 2.24 (ES morphism [25]). Let E0 = (E0, Con0, �0) and E1 = (E1, Con1, �1) be event structures. An ES morphism is 
a partial function f : E0→ E1 such that

1. for all e0 ∈ E0, if f (e0) �= ⊥ and X �0 e0, then f (X) �1 f (e0);
2. if X ∈ Con0 then f (X) ∈ Con1;
3. for all e0, e′0 ∈ E0, if {e0, e′0} ∈ Con0 and f (e0) = f (e′0) �= ⊥ then e0 = e′0.

Stable event structures, defined in Definition 2.25, are a subset of event structures, which along with ES morphisms 
between stable event structures make up the category SES. An ES is stable if in any given configuration, each event has 
a unique enabling set.

Definition 2.25 (Stable event structure [25]). A stable event structure (SES) is an event structure E = (E , Con, �) such that if 
X � e, X ′ � e and X ∪ X ′ ∪ {e} ∈ Con then X ∩ X ′ � e.

We then define functors from PES to SES and from SES to Dom.

Definition 2.26 (From PES to SES [25]). The functor P ps : PES→ SES is defined as:

1. P ps((E , <, #)) = (E , Con, �) where Con= {X ⊆fin E | e, e′ ∈ X⇒¬(e # e′)} and X � e if {e′ | e′ < e} ⊆ X ∈ Con;
2. P ps( f ) = f ′ where f ′(X) = { f (e) | e ∈ X}.
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∅

{a} {b}

{a, c} {b, c}

Fig. 5. Domain corresponding to SES E of Example 2.29.

Remark 2.27. AESs are not as easily mapped into ESs. Consider the AES E = (E , <, �) where E = {a, b} and a �b. An attempt 
to describe E as a ES (E , Con, �) where E = {a, b} would require ∅ � a and {b} ∈ Con, but not {b} � a, which is not possible. 
We shall see that matters are different in the reversible setting, thanks to SRES enablings having a preventing set.

Definition 2.28 (From SES to Dom [25]). The functor Ds : SES→ Dom is defined as:

1. Ds((E , Con, �)) = 〈Conf(E), ⊆〉;
2. Ds( f ) = f .

Example 2.29 shows an SES modelled as a domain.

Example 2.29. E = (E , Con, �) where E = {a, b, c}, Con= {∅, {a}, {b}, {a, c}, {b, c}}, and ∅ � a, ∅ � b, {a} � c, and {b} � c can 
be represented by the domain Ds(E) seen in Fig. 5.

We now have all the categories and functors seen in Fig. 2.

3. Configuration systems

Before we start describing the various categories of reversible event structures, we describe a model of concurrency, into 
which we can translate the reversible event structures. Obviously domains cannot model reversibility, and so we need a 
different model. We adopt configuration systems [19] (Definition 3.1). These consist of a set of events, E , some of which, F , 
are reversible, a set C of configurations on these, and an optionally labelled transition relation → such that if X

A∪B−−−→ Y
then the events of A can happen and the events of B can be undone in any order starting from configuration X , resulting 
in Y . When discussing reversible events we will use e to denote reversing e and e∗ to denote that e may be performed or 
reversed and X + e∗ to denote X ∪ {e} if e∗ = e and X \ {e} if e∗ = e. We may also leave out Y when describing such a 
transition, since it is implied that Y = (X \ B) ∪ A. A CS is shown in Example 3.2.

We define the category of CSs, construct coproducts (Definition 3.5) and products (Definition 3.7), and extend the map-
pings from AESs and PESs to CSs defined by [19] into functors, along with a new functor from ESs to CSs (Definition 3.14). 
We also define reachability in CSs and a subcategory of CSs where every configuration is reachable (Definition 3.16) and a 
functor mapping CSs to their reachable subsystems.

Definition 3.1 (Configuration system [19]). A configuration system (CS) is a quadruple C = (E , F , C, →) where E is a set of 
events, F ⊆ E is a set of reversible events, C ⊆ 2E is the set of configurations, and → C × 2E∪F × C is a labelled transition 
relation such that if X

A∪B−−−→ Y then:

1. A ∩ X = ∅;
2. B ⊆ X ∩ F ;
3. Y = (X \ B) ∪ A;

4. for all A′ ⊆ A and B ′ ⊆ B , we have X
A′∪B ′−−−→ Z

(A\A′)∪(B\B ′)−−−−−−−−−→ Y (where Z = (X \ B ′) ∪ A′ ∈ C).

Example 3.2 (Configuration System). The figure below shows a CS with the events a and b. Notice that there exist reverse 
transitions, which remove events from the configuration, and that because we have a transition going directly from {b} to 
{a}, we must be able to go from {b} to {a} both via ∅ and via {a, b}. However, despite there existing paths from ∅ to {a, b}
via {a} and {b}, we do not require a direct transition ∅ {a,b}−−−→ {a, b}. In future examples we will leave out the labels of the 
transitions to avoid clutter, as they are easily derived from the configurations.
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∅

{a} {b}

{a,b}

{a}
{b}

{b} {a}

{b}

{b,a}

{b}

{a}

CS transitions have a lot more freedom than domains in how their transitions allow events to happen, as their transitions 
are not derived from an ordering. The only requirement of their transitions is that when events can happen concurrently, 
they must also be able to happen in any order.

We introduce a notion of morphism in Definition 3.3, creating the category CS. The two first conditions in this definition 
ensure that morphisms preserve configurations and transitions, while the third condition corresponds to the third condition 
in Definitions 2.6, 2.12, and 2.24, ensuring that two events which map to the same event cannot appear in the same 
configuration.

Definition 3.3 (CS morphism). Let C0 = (E0, F0, C0, →0) and C1 = (E1, F1, C1, →1) be configuration systems. A CS morphism 
is a partial function f : E0→ E1 such that

1. for any X ∈ C0, f (X) ∈ C1;

2. for any X, Y ∈ C0, A ⊆ E0, and B ⊆ F0, if X
A∪B−−−→0 Y and f (A ∪ B) �= ∅ then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y );
3. for all e0, e′0 ∈ E0, if f (e0) = f (e′0) �= ⊥ and e0 �= e′0 then there exists no X ∈ C0 such that e0, e′0 ∈ X .

Proposition 3.4. CS where CSs are objects and CS morphisms are arrows, is a category.

Proof. Since CS morphisms are partial functions they are obviously associative, and f (e) = e is an identity arrow. Hence 
we only need to prove composability, meaning that given CSs C0, C1, and C2 and morphisms f : C0→ C1 and g : C1→ C2, 
g ◦ f : C0→ C2 is a morphism. Each condition of Definition 3.3 is proved separately:

1. Since f is a CS morphism, f (X) ∈ C1, and since g is a CS morphism, for any X1 ∈ C1, g(X1) ∈ C2, and therefore 
g( f (X)) ∈ C2.

2. Since f is a CS morphism, f (X) 
f (A)∪ f (B)−−−−−−→2 f (Y ) and, since g is a CS morphism, this implies that g( f (X)) 

g( f (A))∪g( f (B))−−−−−−−−−−→
g( f (Y )).

3. If g( f (e0)) = g( f (e′0)) �= ⊥ then f (e0) = e1 and f (e′0) = e′1 for some e1, e′1 ∈ E1 such that g(e1) = g(e′1) �= ⊥. Hence 
either e1 = e′1 or no X1 ∈ C1 exists such that e1, e′1 ∈ X1.
In the first case, since f is a morphism, by definition, if e0 �= e′0 then no X ∈ C0 exists such that e0, e′0 ∈ X .
In the second, by definition for any X0 ∈ C0, f (X0) ∈ C1, and therefore there cannot exist any X ∈ C0 such that 
e0, e′0 ∈ X . �

We construct a coproduct of two CSs in Definition 3.5. A coproduct acts as a ‘choice’ between which of the two CSs 
to behave like, as illustrated by Fig. 6. We do this by making a CS, which includes both sets of events, with their orig-
inal configurations and transitions, including the ones going to and from the empty configuration, but not creating any 
configurations with events from both.

∅

{a}{b}

{a,b}

+
∅

{c} {d}

{c,d}

=
∅

{a}{b}

{a,b}

{c} {d}

{c,d}

Fig. 6. Example of a coproduct.
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∅

{a}{b}

{a,b}

×
∅

{c}

=
∅

{(a,∗)}{(b,∗)}{(a, c)} {(b, c)}{(∗, c)}

{(a,∗), (b,∗)} {(a,∗), (b, c)}{(a,∗), (∗, c)}{(a, c), (b,∗)} {(b,∗), (∗, c)}

{(a,∗), (b,∗), (∗, c)}

Fig. 7. Example of a Product.

Definition 3.5 (CS coproduct). Given CSs C0 = (E0, F0, C0, →0) and C1 = (E1, F1, C1, →1), we can construct C0 + C1 =
(E , F , C, →) with injections i0 and i1 where:

1. E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1};
2. F = {(0, e) | e ∈ F0} ∪ {(1, e) | e ∈ F1};
3. for j ∈ {0, 1} and e ∈ E j we have i j(e) = ( j, e);
4. X ∈ C iff ∃X0 ∈ C0.i0(X0) = X or ∃X1 ∈ C1.i1(X1) = X ;

5. X
A∪B−−−→ Y iff there exist j ∈ {0, 1}, and X j, Y j, A j, B j ⊆ E j such that i j(X j) = X , i j(Y j) = Y , i j(A j) = A, i j(B j) = B , and 

X j

A j∪B j−−−−→ j Y j .

Proposition 3.6. Given CSs C0 and C1 , C0 + C1 is their coproduct in CS.

Proof. Let C0 = (E0, F0, C0, →0), C1 = (E1, F1, C1, →1), and C0 + C1 = (E , F , C, →). Then, since events from Ei interact 
with each other in the same way in C0 + C1 as in Ci and events from E0 are never in the same configurations as events 
from E1, i0 and i1 are clearly morphisms.

The coproduct C0 + C1 of C0 and C1 must satisfy the universal property that if there exist morphisms f0 : C0→ C2 and 
f1 : C1 → C2 then there exists a unique morphism f : C0 + C1 → C2 such that f ◦ i0 = f0 and f ◦ i1 = f1. In this case we 
define f as f (( j, e)) = f j(e).

Obviously i0 ◦ f = f0 and i1 ◦ f = f1, so we prove f is a morphism, meaning it satisfies the conditions in Definition 3.3:

1. Suppose X
A∪B−−−→ Y in C0 + C1. Then there exists j ∈ {0, 1} and X j, Y j, A j, B j ⊆ E j such that i j(X j) = X , i j(Y j) = Y , 

i j(A j) = A, i j(B j) = B , and X j

A j∪B j−−−−→ j Y j . Therefore f j(X j) 
f j(A j)∪ f j(B j)−−−−−−−−→2 f j(Y j).

2. Suppose X ∈ C. Then there exist j ∈ {0, 1} and X j ∈ C j such that i j(X j) = X . This implies f j(X j) ∈ C2.
3. Suppose f (( j, e)) = f (( j′, e′)) �= ⊥ and ( j, e) �= ( j′, e′). Then either j = j′ or j �= j′ .

If j = j′ then f j(e) = f j(e′), implying since e �= e′ , there cannot exist X j ∈ C j such that e, e′ ∈ X j , and therefore there 
does not exist X ∈ C such that ( j, e), ( j′, e′) ∈ X .
If j �= j′ then there does not exist X ∈ C such that ( j, e), ( j′, e′) ∈ X . �

We also construct a product of CSs in Definition 3.7. A product can be described as the parallel composition of two CSs, 
as illustrated by Fig. 7. We do this by creating a CS where the events from one set of events can either happen on their 
own or synchronise with an event from the other CS. When an action happens in one CS without synchronising with an 
action from the other, we use ∗ instead of the other action. Configurations in this new CS must consist of events such that 
if one looks only at the events that came from one of the CSs, without considering what they synchronised with, they must 
be distinct and form a configuration in the original CS. Similarly, projecting a transition onto one of the original CSs, must 
yield a transition unless all the events being added or removed are events from the other CS that have not synchronised 
with anything.

Definition 3.7 (partially synchronous CS product). Given CSs C0 = (E0, F0, C0, →0) and C1 = (E1, F1, C1, →1), we can construct 
C0 × C1 = (E , F , C, →) with projections π0 and π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. F = F0 ×∗ F1 = {(e, ∗) | e ∈ F0} ∪ {(∗, e) | e ∈ F1} ∪ {(e, e′) | e ∈ F0 and e′ ∈ F1};
3. for j ∈ {0, 1} and (e0, e1) ∈ E we have π j((e0, e1)) = e j .
4. X ∈ C if:
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(a) π0(X) ∈ C0;
(b) π1(X) ∈ C1;
(c) for all e, e′ ∈ X , if π0(e) = π0(e′) �= ∗ or π1(e) = π1(e′) �= ∗ then e = e′ .

5. X
A∪B−−−→ Y if:

(a) if π0(A ∪ B) �= ∅ then π0(X) 
π0(A)∪π0(B)−−−−−−−−→0 π0(Y );

(b) if π1(A ∪ B) �= ∅ then π1(X) 
π1(A)∪π1(B)−−−−−−−−→1 π1(Y );

(c) B ⊆ X .

Proposition 3.8. If C0 and C1 are CSs then C0 × C1 is their product in CS.

Proof. Let C0 = (E0, F0, C0, →0), C1 = (E1, F1, C1, →1), and C0 × C1 = (E , F , C, →). Then π0 and π1 as in Definition 3.7
are clearly morphisms.

A product is formally defined in the following way: if there exist morphisms f0 : C2→ C0 and f1 : C2→ C1 then there 
exists a unique morphism f : C2 → C0 × C1 such that π0 ◦ f = f0 and π1 ◦ f = f1. We define f as f (e) = ( f0(e), f1(e)), 
where f i(e) = ∗ if it is not defined.

Clearly π0 ◦ f = f0 and π1 ◦ f = f1, so we simply need to show that f is a morphism, meaning it satisfies the conditions 
of Definition 3.3:

1. If X ∈ C2 then f0(X) ∈ C0 and f1(X) ∈ C1, and since f0 and f1 are morphisms, there cannot exist e2, e′2 ∈ X such that 
f0(e2) = f0(e′2) �= ⊥ or f1(e2) = f1(e′2) �= ⊥ and e2 �= e′2, implying f (X) ∈ C.

2. If X
A∪B−−−→2 Y then f0(X) 

f0(A)∪ f0(B)−−−−−−−→0 f0(Y ) and f1(X) 
f1(A)∪ f1(B)−−−−−−−→1 f1(Y ). Therefore f (X) 

f (A)∪ f (B)−−−−−−→ f (Y ).
3. If f (e) = f (e′) �= ⊥ and e �= e′ then for j ∈ {0, 1}, f j(e) = f j(e′), and there exists j′ ∈ {0, 1} such that f j′ (e) = f j′ (e′) �= ⊥. 

This implies there does not exist X ∈ C2 such that e, e′ ∈ X . �
Functors exist from both PES, AES, and ES to CS as described in Definitions 3.9, 3.11, and 3.14. The first two are based 

on mappings from [19].
The definitions of configurations are not the same here as they were when mapping to domains in the previous section, 

discarding the conditions which ensured the configurations would be reachable, and keeping only those concerned with 
conflict. This is because (1) CSs do not have the same requirements of the relationships between their transitions and 
configurations as domains, and (2) it will become much more difficult to tell which configurations are reachable (in a 
finite number of steps) once we start discussing reversible event structures. Therefore not restricting ourselves to reachable 
configurations now will mean that when we map our forward-only event structures into their reversible variants their CS 
representation will be preserved.

Of the conditions for transitions in Definition 3.9, (a) to (c) are part of Definition 3.1, and (d) simply ensures that e can 
only happen in transitions going from configurations that contain all of e’s causes.

Definition 3.9 (From PES to CS). The functor C p : PES→ CS is defined as

1. C p((E , <, #)) = (E, ∅, C, →) where C = {X ⊆ E | X is conflict-free} and X
A−→ Y if:

(a) X, Y ∈ C;
(b) Y = X ∪ A;
(c) A ∩ X = ∅;
(d) for every e ∈ A, {e′ ∈ E | e′ < e} ⊆ X ;

2. C p( f ) = f .

Proposition 3.10. C p is a functor from PES to CS.

Proof. It was established in [19] that C p maps PESs to CSs, so we need to show that if f : E0→ E1 is a PES morphism then 
f : C p(E0) → C p(E1) is a CS morphism satisfying the conditions of Definition 3.3:

1. Suppose X ∈ C0. Then X is conflict-free. Since, by definition of a PES morphism, f (e0) #1 f (e′0) ⇒ e0 #0 e′0, this implies 
that f (X) is conflict-free, and therefore f (X) ∈ C1.

2. Suppose X
A∪B−−−→0 Y . Then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y ) because we can observe that F0 and therefore B is empty and:
(a) f (X), f (Y ) ∈ C1 since X, Y ∈ C0, as implied by item 1.
(b) f (Y ) = f (X) ∪ f (A) since Y = X ∪ A.
(c) f (A) ∩ f (X) = ∅ since A ∩ X = ∅, and by definition of a PES morphism, for all e0, e′0 ∈ E0, if f (e0) = f (e′0) �= ⊥ and 

e0 �= e′ then e0 #0 e′ , implying e0, e′ /∈ (X ∪ A) = Y ∈ C0, since Y is conflict-free.
0 0 0
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(d) For every a ∈ f (A), {e ∈ E1 | e <1 f (a)} ⊆ f (X) because for every a0 ∈ A, {e ∈ E0 | e <0 a0} ⊆ X , and by definition of 
a PES morphism, {e1 | e1 <1 f (a0)} ⊆ { f (e) | e <0 a0}.

3. Suppose f (e0) = f (e′0) �= ⊥ and e0 �= e′0. By definition of a PES morphism, e0 #0 e′0, and since all X ∈ C0 are conflict-free, 
there exists no X ∈ C0 such that e0, e′0 ∈ X .

Then to prove it is a functor we simply need to show that:

C p( f : E1→ E2) = C p( f ) : C p(E1) → C p(E2), which is obvious since C p( f ) = f , C p(E0) = E0, and C p(E1) = E1.

C p(1E ) = 1C p(E) since the identity function for all PES and CS objects is f (e) = e.

C p( f ◦ f ′) = C p( f ) ◦ C p( f ′) since C p( f ) = f and C p( f ′) = f ′ . �
In addition to the conditions for transitions in the previous definition, Definition 3.11 also states that if e′ prevents e, 

then e cannot be part of a transition which contains e′ either as part of the start configuration or as one of the events being 
performed simultaneously.

Definition 3.11 (From AES to CS). The functor Ca : AES→ CS is defined as:

1. Ca((E , <, �)) = (E, ∅, C, →) where C = {X ⊆ E |� is well-founded on X} and X
A−→ Y if:

(a) X, Y ∈ C;
(b) Y = X ∪ A;
(c) A ∩ X = ∅;
(d) for every e ∈ A, {e′ ∈ E | e′ < e} ⊆ X and {e′ ∈ E | e′ � a} ∩ (X ∪ A) = ∅;

2. Ca( f ) = f .

Proposition 3.12. Ca is a functor from AES to CS.

Proof. It was established in [19] that Ca maps AESs to CSs, so we need to show that if f : E0 → E1 is an AES morphism 
then f : Ca(E0) → Ca(E1) is a CS morphism because it satisfies the conditions of Definition 3.3:

1. Suppose X ∈ C0. Then �0 is well-founded on X . Since, by definition of an AES morphism, f (e0) �1 f (e′0) ⇒ e0 �0 e′0, 
this implies that �1 is well-founded on f (X), and therefore f (X) ∈ C1

2. Suppose X
A∪B−−−→0 Y . Then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y ) because we can observe that F0 and therefore B must be empty, and:
(a) f (X), f (Y ) ∈ C1 because X, Y ∈ C0 and we already proved item 1.
(b) Obviously f (Y ) = f (X) ∪ f (A), since Y = X ∪ A.
(c) f (A) ∩ f (X) = ∅ because A ∩ X = ∅, and by definition of an AES morphism, for all e0, e′0 ∈ E0, if f (e0) = f (e′0) �= ⊥

and e0 �= e′0 then e0 #0 e′0. Hence e0, e′0 /∈ (X ∪ A) = Y ∈ C0, since �0 is well-founded on Y .
(d) For every a ∈ f (A), there must exist an a0 ∈ A such that f (a0) = a, and {e ∈ E0 | e �0 a0} ∩ (X ∪ A) = ∅. If there 

exists an e1 ∈ {e ∈ E1 | e �1 a} ∩ ( f (X) ∪ f (A)) then there must also exist an e0 ∈ X ∪ A such that f (e0) = e1. Since 
f (e0) �1 f (a0), by definition of an AES morphism, e0 �0 a0, but because {e ∈ E0 | e �0 a0} ∩ (X ∪ A) = ∅ we have a 
contradiction. Therefore {e ∈ E1 | e �1 a} ∩ ( f (X) ∪ f (A)) = ∅.

(e) For every a ∈ f (A), {e ∈ E1 | e <1 a} ⊆ f (X) because for every a0 ∈ A, {e ∈ E1 | e <0 a0} ⊆ X , and by definition of an 
AES morphism, {e1 | e1 <1 f (a0)} ⊆ { f (e) | e <0 a0}.

3. Suppose f (e0) = f (e′0) �= ⊥ and e0 �= e′0. By definition of an AES morphism, e0 #0 e′0, and since �0 is well-founded on 
all X ∈ C0 we have e0, e′0 /∈ X .

The rest of the proof is identical to that of Proposition 3.10. �
Example 3.13 shows how the AES from Example 2.15 can be mapped to a CS.

Example 3.13. The AES E = (E , <, �) where E = {a, b, c} and a < b and b � c, maps to the CS Ca(E), shown in the diagram 
below:

∅

{a} {b} {c}

{a,b} {a, c}{b, c}

{a,b, c}
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Notice that, unlike when we used the domain Da(E) to model E in Example 2.15, we sometimes get transitions with 
multiple events, such as ∅ {a,c}−−−→ {a, c}, but at other times transitions such as ∅ → {a} → {a, b} exist without ∅ → {a, b}, 
allowing us to distinguish between concurrent and sequential events. We also get the unreachable configurations {b} and 
{b, c}, which were not present in the domain.

The first three conditions on transitions in Definition 3.14 are similar to the two previous definitions, but that condition 
(d) instead states that e can only be part of a transition if e is associated with an enabling set which is a subset of the 
starting configuration.

Definition 3.14 (From ES to CS). The functor C : ES→ CS is defined as:

1. C((E , Con, �)) = (E, ∅, C, →) where X ∈ C if for all X ′ ⊆fin X , X ′ ∈ Con, and X
A−→ Y if:

(a) X, Y ∈ C;
(b) Y = X ∪ A;
(c) A ∩ X = ∅;
(d) for every e ∈ A, there exists an X ′ ⊆fin X such that X ′ � e;

2. C( f ) = f .

Proposition 3.15. C is a functor from ES to CS.

Proof. We first prove that for any ES E = (E , Con, �), C(E) = (E , F , C, →) is a CS, meaning that whenever X
A∪B−−−→ Y :

1. A ∩ X = ∅, B ⊆ F = ∅, and Y = X ∪ A according to the definition of C .

2. For all A′ ⊆ A, we have X
A′−→ X∪ A′ A\A′−−−→ Y because the conditions for transitions in Definition 3.14 are clearly satisfied 

for both transitions.

We then show that if f : E0→ E1 is an ES morphism then f : C(E0) → C(E1) is a CS morphism satisfying the conditions 
of Definition 3.3:

1. Suppose X ∈ C0. Then for all X ′ ⊆fin X , X ′ ∈ Con0. Hence f (X ′) ∈ Con1, and therefore f (X) ∈ C1.

2. Suppose X
A∪B−−−→0 Y . Then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y ) because we can observe that F0 and therefore B must be empty, and:
(a) f (X), f (Y ) ∈ C1 since X, Y ∈ C0, this is implied by the first item.
(b) Obviously f (Y ) = f (X) ∪ f (A), since Y = X ∪ A.
(c) f (A) ∩ f (X) = ∅ because A ∩ X = ∅, and for all e, e′ ∈ Y , {e, e′} ∈ Con0, meaning either e = e′ or f (e) �= f (e′).
(d) For every a ∈ f (A), there exists an X ′ ⊆fin f (X) such that X ′ �1 a because for every a0 ∈ A, there exists an X ′0 ⊆fin X

such that X ′0 �0 a0, implying f (X ′0) �1 f (a0).
3. Suppose f (e0) = f (e′0) �= ⊥ and e0 �= e′0. Then {e0, e′0} /∈ Con0, and therefore there does not exist X ⊆ E0 such that 

e0, e′0 ∈ X and for all X ′ ⊆fin X , X ′ ∈ Con0.

Having proved that C maps from ES to CS we prove it to be a functor similarly to previous functors. �
We will usually not be interested in any part of a CS which is not reachable from the empty configuration ∅, and so we 

will define a functor to remove those parts. However, we first define reachability in Definition 3.16.

Definition 3.16 (Reachable CS). Given a CS C = (E , F , C, →), a configuration X ∈ C is reachable if there exists some sequence 

∅ A0∪B0−−−−→ . . .
An∪Bn−−−−→ X . A configuration X ∈ C is forwards reachable if there exists some sequence ∅ A0−−→ . . .

An−−→ X . We say 
that C is reachable if all configurations in C are reachable. We let RCS be the category consisting of reachable CSs and the 
CS morphisms between them.

We then define the reachable subsystem of a CS and a functor Reach restricting the CS to said subsystem in Defini-
tion 3.17.

Definition 3.17 (Restricting to Reachable). Given a CS C = (E , F , C, →), the reachable part of C , (E, F , C′, →′), is defined as:

1. C′ = {X | X ∈ C, X is reachable}
2. X

A∪B−−−→
′

X ′ if X
A∪B−−−→ X ′ and X, X ′ ∈ C′

We define a functor Reach : CS→ RCS such that:
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PES

Dom
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CSRCS
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Reach

Fig. 8. Categories of forward-only event structures and CSs. We use dashed lines to indicate functors which do not commute with the rest of the diagram.

1. Reach(C) is the reachable part of C
2. Reach( f ) = f

Proposition 3.18. Reach is a functor from CS to RCS.

Proof. First we show that Reach is a mapping, meaning:

1. If C is a CS then Reach(C) is an RCS.
2. If f is a CS morphism then Reach( f ) is an RCS morphism.

This holds because:

1. Obvious.
2. Here we need to show that for any CSs C0 = (E0, F0, C0, →0) and C1 = (E1, F1, C1, →1) and CS morphism f : C0 →

C1, if X ∈ C0 is reachable then f (X) is reachable in C1. But clearly, if ∅ A0∪B0−−−−→ . . .
An∪Bn−−−−→ X , then ∅ f (A0)∪ f (B0)−−−−−−−−→

. . .
f (An)∪ f (Bn)−−−−−−−−→ f (X).

In addition, since all reachable configurations were configurations of the original CS, condition 3 of Definition 3.3 is 
clearly satisfied.

The rest of the proof is similar to previous functors. �
Proposition 3.19. Let I be the inclusion functor I : RCS→ CS. Then I � Reach.

Proof. For any CS C = (E , F , C, →) we define counit ε : I(Reach(C)) → C such that for all e ∈ E , ε(e) = e. Clearly ε is a CS 
morphism.

We then show that given an RCS C , a CS C′ , and a morphism f : I(C) → C′ , f : C→ Reach(C′) is an RCS morphism. As 
established in the proof of Proposition 3.18, if X is a reachable configuration, then f (X) is a reachable configuration, and 
the result follows. �

RCS is a full subcategory of CS, i.e. includes all the functors between reachable CSs. Moreover, Proposition 3.19 establishes 
that RCS is coreflective in CS, meaning its inclusion functor has a right adjoint.

We then have the categories seen in Fig. 8, which illustrates that in addition to modelling reversibility, CSs are more 
powerful than domains even in the forward-only world, as they are able to model non-stable ESs.

4. Reversible prime event structures

We are now ready to start adding reversibility to our event structures, with the goal of defining the categories and 
functors seen in the bottom half of Fig. 9.

We begin with PESs. Reversible prime event structures (Definition 4.1) consist of events, some of which may be reversible, 
causality and conflict similar to a PES (though conflict is not necessarily hereditary), reverse causality, which works similarly 
to causality, in that e ≺ e′ means e′ can only be reversed in configurations containing e, and finally prevention, which 
resembles the asymmetric conflict of AESs, in that e �e′ means that e′ can only be reversed in configurations not containing 
e. Example 4.2 shows how we can use these to describe a reversible CCS process with causal reversibility. We define the 
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Fig. 9. Categories of event structures and functors between them: We extend Fig. 2 by categorically defining RPESs, RAESs, CSs, P p , �p , Pa , �a , C p , C pr , 
Ca , Cra , and Ar [19] and RESs and Pr [21]. The categories SRES (Definition 7.1), SCS, SFCS (Definition 7.6), RCS, and FCS (Section 6.11), and functors P pr , 
Par , Reach, Cr , C , and R are new, as well as the noted adjunctions. We use dashed lines to indicate functors which do not commute with the rest of the 
diagram.

E = (E , F ,<,#,≺,�) where:
E = {a,b, c,d}
F = {a,b}
b < c
a # b, a # d, c # d
c ≺ a, c ≺ b, a≺ a, b ≺ _
d � b

(a) RPES E

∅

{a} {b}{c} {d}

{a, c} {b, c} {b,d}

(b) The CS derived from E

Fig. 10. Example of an RPES and corresponding CS.

category of RPESs, along with coproducts (Definition 4.6), and extend the mappings from PESs to RPESs, and from RPESs 
to PESs and CSs defined by [19] into functors. We show that the functors between RPESs and PESs form an adjunction 
(Proposition 4.16).

Definition 4.1 (RPES [19]). A reversible prime event structure (RPES) is a sextuple E = (E , F , <, #, ≺, �) where E is the set of 
events and

1. < is an irreflexive partial order such that for every e ∈ E , {e′ ∈ E | e′ < e} is finite and conflict-free;
2. # is irreflexive and symmetric;
3. if e < e′ then not e # e′;
4. F ⊆ E is the set of reversible events;
5. � ⊆ E × F is the prevention relation;
6. ≺⊆ E × F is the reverse causality relation where for each e ∈ F , e ≺ e and {e′ | e′ ≺ e} is finite and conflict-free;
7. if e ≺ e′ then not e � e′;
8. # is hereditary with respect to sustained causation ≺≺, where e ≺≺ e′ means that e < e′ and if e ∈ F then e′ � e;
9. ≺≺ is transitive.

Example 4.2. Recall Example 1.1 wherein we wanted to model the reversible CCS process a | a.b. This can be modelled by 
an RPES wherein we have two b events bτ and ba such that τ < bτ and a < ba , bτ # ba , a # τ , and a # τ , and bτ � τ and 
ba � a.

As previously, in order to define the category RPES, we need a notion of morphism, which we describe in Definition 4.3. 
An RPES morphism can be seen as a combination of a PES morphism for the forwards part and an AES morphism for the 
reverse part.
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E ′ = (E ′, F ′,<′,#′,≺′,�′) where:
E ′ = {e1, e2}
F ′ = {e1, e2}
e1 <′ e2

e2 ≺′ e1, e1 ≺′ e1, e2 ≺′ e2

e1 �′ e2

(a) RPES E ′
∅

{e1} {e2}

{e1, e2}

(b) The CS derived from E ′

Fig. 11. Another RPES and corresponding CS.

Definition 4.3 (RPES morphism). Let E0 = (E0, F0, <0, #0, ≺0, �0) and E1 = (E1, F1, <1, #1, ≺1, �1) be RPESs. An RPES mor-
phism f : E0→ E1 is a partial function f : E0→ E1 such that

1. for all e ∈ E0, if f (e) �= ⊥ then {e1 | e1 <1 f (e)} ⊆ { f (e′) | e′ <0 e};
2. for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′) and f (e) #1 f (e′) then e #0 e′;
3. for all e ∈ F0, if f (e) �= ⊥ then {e1 | e1 ≺1 f (e)} ⊆ { f (e′) | e′ ≺0 e};
4. for all e ∈ E0 and e′ ∈ F0, if f (e) �= ⊥ �= f (e′) and f (e) �1 f (e′) then e �0 e′;
5. for all e, e′ ∈ E0, if f (e) = f (e′) �= ⊥ and e �= e′ then e #0 e′;
6. f (F0) ⊆ F1.

Proposition 4.4. RPES, where RPESs are objects and RPES morphisms are arrows, is a category.

Proof. Since RPES morphisms are partial functions they are obviously associative, and f (e) = e is an identity arrow; so we 
only need to prove composability, meaning that given RPESs E0, E1, and E2 and morphisms f : E0 → E1 and g : E1 → E2, 
g ◦ f : E0→ E2 is a morphism.

Each of the six conditions of Definition 4.3 is proved separately:

1. If g( f (e)) �= ⊥ then there must exist e1 ∈ E1 and e2 ∈ E2 such that f (e) = e1 and g(e1) = e2. Since f and g are 
morphisms, {e′1 | e′1 <1 e1} ⊆ { f (e′) | e′ <0 e} and {e′2 | e′2 <2 e2} ⊆ {g(e′1) | e′1 <1 e1}, and therefore {e′2 | e′2 <2 g( f (e))} ⊆
{g( f (e′)) | e′ <0 e}.

2. If g( f (e)) �= ⊥ �= g( f (e′)) then there must exist e1, e′1 ∈ E1 and e2, e′2 ∈ E2 such that f (e) = e1, f (e′) = e′1, g(e1) = e2, 
and g(e′1) = e′2. By definition of a morphism, if e2 # e′2 then e1 # e′1, and if e1 # e′1 then e # e′ .

3. Similar to the first condition.
4. Similar to the second condition.
5. If g( f (e)) = g( f (e′)) �= ⊥ then there must exist e1, e′1 ∈ E1 and e2 ∈ E2 such that f (e) = e1, f (e′) = e1, and g(e1) =

g(e′1) = e2. If e1 = e′1 then, since f is a morphism, e #0 e′ . If e1 �= e′1 then e1 #1 e′1, implying that e #0 e′ .
6. Obvious, since f (F0) ⊆ F1 and g(F1) ⊆ F2. �

Example 4.5 (RPES morphism). Consider the RPESs E from Fig. 10 and E ′ from Fig. 11. Then

f (e)=
{

e1 if e ∈ {a,b}
e2 if e = c

is an RPES morphism between them, and a CS morphism between their associated CSs.

We also construct a coproduct of two RPESs in Definition 4.6. A coproduct of two RPESs, which can be represented by 
the CSs from Fig. 6, is shown in Example 4.8. Similarly to Definition 3.5, we keep the two sets of events separate, and with 
the same causality, conflict, reverse causality, and prevention as they had in their respective original RPESs, but add conflict 
and prevention between the events that come from different RPESs.

Definition 4.6 (RPES coproduct). Given RPESs E0 = (E0, F0, <0, #0, ≺0, �0) and E1 = (E1, F0, <1, #1, ≺1, �1), we can con-
struct E0 + E1 = (E, F , <, #, ≺, �) with injections i0 and i1 where:

1. E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1};
2. F = {(0, e) | e ∈ F0} ∪ {(1, e) | e ∈ F1};
3. ( j, e) < ( j′, e′) iff j = j′ and e < j e′;
4. ( j, e) # ( j′, e′) iff j �= j′ or e # j e′;
5. ( j, e) ≺ ( j′, e′) iff j = j′ and e ≺ j e′;
6. ( j, e) � ( j′, e′) iff j �= j′ or e � j e′;
7. for e ∈ E j , i j(e) = ( j, e) for j ∈ {0, 1}.
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Proposition 4.7. Given RPESs E0 and E1 , E0 + E1 is their coproduct in RPES.

Proof. Let E0 = (E0, F0, <0, #0, ≺0, �0), E1 = (E1, F0, <1, #1, ≺1, �1), and E0 + E1 = E = (E, F , <, #, ≺, �). Then it is 
straightforward to show that E is an RPES, and i0 and i1 are morphisms, so we simply need to prove that if there ex-
ists an RPES E2 = (E2, F2, <2, #2, ≺2, �2) and morphisms f0 : E0 → E2 and f1 : E1 → E2, then there exists a unique RPES 
morphism f : E→ E2 such that f ◦ i0 = f0 and f ◦ i1 = f1.

Since E0 + E1, i0, and i1 comprise a coproduct in the category of sets and partial functions, f must be unique.
We define f as f (( j, e)) = f j(e), giving us i0 ◦ f = f0 and i1 ◦ f = f1, and prove f to be a morphism:

1. Suppose e2 <2 f (e). Then there exists a j ∈ {0, 1} and an e j ∈ E j such that e = ( j, e j) and e2 <2 f j(e j). Since f j is a 
morphism, there must exist an e′j ∈ E j such that f j(e′j) = e2 and e′j < j e j . Hence that ( j, e′j) < e.

2. Suppose f (e′) #2 f (e). The e′ = ( j′, e j′ ) and e = ( j, e j) for some j, j′ ∈ {0, 1}, e j′ ∈ E j′ , and e j ∈ E j , and therefore 
f (e) = f j(e j) and f (e′) = f j′ (e j′ ).
If j = j′ , then e j′ # j e j , and therefore e j′ # j e j , ( j, e j′ ) # ( j, e j).
If j �= j′ then e′ # e.

3. Suppose e2 ≺2 f (e). Then there exists a j ∈ {0, 1} and an e j ∈ E j such that e = ( j, e j) and e2 ≺2 f j(e j). Since f j

is a morphism, there must exist an e′j ∈ E j such that f j(e′j) = e2 and e′j ≺ j e j . Therefore ( j, e′j) ≺ e, and obviously 
f ( j, e′j) = e2.

4. Suppose f (e′) �2 f (e). Then there must exist a j ∈ {0, 1} and e j, e′j ∈ E j such that f j(e j) = f (e), f j(e′j) = f (e′) and 
e′j # j e j . Since e′j � j e j , ( j, e′j) � ( j, e j).

5. Suppose f (e) = f (e′) �= ⊥. Then e = ( j, e j) and e′ = ( j′, e j′ ) and f j(e j) = f (e) = f (e′) = f j′ (e j′ ).
If j = j′ then e �= e′ implies that e j �= e j′ . Hence e j # j e j′ and therefore e # e′ .
If j �= j′ then obviously e # e′ .

6. Suppose e ∈ F and f (e) �= ⊥. Then there exist j ∈ {0, 1} and e j ∈ F j such that e = ( j, e j) and f j(e j) = f (e). Since 
e j ∈ F j , f j(e) ∈ F2. �

Example 4.8 (RPES coproduct). Given RPESs corresponding to the CSs in Fig. 6, E0 = (E0, F0, <0, #0, ≺0, �0) and E1 =
(E1, F1, <1, #1, ≺1, �1) where E0 = {a, b}, F0 = {a, b}, a <0 b, a ≺0 b and E1 = {c, d}, F1 = {c}, and d �1 c, the coproduct 
E0 + E1 is (E , F , <, #, ≺, �), where

E = {(0, a), (0, b), (1, c), (1, d)},
F = {(0, a), (0, b), (1, c)},
(0, a) < (0, b),
(0, a) ≺ (0,b),
(0, a) # (1, c), (0, a) # (1, d), (0, b) # (1, c), (0, b) # (1, d),
(0, a) � (1, c), (0, b) � (1, c), (1, c) � (0,a), (1, d) � (0,a), (1, c) � (0,b), and (1, d) � (0,b)

(1, d) � (1, c).

We do not give a way to construct a product of RPESs, as we have not found a notion of PES product which translates 
to a reversible setting. One way to construct a PES product can be seen in [23], where the definition is similar to mapping 
both event structures to domains, and mapping the product of those domains to a prime event structure. Since we do not 
have mappings from CSs to RPESs or RAESs, this is not a solution we can use.

Another way of looking at the PES product is that we can split an event, similar to in Example 4.2, based on which of 
the events of the other PES the event’s causes synchronise with. However, splitting an event to allow it to have multiple 
causes does not work when dealing with reverse causation, as shown by Example 4.9. We shall see later in Remark 4.22
that splitting is not an issue in all RPESs, and so we can construct products in a subcategory.

Example 4.9. Consider an RPES where we want a to be caused by either b or c. We attempt to accomplish this by splitting 
a into ab and ac such that b ≺ ab and c ≺ ac . However, we would like to have a computation ∅ a−→ {a} after which we have 

both {a} b−→ {a, b} a−→ {b} and {a} c−→ {a, c} a−→ {c} are possible computations. We do not have this. By contrast, when splitting 
because of forwards computation, we know when we first perform the split event which of its causes is being used, and so 
we do not have this issue.

We leave it as an open question whether products exist in general in the category RPES.
In order to use CSs as a model for RPESs, [19] defined a mapping, which we extend to the functor Crp , from RPESs to CSs, 

illustrated in Figs. 10 and 11. It uses conflict-free sets of events as configurations, and the transition relation is similar to 
the one generated by PESs and AESs, except that we add reverse transitions, which remove events instead of adding them, 
and treat reverse causality and prevention similarly to forward causality and asymmetric conflict.
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Definition 4.10 (From RPES to CS). The functor Crp : RPES→ CS is defined as

1. Crp((E , F , <, #, ≺, �)) = (E, F , C, →) where C= {X ⊆ E | X is conflict-free}, and X
A∪B−−−→ Y if:

(a) X, Y ∈ C, A ⊆ E , and B ⊆ F ;
(b) Y = (X \ B) ∪ A;
(c) A ∩ X = ∅;
(d) B ⊆ X ;
(e) X ∪ A is conflict-free;
(f) for every e ∈ A, if e′ < e then e′ ∈ X \ B;
(g) for every e ∈ B , if e′ ≺ e then e′ ∈ X \ (B \ {e});
(h) for every e ∈ B , if e′ � e then e′ /∈ X ∪ A.

2. Crp( f ) = f .

Proposition 4.11. Crp is a functor from RPES to CS.

Proof. [19] showed that given an RPES E , Crp(E) is a CS, so we show that given an RPES morphism f : E0 → E1, f :
Crp(E0) → Crp(E1) is a CS morphism, satisfying the conditions of Definition 3.3

1. Suppose X ∈ C0. Then X is conflict-free. Since, by definition of an RPES morphism, f (e0) #1 f (e′0) ⇒ e0 #0 e′0, this 
implies f (X) is conflict-free, and therefore f (X) ∈ C1.

2. Suppose X
A∪B−−−→ Y . Then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y ) according to Definition 4.10 because:
(a) Since X, Y ∈ C0, f (X), f (Y ) ∈ C1 according to previous item.
(b) Obviously f (Y ) = ( f (X) \ f (B)) ∪ f (A), since Y = (X \ B) ∪ A and B ⊆ X .
(c) f (A) ∩ f (X) = ∅ because A ∩ X = ∅, and by definition of an RPES morphism, for all e0, e′0 ∈ E0, if f (e0) = f (e′0) �= ⊥

and e0 �= e′0 then e0 # e′0, implying e0, e′0 /∈ (X ∪ A), since X ∪ A is conflict-free.
(d) f (B) ⊆ f (X) because B ⊆ X .
(e) f (X) ∪ f (A) is conflict-free because X ∪ A is conflict-free, and for all e0, e′0 ∈ E0, if f (e0) #1 f (e′0) then e0 #0 e′0.
(f) For every a1 ∈ f (A), if c1 <1 a1 then c1 ∈ f (X) \ f (B) because for every a0 ∈ A, if c0 <0 a0 then c0 ∈ X \ B , implying 

f (c) ∈ f (X) \ f (B), and by definition of an RPES {e1 | e1 <1 f (a0)} ⊆ { f (e′) | e′ <0 a0}.
(g) For every b1 ∈ f (B), if d1 ≺1 b1 then d1 ∈ f (X) \ ( f (B) \ {b1} for similar reasons to above.
(h) For every b1 ∈ f (B), if d1 �1 b1 then d1 /∈ f (X) ∪ f (A) because, since b1 ∈ f (B) there must exist a b0 ∈ B such that 

f (b0) = b1. If d1 ∈ f (X) ∪ f (A) then there must exist a d0 ∈ X ∪ A such that f (d0) = d1. Since f (d0) �1 f (b0), by 
definition of an RAES morphism d0 �0 b0, implying d0 /∈ X ∪ A which is a contradiction.

3. Suppose f (e0) = f (e′0) �= ⊥ and e0 �= e′0. By definition of an RPES morphism, e0 #0 e′0, and since all X ∈ C0 are conflict-
free, there cannot exist X ∈ C such that e0, e′0 ∈ X .

Having shown that Crp maps from RPES to CS, the rest of the proof is similar to previous functors. �
We also have functors between PES and RPES in Definitions 4.12 and 4.13, likewise based on mappings from [19]. Since 

# is only closed under conflict heredity with respect to sustained causation in an RPES, turning an RPES into a PES requires 
expanding conflict to be closed under all causality.

Definition 4.12 (From PES to RPES). The functor P p : PES→ RPES is defined as

1. P p((E , <, #)) = (E, ∅, <, #, ∅, ∅);
2. P p( f ) = f .

Definition 4.13 (From RPES to PES). The functor �p : RPES→ PES is defined as

1. �p((E , F , <, #, ≺, �)) = (E, <, #′) where #′ is # closed under conflict heredity and symmetry using the rules:

a # b

a #′ b
a #′ b
b #′ a

a #′ b < c

a #′ c
2. �p( f ) = f .

For an example of an RPES being mapped to a PES, see Example 4.17.

Proposition 4.14. P p is a functor from PES to RPES.
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∅

{a} {b} {c}

{a, c} {b, c}

(a) Crp(E)

∅

{a} {b} {c}

{a, c}

(b) C p(�p(E))

Fig. 12. The CSs corresponding to the RPES and PES of Example 4.17.

Proof. [19] showed that given a PES E , P p(E) is an RPES; so it remains to show that given a PES morphism f : E0→ E1, 
f : P p(E0) → P p(E1) is an RPES morphism. This is because F0 = F1 = ∅, and items 1, 2 and 6 of Definition 4.3 are implied 
by the definition of a PES morphism.

Having shown that P p maps from PES to RPES, the rest of the proof is similar to previous functors. �
Proposition 4.15. �p is a functor from RPES to PES.

Proof. [19] showed that given an RPES E , �p(E) is a PES, so we show that given an RPES morphism f : E0 → E1, f :
�p(E0) →�p(E1) is a PES morphism, satisfying the conditions of Definition 2.6

1. This condition is the same as condition 1 of Definition 4.3 of an RPES morphism.
2. Suppose f (e0) #′1 f (e′0). Then either f (e0) #1 f (e′0), f (e′0) #′1 f (e0), or there exists some e1 ∈ E1 such that f (e′′0) < f (e′0)

and f (e0) #′1 f (e′′0).
If f (e0) #1 f (e′0) then obviously e0 #0 e′0, and therefore e0 #′0 e′0.
If f (e′0) #′1 f (e0) then obviously e′0 #′0 e0, implying e0 #′0 e0.
If there exists some e1 ∈ E1 such that e1 <1 f (e′0) and e1 #′1 f (e′′0), then there exists an e′′0 ∈ E0 such that f (e′′0) = e1
and e′′0 <0 e′0. This implies e′′0 #′0 e0, and therefore e0 #′0 e′0.

3. Suppose f (e0) = f (e′0) and e′0 �= e0. Then, by condition 5 of an RPES morphism, e0 #0 e′0, and therefore e0 #′ e′0

Having shown that �p maps from RPES to PES, the rest of the proof is similar to previous functors. �
While �p(P p(E)) = E if E is a PES, P p(�p(E)) = E only if E is an RPES with no reversible events [19]. However, �p and 

P p do form an adjunction. This means that for any RPES E there exists a natural transformation ε : P p(�p(E)) → E , and 
for any PES E ′ , if there exists an RPES morphism f : P p(E ′) → E then there exists a morphism f : E ′ →�p(E) such that 
ε ◦ P p( f ) = f . In our case ε is the identity function on events and f = f . Hence we get Proposition 4.16.

Proposition 4.16. P p ��p .

Example 4.17. For an example of how the functors Crp and �p work, we look at the RPES E = (E , F , <, #, ≺, �) where 
E = {a, b, c}, F = {a, b}, a < c, a # b, a ≺ a, b ≺ b, c ≺ a, and c � b. This means that �p(E) = (E, <, #′) where c #′ b. The 
corresponding CSs Crp(E) and C p(�p(E)) can be seen in Fig. 12.

Notice that not only do the transitions involving reversal disappear, but because of hereditary conflict, so does the 
configuration {b, c}. Note also that {b, c} was not forwards-reachable.

Since most reversible models restrict themselves to causal reversibility where actions cannot reverse if they have caused 
other actions, unlike RPESs which may allow other forms of reversibility as well, we define subcategories crRPES and CRPES
of RPES, consisting of cause-respecting and causal RPESs as described in Definition 4.18 and the RPES morphisms between 
them.

Definition 4.18 (CRPES and crRPES [19]).

1. A cause-respecting RPES (crRPES) E = (E, F , <, #, ≺, �) is an RPES such that for all e ∈ E and e′ ∈ F , if e′ < e then e � e′ . 
In other words, all causation is sustained causation as described in Definition 4.1.

2. A causal RPES (CRPES) E = (E, F , <, #, ≺, �) is an RPES such that for all e ∈ E and e′ ∈ F , e′ < e if and only if e � e′ , 
and e ≺ e′ if and only if e = e′ .
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We can regard P p as mapping to CRPES with empty set F . Consider the alternative mapping P ′p from [19], described 
as a functor below. This instead maps a PES to a CRPES where F = E , and the prevention is determined by the causality 
relation.

Definition 4.19 (From PES to CRPES). The functor P ′p : PES→ CRPES is defined as

1. P ′p((E , <, #)) = (E , F , <, #, ≺, �) where F = E , e′ ≺ e′ for all e′ ∈ F , and e � e′ if and only if e′ < e;
2. P ′p( f ) = f .

Proposition 4.20. P ′p is a functor.

Proof. According to [19], for any PES E , P ′p(E) is a CRPES.
We show that given a PES morphism f : E0→ E1, f : P ′p(E0) → P ′p(E1) is a CRPES morphism, satisfying the conditions 

of Definition 4.3: conditions 1, 2 and 5 are also conditions of a PES morphism and conditions 3, 4 and 6 are straightforward 
to prove.

Once established that P ′p is a mapping from PES to CRPES, the rest of the proof is similar to previous functors. �
We now show that P ′p forms a right adjoint of �p between the categories CRPES and PES.

Proposition 4.21. �p � P ′p .

Proof. For any CRPES E = (E , F , <, #, ≺, �), we have P ′p(�p(E)) = (E, E, <, #′, ≺′, �′). We define the unit η : E →
P ′p(�p(E)) as η(e) = e for all e ∈ E .

We show that η is a CRPES morphism, satisfying the conditions of Definition 4.3:

1. Obviously {e | e < η(e′)} = {η(e) | e < e′}.
2. Since all causation is sustained in E , we have #=#′ .
3. Suppose e′ ∈ F and e ≺′ η(e′). Then e = e′ and obviously e ≺ e′ .
4. Suppose e ∈ E , e′ ∈ F , and e �′ e′ . Then e′ < e, and therefore e � e′ .
5. No e, e′ ∈ E exist such that η(e) = η(e′) but e �= e′ .
6. Clearly F ⊆ E .

And since η(e) = e, clearly η is a natural transformation.
Let E be a CRPES, E ′ be a PES, and g : E→ P ′p(E ′) be a CRPES morphism. If ḡ :�p(E) → E ′ uses the same mapping on 

events, then clearly g(E) =�p(ḡ) ◦ η(E) and it is straightforward to show that ḡ is a PES morphism. �
Remark 4.22. Since it is a right adjunction, P ′p preserves products. We therefore get a product in CRPES by mapping to PESs 
using �p , finding their product [23], and mapping back using P ′p .

Note that this adjunction only exists between PES and CRPES, not RPES, and therefore this method for constructing 
products only works for CRPESs.

5. Reversible asymmetric event structures

As we did with PESs, we will now add reversibility to AESs. Reversible asymmetric event structures (Definition 5.1) consist 
of events, some of which may be reversible, as well as causation ≺ and precedence �, similar to an AES, except that ≺ is no 
longer a partial order, and instead just well-founded. In addition, both work on the reversible events, similarly to the RPES. 
One possible use of RAESs could be to model a scenario where an error causes an entire computation to reverse and start 
over, as illustrated by Example 5.2. We define the category of RAESs, along with coproducts (Definition 5.5), and extend the 
mappings from AESs and RPESs to RAESs, and from RAESs to AESs and CSs defined by [19] into functors. We show that the 
functors between RAESs and AESs form an adjunction (Proposition 5.14) similar to the one seen in Proposition 4.16.

Definition 5.1 (RAES [19]). A reversible asymmetric event structure (RAES) is a quadruple E = (E , F , ≺, �) where E is the set 
of events and

1. F ⊆ E is the set of reversible events;
2. � ⊆ (E ∪ F ) × E is the irreflexive precedence relation;
3. ≺⊆ E× (E∪ F ) is the causation relation, which is irreflexive and well-founded, such that for all α ∈ E∪ F , {e ∈ E | e ≺ α}

is finite and has no �-cycles;
4. for all e ∈ F , e ≺ e;
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E = (E , F ,≺,�) where:
E = {a,b, c}
F = {a,b}
b ≺ c, c ≺ b
a � b, b � a, c � a, c � b

(a) RAES E
∅

{a} {b}{c}

{a, c} {b, c}

(b) CS derived from E

Fig. 13. Example of an RAES and the corresponding CS.

5. for all e ∈ E and α ∈ E ∪ F if e ≺ α then not e � α;
6. e ≺≺ e′ implies e � e′ , where e ≺≺ e′ means that e ≺ e′ and if e ∈ F then e′ � e;
7. ≺≺ is transitive;
8. if e # e′ and e ≺≺ e′′ then e′′ # e′ , where #=�∩�.

Example 5.2. Recall Example 1.2 where we wished to describe a computation, e0, e1, e2, . . . , which can be stopped and 
forced to undo itself causally by an error event. To model this as an RAES we need for i ≥ 0: ei ≺ ei+1, ei+1 � ei , error≺ ei , 
and ei � error.

We create a category RAES by defining RAES morphisms in Definition 5.3. This definition is obviously nearly identical to 
that of an AES morphism, with the added condition that, like in the RPES morphism, reversible events can only synchronise 
with other reversible events.

Definition 5.3 (RAES morphism). Let E0 = (E0, F0, ≺0, �0) and E1 = (E1, F1, ≺1, �1) be RAESs. An RAES morphism f : E0→
E1 is a partial function f : E0→ E1 such that

1. for all e∗ ∈ E0 ∪ F0, if f (e) �= ⊥ then {e1 | e1 ≺1 f (e∗)} ⊆ { f (e′) | e′ ≺0 e∗};
2. for all e ∈ E0 and e′ ∗ ∈ E0 ∪ F0, if f (e) �= ⊥ �= f (e′ ∗) and f (e′ ∗) �1 f (e) then e′ ∗ �0 e;
3. for all e, e′ ∈ E0, if f (e) = f (e′) �= ⊥ and e �= e′ then e #0 e′;
4. f (F0) ⊆ F1.

Proposition 5.4. RAES, where RAESs are objects and RAES morphisms are arrows, is a category.

Proof. Similar to Proposition 4.4. �
We construct a coproduct of RAESs in Definition 5.5, in much the same way as we did for RPESs.

Definition 5.5 (RAES coproduct). Given RAESs E0 = (E0, F0, ≺0, �0) and E1 = (E1, F1, ≺1, �1), we can construct E0 + E1 =
(E , F , ≺, �) with injections i0 and i1 where:

1. E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1};
2. F = {(0, e) | e ∈ F0} ∪ {(1, e) | e ∈ F1};
3. ( j, e) ≺ ( j′, e′)∗ iff j = j′ and e ≺ j e′ ∗;
4. ( j, e) � ( j′, e′)∗ iff j �= j′ or e � j e′ ∗;
5. for e ∈ E j , i j(e) = ( j, e) for j ∈ {0, 1}.

Proposition 5.6. Given RAESs E0 and E1 , E0 + E1 is their coproduct in RAES.

Proof. Let E0 = (E0, F0, ≺0, �0), E1 = (E1, F1, ≺1, �1), and E0 + E1 = E = (E , F , ≺, �). Then clearly E is an RAES, and i0
and i1 as in Definition 5.5 are morphisms, and so we simply need to prove that if there exists an RAES E2 = (E2, F2, ≺2, �2)

and morphisms f0 : E0→ E2 and f1 : E1→ E2, then there exists a unique RAES morphism f : E→ E2 such that i0 ◦ f = f0
and i1 ◦ f = f1.

Since E0 + E1, i0, and i1 comprise a coproduct in the category of sets and partial functions, f must be unique.
We define f as f (( j, e)) = f j(e). It is clear that i0 ◦ f = f0 and i1 ◦ f = f1. So it remains to show that f is an RAES 

morphism:

1. If e2 ≺2 f (e)∗ then there exists a j ∈ {0, 1} and an e∗j ∈ E j ∪ F j such that e∗ = ( j, e j)
∗ and e2 ≺2 f j(e j)

∗ . Since f j is a 
morphism, there must exist an e′ ∈ E j such that f j(e′ ) = e2 and e′ ≺ j e∗ . Hence ( j, e′ ) ≺ e∗ .
j j j j j
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2. If f (e′)∗ �2 f (e) then there must exist a j ∈ {0, 1} and e j ∈ E j and e′ ∗j ∈ E j ∪ F j such that f j(e j) = f (e), f j(e′j) = f (e′)
and e′ ∗j � j e j . Since e′ ∗j � j e j , ( j, e′j)

∗ � ( j, e j).
3. If f (e) = f (e′) �= ⊥ then e = ( j, e j) and e′ = ( j′, e j′ ) and f j(e j) = f (e) = f (e′) = f j′ (e j′ ).

If j = j′ then e �= e′ implies e j �= e j′ . Hence e j # j e j′ and therefore e # e′ .
If j �= j′ then obviously e # e′ .

4. For j ∈ {0, 1}, if ( j, e j) ∈ F then e j ∈ F j , and f j(F j) ⊆ F2. �
In order to model RAESs as CSs, [19] defined a mapping, Cra . Cra resembles Crp , though as with AES configurations, the 

requirement of conflict-freedom is replaced with � being well-founded. Like Crp , Cra preserves morphisms, and is a functor. 
An example of applying Cra to an RAES can be seen in Fig. 13.

Definition 5.7 (From RAES to CS). The functor Cra : RAES→ CS is defined as:

1. Cra((E , F , ≺, �)) = (E , F , C, →) where C = {X ⊆ E |� is well-founded on X} and X
A∪B−−−→ Y if

(a) X, Y ∈ C, A ⊆ E , and B ⊆ F ;
(b) Y = (X \ B) ∪ A;
(c) A ∩ X = ∅;
(d) B ⊆ X ;
(e) for every e ∈ A, if e′ ≺ e then e′ ∈ X \ B;
(f) for every e ∈ A, if e′ � e then e′ /∈ X ∪ A;
(g) for every e ∈ B , if e′ ≺ e then e′ ∈ X \ (B \ {e});
(h) for every e ∈ B , if e′ � e then e′ /∈ X ∪ A.

2. Cra( f ) = f .

Proposition 5.8. Cra is a functor from RAES to CS.

Proof. [19] showed that for an RAES E , Cra(E) is a CS.
Let E0 = (E0, F0, ≺0, �0) and E1 = (E1, F1, ≺1, �1) be RAESs, and let Cra(E0) = (E0, F0, C0, →0) and Cra(E1) =

(E1, F1, C1, →1). Suppose f : E0 → E1 is an RAES morphism. Then f : Cra(E0) → Cra(E1) is a CS morphism because it 
satisfies the conditions of Definition 3.3:

1. If X ∈ C0, then �0 is well-founded on X . Since, by definition of an RAES morphism, f (e0) �1 f (e′0) ⇒ e0 �0 e′0, this 
implies that �1 is well-founded on f (X), and therefore f (X) ∈ C1.

2. f (X) 
f (A)∪ f (B)−−−−−−→1 f (Y ) according to Definition 5.7:

(a) Since X, Y ∈ C0, this is implied by the first item.
(b) Obvious, since Y = (X \ B) ∪ A and B ⊆ X .
(c) A ∩ X = ∅, and by definition of an RAES morphism, for all e0, e′0 ∈ E0, if f (e0) = f (e′0) �= ⊥ and e0 �= e′0 then e0 #0 e′0, 

implying e0, e′0 /∈ (X ∪ A), since �0 is well-founded on X , and for every a0 ∈ A, if c0 �0 a0 then c0 /∈ X ∪ A.
(d) B ⊆ X .
(e) For every a0 ∈ A, if c0 ≺0 a0 then c0 ∈ X \ B , implying f (c) ∈ f (X) \ f (B), and by definition of an RAES {e1 | e1 ≺1

f (a0)} ⊆ { f (e′) | e′ ≺0 a0}.
(f) Since a1 ∈ f (A) there must exist an a0 ∈ A such that f (a0) = a1. If c1 ∈ f (X) ∪ f (A) then there must exist a c0 ∈

X ∪ A such that f (c0) = c1. Since f (c0) �1 f (a0), by definition of an RAES morphism c0 �0 a0, implying c0 /∈ X ∪ A
which is a contradiction.

(g) Similar to above.
(h) Similar to above.

3. By definition of an RAES morphism, e0 #0 e′0, and since �0 is well-founded on all X ∈ C0, e0, e′0 /∈ X .

Having established that Cra is a mapping, the rest of the proof is similar to previous functors. �
In order to create functors from RAES to AES (Definition 5.10), based on a mapping from [19], we need to be able to 

split the causality and precedence relations into forwards and reverse parts.

Definition 5.9. Given an RAES E = (E , F , ≺, �), let

1. ≺E =≺∩ (E × E) and ≺F =≺∩ (E × F );
2. �E =�∩ (E × E) and �F =�∩ (E × F ).
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We also define functors from RPES and AES to RAES, also based on mappings from [19]. To turn an RAES into an AES, we 
need to remove events with < ∪�-cycles in their causes, as these are not allowed in the definition of an AES. Conditions 
6-8 of Definition 5.1 of an RAES also only apply to sustained causation, while in an AES, all causation is sustained. We 
therefore expand the asymmetric conflict and causation relations to fulfil those conditions for all causation.

Definition 5.10 (From RAES to AES). The functor �a : RAES→ AES is defined as:

1. �a((E , F , ≺, �)) = (E ′, <′, �′) where E ′ is E where any event e that has a �E ∪≺E -cycle in {e′ ∈ E | e′ = e or e′ ≺+E e}
has been removed, <′ = ≺+E ∩ (E ′ × E ′), and �′ is �E ∪<E closed under conflict heredity, using the rules

a � b

a �′ b
a <′ b
a � b

a #′ b <′ c
a #′ c

2. �a( f ) = f � E ′ .

Proposition 5.11. �a is a functor from RAES to AES.

Proof. [19] showed that for an RAES E , �a(E) is an AES.
If f : E0 → E1 is an RAES morphism then �a( f ) = f ′ : �a(E0) → �a(E1) is a AES morphism because it satisfies the 

conditions of Definition 2.12:

1. Suppose e1 <′1 f ′(e0). Then there must exist some sequence e1 ≺1 e11 ≺ · · · ≺1 e1k ≺1 f (e0) for some 0 ≤ k. Since f is 
an RAES morphism, there must exists a corresponding sequence e′0 ≺0 e01 ≺0 · · · ≺0 e1k ≺0 e0 such that f (e′0) = e1 and 
f (e0i ) = e1i . This implies that e′0 <′0 e0.

2. Suppose f ′(e0) �′1 f ′(e′0). Then either f ′(e0) �1 f ′(e′0), f ′(e0) <′1 f ′(e′0), or there exists some e1 ∈ E1 such that e1 <′1
f ′(e′0) and f ′(e0) #′1 e1.
If f ′(e0) �1 f ′(e′0) then obviously e0 �0 e′0, and therefore e0 �′0 e′0.
If f ′(e′0) <′1 f ′(e0) then there exists e′′0 such that f ′(e′′0) = f ′(e′0) and e′′0 <′0 e0. If e′′0 = e′0 then obviously e′0 <′0 e0, 
implying e0 �′0 e′0.
If there exists some e1 ∈ E1 such that e1 <′1 f ′(e′0) and f ′(e0) #′1 e1, then there exists an e′′0 ∈ E0 such that f ′(e′′0) = e1
and e′′0 <′0 e′0. Hence e0 #′0 e′′0, and therefore e0 �′0 e′0.

3. Suppose f (e0) = f (e′0) and e0 �= e′0. Then according to the definition of an RAES morphism, e0 �0 e′0, and therefore 
f (e0) �′0 f (e′0).

Once established that �a is a mapping from RAES to AES, the rest of the proof is similar to previous functors. �
Definition 5.12 (From AES to RAES). The functor Pa : AES→ RAES is defined as:

1. Pa((E , <, �)) = (E, ∅, <, �);
2. Pa( f ) = f .

Proposition 5.13. Pa is a functor from AES to RAES.

Proof. [19] showed that for an AES E , Pa(E) is an AES.
If f : E0→ E1 is an AES morphism then f : Pa(E0) →�a(E1) is an RAES morphism because it satisfies the conditions of 

Definition 5.3 because F0 = F1 = ∅ and conditions 1, 2, and 3 are implied by Definition 2.12.
Having established that Pa is a mapping from AES to RAES, the rest of the proof is similar to previous functors. �
The relationship between �a and Pa mimics that of �p and P p in two ways: (1) �a(Pa(E)) = E if E is a AES, but 

Pa(�a(E)) = E only if E is an RAES with no reversible events [19], and (2) they form an adjunction, as described in 
Proposition 5.14.

Proposition 5.14. Pa ��a.

Proof. The proof is similar to Proposition 4.16, also using counit ε(e) = e and f̄ = f . �
To map an RPES to an RAES, we must combine the forwards and reverse causation into one relation. We also need to 

define an asymmetric conflict relation. In the functor from PES to AES, this was done by adding the causation to the conflict, 
but here we only add the sustained causation, in order to fulfil Condition 6 of Definition 5.1. We need to add the prevention 
as well.
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Definition 5.15 (From RPES to RAES). The functor Ar : RPES→ RAES is defined as:

1. Ar((E , F , <, #, ≺, �)) = (E, F , < ∪ ≺,  ∪ #∪�);
2. Ar( f ) = f .

Proposition 5.16. Ar is a functor from RPES to RAES.

Proof. [19] showed that for an RPES E , Ar(E) is an RAES.
If f : E0 → E1 is an RPES morphism then Ar( f ) = f : Ar(E0) → Ar(E1) is an RAES morphism because it satisfies the 

conditions of Definition 5.3:

1. According to the definition of Ar , ≺′0 = <0 ∪≺0 and ≺′1 = <1 ∪≺1, and according to the definition of an RPES 
morphism for all e ∈ E0, if f (e) �= ⊥ then {e1 | e1 <1 f (e)} ⊆ { f (e′) | e′ <0 e}, and for all e ∈ F0, if f (e) �= ⊥ then 
{e1 | e1 ≺1 f (e)} ⊆ { f (e′) | e′ ≺0 e}.

2. According to the definition of Ar , �′0 = 0 ∪ #0 ∪�0 and �′1 = 1 ∪ #1 ∪�1, and according to the definition of an 
RPES morphism for all e, e′ ∈ E0, if f (e) �= ⊥ �= f (e′) and f (e) #1 f (e′) then e #0 e′ , and for all e ∈ E0 and e′ ∈ F0, if 
f (e) �= ⊥ �= f (e′) and f (e) �1 f (e′) then e �0 e′ .
If f (e′)  1 f (e) then f (e′) <1 f (e) and either f (e′) /∈ F1 or f (e) � f (e′). Since {e1 | e1 <1 f (e)} ⊆ { f (e′) | e′ <0 e}, 
f (e′) <1 f (e) implies that there exists e′′ ∈ E0 such that f (e′′) = f (e′) and e′′ <0 e. If f (e′) /∈ F1 then, since f (F0) ⊆ F1, 
e′ /∈ F0, and e′′  0 e. If f (e) �1 f (e′) then, as shown above, e �0 e′ and again e′′  0 e. If e′′ = e′ then this is enough. 
Otherwise, since #0 is hereditary with respect to  0 and e′′ #0 e′ , e′′ #0 e.

3. This is item 5 of the definition of an RPES morphism.
4. This is item 6 of the definition of an RPES morphism.

Once established that Ar is a mapping from RPES to RAES, the rest of the proof is similar to previous functors. �
We define subcategories crRAES and CRAES consisting of the cause-respecting and causal RAESs defined in Defini-

tion 5.17 and the RAES morphisms between them.

Definition 5.17 (CRAES and crRAES [19]).

1. A cause-respecting RAES (crRAES) E = (E, F , ≺, �) is an RAES such that for all e ∈ E and e′ ∈ F , if e′ ≺ e or e � e′ then 
e � e′ .

2. A causal RAES (CRAES) E = (E, F , ≺, �) is an RAES such that for all e ∈ E and e′ ∈ F , e � e′ if and only if e′ ≺ e or e � e′ , 
and e ≺ e′ if and only if e = e′ .

The functor Pa maps AESs to CRAESs with no reversible events, and we define an alternative functor, P ′a , based on a 
mapping from [19], which maps AESs to CRAESs where all events are reversible.

Definition 5.18 (From AES to CRAES). The functor P ′a is defined as

1. P ′a((E , <, �)) = (E, F , ≺, �′) where F = E , e ≺ e′ ∗ if e < e′ ∗ or e′ ∗ = e, and e∗ �′ e′ if e � e′;
2. P ′a( f ) = f .

Proposition 5.19. P ′a is a functor from AES to CRAES.

Proof. According to [19], given an AES E , P ′a(E) is a CRAES.
Given an AES morphism, f : E0 → E1, it is straightforward to show that f : P ′a(E0) → P ′a(E1) is a CRAES morphism, 

satisfying the conditions of Definition 5.3.
Having established that P ′a is a mapping from AES to CRAES, the rest of the proof is similar to previous functors. �
We show that P ′a forms a right adjoint of �a between the categories CRAES and AES.

Proposition 5.20. �a � P ′a.

Proof. For any CRAES E = (E , F , ≺, �), we have P ′a(�a(E)) = (E ′, E ′, ≺′, �′). We define the unit η : E → P ′p(�p(E)) as 
η(e) = e for all e ∈ E . We show that η is a CRAES morphism, satisfying the conditions of Definition 5.3:

1. Obviously {e | e < η(e′)} = {η(e) | e < e′} ∩ E ′ and if e′ ∈ F and e ≺′ η(e′), then e = e′ and obviously e′ ≺ e.
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E = (E , F ,Con,�) where
E = F = {a,b, c}
Con= {∅, {a}, {b}, {a,b}, {a, c}, {b, c}}
∅� ∅ � a, ∅� {c} � b,
{a}� {b} � c, {b}� {a} � c
{b}� ∅ � b, {a}� {b} � a,
{a, c}� ∅ � c

(a) RES E
∅

{a} {b} {c}

{a,b} {a, c} {b, c}

(b) The CS derived from E

Fig. 14. Example of an RES and the corresponding CS.

2. Suppose e ∈ E , e′ ∗ ∈ E ∪ F , and e �′ e′ ∗ . If e′ ∗ = e′ then clearly e � e′ . And if e′ ∗ = e′ then e′� e, and since E is a CRAES, 
e � e′ .

3. No e, e′ ∈ E exist such that η(e) = η(e′) but e �= e′ .
4. Clearly F ⊆ E .

Furthermore, since η(e) = e, η is clearly a natural transformation.
Let E0 be a CRAES, E1 be an AES, and g : E0 → P ′a(E1) be a CRAES morphism. If ḡ :�a(E0) → E1 is g restricted to E ′0, 

then clearly g(E0) =�a(ḡ) ◦ η(E0) and it is straightforward to show that ḡ is an AES morphism.

1. Suppose e1 <1 f (e). Then there exists an event e0 ∈ E0 such that e0 ≺0 e and f (e0) = e1. We therefore need to show 
that e0 ∈ E ′0. As E0 is a CRAES, ≺≺0=≺0E , and therefore ≺0E=≺+0E

. Hence any ≺∪�-cycle in {e′ ∈ E | e′ = e0 or e′ ≺+E e}
would be a �-cycle in {e′ | e′ = e0 or e′ ≺ e0}, which is impossible.

2. Suppose f (e) �1 f (e′). Then f (e) �1 f (e′), and therefore e �0E e′ .
Suppose f (e) = f (e′) �= ⊥. Then e # e′ by definition of an RAES morphism. �

6. Reversible event structures

The last kind of event structure to which we add reversibility is the general event structure. The reversible (general) event 
structure (Definition 6.1) differs from the general event structure, not only by allowing the reversal of events, but also by 
including a preventing set in the enabling relation, so that X � Y � e means e is enabled in configurations that include all 
the events of X but none of the events of Y . Example 6.2 shows how RESs can be used to model aspects of the reversible 
π -calculus that RPESs and RAESs cannot. We show that, unlike in the forward-only setting, most RAESs can be modelled 
by RESs by using prevention (Theorem 6.23), though the fact that we can only describe consistency of finite sets of events 
is still an issue. We also formulate a subcategory of CSs, called finitely enabled CSs (Definition 6.11), and create functors 
between these and RESs, called Cr (Definition 6.10) and R (Definition 6.14), which form an adjunction (Theorem 6.17) and 
are inverses on a subset of finitely enabled CSs (Theorem 6.16).

Definition 6.1 (RES [21]). A reversible event structure (RES) is a triple E = (E , F , Con, �) where E is the set of events, F ⊆ E
is the set of reversible events, Con⊆fin 2E is the consistency relation, which is downwards-closed, � ⊆ Con× 2E × (E ∪ F )

is the enabling relation, and

1. if X � Y � e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X � Y � e then e ∈ X ;
3. (weakening) if X � Y � e∗ , X ⊆ X ′ ∈ Con, and X ′ ∩ Y = ∅ then X ′ � Y � e∗ .

Note that in examples we will leave out enablings which are implied by the weakening condition. See Fig. 14 for an 
example of an RES and the corresponding CS.

Example 6.2. Recall Example 1.3 where we modelled the reversible π -calculus process (νn)(a 〈n〉 | b 〈n〉 | c(x)). This can be 
achieved with an RES with a set of events {a 〈n〉 , b 〈n〉} ∪ {c(x) | x is a name} with the consistent sets being any set not 
containing more than one event from {c(x) | x is a name}. The enablings are as follows:

∅� ∅ � a 〈n〉 ∅� ∅ � b 〈n〉
∅� ∅ � c(x) for any name x �= n
{a 〈n〉}� {c(x) | x �= n} � c(n) {b 〈n〉}� {c(x) | x �= n} � c(n)

{a 〈n〉 ,b 〈n〉 , c(n)}� ∅ � b 〈n〉 {b 〈n〉 ,a 〈n〉 , c(n)}� ∅ � a 〈n〉
{b 〈n〉}� {c(n)} � b 〈n〉 {a 〈n〉}� {c(n)} � a 〈n〉
{c(x)}� ∅ � c(x) for any name x
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This RES cannot be represented by an RPES or an RAES, as they cannot express that b 〈n〉 can reverse if a 〈n〉 and c(n) are in 
the configuration, but not if c(n) is present without a 〈n〉.

We next define a notion of morphism for RESs in Definition 6.3. With the exception of the requirements regarding 
preventing sets, it is identical to the definition of an ES morphism. We treat the preventing set similarly to (asymmetric) 
conflict in PES, AES, RPES, and RAES morphisms, requiring the events of Y1 to be either synchronised with an event from 
Y0 or no event at all.

The reason we do not say that if f (e) �= ⊥ and X � Y �0 e∗ then f (X) � f (Y ) �1 f (e)∗ is that we want our definition 
of an RES morphism to correspond with that of an RAES morphism, and we will use {e′ | e′ � e} to define our preventing 
sets when translating. Since RAES morphisms allow e1 � f (e) if no e0 exists such that f (e0) = e1, we have to express the 
same in our definition of RES morphisms.

Definition 6.3 (RES morphism). Let E0 = (E0, F0, Con0, �0) and E1 = (E1, F1, Con1, �1) be RESs. An RES morphism f : E0→
E1 is a partial function f : E0→ E1 such that:

1. for all e∗ ∈ E0 ∪ F0, if f (e) �= ⊥ and X0 � Y0 �0 e∗ then there exists a Y1 ⊆ E1 such that for all e0 ∈ E0, if f (e0) ∈ Y1
then e0 ∈ Y0 and f (X0) � Y1 �1 f (e)∗ .

2. for any X0 ∈ Con0, f (X0) ∈ Con1.
3. for all e, e′ ∈ E0, if f (e) = f (e′) �= ⊥ and e �= e′ then no X ∈ Con0 exists such that e, e′ ∈ X .

Proposition 6.4. RES, where RESs are objects and RES morphisms are arrows, is a category.

Proof. Since RES morphisms are partial functions they are obviously associative, and f (e) = e is the identity arrow. Then 
we only need to prove that given RESs E0, E1, and E2 and morphisms f : E0 → E1 and g : E1 → E2, g ◦ f : E0 → E2 is a 
morphism, satisfying the conditions in Definition 6.3:

1. Suppose g( f (e)) �= ⊥ and X � Y �0 e. Then there exists an e1 ∈ E1 and an e2 ∈ E2 such that f (e) = e1 and g(e1) = e2. 
It is clear from Definition 6.3 that there exists a Y1 ⊆ E1 such that for all e′0 ∈ E0 such that f (e′0) ∈ Y1, e′0 ∈ Y , and 
f (X) � Y1 �1 f (e)∗ , and therefore there exists a Y2 ⊆ E2 such that for all e′1 ∈ E1 such that g(e′1) ∈ Y2, e′1 ∈ Y1, and 
g( f (X)) � Y2 �2 g( f (e))∗ .

2. Suppose X0 ∈ Con0. Since f is a morphism, obviously f (X0) ∈ Con1, and using the same argument, g( f (X0)) ∈ Con2.
3. Suppose g( f (e)) = g( f (e′)) �= ⊥ and e �= e′ . Then f (e) = e1 and f (e′) = e′1 for some e1, e′1 ∈ E1 such that g(e1) =

g(e′1) �= ⊥. Therefore either e1 = e′1 or no X1 ∈ Con1 exists such that e1, e′1 ∈ X1.
In the first case, since f is a morphism, by definition if e �= e′ then no X ∈ Con0 exists such that e, e′ ∈ X
In the second, by definition for any X0 ∈ Con0, f (X0) ∈ Con1, and therefore there cannot exist any X ∈ Con0 such that 
e, e′ ∈ X . �

We construct a coproduct of two RESs in Definition 6.5. Although this definition is a little different from those of RPES 
and RAES coproducts, the principle is very much the same. Similarly to having every event from E j prevent every event 
from E1− j in the RAES coproduct, we here put every event from E j in the preventing set of every enabling of an event 
from E1− j .

Definition 6.5 (RES coproduct). Given RESs E0 = (E0, Con0, �0) and E1 = (E1, Con1, �1), we can construct E0 + E1 =
(E,Con,�) with injections i0 and i1 where:

1. E = {(0, e) | e ∈ E0} ∪ {(1, e) | e ∈ E1});
2. for e ∈ E j and j ∈ {0, 1} we have i j(e) = ( j, e);
3. X ∈ Con iff ∃X0 ∈ Con0.i0(X0) = X or ∃X1 ∈ Con1.i1(X1) = X ;
4. X � Y � ( j, e)∗ iff ∃X j, Y j ∈ E j such that X j � Y j � e∗ , i j(X j) = X , Y = i j(Y j) ∪ (E \ i j(E j)).

Proposition 6.6. Given RESs E0 and E1 , E0 + E1 is their coproduct in RES.

Proof. Let E0 = (E0, Con0, �0), E1 = (E1, Con1, �1), and E0 + E1 = E = (E, Con, �). Then obviously E is an RES, and i0 and 
i1 are morphisms, so we simply need to prove that if there exists an RES E2 = (E2, F2, ≺2, �2) and morphisms f0 : E0→ E2
and f1 : E1→ E2, then there exists a unique RES morphism f : E→ E2 such that f ◦ i0 = f0 and f ◦ i1 = f1.

Since E0 + E1, i0, and i1 comprise a coproduct in the category of sets and partial functions, f must be unique.
We define f as f (( j, e)) = f j(e), giving us f ◦ i0 = f0 and f ◦ i1 = f1, and we prove that f is a morphism, satisfying the 

conditions of Definition 6.3:

1. Suppose X � Y � e∗ and e = ( j, e j) for some j ∈ {0, 1}. Then there exist X j, Y j ⊆ E j such that i j(X j) = X , Y = i j(Y j) ∪
(E \ i j(E j)), and X j � Y j � e j . If f (e) �= ⊥, meaning f j(e j) �= ⊥, then there exists a Y2 ⊆ E2 such that for all e j ∈ E j if 
f j(e j) ∈ Y2 then e j ∈ Y j , and f j(X j) � Y2 �2 f (e)∗ . In addition, for all ( j′, e′) ∈ E , such that j �= j′ , ( j′, e′) ∈ Y , implying 
that if f j′ (( j′, e′)) ∈ Y2 then ( j′, e′) ∈ Y .
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2. Suppose X ∈ Con. Then there must exist j ∈ {0, 1} and X j ∈ Con j such that i j(X j) = X . Since X j ∈ Con j , f (X) = f j(X j) ∈
Con2.

3. Suppose f (e) = f (e′) �= ⊥. Then e = ( j, e j) and e′ = ( j′, e j′ ) and f j(e j) = f (e) = f (e′) = f j′ (e j′ ).
If j �= j′ then obviously no X ∈ Con exists such that e, e′ ∈ X .
If j = j′ then e �= e′ implies that e j �= e j′ , and since f j is an RES morphism we get that no X j ∈ Con j exists such 
that e j, e j′ ∈ X j . For there to exist an X ∈ Con such that e, e′ ∈ X , we need an X ′j ∈ Con j such that i(X ′j) = X , which 
obviously does not exist. �

We also construct a product of RESs in Definition 6.7 based on the ES product described in [25]. This notion of product 
translates better to the reversible setting than ones used for PESs. In addition to adding reverse enablings, which are treated 
much the same as forward enablings, our product must also deal with preventing sets, which are not present in the product 
of ESs. Just as in the product of CSs, we can consider the product of RES a synchronisation of two RESs. Each enabling of 
an event, X � Y � (e0, ∗), must correspond to an enabling of the original event X0 � Y0 �0 e0, such that π0(X) = X0, but Y
includes every e′ such that π0(e′) ∈ Y0. This means that we generate an enabling for each X for which this is true, all using 
the same Y , so (e0, ∗) is enabled as long as each e′0 in X0 has been involved in some synchronisation, but none of the e′′0
in Y have. Enablings of (∗, e1) are created in a similar way, and enablings of (e0, e1) require this to hold for both. When 
creating enablings for (e0, e1), the weakening condition in Definition 6.1 ensures that we also get enablings where an event 
from X0 synchronises with an event from E1 \ (X1 ∪ Y1) or vice versa.

Definition 6.7 (partially synchronous RES product). Given RESs E0 = (E0, Con0, �0) and E1 = (E1, Con1, �1), we can construct 
E0 × E1 = (E, Con, �) with projections π0 and π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. for (e0, e1) ∈ E and j ∈ {0, 1}, π j((e0, e1)) = e j ;
3. X ∈ Con if

(a) π0(X) ∈ Con0;
(b) π1(X) ∈ Con1;
(c) for all e, e′ ∈ X , if π0(e) = π0(e′) �= ∗ or π1(e) = π1(e′) �= ∗ then e = e′;

4. X � Y � e∗ if X ∈ Con and
(a) if π0(e) �= ∗ then there exists Y0 ⊆ E0 such that π0(X) � Y0 � π0(e)∗ otherwise Y0 = ∅;
(b) if π1(e) �= ∗ then there exists Y1 ⊆ E1 such that π1(X) � Y1 � π1(e)∗ otherwise Y1 = ∅;
(c) Y = {e | π0(e) ∈ Y0 or π1(e) ∈ Y1};
(d) if e∗ = e then e ∈ X .

Proposition 6.8. Given RESs E0 and E1 , E0 × E1 is a product in the category RES.

Proof. Let E0 = (E0, F0, Con0, �0), E1 = (E1, F1, Con1, �1), and E0 × E1 = E = (E , F , Con, �). Then it should be obvious that 
E is an RES and π0 and π1, are RES morphisms. We then need to prove that for any RES E2 such that there exist RES 
morphisms f0 : E2 → E0 and f1 : E2 → E1, there exists a unique RES morphism f : E2 → (E0 × E1) such π0 ◦ f = f0 and 
π1 ◦ f = f1.

Since E0 ×∗ E1, π0, and π1 comprise a product in the category of sets and partial functions, f must be unique.
We define f as f (e) = ( f0(e), f1(e)) and prove that it is a morphism, meaning it satisfies the conditions of Definition 6.3:

1. Suppose X � Y �2 e∗ and f (e) �= ⊥. If f0(e) �= ⊥ then there exists a Y0 ⊆ E0 such that for any e′ ∈ E2, if f0(e′) ∈ Y0 then 
e′ ∈ Y , and f0(X) � Y0 �0 f0(e)∗ , and if f1(e) �= ⊥ then there exists a Y1 ⊆ E1 such that for any e′ ∈ E2, if f1(e′) ∈ Y1
then e′ ∈ Y , and f1(X) � Y1 �1 f (e)∗ . We define Y ′ = {e | π0(e) ∈ Y0 or π1(e) ∈ Y1}, where Yi = ∅ if f i(e) =⊥, and it is 
obvious that f (X) � Y ′ � f (e)∗ and for any e′ ∈ E2, if f (e′) ∈ Y ′ then e′ ∈ Y .

2. Suppose X ∈ Con2. Then f0(X) ∈ Con0 and f1(X) ∈ Con1, and there are no e, e′ ∈ X such that e �= e′ and either f0(e) =
f0(e′) or f1(e) = f1(e′), implying f (X) ∈ Con.

3. Suppose f (e) = f (e′) �= ⊥ and e �= e′ . Then f0(e) = f0(e′) and f1(e) = f1(e′). Since we cannot have f0(e) = f1(e) =⊥
without f (e) =⊥, and f0 and f1 are morphisms, there cannot exist X ∈ Con2 such that e, e′ ∈ X . �

Example 6.9 shows the product of two RESs, represented by CSs in Fig. 7.

Example 6.9 (RES product). Consider the RESs corresponding to the CSs in Fig. 7, E0 = (E0, F0, Con0, �0) and E1 =
(E1, F1, Con1, �1), where

E0 = {a,b} F0 = E0 Con0 = 2E0

∅� ∅ �0 a {a}� ∅ �0 b {a,b}� ∅ �0 b {a}� ∅ �0 a

and
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E1 = {c} F1 = E1 Con1 = {∅, {c}}
∅� ∅ �1 c {c}��1 c

The product E0 × E1 is (E , F , Con, �) where

E = F = {(a,∗), (b,∗), (a, c), (b, c), (∗, c)}
Con= {∅, {(a,∗)}, {(b,∗)}, {(a, c)}, {(b, c)}, {(∗, c)}, {(a,∗), (b,∗)}
{(a,∗), (b, c)}, {(a,∗), (∗, c)}, {(a, c), (b,∗)}, {(b,∗), (∗, c)}, {(a,∗), (b,∗), (∗, c)}}
with forwards events enabled by ∅� ∅ � (a,∗)
{(a,∗)}� ∅ � (b,∗) {(a, c)}� ∅ � (b,∗) ∅� ∅ � (a, c)
{(a,∗)}� ∅ � (b, c) {(a, c)}� ∅ � (b, c), ∅� ∅ � (∗, c)
and backwards events enabled by {(a,∗)}� ∅ � (a,∗)
{(b,∗), (a,∗)}� ∅ � (b,∗) {(b,∗), (a, c)}� ∅ � (b,∗) {(a, c)}� ∅ � (a, c)
{(b, c), (a,∗)}� ∅ � (b, c) {(∗, c)}� ∅ � (∗, c)

We define a functor Cr from RES to CS (Definition 6.10). We remark that [21] described single event transitions of RESs 
and [22] discussed extending this to multiple events. We define configurations according with the first condition of Defini-
tion 2.23, disregarding the second condition, as we do not want to restrict ourselves to forwards-reachable configurations. 
For the transition, condition i. follows from the definition of a CS. The other two conditions require any event being added 
or removed in the transition to be enabled at any intermediate configuration during the transition, both when all the events 
being removed have been removed but nothing has been added, and also when all the events have been added, but none 
have been removed. They also require that the same enabling can be used in all intermediate configurations.

Definition 6.10 (From RES to CS). The functor Cr : RES→ CS is defined as

1. Cr((E , F , Con, �)) = (E, F , C, →), where
(a) X ∈ C if for all X ′ ⊆fin X , X ′ ∈ Con;

(b) for X, Y ∈ C, X
A∪B−−−→ Y if:

i. Y = (X \ B) ∪ A, A ∩ X = ∅, B ⊆ X , and X ∪ A ∈ C;
ii. for all e ∈ A, X ′ � Z � e for some X ′, Z such that X ′ ⊆fin X \ B and Z ∩ (X ∪ A) = ∅;

iii. for all e ∈ B , X ′ � Z � e for some X ′, Z such that X ′ ⊆fin X \ (B \ {e}) and Z ∩ (X ∪ A) = ∅;
2. Cr( f ) = f .

Applying this functor to an RES results in a finitely enabled CS (FCS). We call this ‘finitely enabled’ because the configura-
tions are all determined by the set of finite configurations, and each transition from an infinite configuration X can be seen 
as enabled by a transition from a finite configuration X ′ , such that every configuration between them can perform the same 
transition.

Definition 6.11. Let C = (E , F , C, →) be a CS. We say that C is finitely enabled if

1. C is downwards-closed;
2. X ∈ C if and only if for all X ′ ⊆fin X , X ′ ∈ C;

3. whenever X
e∗−→, there exists a finite configuration X ′ ⊆fin X such that X ′′ e∗−→ for all X ′′ such that X ′ ⊆ X ′′ ⊆ X .

We call the category of FCSs and the CS morphisms between them FCS. Since this is a full subcategory of CS, Proposi-
tion 6.13 implies that we can define the product and coproduct in FCS in the same way as we do in CS.

Proposition 6.12. Cr is a functor from RES to FCS.

Proof. We first show that if E = (E , F , Con, �) is an (E , F , Con, �), then Cr(E) = (E , F , C, →) is a CS, as defined in Defini-

tion 3.1, meaning that for X, Y ∈ C, A ⊆ E , and B ⊆ F , if X
A∪B−−−→ Y , then:

1. A ∩ X = ∅, B ⊆ X ∩ F , and Y = (X \ B) ∪ A by definition.

2. For all A′ ⊆ A and B ′ ⊆ B , (X \ B ′) ∪ A = Z ∈ C because Z ⊆ X ∪ A ∈ C. Moreover there exists a transition X
A′∪B ′−−−→ Z

because for e ∈ A, X ′ � Z ′ � e for some X ′ ⊆fin X \ B ⊆ X \ B ′ , and Z ′ ∩ (X ∪ A′) ⊆ Z ′ ∩ (X ∪ A′) = ∅, and similarly for 

b ∈ B ′ . There exists a transition Z
(A\A′)∪(B\B ′)−−−−−−−−−→ Y for similar reasons.

We then need to show that Cr(E) is finitely enabled:
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∅

{a} {b}

{a,b}

(a) FCS C

E = (E , F ,Con,�) where
E = F = {a,b}
Con= {∅, {a}, {b}, {a,b}}
∅� ∅ � a, ∅� ∅ � b,
{b}� ∅ � b, {a}� {b} � a

(b) RES E

Fig. 15. An FCS and the corresponding RES such that R(C)= E and Cr(E)= C.

1. Clearly C is downwards-closed, since Con is downwards-closed.
2. X ∈ C if and only if for all X ′ ⊆fin X , X ′ ∈ Con, implying X ′ ∈ C.

3. If X
e−→ then there exist X ′, Z such that X ′ � Z � e, X ′ ⊆fin X , and Z∩(X∪{e}) = ∅. Hence X ′′ e−→ whenever X ′ ⊆ X ′′ ⊆ X . 

Similarly for X
e−→.

We then show that an RES morphism f : E0→ E1 is also a CS morphism (Definition 3.3) f : Cr(E0) → Cr(E1).:

1. This is implied by item 2 of the definition of an RES morphism.

2. Suppose X
A∪B−−−→0 Y . Then f (X) 

f (A)∪ f (B)−−−−−−→1 f (Y ) because:
(a) f (Y ) = ( f (X) \ f (B)) ∪ f (A) because Y = (X \ B) ∪ A and B ⊆ X .

f (A) ∩ f (X) = ∅ because A ∩ X = ∅, implying that if e1 ∈ f (A) ∩ f (X) then there must exist E0 ∈ A and e′0 ∈ X such 
that e1 = f (e0) = f (e′0). However, by definition of an RES morphism, this implies that no X ′ ∈ Con0 exists such that 
e0, e′0 ∈ X ′ , which cannot be true, since X ∪ A ∈ Con0.
f (B) ⊆ f (X) because B ⊆ X .
f (X) ∪ f (A) ∈ C1 according to item 1 because X ∪ A ∈ C0.

(b) For all a in A, X ′ � Z � a for some X ′, Z such that X ′ ⊆ f in X \ B and Z ∩ (X ∪ A) = ∅. If X ′ � Z � a then there exists 
a Z ′ such that for all e0 ∈ E0, if f (e0) ∈ Z ′ then e0 ∈ Z and f (X ′) � Z ′ �1 f (e)∗ . Since X ⊆ B and X ′ ⊆ f in X \ B , 
f (X ′) ⊆ f in f (X) \ f (B), and since e0 ∈ Z for all e0 ∈ E0 such that f (e0) ∈ Z ′ , we have Z ′ ∩ ( f (X) ∪ f (A)) ⊆ f (Z ∩
(X ∪ A)) = ∅.

(c) Similar to previous condition.
3. This is implied by item 3 of the definition of an RES morphism.

Having proved that Cr maps from RES to FCS, the proof of it being a functor is similar to previous functors. �
Proposition 6.13. Given FCSs C0 and C1 , both C0 + C1 and C0 × C1 are FCSs.

Proof. Straightforward. �
We describe a functor, R , from FCS to RES in Definition 6.14. An example of a mapping between an FCS and RES can 

be seen in Fig. 15. The functor R works by taking each transition and creating the minimum enablings required for Cr to 
create that transition (that is, if X

A∪B−−−→ Y then we need X \ B � E \ (X ∪ A) � e for each e ∈ A, and similarly for e ∈ B) and 
adding the additional enablings required by the weakening condition of Definition 6.1 of RESs.

Definition 6.14 (From FCS to RES). The functor R : FCS→ RES is defined as:

1. R((E , F , C, →)) = (E , F , Con, �) where X ∈ Con if X ⊆fin X ′ for some X ′ ∈ C and X � Y � e∗ if:
(a) X ∩ Y = ∅;
(b) if e∗ = e then e ∈ X ;

(c) there exists an X ′ ⊆ E such that X ′ A∪B−−−→ for some A and B such that e∗ ∈ A ∪ B , X ′ \ B ⊆ X , and Y = E \ (X ′ ∪ A);
2. R( f ) = f .

Proposition 6.15. R : FCS→ RES is a functor.

Proof. We first show that given an FCS C , R(C) is an RES according to Definition 6.1:

1. Suppose X � Y � e∗ . Then X ∩ Y = ∅, and Y = E \ (X ′ ∪ A) for some X ′ and A such that e∗ ∈ A ∪ X ′ . Therefore 
(X ∪ {e}) ∩ Y = ∅.

2. Suppose X � Y � e, then clearly e ∈ X .
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3. Suppose X � Y � e∗ , X ⊆ X ′ ∈ Con, and X ′ ∩ Y = ∅. Then:
(a) X ′ ∩ Y = ∅;
(b) if e∗ = e then e ∈ X ⊆ X ′;
(c) there exists X ′′ ⊆ E such that X ′′ A∪B−−−→ for some A and B such that e∗ ∈ A ∪ B , X ′′ \ B ⊆ X ⊆ X ′ and Y = E \ (X ′′ ∪ A).

We then show that given a CS morphism f : C0 → C1, we have that f : R(C0) → R(C1) is an RES morphism, satisfying 
the conditions of Definition 6.3:

1. Suppose f (e) �= ⊥ and X � Y �0 e∗ . Then there exists an X ′ ⊆ E such that X ′ A∪B−−−→0 for some A and B such that 
e∗ ∈ A ∪ B , X ′ \ B ⊆ X , and Y = E \ (X ′ ∪ A).
Then f (X) � (E1 \ ( f (X ′) ∪ f (A))) �1 f (e)∗ because:
(a) X ∩ Y = ∅ and f (Y ) = f (E \ (X ′ ∪ A)) ⊆ E1 \ ( f (X ′) ∪ f (A)), implying f (X) ∩ f (Y ) = ∅;
(b) if f (e)∗ = f (e) then e ∈ X , implying f (e) ∈ f (X);

(c) f (X ′) 
f (A)∪ f (B)−−−−−−→1, f (e)∗ ∈ f (A) ∪ f (B), and f (X ′) \ f (B) ⊆ f (X).

And for all e ∈ E0, if f (e0) ∈ (E1 \ ( f (X ′) ∪ f (A)), then clearly e0 ∈ E \ (X ′ ∪ A).
2. Suppose X ∈ Con0. Then there exists X ′0 ∈ C0 such that X ⊆fin X ′0. As f (X ′0) ∈ C1, and f (X) ⊆fin f (X ′0), clearly f (X) ∈

Con1.
3. Suppose f (e) = f (e′) and e �= e′ . Then for all X ∈ C0, {e, e′} � X . Therefore for all X ′ ∈ Con0, {e, e′} � X ′ .

Having shown that R is a mapping from CS to RES, the rest of the proof is similar to previous functors. �
As Theorem 6.16 states, Cr and R are inverses of each other for CSs for which the set of configurations is downwards-

closed and derived from the set of finite configurations, and no transitions starting from infinite configurations, which are 
not part of a larger transition going through a finite configuration. In fact, if C is an FCS, then Cr(R(C)) will always be such 
an FCS.

Theorem 6.16. Given an FCS C = (E , F , C, →), we have Cr(R(C)) = C if whenever X
A∪B−−−→, there exists X ′ such that X ′ A′∪B ′−−−→, 

X ′ \ B ′ is finite, A ⊆ A′ , X ∪ A ⊆ X ′ ∪ A′ and B ⊆ B ′ .

Proof. Let R(C) = (E , F , Con, �) and Cr((E , F , Con, �)) = (E, F , C′, →′). Then Con is the finite subsets of the configurations 
of C, so since X ∈ C iff ∀X ′ ⊆fin X .X ′ ∈ C, obviously C ′ = {C | ∀X ⊆fin C .X ∈ Con} = C. For any X, Y , A ⊆ E and B ⊆ F , there 

exists a transition X
A∪B−−−→

′
Y if and only if:

1. Y = (X \ B) ∪ A, A ∩ X = ∅, B ⊆ X , and X ∪ A ∈ C′;
2. for all e in A, X ′ � Z � e for some X ′, Z such that X ′ ⊆fin X \ B and Z ∩ (X ∪ A) = ∅;
3. for all e ∈ B , X ′ � Z � e for some X ′, Z such that X ′ ⊆fin X \ (B \ {e}) and Z ∩ (X ∪ A) = ∅.

Item 1 holds for transitions in any CS, including C . For any e∗ ∈ A ∪ B , if X ′ ⊆ X , X ∩ Z = ∅, X ∈ Con, and X ′ � Z � e∗ , 
then there must exist X ′′ ⊆ E such that X ′′ A′∪B ′−−−→, e∗ ∈ A′ ∪ B ′ , X ′′ \ B ′ ⊆ X , and Z = E \ (X ′′ ∪ A′). Therefore X

A∪B−−−→.

Suppose X
A∪B−−−→ Y . Then X \ B A−→ Y .

If X \ B is finite, and therefore in Con, we have X \ B � E \ (A ∪ X) � e for all e ∈ A, and for all e ∈ B we have 

X \ (B \ {e}) A∪{e}−−−→ Y , similarly giving us X \ (B \ {e}) � E \ (A ∪ X) � e. Therefore X
A∪B−−−→

′
Y .

If X \ B is infinite, then there exists X ′ , A′, B ′ such that X ′ A∪B−−−→, X \ B is finite, A ⊆ A′ , X ∪ A ⊆ X ′ ∪ A′ , and B ⊆ B ′ . This 
implies that for all e ∈ A ⊆ A′ , X ′ \ B ′ � E \ (A′ ∪ X ′) � e and for all e ∈ B ⊆ B ′ , X ′ \ (B ′ \ {e}) � E \ (A′ ∪ X ′) � e. Therefore 

X
A∪B−−−→

′
Y . �

We now show that R and Cr form an adjunction between RES and FCS.

Theorem 6.17. R � Cr .

Proof. For any RES E = (E , F , Con, �), we define ε : R(Cr(E)) → E such that for all e ∈ E ε(e) = e, and prove that it is an 
RES morphism.

If Cr(E) = (E , F , C, →) and R(Cr(E)) = (E, Con′, �′) then:
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1. Suppose X � Y �′ e∗ . Then clearly there exists X ′ ⊆ E such that X ′ A∪B−−−→ for some A, B such that e∗ ∈ A ∪ B , X ′ \ B ⊆ X

and Y = E \ (X ′ ∪ A). And since X ′ A∪B−−−→, we get X ′′ � Y ′ � e∗ for some X ′′ , Y ′ such that X ′′ ⊆ X ′ \ (B \ {e}) and 
Z ∩ (X ′ ∪ A) = ∅. Obviously Y ′ ⊆ Y , and since X ′′ ⊆ X and X ∩ Y = ∅ we get X � Y ′ � e∗ .

2. Suppose X ∈ Con′ . Then X ⊆fin X ′ ∈ C, C = {X ′ | ∀X ′′′ ⊆fin X ′.X ′ ∈ Con}, and Con is downwards closed, implying f (X) ∈
Con.

3. No e, e′ ∈ E exist such that ε(e) = ε(e′) and e �= e′ .

Since ε(e) = e, it is obviously a natural transformation.
We then show that given an FCS C0 = (E0, F0, C0, →0), an RES E1 = (E1, F1, Con1, �1), and an RES morphism f :

R(C0) → E1, it holds that f : C0→ R(E1) is an FCS morphism.
Suppose R(C0) = (E0, F0, Con0, �0) and Cr(E1) = (E1, F1, C1, →1). Then f satisfies the conditions of Definition 3.3 be-

cause:

1. Suppose C0 ∈ C0. Then for all X ⊆fin C0, X ∈ Con0. Therefore f (X) ∈ Con1 if f (X) ⊆fin f (C0), and consequently 
f (C0) ∈ C1.

2. Suppose X
A∪B−−−→0 Y . Then X \ B � E \ (X ∪ A) �0 e for all e ∈ A, and X \ (B \ {e}) � E \ (X ∪ A) �0 e for all e ∈ B . This 

implies that f (X) \ ( f (B) \ { f (e)}) � Y1 �1 f (e)∗ for some Y1 such that for all e0 ∈ E , if f (e0) ∈ Y1 then e0 ∈ E \ (X ∪ A). 

Therefore f (X) 
f (A)∪ f (B)−−−−−−→1 f (Y ).

3. If C0 ∈ C0 then for all X ⊆fin C0, X ∈ Con0, and if f (e0) = f (e′0) �= ⊥, then there exists no X0 ∈ Con0 such that e0, e′0 ∈
X0. �

We also show in Proposition 6.18 that Cr preserves both coproducts and products up to isomorphism, the latter being 
implied by Theorem 6.17.

Proposition 6.18. Given RESs E0 and E1 , Cr(E0) + Cr(E1) = Cr(E0 + E1) and Cr(E0) × Cr(E1) ∼= Cr(E0 × E1).

Proof. Let E0 = (E0, F0, Con0, �0), E1 = (E1, F1, Con1, �1), E0 + E1 = (E , F , Con, �), Cr(E0) = (E0, F0, C0, →0), C1(E1) =
(E1, F1, C1, →1), Cr(E0 + E1) = (E , F , C, →), and Cr(E0) + Cr(E1) = (E ′, F ′, C′, →′). Then Cr(E0) + Cr(E1) = Cr(E0 + E1)

because:

1. C = {X | ∃i ∈ {0, 1}, Xi .X = {i} × Xi and ∀X ′i ⊆fin Xi .X ′i ∈ Coni} = {X | ∀X ′ ⊆fin X .∃i ∈ {0, 1}, Xi ∈ Coni .X ′ = {i} × Xi} = C′ .

2. If X
A∪B−−−→ Y then X

A∪B−−−→
′

Y because:
(a) Y = (X \ B) ∪ A, A ∩ X = ∅, B ⊆ X , and X ∪ A.
(b) For all (i, e) ∈ A, there exists X ′ � Z �i e for some X ′, Z such that {i} × X ′ ⊆fin X ⊆ B and {i} × Z ∩ (X ∪ A) = ∅.
(c) For all (i, e) ∈ B , there exists X ′ � Z �i e for some X ′, Z such that {i} × X ′ ⊆fin X ⊆ (B ⊆ (i, e)) and {i} × Z ∩(X∪ A) =
∅.

3. If X
A∪B−−−→

′
Y then X

A∪B−−−→ Y for similar reasons.

Cr(E0) × Cr(E1) ∼= Cr(E0 × E1) is implied by Theorem 6.17, since right adjoints preserve products up to isomorphism. �
Just as we had functors between PES and RPES and AES and RAES, we have a functor from ES to RES, extending the 

mapping from [21], described in Definition 6.19.

Definition 6.19 (From ES to RES). The functor Pr : ES→ RES is defined as

1. Pr((E , Con, �)) = (E, ∅, Con, �′) where X � ∅ �′ e if X � e;
2. Pr( f ) = f .

Proposition 6.20. Pr is a functor from ES to RES.

Proof. It was shown in [21] that for an ES E , Pr(E) is an RES.
If f : E0→ E1 is an ES morphism, then f : Pr(E0) → Pr(E1) satisfies the conditions of Definition 6.3:

1. When Y = Y1 = ∅, this is analogous to condition 1 of ES morphisms.
2. This is condition 2 of ES morphisms.
3. This is condition 3 of ES morphisms.

Once established that Pr is a mapping, the rest of the proof is similar to previous functors. �
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We also define a mapping from RAESs to RESs in Definition 6.21. The possibility of doing so was first discussed in [22], 
though a mapping was not defined. The only time we have Cra(E) = Cr(Par(E)) is when any set of events of the RAES which 
contains an infinite chain e0 � e1 � e2 � . . . , also contains a finite �-cycle. This is because, while RAES configurations require � to be well-founded, the set Con of the corresponding RES can only contain finite sets, such that all finite subsets of a 
configuration of the RES must be in Con. Obviously this does not allow us to define an RES with the same configurations as 
an RAES which has an infinite chain e0 � e1 � e2 � . . . without any finite �-cycles. We do however still get an RES, and the 
extra configurations will never be reachable in a finite number of transitions. It is worth noting that, while we cannot map 
all RAESs to a corresponding RES, thanks to the preventing set, we can get much closer than in the forward-only setting. 
Recall from Remark 2.27 that such a mapping did not exist from AES to ES, due to ESs not having a notion of prevention. 
Also note that, since in RAESs generated by RPESs a � b if and only if b � a, we have Crp = Cr ◦ Par ◦ Ar . The mapping Par

from RAES to RES also acts as a functor.

Definition 6.21 (From RAES to RES). The mapping Par : RAES→ RES is defined as

1. Par((E , F , ≺, �)) = (E , F , Con, �) where:
Con= {X ⊆fin E |� is well-founded on X}:
X � Y � e if {e′ | e′ ≺ e} ⊆ X ∈ Con, Y = {e′ | e′ � e}, X ∩ Y = ∅, and e ∈ E:
X � Y � e if {e′ | e′ ≺ e} ⊆ X ∈ Con, Y = {e′ | e′ � e}, X ∩ Y = ∅, and e ∈ F .

2. Par( f ) = f .

Proposition 6.22. Par is a functor from RAES to RES.

Proof. We first show that given an RAES E = (E , F , ≺, �), Par(E) is an RES, satisfying the conditions of Definition 6.1:

1. Suppose X � Y � e∗ . Then (X ∪ {e}) ∩ Y = ∅ because by definition of Par , X ∩ Y = ∅ and by definition of an RAES, since � is irreflexive and e ≺ e one cannot have e � e∗ .
2. Suppose X � Y � e. Then e ∈ X because X = {e′ ∈ E | e′ ≺ e} and by definition e ≺ e.
3. Suppose X � Y � e∗ , X ⊆ X ′ ∈ Con, and X ′ ∩ Y = ∅. Then it is clear from the definition of �, that X ′ � Y � e∗ .

We then show that given an RAES morphism f : E0 → E1, f : Par(E0) → Par(E1) is an RES morphism, satisfying the 
conditions of Definition 6.3:

1. Suppose X � Y �0 e. Then {e′ ∈ E0 | e′ ≺0 e} ⊆ X ∈ Con0, Y = {e′ ∈ E0 | e′ �0 e}, and X ∩ Y = ∅. Since X ∈ Con0, we 
have f (X) ∈ Con1. By definition of P pr , {e′ ∈ E0 | e′ ≺0 e} ⊆ X , and by definition of an RAES morphism, {e1 | e1 ≺1
f (e)} ⊆ { f (e′) | e′ <0 e}, implying {e1 | e1 ≺1 f (e)} ⊆ f (X). And since f (e′) �1 f (e) implies e′ �0 e, we get that for all 
e′ ∈ E0 such that f (e′) ∈ {e′ | e′ �1 f (e)}, e′ ∈ Y . If e1 ∈ f (X) ∩ {e′ | e′ �1 f (e)}, then there must exist an e0 ∈ X such 
that f (e0) = e1, and therefore e0 �0 f (e), implying e0 ∈ X ∩ Y , which is not possible. Since f (e) ∈ f (F0) ⊆ F1, we can 
conclude that f (X) � {e′ | e′ �1 f (e)} �1 f (e).
Suppose X � Y �0 e. Then the argument is similar.

2. Suppose X0 ∈ Con0. Then �0 is well-founded on X0, and for all e, e′ ∈ X0, if f (e) �1 f (e′), then e �0 e′ . Hence �1 is 
also well-founded on f (X0), and therefore f (X0) ∈ Con1.

3. Suppose f (e) = f (e′) �= ⊥ and e �= e′ . Then e #0 e′ and Con0 = {Y ⊆ E0 |�0 is well-founded on Y }. Therefore X ∈ Con0
implies {e, e′} � X .

Having proved that Par is a mapping from RAES to RES, the rest of the proof is similar to previous functors. �
Theorem 6.23. Given an RAES E = (E , F , ≺, �), such that for any X ⊆ E, if � is not well-founded on X then there exists a finite �-cycle in X, Cr(Par(E)) = Car(E).

Proof. Let Cra(E) = (E , F , C, →), Par(E) = (E , F , Con, �), and Cr(Par(E)) = (E, F , C′, →′).
We first prove that C = C′ . Suppose X ∈ C. Then � is well-founded on X , implying for all X ′ ⊆fin X , � is well-founded 

on X ′ , and therefore X ′ ∈ Con, implying X ∈ C′ .
Suppose X ′ ∈ C′ . This implies that for all X ⊆fin X ′ , X ∈ Con and therefore � is well-founded on X . Hence there cannot 

exist a finite �-cycle in X ′ , and therefore � is well-founded on X ′ , implying X ′ ∈ C.

It remains to show that →=→′ . Suppose X
A∪B−−−→ Y . Then X, Y ∈ C, A ⊆ E , B ⊆ F , Y = (X \ B) ∪ A, A ∩ X = ∅, and 

B ⊆ X , so we need to prove that for all a ∈ A, X ′ � Z � a for some X ′ ⊆ X \ B , Z , such that Z ∩ (A ∪ X) = ∅. Clearly this 
holds for X ′ = {e | e ≺ a} and Z = {e | e � a}. Similarly for all b ∈ B , we have that X ′ � Z � b for some X ′ ⊆ X \ (B \ {b}), Z , 
such that Z ∩ (A ∪ X) = ∅.
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Suppose X
A∪B−−−→

′
Y . Then X, Y ∈ C, A ⊆ E , B ⊆ F , Y = (X \ B) ∪ A, A ∩ X = ∅, and B ⊆ X . Additionally for all e ∈ A, if 

e′ ≺ e then whenever X ′ � Z � e, e′ ∈ X ′ , and if e′ � e then whenever X ′ � Z � e, e′ ∈ Z . Also for every e ∈ B , if e′ ≺ e then 
whenever X ′ � Z � e, we have e′ ∈ X ′ , and if e′ � e then whenever X ′ � Z � e, we have e′ ∈ Z . �
7. Stable reversible event structures and configuration systems

Similarly to the stable event structures (Definition 2.25), we define the stable reversible event structures (SRES) in Defini-
tion 7.1, and create the category SRES consisting of SRESs and the RES morphisms between them. SRESs and SESs are defined 
identically, with the exception that in an SRES the preventing sets are included as well, and treated in much the same way 
as the enabling sets. Fig. 15b showed an SRES. Though we needed a non-stable RES to model the process described in 
Example 6.2, SRESs are still useful for other cases, as illustrated by Example 7.2. We also define a stable CS (SCS), and a new 
functor from SCSs to SRESs called R ′ (Definition 7.6). Functors R ′ and Cr act as inverses on SCSs (Proposition 7.13), and on 
SRESs in normal form (Definition 7.17).

Like in an SES, an event in a configuration of an SRES will have a single unique possible cause as long as the configuration 
has been reached by only going forwards. Also like the SES for the PES, mapping an RPES or RAES into an RES always results 
in an SRES, as stated in Proposition 7.3. In addition, the subcategory is closed under RES coproduct and product. Since SRES
consisting of SRESs and the RES morphisms between them is a full subcategory, we can then construct SRES products and 
coproducts in the same manner as we do RES products and coproducts.

Definition 7.1 (Stable RES). A stable reversible event structure (SRES) is an RES E = (E , F , Con, �) such that for all e∗ ∈ E ∪ F , 
if X � Y � e∗ , X ′ � Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con, then X ∩ X ′ � Y ∩ Y ′ � e∗ .

Example 7.2. Recall Example 1.4, where we wished to model a computation e0, e1, e2, . . . which can be forced to reverse if it 
encounters one of a number of different errors {error0, error1, . . . , errorn}. We do this with an RES with events {e0, e1, . . . } ∪
{error0, error1, . . . , errorn}, consistent sets Con= {X | �i, j.{errori, error j} ⊆ X}, and the enablings:
{ek | k < i} � {error j | 0 ≤ j ≤ n} � ei for all ei ,
∅ � ∅ � error j and {error j} � {e0} � error j for all error j ,
and {error j} � {ek | k > i} � ei for all combinations of i and j.
This RES will be stable.

Proposition 7.3. If E = (E , F , ≺, �) is an RAES then Par(E) is an SRES.

Proof. Recall from Proposition 6.22, that Par(E) = (E , F , Con, �) is an RES.
We need to show that for all e∗ ∈ E ∪ F , if X � Y � e∗ , X ′ � Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con then X ∩ X ′ � Y ∩ Y ′ � e∗ .
Suppose e∗ = e. Then {e′ ∈ E | e′ < e} ⊆ X, X ′ ∈ Con and Y = Y ′ = {e′ ∈ E | e′� e}. Since � is well-founded on X ∪ X ′ + e∗ , 

X and X ′ are finite, and e′ � e implies e′ /∈ X ∪ X ′ , we know that � is well-formed on X ∩ X ′ . Hence {e′ ∈ E | e′ < e} ⊆
X ∩ X ′ ∈ Con, implying that X ∩ X ′ � Y � e as required.

Suppose e∗ = e. Then {e′ ∈ E | e′ < e} ⊆ X, X ′ ∈ Con and Y = Y ′ = {e′ ∈ E | e′ � e} and the logic is similar to above. �
Proposition 7.4. Given two SRESs E0 and E1 , E0 + E1 is an SRES.

Proof. Let E0 = (E0, F0, Con0, �0), E1 = (E1, F1, Con1, �1), and E0 + E1 = (E , F , Con, �). Then suppose X � Y � e∗ , X ′ �
Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con. Then e∗ = ( j, e j)

∗ and ∃X j, Y j ∈ E j such that X j � Y j � e∗ , i j(X j) = X , Y = i j(Y j) ∪ (E \
i j(E j)) and ∃X ′j, Y

′
j ∈ E j such that X ′j � Y ′j � e∗ , i j(X ′j) = X ′ , Y ′ = i j(Y ′j) ∪ (E \ i j(E j)). Since X ∪ X ′ + e∗ ∈ Con implies 

X j ∪ X ′j + e∗j ∈ Con0, we get X j ∩ X ′j � Y j � e∗j . Therefore X ∩ X ′ � Y � e∗ . �
Proposition 7.5. Given two SRESs E0 and E1 , E0 × E1 is an SRES.

Proof. Let E0 = (E0, F0, Con0, �0), E1 = (E1, F1, Con1, �1), and E0 × E1 = (E , F , Con, �).
Then suppose X � Y � e∗ , X ′ � Y ′ � e∗ , and X ∪ X ′ + e∗ ∈ Con. Then either e∗ = (e0, ∗)∗ , e∗ = (∗, e1)

∗ , or e∗ = (e0, e1)
∗

Suppose e∗ = (e0, ∗)∗ . Then π0(X) � Y0 � π0(e)∗ , for some Y0 such that Y = {e′ | π0(e′) ∈ Y0}, π0(X ′) � Y ′0 � π0(e)∗ for 
some Y ′0 such that Y ′ = {e′ | π0(e′) ∈ Y ′0}, and π0(X ∪ X ′ + e∗) ∈ Con0. Hence π0(X) ∪ π0(X ′) + e∗0 ∈ Con0, and therefore 
π0(X) ∩π0(X ′) � π0(Y ) � e∗0. Since if e∗ = e then e∗ ∈ X ∩ X ′ , we therefore have X ∩ X ′ � Y � e∗ .

Suppose e∗ = (∗, e1)
∗ . Then similar logic can be used.

Suppose e∗ = (e0, e1)
∗ . Then π1(X) � Y1 � π1(e)∗ , π1(X ′) � Y ′1 � π1(e)∗ , π0(X) � Y0 � π0(e)∗ , and π0(X ′) � Y ′0 �

π0(e)∗ , for some Y0, Y ′0, Y1, Y ′1 such that Y = {e′ | π0(e′) ∈ Y0 or π1(e′) ∈ Y1} and Y ′ = {e′ | π0(e′) ∈ Y ′0 or π1(e′) ∈ Y ′1}, and 
π1(X ∪ X ′ + e∗) ∈ Con1 and π0(X ∪ X ′ + e∗) ∈ Con0, implying π0(X) ∪ π0(X ′) + e∗0 ∈ Con0 and π1(X) ∪ π1(X ′) + e∗1 ∈ Con1, 
and therefore π0(X) ∩ π0(X ′) � Y0 � e∗0 and π1(X) ∩ π1(X ′) � Y1 � e∗1, and, since if e∗ = e then obviously e∗ ∈ X ∩ X ′ , 
X ∩ X ′ � Y � e∗ . �
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∅

{a} {b}

{a,b}

(a) Non-stable CS C

E = (E , F ,Con,�) where
E = F = {a,b}
Con= {∅, {a}, {b}, {a,b}}
∅� ∅ � a,
{a}� ∅ � b,
∅� {a} � b,
{b}� ∅ � b, {a}� {b} � a

(b) Non-stable RES E

Fig. 16. Example of a non-stable CS and the corresponding RES.

Similarly, we also define a stable configuration system in Definition 7.6. Again we want events to have a unique cause 
in any configuration. Condition (a) states that if X1 ⊆ X3 and both X1 and X3 can do a transition, then so can every 
configuration in between them, since this means X1 is unambiguously what enables this transition in X3. Condition (b) is 
very similar to Definition 2.25, but referring to configurations rather than enabling sets. Condition (c) ensures that if X1 ∪ X2
can do a transition, and X1 and X2 can each do the same transition individually, then that transition is caused by X1 ∩ X2
in all those configurations. Finally, condition (d) states that if two transitions can both happen in any order between two 
states, then they are independent and can therefore happen simultaneously.

Definition 7.6 (Stable CS). A stable CS (SCS) is a CS C = (E , F , C, →) such that:

1. C is downwards closed.
2. For X1, X2, X3 ∈ C, A ⊆ E , and B ⊆ F :

(a) if X1 ⊆ X2 ⊆ X3, and there exist transitions X1
A∪B−−−→ and X3

A∪B−−−→, then X2
A∪B−−−→;

(b) if ((X1 ∪ X2) \ B)∪ A ∈ C, and there exist transitions X1
A∪B−−−→ and X2

A∪B−−−→, then X1 ∩ X2
A∪B−−−→;

(c) if X1 ∩ X2 ⊆ X3 ⊆ X1 ∪ X2, (X3 ∪ A) \ B ∈ C, and there exist transitions X1
A∪B−−−→, X2

A∪B−−−→, and X1 ∩ X2
A∪B−−−→, then 

X3
A∪B−−−→;

(d) if X0, X1, X2, X3 ∈ C, A0, A1, B0, B1 ⊆ E and there exist transitions X0
A0∪B0−−−−→ X1, X0

A1∪B1−−−−→ X2, X1
A1∪B1−−−−→ X3, and 

X2
A0∪B0−−−−→ X3, then X0

A0∪A1∪B0∪B1−−−−−−−−−→ X3.

Proposition 7.7. Given an RAES E = (E , F , ≺, �), Cra(E) is an SCS.

Proof. Straightforward. �
Proposition 7.8. Given SCSs C0 and C1 , both C0 + C1 and C0 × C1 are SCSs.

Proof. Straightforward. �
Fig. 15a shows a stable CS. One way to make it non-stable would be to remove the transition from ∅ to {a, b}, since 

that would violate item 2d, giving us the non-stable CS from Example 3.2, recalled in Fig. 16 with a corresponding RES 
added. This also makes the corresponding RES non-stable, as evidenced by the fact that {a} � ∅ � b and ∅ � {a} � b, but not 
∅ � ∅ � b.

We previously defined a functor R from FCS to RES (Definition 6.14), but some CSs can be represented by more than one 
RES. Consider, for example, the one seen in Fig. 17a, where the two transitions could be caused by the same or different 
enablings. The functor presented in Definition 6.14 gives us the RES in Fig. 17b. Note that while the FCS is stable, the 
RES generated by R is not. We would like a functor which maps SFCSs to SRESs, and we therefore define a new functor 
specifically for stable FCSs in Definition 7.9, which gives us the SRES in Fig. 17c. Functor R will always create an enabling 
for each transition (with the required subenablings caused by the weakening condition of Definition 6.1), while R ′ finds 

a maximum X and a minimum X ′ such that for X ′ ⊆ X ′′ ⊆ X , if X ′′ ∈ C and X ′′ + e∗ ∈ C then X ′′ {e
∗}−−→, and generates 

one enabling (with required subenablings) for all those configurations. For this reason R ′ does not preserve morphisms on 
non-stable FCSs, and we therefore only use it on stable ones. However, R ′ also gives us the ability to model transitions from 
infinite sets which are not a part of a larger transition from a finite set as described in Theorem 6.16.

Definition 7.9 (From SFCS to SRES). The functor R ′ : SFCS→ SRES is defined as:

1. R ′((E , F , C, →)) = (E , F , Con, �) where Con = {X | X ⊆fin X ′ ∈ C} and for all X, X ′, e such that X ′ ∈ C, e ∈ E , and 
X ⊇ X ′ if:

(a) if X + e∗ ∈ C then X
{e∗}−−→;
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{a} {b}

{a,b}

(a) CS C

R(C)= (E , F ,Con,�) where
E = {a,b}
F = ∅
Con= {∅, {a}, {b}, {a,b}}
∅� {b} � a
{b}� ∅ � a

(b) RES R(C)

R ′(C)= (E , F ,Con,�) where
E = {a,b}
F = ∅
Con= {∅, {a}, {b}, {a,b}}
∅� ∅ � a

(c) RES R ′(C)

Fig. 17. Example of a CS and the two different corresponding RESs.

(b) if X ′, X ′ + e∗ ∈ C then X ′ {e
∗}−−→, and whenever X ′ ⊆ X ′′ ⊆ X and X ′′, X ′′ + e∗ ∈ C, there exists a transition X ′′ {e

∗}−−→;

(c) no X ′′ � X ′ exists such that if X ′′, X ′′ + e∗ ∈ C then X ′′ {e
∗}−−→, and whenever X ′′ ⊆ X ′′′ ⊆ X and X ′′′, X ′′′ + e∗ ∈ C

there exists a transition X ′′′, X ′′′ + e∗ {e
∗}−−→;

(d) no X ′′ � X exists such that if X ′′, X ′′ + e∗ ∈ C then X ′′ {e
∗}−−→, and whenever X ′ ⊆ X ′′′ ⊆ X ′′ and X ′′′, X ′′′ + e∗ ∈ C

there exists a transition X ′′′ {e
∗}−−→;

(e) there exists C ⊆ C, such that 
⋃

C = X , and for all X ′′ ∈ C , X ′′ {e
∗}−−→ and X ′ ⊆ X ′′;

then we get the following enablings:
(a) if e∗ = e, then for all X ′′ ∈ Con such that X ′ ⊆ X ′′ ⊆ X ∪ {e}, X ′′ � E \ (X ∪ {e}) � e;
(b) if e∗ = e, then for all X ′′ ∈ Con such that X ′ ⊆ X ′′ ⊆ X , X ′′ � E \ X � e.

2. R ′( f ) = f .

Proposition 7.10. R ′ is a functor from SFCS to SRES.

Proof. We first show that given an SFCS, C = (E , F , C, →), R ′(C) is an RES, as described in Definition 6.1:

1. Suppose X ′′ � Y � e∗ . Then clearly there exist X ′ and X such that X ′ ⊆ X ′′ ⊆ X , such that Y = E \ X , and therefore 
X ∩ Y = ∅.

2. Suppose X ′′ � Y � e. Then e ∈ X ′′ , because there exists X ′ ⊆ X ′′ such that X ′ {e}−−→.
3. Suppose X ′′ � Y � e∗ , X ′′ ⊆ X ′′′′ ∈ Con, and X ′′′ ∩ Y = ∅. Then, since X ′′ ⊆ X ′′′ ⊆ E \ Y , clearly X ′′′ � Y � e∗ .

We then show that R ′(C) is stable:
Whenever X0 � Y0 � e, X1 � Y1 � e, and X0 ∪ X1 ∪ {e} ∈ Con we know that for all configurations X ′0, X ′1 ∈ C, if X0 ⊆

X ′0 ⊆ E \ (Y2∪{e}) and X1 ⊆ X ′1 ⊆ E \ (Y1∪{e}) then X ′0
{e}−−→ and X ′1

{e}−−→. Hence X0∪ X1∪{e} ∈ C, implying X0∩ X1
{e}−−→, and 

X0 ∩ X1 ⊆ X ′0 ∩ X ′1 ⊆ X ′1. Hence X ′0 ∩ X ′1
{e}−−→, and therefore for all X ∈ C, if X0 ∩ X1 ⊆ X ⊆ (E \ (Y1 ∪ {e})) ∪ (E \ (Y0 ∪ {e}))

then X
{e}−−→. This gives us X0 ∩ X1 � Y0 ∩ Y1 � e.

If X0 � Y0 � e, X1 � Y1 � e, and X0 ∪ X1 \ {e} ∈ Con the argument is similar.
We then show that given an SFCS morphism f : C0→ C1, f : R ′(C0) → R ′(C1) is an RES morphism, satisfying the condi-

tions of Definition 6.3:

1. Suppose f (e) �= ⊥ and X ′′ � Y �0 e∗ . Then there exists a minimum X ′ such that whenever X ′ ⊆ X ′′′ ⊆ E0 \ Y for 

X ′′′ ∈ C0, we have a transition X ′′′ {e
∗}−−→. Therefore f (X ′′′) { f (e)∗}−−−−→. We also have X ′ ∪ {e′} ∈ C0 for all e′ ∈ E0 \ Y , and 

C is downwards-closed, whenever f (X ′) ⊆ X ′′′′ ⊆ f (E0 \ Y ), X ′′′′ { f (e)∗}−−−−→. This implies that there exists a Y1 such that 
f (X) � Y1 � f (e)∗ , and if f (e′) ∈ Y1, then e′ ∈ Y .

2. Suppose X0 ∈ Con0. Then there exists X ′0 ∈ C0 such that X0 ⊆fin X ′0. Clearly f (X ′0) ∈ C1 and f (X0) ⊆fin f (X ′0), implying 
f (X0) ∈ Con1.

3. Suppose f (e) = f (e′) and e �= e′ . Then there does not exist X ∈ C0 such that e, e′ ∈ C . Since for all X0 ∈ Con0, there 
exists X ′0 ∈ C0 such that X ⊆fin X ′0, there also does not exist X ′′0 ∈ Con0, such that e, e′ ∈ X ′′0 . �

Proposition 7.11. If E is an SRES then Cr(E) is an SFCS.

Proof. Let E be an SRES and recall from Proposition 6.12 that Cr(E) is an FCS. Then we need to show that Cr(E) =
(E , F , C, →) fulfils the conditions of Definition 7.6:

1. C is downwards-closed because Cr(E) is an FCS.
2. For X1, X2, X3 ∈ C:
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(a) This means that for e∗ ∈ A ∪ B , there exist X ′1, X ′3, Y1, Y3 such that X ′1 ⊆ X1 \ (B \ {e}), X ′3 ⊆ X3 \ (B \ {e}), X ′1 �
Y1 � e∗ , X ′3 � Y3 � e∗ , Y1 ∩ (X1 ∪ A) = ∅, and Y3 ∩ (X3 ∪ A) = ∅, and therefore, since X ′1 ∩ X ′3 � Y1 ∩ Y3 � e∗ , we get 

X2
A∪B−−−→.

(b) This means that for e∗ ∈ A ∪ B , there exist X ′1, X ′2, Y1, Y2 such that X ′1 ⊆ X1 \ (B \ {e}), X ′2 ⊆ X2 \ (B \ {e}), X ′1 �
Y1 � e∗ , X ′2 � Y2 � e∗ , Y1 ∩ (X1 ∪ A) = ∅, and Y2 ∩ (X2 ∪ A) = ∅, and therefore, since X ′1 ∩ X ′2 � Y1 ∩ Y2 � e∗ and C

is downwards-closed, we get X1 ∩ X2
A∪B−−−→.

(c) This means that for e∗ ∈ A0 ∪ B0, there exist Y0, Y1 ⊆ E \ X1, and Y2 ⊆ E \ X2, such that X1 ∩ X2 � Y0 � e∗ , 
X1 � Y1 � e∗ and X2 � Y2 � e∗ , and clearly (X1 ∩ X2) ∩ X1 ∩ X2 = X1 ∩ X2, and Y0 ∩ Y1 ∩ Y2 ⊆ E \ (X1 ∪ X2), 

implying X1 ∩ X2 � Y0 ∩ Y1 ∩ Y2 � e∗ . Hence X3
A∪B−−−→.

(d) This means that for all e∗ ∈ A0 ∪ B0, there exist X ′0, X ′2, Y0, Y2 such that X ′0 ⊆ X0 \ (B0 \ {e}), X ′2 ⊆ X2 \ (B0 \ {e}), 
X ′0 � Y0 � e∗ , X ′2 � Y2 � e∗ , Y0∩ (X0∪ A0) = ∅, and Y2∩ (X2∪ A0) = ∅. Hence X ′0∩ X ′2 � Y0∩ Y2 � e∗ and X0∩ X2 ⊆
X0 \ B1 and Y0 ∩ Y2 ⊆ Y2, and similarly for e′ ∗ ∈ A1 ∪ B1. Therefore X0

A0∪A1∪B0∪B1−−−−−−−−−→. �
Though R ′ and Cr are inverses on SFCSs, they are not inverses on all SRESs, only those whose enablings satisfy Defini-

tion 7.12 below. As Proposition 7.13 suggests, only one such SRES exists per SFCS, but there can be one or more non-stable 
RESs with necessary and minimal enablings which also generates the same SFCS, as Fig. 17 shows.

An enabling is considered necessary if it is not implied by other enablings. If for example we have an enabling {a} � ∅ � b
then also having {a} � {c} � b is unnecessary, as there cannot exist any configurations in which {a} � {c} � b allows us to do 
b, but {a} � ∅ � b does not. Additionally, we consider an enabling necessary if it is needed because of a necessary enabling 
and the weakening condition of Definition 6.1.

An enabling is considered minimal if every event which cannot potentially be in the same configuration as both the 
enabling set and the event being enabled is in the preventing set. For example ∅ � ∅ � b is not minimal if there do not 
exist any configurations of which {a, b} is a subset, as the enabling ∅ � {a} � b would have had the same effect with a larger 
preventing set.

Definition 7.12. Given an RES, E = (E , F , Con, �), an enabling X � Y � e∗ is

1. necessary if there exists an X ′ ⊆ X such that X ′ � Y � e∗ and there does not exist an enabling X ′ � Y ′ � e∗ for Y ′ � Y ;
2. minimal if for every e′ such that X ∪ {e, e′} /∈ C, e′ ∈ Y .

If all the enablings in E are necessary and minimal, we say that E is in normal form, and we define the category nfRES
(resp. nfSRES) of RESs (resp. SRESs) in normal form and the RES morphisms between them.

Proposition 7.13.

1. If E is an SRES in normal form, then R ′(Cr(E)) = E .
2. If C is an SFCS, then Cr(R ′(C)) = C .

Proof.

1. If E = (E , F , Con, �), Cr(E) = (E , F , C, →), and R ′(Cr(E)) = (E, F , Con′, �′), then we have C = {C | X ⊆fin C ⇒ X ∈ Con}, 
and Con′ = {X | ∃X ′ ∈ C.X ⊆fin X ′}, and Cr(E) is an FCS, and therefore obviously Con′ = Con.

Suppose X � Y � e. Then for all X ′ ∈ C, if X ′ ∪ {e} ∈ C and X ⊆fin X ′ ⊆ E \ (Y ∪ {e}), then X ′ {e}−−→, which implies 
that there must exist some minimum X ′′ ⊆ X and maximum X ′′′ ⊃ E \ (Y ∪ {e}), such that if X ′′ ⊆ X ′′′′ ⊆ X ′′′ , and 
X ′′′′, X ′′′′ ∪ {e} ∈ C, then X ′′′′ {e}−−→. As X � Y � e is a necessary enabling E \ (X ′′′ ∪ {e}) = Y , giving us X � Y �′ e. Similar 
arguments apply if X � Y � e.

Suppose X � Y �′ e. Then there exists an X ′ ⊆ X such that X ′ {e}−−→, and if X ′′, X ′′+e ∈ C and X ′ ⊆ X ′′ ⊆ E \(Y ∪{e}), then 
X
{e}−−→. As E is stable, this obviously requires X ′ � Y ′ � e for some Y ′ ⊇ Y such that if X ∩ Y ′ = ∅ and X ∩ Y �= ∅ then 

X ∪ {e} /∈ C. Since all enablings in E are minimal, it must be that Y = Y ′ , and therefore X � Y � e. Similar arguments 
apply if X � Y �′ e.

2. If C = (E , F , C, →), R ′(C) = (E , F , Con, �), and Cr(R ′(C)) = (E, F , C′, →′), then C′ = C for the same reasons as in 
Theorem 6.16.

Suppose X
A∪B−−−→ Y . Then for all e∗ ∈ A ∪ B , whenever X ⊆ X ′ ⊆ Y − e∗ , X ′ {e

∗}−−→. Hence there exists Y ′ ⊆ E \ (Y ∪ B) such 

that X � Y ′ � e∗ , and therefore X
A∪B−−−→

′
.

Suppose X
A∪B−−−→

′
Y . Then for all e∗ ∈ A ∪ B , there exists X ′ ⊆ X and Y ′ such that (X ∪ A) ∩ Y ′ = ∅, and X ′ � Y ′ � e∗ . 

This in turn requires X ′′ {e
∗}−−→ whenever X ′ ⊆ X ′′ ⊆ E \ (Y ∪ {e}). Since C is stable, this implies X

A∪B−−−→ Y . �
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Proposition 7.14. If C is an SFCS, then R ′(C) is in normal form.

Proof. Let C = (E , F , C, →) be an SFCS and let R ′(C) = E = (E , F , Con, �). Consider an enabling X � Y � e∗ .
We first show that it is necessary. If e∗ = e then there exists an X1 ⊆ X , such that whenever X1 ⊆ X ′1 ⊆ E \ Y and 

X ′1, X ′1 ∪ {e} ∈ C then X ′1
{e}−−→, no X2 � X1 exists such that whenever X2 ⊆ X ′2 ⊆ E \ Y and X ′2, X ′2 ∪ {e} ∈ C then X ′2

{e}−−→, and 

no X3 � E \ (Y ) exists such that whenever X1 ⊆ X ′3 ⊆ X3 and X ′3, X ′3 ∪ {e} ∈ C then X ′3
{e}−−→. Hence that X1 ∈ Con because 

X1 ⊆ X ∈ Con and there cannot exist an enabling X1 � Y ′ for Y ′ � Y .
If e∗ = e the proof is similar.
The enabling X � Y � e∗ is also minimal, since C is downwards-closed and there exists C ⊆ C, such that 

⋃
C = E \ Y , 

and for all X ′ ∈ C , X ′ {e
∗}−−→ and X ⊆ X ′ . �

Corollary 7.15. nfSRES and SFCS are isomorphic.

Proof. Implied by Propositions 7.13 and 7.14. �
We showed in Propositions 7.4 and 7.5 that the coproduct and product of two stable RESs will always be stable. We now 

show that the coproduct and product of RESs in normal form will also be in normal form.

Proposition 7.16. Given RESs E0 and E1 in normal form, both E0 + E1 and E0 × E1 are in normal form.

Proof. Straightforward. �
We define a way of mapping from RESs to normal form RESs in Definition 7.17, and in the following proposi-

tions show that the RES generated by this mapping will map to the same CS as the original. To get an RES in 
normal form, we first minimise the enablings by finding one not required by the weakening condition of Defini-
tion 6.1, X ′ � Y ′ � e∗ , and then adding any event e′ , for which X ′ ∪ {e, e′} /∈ Con to Y ′ , and considering this en-
abling as well as those implied by it and the weakening condition part of �min. Out of these minimised enablings, 
we then take the necessary (Definition 7.12) ones, and those required by the necessary ones and the weakening condi-
tion.

Definition 7.17 (RES normaliser N). Given an RES E = (E , F , Con, �), we define the minimised enablings of E , �min as X �
Y �min e∗ if there exist X ′, Y ′ ⊆ E such that:

1. X ∈ Con and (X ∪ {e}) ∩ Y = ∅;
2. X ′ � Y ′ � e∗ ;
3. X ′ ⊆ X ;
4. no X ′′ � X ′ exists such that X ′′ � Y ′ � e∗;
5. e′ ∈ Y iff e ∈ Y ′ or X ′ ∪ {e, e′} /∈ Con.

We say that X ′ � Y ′ � e∗ generated X � Y �min e∗ .
We then take the necessary minimised enablings, X � Y �nec e∗ , such that

1. X � Y �min e∗;
2. there exists an Xmin ⊆ X such that:

(a) Xmin � Y �min e∗;
(b) no X ′ ⊆ Xmin and Y ′ ⊆ Y exist such that X ′ � Y ′ �min e∗ and not both X ′ = Xmin and Y ′ = Y .

We define the functor N : RES→ nfRES as:

1. N((E , F , Con, �)) = (E, F , Con, �nec);
2. N( f ) = f .

We show that N maps from RESs to RESs in normal form, which can be represented by the same CS (Propositions 7.18
and 7.19).

Proposition 7.18. N is a functor from RES to nfRES.



E. Graversen et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 16–59 55
Proof. We first show that given an RES E it is the case that N(E) = (E, F , Con, �nec) is an RES. For every enabling X �
Y �nec e∗ , by definition (X ∪ {e}) ∩ Y = ∅, and if e∗ = e then, since X ′ � Y ′ � e for some X ′ ⊆ X , e ∈ X . If X ⊆ X ′′ ∈ Con and 
X ′′ ∩ Y = ∅ then clearly X ′ � Y ′ � e∗ can be used to generate the enabling X ′′ � Y �nec e∗ according to Definition 7.17.

Consider any enabling X � Y �nec e∗ . We show that it is both necessary and minimal.
We first show that it is necessary. From Definition 7.17 we know that there exists Xmin ⊆ X such that Xmin � Y �min e∗

and no X ′ ⊆ Xmin and Y ′ ⊆ Y exist such that X ′ � Y ′ �min e∗ and not both X ′ = Xmin and Y ′ = Y . Clearly this implies 
Xmin � Y �nec e∗ . If for all X ′ ⊆ X such that X ′ � Y �nec e∗ , there exists a Y ′ � Y such that X ′ � Y ′ �nec e∗ , then we have a 
contradiction when X ′ = Xmin.

We then show that X � Y �nec e∗ is minimal. If X ′ � Y ′ � e∗ generated X � Y �min e∗ , then Y = Y ′ ∪ {e′ | X ′ ∪ {e, e′} /∈
Con} and X ′ � Y �min e∗ . Clearly Xmin ⊆ X ′ , and therefore whenever Xmin ∪ {e, e′} /∈ Con, e′ ∈ Y .

We then need to show that given RESs E0 and E1 and RES morphism f : E0→ E1, f : N(E0) → N(E1) is an RES morphism, 
satisfying the conditions of Definition 6.3:

1. Suppose f (e) �= ⊥ and X � Y �0min e∗ . Then there exist X ′ and Y ′ such that X ′ � Y ′ � e∗ , X ′ \ X , no X ′′ � X ′ exists 
such that X ′′ � Y � e∗ , and e′ ∈ Y iff e ∈ Y ′ or X ′ ∪ {e, e′} /∈ Con. Therefore f (X ′) � Y ′1 ��1 f (e)∗ for some Y ′1 such 
that if f (e′) ∈ Y1 then e′ ∈ Y . We then find a minimum X ′′ ⊆ f (X ′) such that X ′′ � Y ′1 �1 f (e)∗ , and we need to show 
f (X) � Y ′1 ∪ {e′ | X ′′ ∪ { f (e), e′} /∈ Con1} �1min f (e)∗ and if f (e′) ∈ Y ′1 ∪ {e′ | X ′′ ∪ { f (e), e′} /∈ Con1} then e′ ∈ Y .
We show the latter first. Suppose f (e′) ∈ Y ′1. Then e′ ∈ Y ′ ⊆ Y . Suppose f (e′) ∈ {e′ | X ′′ ∪ { f (e), e′} /∈ Con1}. Then since 
X ′′ ⊆ f (X ′) we know there exists X ′′0 ⊆ X ′ such that f (X ′′0) = X ′′ and X ′′ ∪ {e, e′} /∈ Con0. Since Con0 is downwards-
closed we then have X ′ ∪ {e, e′} /∈ Con0, and therefore e′ ∈ Y .
We then show f (X) � Y ′1 ∪{e′ | X ′′ ∪ { f (e), e′} /∈ Con1} �1min f (e)∗ . Clearly f (X) ∈ Con1, and ( f (X) ∪{ f (e)}) ∩ (Y ′1 ∪{e′ |
X ′′ ∪ { f (e), e′}) = ∅ because, as shown above, if f (e′) ∈ Y ′1∪{e′ | X ′′ ∪ { f (e), e′} then e′ ∈ Y , and therefore (X ∪{e}) ∩ Y =
∅. Hence X ′′ � Y ′1 �1 f (e)∗ can generate f (X) � Y ′1 ∪ {e′ | X ′′ ∪ { f (e), e′} /∈ Con1} �1min f (e)∗ .
Suppose f (e) �= ⊥ and X � Y �0nec e∗ . Then X � Y �0min e∗ and there exists an Xmin ⊆ X such that Xmin � Y �0min e∗
and no X ′ ⊆ Xmin and Y ′ ⊆ Y exist such that X ′ � Y ′ �0min e∗ and not both Xmin = X ′ and Y = Y ′ . There therefore 
must exist a minimal Y1 such that f (Xmin) � Y1 �1min f (e)∗ and if f (e′) ∈ Y1 then e′ ∈ Y , and a minimal X1min ⊆
f (Xmin) such that X1min � Y1 �1min f (e)∗ and therefore X1min � Y1 �1nec f (e)∗ . Clearly X1min ⊆ f (X), f (X) ∈ Con1, and 
f (X) ∩ Y1 = ∅. Hence, since N(E1) is an RES, f (X) � Y1 �1nec f (e)∗ .

2. N does not change Con.
3. N does not change Con.

Once established that N is a mapping from RES to nfRES, the rest of the proof is similar to previous functors. �
Proposition 7.19. Given an RES E = (E , F , Con, �), Cr(E) = Cr(N(E)).

Proof. Suppose Cr(E) = (E , F , C, →), N(E) = (E, F , Con, �′), and Cr(N(E)) = (E, F , C, →′). Then whenever X
A∪B−−−→ Y , we 

have Y = (X \ B) ∪ A, A ∩ X = ∅, B ⊆ X , and X ∪ A ∈ C.
There exist X ′ and Z such that X ′ � Z � e, X ′ ⊆fin X , and Z ∩ (X ∪ A) = ∅. Therefore we get that X ′ � (Z ∪ {e′ |

X ′ ∪ {e, e′} /∈ Con}) �min e and therefore X ′ � Z ′′ �nec e for Z ′′ ⊆ Z ∪ {e′ | X ′ ∪ {e, e′} /∈ Con}.
Since X ∪ A ∈ C, we have for all X ′′ ⊆fin X ∪ A, X ′′ ∈ Con, and therefore ({e′ | X ′ ∪ {e, e′} /∈ Con}) ∩ (X ∪ A) = ∅.
We use similar logic to show that for all e ∈ B , X ′ � Z �′ e for some X ′ and Z such that X ′ ⊆fin X \ (B \ {e}) and 

Z ∩ (X ∪ A) = ∅.

If X
A∪B−−−→

′
Y then Y = (X \ B) ∪ A, A ∩ X = ∅, B ⊆ X , and X ∪ A ∈ C.

There exist X ′ and Z such that X ′ � Z �nec e, X ′ ⊆fin X , and Z ∩ (X ∪ A) = ∅. Hence there exist X ′′ ⊆ X ′ and Z ′ ⊆ Z such 
that X ′′ � Z ′ � e.

We use similar logic to show that for all e ∈ B , X ′ � Z � e for some X ′ and Z such that X ′ ⊆fin X \ (B \ {e}) and 
Z ∩ (X ∪ A) = ∅. �
Corollary 7.20. If E is an SRES in normal form, then N(E) = E .

Proof. Implied by Propositions 7.13, 7.18, and 7.19. �
Corollary 7.21. If E is an SRES, then N(E) = R ′(Cr(E)).

Proof. Implied by Propositions 7.13 and 7.19. �
In some cases, a non-stable RES which maps to a stable CS can become stable when normalised, as in Example 7.22. In 

other cases, such as the one seen in Fig. 17b, a non-stable RES in normal form can map to a stable CS.
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Example 7.22. Consider the RES E = (E , F , Con, �), where

E = {a,b, c}
F = ∅

Con= {∅, {a}}
∅� {b} � a

∅� {c} � a

This is clearly neither normal nor stable, but N(E) instead only has the enabling ∅ � {b, c} � a, which makes it both normal 
and stable.

We have now defined the categories and functors seen in Fig. 9.

8. Cause-respecting and causal RESs and CSs

We define cause-respecting and causal subcategories crRES and CRES of RES in Definitions 8.1 and 8.2. We show that 
the previously introduced functors preserve these properties between the categories. The definitions are based on the idea 
that if e is enabled in a configuration X ∪ {e}, then e is enabled in X .

Definition 8.1 (Cause-respecting RES). An RES E = (E , F , Con, �) is cause-respecting if for any X ∈ Con, Y ⊆ E , and e ∈ F , if 
X � Y � e, then X \ {e} � Y ′ � e for some Y ′ ⊆ Y .

Definition 8.2 (Causal RES). An RES E = (E , F , Con, �) is causal if, given X ∈ Con, Y ⊆ E , and e ∈ F such that X ∪ {e} ∈ Con, 
X � Y � e iff X ∪ {e} � Y � e.

We furthermore define a cause-respecting and causal CS (crCS and CCS) in much the same way as a CRES in Defini-
tions 8.3 and 8.4. The categories crCS and CCS consist of respectively crCSs and CCSs, and the CS morphisms between them. 
The definition of a causal CS is basically the looping condition from [8], as the square condition from [8] is already part of 
the definition of a CS.

Definition 8.3 (Cause-respecting CS). A CS C = (E , F , C, →) is cause-respecting if for any X ∈ C and B ⊆ F , if X
A∪B−−−→ (X ∪

A) \ B , then X \ B A∪B−−−→ X ∪ A.

Definition 8.4 (Causal configuration system). A CS E = (E , F , C, →) is causal if for any configuration X ∈ C, A, B ⊆ F , if 
X

A∪B−−−→ (X ∪ A) \ B , then (X ∪ A) \ B 
B∪A−−−→ X .

We show that Cr (Definition 6.10), R (Definition 6.14), and R ′ (Definition 7.9) preserve the cause-respecting and causal 
properties.

Proposition 8.5.

1. If E is a crRES, then Cr(E) is a crFCS.
2. If C is a crFCS, then R(E) is a crRES.
3. If C is a crSFCS, then R ′(E) is a crSRES.

Proof.

1. Suppose E = (E , F , Con, �) and Cr(E) = (E , F , C, →). Then whenever X ∈ C is a configuration, A ⊆ E , B ⊆ F , and 
X

A∪B−−−→ (X ∪ A) \ B , we have that (1) for all a ∈ A, there exist X ′ ⊆fin X \ B and Z ⊆ E \ (X ∪ A) such that X ′ � Z � a
and (2) for all b ∈ B , there exist X ′ ⊆fin X \ (B \ {b}) and Z ⊆ E \ (X ∪ A) such that X ′ � Z � b. Hence X ′ \ {b} � Z � b, 
and we therefore have X \ B A∪B−−−→ X ∪ A.

2. Suppose C = (E , F , C, →) and R(C) = (E , F , Con, �). Then whenever X � Y � e, by definition of R , there exists X ′ ∈ C, 

A ⊆ E , and B ⊆ F such that X ′ A∪B−−−→, e ∈ B , X ′ \ B ⊆ X , and Y = E \ (X ′ ∪ A). We therefore have X ′ \ B A∪B−−−→ X ′ ∪ A, and 
consequently X \ {e} � Y � e.

3. Suppose C = (E , F , C, →) and R(C) = (E , F , Con, �). Then whenever X � Y � e, by definition of R ′ we have for all 

X ′ ∈ C, if X ⊆ X ′ ⊆ (E \Y ), X ′ e−→ X ′ \ {e}, implying X ′ \ {e} {e}−−→ X ′ . We therefore get X \{e} � Y ′ � e for some Y ′ ⊆ Y . �
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Proposition 8.6.

1. If E is a CRES then Cr(E) is a CFCS.
2. If C is a CFCS then R(E) is a CRES.
3. If C is a CSFCS then R ′(C) is a CSRES.

Proof.

1. Suppose X ∈ C is a configuration, A, B ⊆ F , and X
A∪B−−−→ (X \ B) ∪ A. Then (X \ B) ∪ A 

B∪A−−−→ X according to the definition 
of Cr (Definition 6.10) because:
(a) Obviously (X \ B) ∪ A = (X \ B) ∪ A, B ∩ ((X \ B) ∪ A) = ∅, A ⊆ ((X \ B) ∪ A), and ((X \ B) ∪ A) ∪ B = X ∪ A ∈ C.
(b) For all a ∈ A, we have X ′ � Z � e for some X ′, Z such that X ′ ⊆fin X \ B and Z ∩ (X ∪ A) = ∅. Therefore X ′ ∪ {e} �

Z � e, and consequently X ′ ∪ {e} ⊆fin ((X \ B) ∪ A) \ (A \ e) = (X ∪ {e}) \ B and Z ∩ (((X \ B) ∪ A) ∪ B) = ∅.
(c) For all e ∈ B , we have X ′ � Z � e for some X ′, Z such that X ′ ⊆fin X \ (B \ {e}) and Z ∩ (X ∪ A) = ∅. Therefore 

X ′ \ {e} � Z � e, and consequently X ′ \ {e} ⊆fin ((X \ B) ∪ A) \ A = X \ B and Z ∩ (((X \ B) ∪ A) ∪ B) = ∅.

2. Suppose X � Y � e. Then there exists a transition X ′ A∪B−−−→ E \ (Y ∪ B), such that X ′ \ B ⊆ X and e ∈ A. Hence E \ (Y ∪
B) 

B∪A−−−→ X ′ . As (E \ (Y ∪ B)) \ A = (X ′ ∪ A) \ B ⊆ X \ {e} and Y = E \ ((E \ (Y ∪ B)) ∪ B), we get X ∪ {e} � Y � e.
Similar arguments apply when X � Y � e.

3. Suppose X � Y � e. Then Y is a maximum set of events such that for all X ′ ∈ C such that X ⊆ X ′ ⊆ E \ Y and X ′ ∪
{e} ∈ C, there exists a transition X ′ {e}−−→. Therefore Y is a maximum set of events such that for all X ′ ∈ C such that 
X ∪ {e} ⊆ X ′ ⊆ E \ Y and X ′ \ {e} ∈ C, there exists a transition X ′ {e}−−→. Therefore we get X ∪ {e} � Y � e.
Similar arguments apply when X � Y � e. �

The cause-respecting and causal RPESs and RAESs of Sections 4 and 5 cannot always be modelled by cause-respecting and 
causal CSs and RESs, as shown by Example 8.7. However, the reachable part of the CS is cause-respecting (resp. causal) and 
forwards-reachable, as proved in Theorem 4.54 and Propositions 3.37, 3.38, and 4.57 of [19]. We therefore define reachably 
cause-respecting and reachably causal CSs (rcrCS and rCCS) in Definition 8.8. We define categories rcrCS and rCCS of rcrCSs 
and rCCSs and the CS morphisms between them.

Example 8.7. Consider the RAES E = (E , F , ≺, �) where E = F = {a, b}, a ≺ b, a ≺ a, b ≺ b, and b � a. This is clearly causal, 
however when mapping to an RES, Par(E) = (E , F , Con, �), we get the enablings ∅ � ∅ � a, {a} � ∅ � b, {b} � ∅ � b, and 
{a} � {b} � a. Clearly this is not causal. This is also expressed in the CS in the following diagram:

∅

{a} {b}

{a,b}

Here b can be reversed from any configuration containing b, but a can only be reversed if b is not present. Conversely, a
can be added to any configuration not containing a, but b can only be added if a is present. However, this gives us the 
unreachable configuration {b}, from which we have three transitions without corresponding reverse transitions.

Definition 8.8 (Reachably cause-respecting and causal CS).

1. A CS (E , F , C, →) is reachably cause-respecting if for any reachable configuration X ∈ C, A ⊆ E , and B ⊆ F , if X
A∪B−−−→

(X ∪ A) \ B , then X \ B A∪B−−−→ X ∪ A.

2. A CS E = (E , F , C, →) is reachably causal if for any reachable configuration X ∈ C, A, B ⊆ F , if X
A∪B−−−→ (X ∪ A) \ B , then 

(X ∪ A) \ B 
B∪A−−−→ X .

Clearly, C is reachably cause-respecting or causal if and only if Reach(C) is cause-respecting or causal.

Proposition 8.9.

1. If E is a crRAES, then Cra(E) is an rcrCS.
2. If E is a CRAES, then Cra(E) is an rCCS.
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Fig. 18. Categories of reversible event structures and their cause-respecting and causal subcategories and functors between them. Note that while there 
of course exist stable subcategories of rcrCS and rCCS, we have excluded them in order to reduce clutter. Dashed lines indicate functors which do not 
commute with the rest of the diagram. The definitions of the categories and functors can be seen in the following table. Those not listed in the table are 
intersections of other categories, e.g. CSRES is an RES which is both causal and stable, fulfilling both Definitions 7.1 and 8.2.

Proof.

1. Suppose E is a crRAES. Then for any reachable configuration X of Cra(E), if X
B−→ X ⊆ B , then X \ B B−→ X [19]. As Cra(E)

is also an SCS (Proposition 7.7), we get from item 4 of Definition 3.1 of a CS and Item 2d of Definition 7.6 of an SCS, 
that Cra(E) is an rcrCS.

2. Suppose E is a CRAES, then Cra(E) is an rCCS according to [19]. �
This gives us the causal and cause-respecting categories seen in Fig. 18.

9. Conclusion

We have studied reversible event structures in a categorical setting. We have defined categories for configuration sys-
tems (CS), reversible prime event structures (RPES), reversible asymmetric event structures (RAES), and reversible general 
event structures (RES). We have defined functors between these categories, showing that all these event structures can be 
modelled as CSs and finitely enabled CSs can be modelled as RESs in a way that preserves morphisms. We also constructed 
coproducts for each of these categories, though products only for RESs, CSs and causal RPESs (Remark 4.22). Constructing 
products of RPESs and RAESs will likely be much more difficult than for RESs, since definitions of products of prime event 
structures are far more complex than those of general event structures [23], and products of asymmetric event structures 
have not been defined, to the best of our knowledge.

We showed that, unlike in the forward-only setting, reversible asymmetric event structures can be modelled as reversible 
general event structures, which in finitely-based cases will generate the same CS (Theorem 6.23).

We showed that our functors between RESs and finitely enabled CSs form an adjunction (Theorem 6.17), and defined a 
subset of finitely enabled CSs, for which our functors between RESs and finitely enabled CSs form an inverse in some cases 
(Theorem 6.16).

We defined stable subcategories of RESs and CSs, in which we know which events have caused each event in a given 
configuration. We defined a functor from stable finitely enabled CSs to stable RESs. We defined a normal form of RESs and 
showed that the categories of stable RESs in normal form and finitely enabled stable CSs are isomorphic (Corollary 7.15). 
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We also defined a normaliser function, which maps RESs to RESs in normal form which can be represented by the same CS. 
This significantly improves our ability to compare and combine stable systems modelled by CSs and RESs.

We have also defined cause-respecting subcategories, in which events cannot be reversed if they have caused other 
events, and causal subcategories, in which events can be reversed if and only if they have not caused other events.

Our longer-term aim is to formulate event structure semantics for reversible process calculi. With this in mind, we have 
subsequently developed a reversible variant of bundle event structures [12]. Bundle event structures were used to define 
semantics of LOTOS [15], and their products are simpler to construct than those of PESs. Similarly to bundle event structures, 
flow event structures [4] are more expressive than PESs but less so than ESs, and have a simple characterisation of their 
product. For this reason, a notion of reversible flow event structures would be another option for modelling reversible 
process calculi in the future.

Although reversible calculi are predominantly causal with few exceptions, a number include control predicates (e.g. [10]), 
which will need to be modelled by non-causal event structures. In [12] we have used non-causal reversible extended bundle 
event structures to describe semantics of CCSK with controlled reversibility. Similar work could be done with other process 
calculi, some of which may be expressive enough to require the use of reversible general event structures.
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