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Abstract
We design and implement Zooid, a domain specific lan-

guage for certified multiparty communication, embedded

in Coq and implemented atop our mechanisation framework

of asynchronous multiparty session types (the first of its

kind). Zooid provides a fully mechanised metatheory for

the semantics of global and local types, and a fully verified

end-point process language that faithfully reflects the type-

level behaviours and thus inherits the global types properties

such as deadlock freedom, protocol compliance, and liveness

guarantees.

CCS Concepts: • Computing methodologies→ Distrib-
uted programming languages; • Theory of computa-
tion→ Type theory; Program semantics; Process calculi.

Keywords: multiparty session types, mechanisation, Coq, concur-

rent processes, protocol compliance, deadlock freedom, liveness
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1 Introduction
Concurrent behavioural type systems [31] accurately simulate

and abstract the behaviour of interactive processes, as op-

posed to sequential types for programs that simply describe

values. The session types system [24, 26, 44] is one of such

behavioural type systems, which can determine protocol
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Figure 1. MPST in a nutshell

compliance for processes. Session types consist of actions

for sending and receiving, sequencing, choices, and recur-

sion. In session types, when a typed process communicates,

its type also evolves, thus reflecting the progression of the

state of the protocol (type) after performing an action. This

rich behavioural aspect of session types has opened new

areas of study, such as a connection with communicating

automata [5] and concurrent game semantics [38] by linking

actions of session types to transitions of state machines [15]

and events of games [7].

Originally, binary session types (BST) provide deadlock-

freedom for a pair of processes, but not when more than

two participants (often also called roles) are involved. For

more than two processes, ensuring deadlock-freedom in BST

requires either complicated additional causality-based typing

systems on top of plain BST, e.g. [1, 17] or limitation to

deterministic, strongly-normalising session types [48, 49].

Multiparty session types (MPST, [27, 28]) solve this limita-

tion, by defining global types as an overall specification of all

the communications by every participant involved. The es-

sence of the MPST theory (depicted in Figure 1) is end-point

projection where a global type G is projected into one local

type L𝑖 for each participant, so that the participant proc𝑖 can
be implemented following an abstract behaviour represented

by the local type. To ensure correctness, the collection of

behaviours of the local types projected from a global type

need to mirror the behaviour of that global type.

The behaviour of global and local types is defined by (asyn-

chronous) labelled transition systems (LTS) whose sound and

complete correspondence is key to provide: progress of pro-

cesses [28], synthesis of global protocols [16, 33], and to

establish bisimulation for processes [32]. Practically, type-

level transition systems are particularly useful for, e.g., dy-

namic monitoring of components in distributed systems [14]

https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
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and generating deadlock-free APIs of various programming

languages, e.g., [10, 29, 34, 39, 53].

Unfortunately, the more complicated the behaviour is, the

more error-prone the theory becomes. The literature reveals

broken proofs of subject reduction for several MPST sys-

tems [40], and a flaw of the decidability of subtyping [6] for

asynchronous MPST. All of which are caused by an incorrect

understanding of the (asynchronous) behaviour of types.

Motivated by this experience, we design and implement

Zooid1, a certified Domain Specific Language (DSL) to write

well-typed by construction communicating processes. Zooid’s
implementation is embedded in the Coq proof assistant [46],

so that it relies on solid and precise foundations: in Coq we

have formalised the metatheory for MPST, which serves as

the type system for Zooid. On one side, mechanising the

metatheory is immediately useful for documenting, clari-

fying, and ensuring the validity of proofs, on the other it

results in certified specifications and implementations of the

concepts in the theory. Zooid exemplifies this for MPST, a

complex and relevant theory with many real-world applica-

tions. In this system, not only the theory is validated in Coq,

the actual implementation of projection, type checking and

validation of processes, is extracted from certified proofs.

We provide the first fully mechanised proof of sound and

complete correspondence between the labelled transition

systems of global and local types, in terms of equivalence

of execution traces, recapturing the original LTS provided

in [16]. In this work, instead of trying to formalise existing

proofs in the literature, we approach the problem with a

fresh look and use tools that would allow for a successful

and reusable mechanisation. On the theory side, we use

coinductive trees inspired by [20, 51]; on the tool side, we

depend on the Coq proof assistant [46], taking advantage

of small scale reflection (SSReflect) [21] to structure our

proofs, and PaCo [30] to provide a powerful parameterised

coinduction library, which we use extensively.

To certify an MPST end-point process implementation, we

define a concurrent process language and an LTS semantics

for it. This guarantees that process traces respect the ones

from its local and global types. Naturally, processes do not

need to implement every aspect of the protocol. Therefore,

we define the notion of complete subtraces to represent the

fact that an implementation may choose not to implement

some aspects, but it still needs to match the global trace

(we make precise this concept in § 4.3). Our final result is

the design and implementation of Zooid, a Coq-embedded

DSL to write end-point processes that are well-typed (hence

deadlock-free and live) by construction. This development

takes full advantage of the metatheory to provide a certified

validation, projection, and type checking for Zooid processes.
The contributions of this work are fourfold:

1
A zooid is a single animal that is part of a colonial animal, akin to how an

endpoint process is part of a distributed system.

G Gc
global trace

L Lc
local trace

(M.1) (M.2)

proc process trace

(M.3)

OCaml code Zooid

ℜ LTS

ℜ LTS
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Figure 2. Our contribution at a glance.

Fully mechanised transition systems for global and local

types, using asynchronous communications and proofs of

their sound and complete trace equivalence.

Semantic representation of behavioural types based on

coinductive trees, proposing a novel approach to the proof

of trace equivalences.

A concurrent process language with an associated typ-

ing discipline and the notion of complete subtraces to relate

process traces to global traces, as processes may not fully

implement a protocol and still be compliant.

Zooid a DSL embedded in Coq and framework that spe-

cifies global protocols, performs projections, and implements

intrinsically well-typed processes, using code certified by

Coq proofs. The code of Zooid processes is extracted into

OCaml code for execution. Zooid uses the mechanisation

to provide a framework for processes that enjoy deadlock

freedom and liveness (with a type checker certified in Coq).

Outline. In § 2, we provide an overview of the theory and

the paper. In § 3, we present the theory of MPST together

with the soundness and completeness results. We describe

the process language, its metatheory and the Zooid DSL

in § 4. In § 5, we present Zooid’s workflow and showcase its

use with some examples. In § 6 we discuss related work and

offer some future work and conclusions.

The git repository of our development is publicly available:

https://github.com/emtst/zooid-cmpst; it contains all the
complete Coq definitions and proofs from the paper, together

with the examples and case studies implemented using Zooid.
Additionally, the artifact associated to this paper is available

at [11]. We present the proofs of our theorems, and addi-

tional technical details of the toolchain, in the appendix of the

full version of the paper (https://arxiv.org/pdf/2103.10269).

2 Overview
In this section, we present our formalised results and the

relationship that puts them together to build Zooid; and
we show, with an example, how our development allows to

certify the implementation of a multiparty protocol.

https://en.wikipedia.org/wiki/Zooid
https://github.com/emtst/zooid-cmpst
https://arxiv.org/pdf/2103.10269
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2.1 Results and Development
Figure 2 summarises our contribution. The yellow rectangle

on the background encases the metatheory that we have

formalised for types and processes. On such solid basis, we

build Zooid, our language for specifying end-point processes.

Types as Trees, Projection and Unravelling. We form-

alise in Coq the inductive syntaxes of global types and local

types. Of these, we give an alternative representation in

terms of coinductive trees, moving one step forward towards

semantics. By defining the unravelling relationℜ, of a type

into a tree (§ 3.1), and projections ↾, from global to local ob-

jects (§ 3.2), we prove Theorem 3.6: projection is preserved

by unravelling (square (M.1) in Figure 2).

Trace Semantics. Moving further to the right, we define

labelled transition systems for trees (§ 3.3 and 3.4). Exploiting

their tree representation, we give an asynchronous semantics

in terms of execution traces to global and local types (§

3.5). Soundness and completeness come together in the trace

equivalence theorem for global and local types, Theorem 3.21,

thus closing square (M.2) in Figure 2.

Process Language and Typing. We formalise the syntax

for specifying (core) processes, proc in Figure 2 (§ 4.1). We

define a typing relation between local types and processes,

then we give semantics to processes (§ 4.3), again in terms

of an LTS and execution traces, and finally we prove type

preservation, Theorem 4.5. We conclude the metatheory part

with Theorem 4.7, (thus closing square (M.3) of Figure 2): we

show that process traces are global traces.

2.2 Process Language: Zooid
On the foundations of a formalised metatheory, we build a

domain specific language embedded in Coq, Zooid, as presen-
ted in § 4 and 5. Processes specified in Zooid are well-typed

by construction. Zooid terms are dependent pairs of a core

process proc, and a proof that it is well-typed with respect

to a given local type L, obtained via projection of the global

type G given for the protocol. Zooid terms are built using a

collection of smart constructors: we make sure that the local

type of any smart constructor is fully determined by its in-

puts, so that we can use Coq to infer the local type for every

Zooid process.

To summarise, our end product Zooid is a DSL embedded

in Coq. The user specifies as inputs:

1. the general discipline of the protocol as a global type;

2. the communicating process they are interested in, as a

Zooid term.

From this the user will obtain:

(a) a collection of local types inferred by projection from the

given global type;

(b) that their process is well-typed by construction;

(c) a certified semantics for their process, namely the guar-

antee that the behaviour of their process adheres to the

semantics of the global protocol.

Moreover the user’s process is easily translated to an OCaml

program, thanks to Coq code-extraction.

2.3 Zooid at Work
We briefly illustrate how Zooidworks with a simple example,

a ring protocol. We want to write a certified process for Alice
that sends a message to Bob and then receives a message

from Carol, but only after Bob and Carol have exchanged
a message themselves. In what follows, all the considered

messages are natural numbers of type nat.
First, we provide Zooid with the intended disciplining

protocol, a global type G:
G = Alice→ Bob :ℓ (nat) . Bob→ Carol :ℓ (nat).

Carol→ Alice :ℓ (nat).end
The global type G prescribes the full protocol, where Alice
sends a message containing a nat number to Bob (with a

generic label ℓ), Bob receives it and sends another number to

Carol, who receives and can send the last message to Alice.
Alice receives and the protocol terminates (end).

Taking the point of view of Alice, we automatically obtain

a local type L, projection of G onto the role Alice:
L = ![Bob];ℓ (nat) .?[Carol];ℓ (nat) .end,

which prescribes for Alice that she will send a number to

Bob, receive a number from Carol and terminate.

A Zooid implementation for Alice’s process, respecting L,
is (Alice sends 𝑥 to Bob and gets 𝑦 from Carol):

proc = send Bob (ℓ, 𝑥 : nat)!
recv Carol (ℓ, 𝑦 : nat)? finish

Thanks to Zooid’s smart constructors, we obtain that proc
is well-typed with respect to the local type L. Additionally,
the underlying metatheory certifies, by Coq proofs, that the

behaviour of proc conforms to the semantics of protocol G.

3 Sound and Complete Asynchronous
Multiparty Session Types

In this section, we describe the first layer of Zooid’s cer-
tified development: a mechanisation of the metatheory of

multiparty session types. We focus on the design, main con-

cepts and results, while for a more in-detail presentation

with pointers to the Coq mechanisation, we refer to [12].

3.1 Global and Local Types
A global type describes the communication protocol in its

entirety, recording all the interactions between the different

participants. Each participant has a local type specifying its

intended behaviour within the protocol. The literature of-

fers a wide variety of presentations of global and local types

[13, 27, 28, 41]: here, building on [16], we formalise full asyn-

chronous multiparty session types (MPST), which captures

asynchronous communication, with choice and recursion.
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Definition 3.1 (Sorts, global and local types). Sorts (mty in
Common/AtomSets.v), global types (g_ty in Global/Syntax.v),

and Local types (l_ty in Local/Syntax.v), ranged over by S,
G, and L respectively, are generated by:

SF nat || int || bool || S+S || S*S
GF end || 𝑋 || 𝜇𝑋 .G || p→ q : {ℓ𝑖 (S𝑖 ) .G𝑖 }𝑖∈𝐼
LF end || 𝑋 || 𝜇𝑋 .L || ![q]; {ℓ𝑖 (S𝑖 ) .L𝑖 }𝑖∈𝐼 || ?[p]; {ℓ𝑖 (S𝑖 ).L𝑖 }𝑖∈𝐼

with p ≠ q, 𝐼 ≠ ∅, and ℓ𝑖 ≠ ℓ𝑗 when 𝑖 ≠ 𝑗, for all 𝑖, 𝑗 ∈ 𝐼 .
Above, sorts refer to the types of supported message pay-

loads. We are interested in types such that (1) bound vari-

ables are guarded—e.g., 𝜇𝑋 .p→ q :ℓ (nat).G is a valid global

type, whereas 𝜇𝑋 .𝑋 is not—and (2) types are closed, i.e., all

variables are bound by 𝜇𝑋 ([12]).

In the literature, it is common to adopt the equi-recursive

viewpoint [37], i.e., to identify 𝜇𝑋 .G and G{𝜇𝑋 .G/𝑋 }, given
that their intended behaviour is the same. Such unravelling

of recursion can be performed infinitely many times, thus

obtaining possibly infinite trees
2
, whose structure derives

from the syntax of global and local types [20].

Definition 3.2 (Semantic global and local trees). Semantic

global trees (rg_ty and ig_ty in Global/Tree.v, see also

[12]), ranged over by Gc
, and semantic local trees (rl_ty in

Local/Tree.v), ranged over by L, are generated coinductively
by:

Gc ::= endc || p→ q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼 || p

ℓ𝑗
q : {ℓ𝑖 (S𝑖 ).Gc

𝑖 }𝑖∈𝐼
Lc ::= endc || !c [p]; {ℓ𝑖 (S𝑖 ) .Lc

𝑖 }𝑖∈𝐼 || ?c [q]; {ℓ𝑖 (S𝑖 ) .Lc
𝑖 }𝑖∈𝐼

with p ≠ q, 𝐼 ≠ ∅, and ℓ𝑖 ≠ ℓ𝑗 when 𝑖 ≠ 𝑗, for all 𝑖, 𝑗 ∈ 𝐼 .
Global and local objects share the type for a terminated

protocol end, the injection of a variable 𝑋 , and the recursion

construct 𝜇𝑋 . . . . ; semantic global/local trees do not include

the last two constructs, since recursion is captured by infinite

depth (see [12]). Global messages: p→ q : {ℓ𝑖 (S𝑖 ).G𝑖 }𝑖∈𝐼
describes a protocol where participant p sends to q one mes-

sage with label ℓ𝑖 and a value of sort S𝑖 as payload, for some

𝑖 ∈ 𝐼 ; then, depending on which ℓ𝑖 was sent by p, the pro-
tocol continues as G𝑖 . With trees, we make explicit the two

asynchronous stages of the communication of a message:

p→ q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼 represents the status where a mes-

sage from p to q has yet to be sent; p
ℓ𝑗 q : {ℓ𝑖 (S𝑖 ).Gc

𝑖 }𝑖∈𝐼
represents the next status: the label ℓ𝑗 has been selected, p
has sent the message, with payload S𝑗 , but q has not received

it yet. Localmessages: send type ![q]; {ℓ𝑖 (S𝑖 ).L𝑖 }𝑖∈𝐼 : the par-
ticipant sends a message to q; if the participant chooses the
label ℓ𝑖 , then the sent payload value must be of sort S𝑖 , and it
continues as prescribed by L𝑖 . Receive type ?[p]; {ℓ𝑖 (S𝑖 ).L𝑖 }𝑖∈𝐼 :
the participant waits to receive from p a value of sort S𝑖 , for
some 𝑖 ∈ 𝐼 , via a message with label ℓ𝑖 ; then the protocol con-

tinues as prescribed by L𝑖 . The same intuition holds, mutatis

mutandis, for trees.

2
Formally, in Coq, a coinductively defined datatype (codatatype) of finitely

branching trees with possible infinite depth.

We define the function prts to return the set of parti-

cipants (or roles) of a global type; e.g. p and q above. For

global trees, we define the predicate part_of. The formal

definitions can be found in [12].

We formalise equi-recursion by relating types with their

representation as trees, as follows:

Definition 3.3 (Unravelling). Unravelling of global types

types (GUnroll in Global/Unravel.v) and unravelling of local

types (LUnroll in Local/Unravel.v) are the relations between

global/local types and semantic global/local trees coinduct-

ively defined by:

[g-unr-end]

end ℜ endc
[g-unr-rec]

G{𝜇𝑋 .G/𝑋 } ℜ Gc

𝜇𝑋 .G ℜ Gc

[g-unr-msg]

∀𝑖 ∈ 𝐼 .G𝑖 ℜ Gc
𝑖

p→ q : {ℓ𝑖 (S𝑖 ).G𝑖 }𝑖∈𝐼 ℜ p→ q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼

[l-unr-end] [l-unr-send]

end ℜ endc

∀𝑖 ∈ 𝐼 .L𝑖 ℜ Lc
𝑖

![q]; {ℓ𝑖 (S𝑖 ) .L𝑖 }𝑖∈𝐼 ℜ !c [q]; {ℓ𝑖 (S𝑖 ) .Lc
𝑖 }𝑖∈𝐼

[l-unr-rec] [l-unr-recv]

L{𝜇𝑋 .L/𝑋 } ℜ Lc

𝜇𝑋 .L ℜ Lc

∀𝑖 ∈ 𝐼 .L𝑖 ℜ Lc
𝑖

?[p]; {ℓ𝑖 (S𝑖 ) .L𝑖 }𝑖∈𝐼 ℜ ?c [p]; {ℓ𝑖 (S𝑖 ) .Lc
𝑖 }𝑖∈𝐼

Representing types in terms of trees allows for a smoother

mechanisation of the semantics. The unravelling operation

formally relates the two representations.

3.2 Projections, or How to Discipline
Communication

Projection is the key operation of multiparty session types: it

extracts a local perspective of the protocol, from the point

of view of a single participant, from the global bird’s-eye

perspective offered by global types. We define both inductive

and coinductive projections.

Definition 3.4. The inductive projection of a global type

onto a participant r (project in Projection/IProject.v) is a

partial function _↾r : g_ty↛ l_ty defined by recursion on

G whenever one of the clauses in Figure 3a applies and the

recursive call is defined; the coinductive projection of a global

tree onto a participant r (Project and IProj in Projection/

CProject.v) is a relation _ ↾cr _ : rel g_tyc l_tyc coinduct-

ively defined in Figure 3b.

In rules [co-proj-end] and [co-proj-cont] we have added ex-

plicit conditions on participants. By factoring in the predicate

part_of, Definition 3.4 ensures (1) that the projection of a

global tree on a participant outside the protocol is endc
(rule

[co-proj-end]) and (2) that this discipline is preserved in the

continuations (rule [co-proj-cont]). We see that the clauses for

projecting of types and trees follow the same intuition: pro-

jecting a global object onto a sending (resp. receiving) role

gives a sending (resp. receiving) local object, provided that

the local continuations are also projections of the correspond-

ing global continuations. As expected, the tree projection

takes care explicitly of asynchronicity (rules [co-proj-send-2]
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[proj-end] [proj-send] [proj-recv]

end↾r = end r = p implies p→ q : {ℓ𝑖 (S𝑖 ) .G𝑖 }𝑖∈𝐼 ↾r = ![q]; {ℓ𝑖 (S𝑖 ) .G𝑖↾r}𝑖∈𝐼 r = q implies p→ q : {ℓ𝑖 (S𝑖 ) .G𝑖 }𝑖∈𝐼 ↾r = ?[p]; {ℓ𝑖 (S𝑖 ) .G𝑖↾r}𝑖∈𝐼

[proj-var] [proj-rec] [proj-cont]

𝑋↾r = 𝑋 (𝜇𝑋 .G)↾r = 𝜇𝑋 .(G↾r) if guarded(G↾r) r ≠ p, r ≠ q and ∀𝑖, 𝑗 ∈ 𝐼 , G𝑖↾r = G𝑗↾r implies p→ q : {ℓ𝑖 (S𝑖 ) .G𝑖 }𝑖∈𝐼 ↾r = G�̄�↾r (with �̄� ∈ 𝐼 )

(a) Rules for recursive projection, Definition 3.4

[co-proj-send-1] [co-proj-send-2] [co-proj-recv-1]

r = p ∀𝑖 ∈ 𝐼 .Gc
𝑖 ↾

cr Lc
𝑖

p→ q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼 ↾cr !c [q]; {ℓ𝑖 (S𝑖 ) .Lc

𝑖 }𝑖∈𝐼

r ≠ q ∀𝑖 ∈ 𝐼 .Gc
𝑖 ↾

cr Lc
𝑖

p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼 ↾cr Lc

𝑗

r = q ∀𝑖 ∈ 𝐼 .Gc
𝑖 ↾

cr Lc
𝑖

p→ q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼 ↾cr ?c [p]; {ℓ𝑖 (S𝑖 ) .Lc

𝑖 }𝑖∈𝐼

[co-proj-recv-2] [co-proj-cont] [co-proj-end]

r = q ∀𝑖 ∈ 𝐼 .Gc
𝑖 ↾

cr Lc
𝑖

p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼 ↾cr ?c [p]; {ℓ𝑖 (S𝑖 ) .Lc

𝑖 }𝑖∈𝐼

r ≠ p r ≠ q ∀𝑖 ∈ 𝐼 .Gc
𝑖 ↾

cr Lc
𝑖 ∀𝑖, 𝑗 ∈ 𝐼 .Lc

𝑖 = Lc
𝑗 ∀𝑖 ∈ 𝐼 .part_of r Gc

𝑖

p→ q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼 ↾cr Lc

�̄� (with �̄� ∈ 𝐼 )
¬ part_of r Gc

Gc ↾cr endc

(b) Rules for coinductive projection, Definition 3.4

Figure 3. Projection rules

and [co-proj-recv-2]). This is an adaptation to our coinductive

setting of the definition in [16, Appendix A.1]. Below we

give an example to clarify the meaning of [proj-cont].

Example 3.5 (Projection). About rule [proj-cont], we ob-

serve that the type G′ = Alice→ Bob :{ℓ1 (nat) .Bob→ Carol :
ℓ (nat) .end, ℓ2 (nat) .Alice→ Carol :ℓ (nat) .end} is not project-

able onto Carol, since, after skipping the first interaction

between Alice and Bob, it would not be clear whether Carol
should expect amessage fromAlice or fromBob. If we take in-
stead G = Alice→ Bob :{ℓ1 (nat).Bob→ Carol :ℓ (nat).end, ℓ2
(bool).Bob→ Carol :ℓ (nat) .end}, the projection G↾Carol is well
defined as the local type L = ?[Bob];ℓ (nat) .end. Following com-

mon practice, we use an option type to encode projection as a

partial function in Coq.

Coinductive projection is more permissive than its in-

ductive counterpart, since it removes the technical issues

related to formally dealing with (equi)recursion, allowing

for a smoother development in Coq ([12] and [20, Definition

3.6 and Remark 3.14]).

If, when reasoning about semantics, coinductive trees are

more convenient objects to work with, we still want to rely

on session types for imposing a typing discipline on the

communication. The followng theorem allows us to do so.

Theorem 3.6 (Unravelling preserves projections). (ic_proj

in Projection/Correctness.v.) Given a global type G, such
that guarded G and closed G, if (a) there exists a local type
L such that G↾r = L , (b) there exists a global tree Gc

such that

G ℜ Gc
and, (c) there exists a local tree Lc

such that L ℜ Lc
,

then Gc ↾cr Lc
.

This first central result closes the first metatheory square

(M.1) of the diagram in Figure 2. For a sketch of its proof see

[12].

3.3 Projection Environments for Asynchronous
Communication

In this subsection, we introduce key concepts for building

an asynchronous operational semantics for MPST. In [16] a

precise correspondence is drawn between communicating

finite-state automata and MPST. We do not formalise an

explicit syntax for automata, but develop labelled transition

systems for global and local trees with automata in mind.

Consider the following scenario: p sends a message to

q with label ℓ and payload of sort S and continues on Lc
,

and dually q receives from p the message, with same label

and payload, and then continues on Lc ′
. For q to receive the

message, it is necessary that p has first sent it. To model

this asynchronous behaviour, we use FIFO queues: in the

designated queue 𝑄 (p, q) (empty at first) we enqueue the

message sent from p, until the message is received by q and

removed from the queue. We use one queue for each ordered

pair of participants (p, q) to store in-transit messages sent

from p to q, andwe collect such queues in queue environments.

Definition 3.7 (Queue environments). We call queue en-

vironment (notation qenv in Local/Semantics.v) any finitely

supported function that maps a pair of participants into a

finite sequence (queue) of pairs of labels and sorts.

We define the operations of enqueuing and dequeuing on

queue environments:

enq 𝑄 (p, q) (ℓ, S) = 𝑄 [(p, q) ← � 𝑄 (p, q)@(ℓ, S)]
deq 𝑄 (p, q) = if 𝑄 (p, q) = (ℓ, S)#𝑠

then ((ℓ, S), 𝑄 [(p, q) ← � 𝑠]) else None

We use # as the “cons” constructor for lists and @ as the

“append” operation; 𝑓 [𝑥 ← � 𝑦] denotes the updating of a

function 𝑓 in 𝑥 with 𝑦, namely 𝑓 [𝑥 ← � 𝑦] 𝑥 ′ = 𝑓 𝑥 ′ for all
𝑥 ≠ 𝑥 ′ and 𝑓 [𝑥 ← � 𝑦] 𝑥 = 𝑦. We use option types for partial

functions, with None as the standard returned value where

the function is undefined. In case the sequence 𝑄 (p, q) is
empty deq will not perform any operation on it, but return

None; in case the sequence is not empty it will return both

its head and its tail (as a pair). We denote the empty queue

environment by 𝜖 , namely 𝜖 (p, q) = None for all (p, q).
Global trees can represent stages of the execution, where

a participant has already sent a message, but it has not yet
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been received. We adapt the “queue projection” from [16,

Appendix A.1] to our coinductive setting, to associate global

trees to the queue contents of a system.

Definition 3.8 (Queue projection). (Definition qProject in

Projection/QProject.v) Projection on queue environments

of a global tree (queue projection for short) is the relation

_↾q_ : rel g_tyc qenv coinductively specified by:

[q-proj-send]

∀𝑖 ∈ 𝐼 .Gc
𝑖↾

q𝑄 𝑄 (p, q) = None

p→ q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼 ↾q𝑄

[q-proj-end]

endc↾q𝜖

[q-proj-recv]

Gc
𝑗↾

q𝑄 deq 𝑄 ′(p, q) = ((ℓ𝑗 , S𝑗 ), 𝑄)

p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼 ↾q𝑄 ′

See [12] for more details.

Analogously to queue environments, we consider all the

local types of the protocol at once.

Definition 3.9 (Local environments). We call local environ-

ment, or simply environment, any finitely supported function

𝐸 that maps participants into local types.

We are interested in those environments that are defined

on the participants of a global protocol Gc
and that map each

participant p to the projection of Gc
onto such p.

Definition 3.10 (Environment projection). (Definition
eProject in Projection/CProject.v.) We say that 𝐸 is an en-

vironment projection for Gc
, notation Gc ↾ 𝐸, if it holds that

∀p. Gc ↾cp (𝐸 p).

We define the semantics on a set of local types together

with queue environments. We therefore consider the pro-

jection of a global tree both on local environments and on

queue environments, together in one shot.

Definition 3.11 (One-shot projection). (Definition
Projection in Projection.v) We say that the pair of a local

environment and of a queue environment (𝐸,𝑄) is a (one-
shot) projection for the global tree Gc

, notation Gc ↾↾ (𝐸,𝑄)
if it holds that: Gc ↾ 𝐸 and Gc↾q𝑄 .

Example 3.12. Let us consider the global tree: Gc = p ℓ q :
ℓ (S).q→ p :ℓ (S) .q→ p :ℓ (S). . . . . Participant p has sent a

message to q, q will receive it next (but has not yet) and

then the protocol continues indefinitely with q sending a

message to p after the other. We define 𝐸 such that: 𝐸 p =

?c [q];ℓ (S).?c [q];ℓ (S). . . . and 𝐸 q = ?c [p];ℓ (S).!c [p];ℓ (S).
!c [p];ℓ (S). . . . . We then define 𝑄 such that: 𝑄 (p, q) =

[(ℓ, S)] and 𝑄 (q, p) = None. It is easy to verify that

Gc ↾↾ (𝐸,𝑄); observe that the only “message” enqueued

in 𝑄 is (ℓ, S), since this is the only one sent, but not yet

received (at this stage of the execution).

3.4 Labelled Transition Relations for Tree Types
At the core of the trace semantics for session types lies a la-

belled transition system (LTS) defined on trees, with regard to

actions. The basic actions (datatype act in Common/Actions.v)

of our asynchronous communication are objects, ranged over

by 𝑎, of the shape either: !pq(ℓ, S): send ! action, from par-

ticipant p to participant q, of label ℓ and payload type S, or
?qp(ℓ, S): receive ? action, from participant p at participant

q, of label ℓ and payload type S. We define the subject of an

action 𝑎 (definition subject in Common/Actions.v), subj 𝑎, as
p if 𝑎 =!pq(ℓ, S) and as q if 𝑎 =?qp(ℓ, S).3 Given an action,

our types (represented as trees) can perform a reduction step.

Definition 3.13 (LTS for global trees).
(step in Global/Semantics.v) The labelled transition relation

for global trees (global reduction or global step for short) is,

for each action 𝑎, the relation _

𝑎−→ _ : rel g_tyc g_tyc

inductively specified by the following clauses:

[g-step-send]

𝑎 =!pq(ℓ𝑗 , S𝑗 )

p→ q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼

𝑎−→ p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼

[g-step-recv]

𝑎 =?qp(ℓ𝑗 , S𝑗 )

p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼

𝑎−→ Gc
𝑗

[g-step-str1]

subj 𝑎 ≠ p subj 𝑎 ≠ q ∀𝑖 ∈ 𝐼 .Gc
𝑖

𝑎−→ Gc ′
𝑖

p→ q : {ℓ𝑖 (S𝑖 ) .Gc
𝑖 }𝑖∈𝐼

𝑎−→ p→ q : {ℓ𝑖 (S𝑖 ) .Gc ′
𝑖
}𝑖∈𝐼

[g-step-str2]

subj 𝑎 ≠ q Gc
𝑗

𝑎−→ Gc ′
𝑗
∀𝑖 ∈ 𝐼\{ 𝑗}.Gc

𝑖 = Gc ′
𝑖

p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼

𝑎−→ p
ℓ𝑗

q : {ℓ𝑖 (S𝑖 ).Gc ′
𝑖
}𝑖∈𝐼

The step relation describes a labelled transition system for

global trees with the following intuition: [g-step-send] sending

base case: with the sending action !pq(ℓ𝑗 , S𝑗 ), a message with

label ℓ𝑗 and payload type S𝑗 is sent by p, but not yet received
by q; [g-step-recv] receiving base case: with the receiving ac-

tion ?qp(ℓ𝑗 , S𝑗 ), a message with label ℓ𝑗 and payload type S𝑗 ,
previously sent by p, is now received by q; in [g-step-str1], a

step is allowed to be performed under a sending constructor

p→ q: each time that the subject of that action is different

from p and from q and each continuation steps; [g-step-str2]

with an action 𝑎 a step is allowed to be performed under

a receiving constructor: each time that the subject of that

action is different from q (p has already sent the message

and the label ℓ𝑗 has already been selected), the continuation

corresponding to ℓ𝑗 steps and others stay as the same.

This semantics allows for some degree of non-determinism.

For instance, p→ q : {ℓ𝑖 (S𝑖 ).Gc
𝑖 }𝑖∈𝐼 could perform a step ac-

cording to both rules [g-step-send] and [g-step-str1] (depending

on the subject of the action).

Below we define a transition system for environments of

local trees, together with environments of queues.

Definition 3.14 (LTS for environments). (l_step in

Local/Semantics.v) The labelled transition relation for envir-

onments (local reduction or local step for short) is, for each

3
The representation of actions is directly taken from [16], however we have

swapped the order of p and q in the receive action, so that the subject of an

action always occurs in first position.
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p→ q :(ℓ, S).Gc p ℓ q :(ℓ, S).Gc Gc

!c [q];(ℓ, S).Lc Lc

!pq(ℓ,S)
(𝑔.1)

↾p(𝑝.1)

?qp(ℓ,S)
(𝑔.2)

↾p

(𝑝.2)
↾p(𝑝.3)

!pq(ℓ,S)
(𝑙 .1)

(a) p sends

p→ q :(ℓ, S) .Gc p ℓ q :(ℓ, S) .Gc Gc

?c [p];(ℓ, S).Lc ′ Lc ′

!pq(ℓ,S)
(𝑔.1)

↾q(𝑞.1)

?qp(ℓ,S)
(𝑔.2)

↾q

(𝑞.2)
↾q(𝑞.3)

?qp(ℓ,S)
(𝑙 .2)

(b) q receives

Figure 4. Basic send/receive steps for global and local trees

𝑎, the relation _

𝑎−→ _ : rel (renv ∗ qenv) (renv ∗ qenv)
inductively specified by the following clauses:

[l-step-send]

𝑎 =!pq(ℓ𝑗 , S𝑗 ) 𝐸 p = !c [q]; {ℓ𝑖 (S𝑖 ).Lc
𝑖 }𝑖∈𝐼

(𝐸,𝑄) 𝑎−→ (𝐸 [p← � Lc
𝑗 ], enq 𝑄 (p, q) (ℓ𝑗 , S𝑗 ))

[l-step-recv]

𝑎 =?qp(ℓ𝑗 , S𝑗 )
𝐸 q = ?c [p]; {ℓ𝑖 (S𝑖 ) .Lc

𝑖 }𝑖∈𝐼 𝑄 (p, q) = (ℓ𝑗 , S𝑗 )#𝑠

(𝐸,𝑄) 𝑎−→ (𝐸 [q← � Lc
𝑗 ], 𝑄 [(p, q) ← � 𝑠])

Example 3.15 (Basic steps for global and local trees). Fig-
ure 4a shows the transitions for a global tree, regulating the

sending of a message from p to q, and the local transition for

its projection on p. The asynchronicity of our system is wit-

nessed by the two different steps: (𝑔.1), for the sending action
!pq(ℓ, S), and (𝑔.2), for the receiving one ?qp(ℓ, S). Project-
ing p→ q :(ℓ, S).Gc

on p (arrow (𝑔.1)) gives us a local tree
that performs a sending step (𝑙 .1) corresponding to (𝑔.1),
and projection is preserved (arrow (𝑝.2)). However this does
not happen for the receiving step (𝑔.2): here the projections
on p of p ℓ q :(ℓ, S).Gc

along (𝑝.2) and of Gc
along (𝑝.3)

are the same. Dually if we consider the projection on the

receiving participant q, Figure 4b. Here the projections along
(𝑞.1) and (𝑞.2), corresponding to the global tree performing

a sending action, result in the same local tree. We have in-

stead a local step (𝑙 .2) preserving the local projections on q
along (𝑞.2) and (𝑞.3) for the receiving action along (𝑔.2).

Figure 4 confirms our intuition: when the global tree per-

forms one step, there is one local tree (namely, one projection

of the global tree) such that it performs a corresponding step.

We have indeed defined semantics for collections of local

trees, as opposed to single local trees. The formal relation

of the small-step reductions with respect to projection is

established with soundness and completeness results (see

[12] for proof outlines).

Theorem 3.16 (Step Soundness). (Theorem Project_step in

TraceEquiv.v) If Gc 𝑎−→ Gc ′
and Gc ↾↾ (𝐸,𝑄), there exist 𝐸 ′

and 𝑄 ′ such that Gc ′ ↾↾ (𝐸 ′, 𝑄 ′) and (𝐸,𝑄) 𝑎−→ (𝐸 ′, 𝑄 ′).

Theorem 3.17 (Step Completeness). (Theorem
Project_lstep in TraceEquiv.v) If (𝐸,𝑄) 𝑎−→ (𝐸 ′, 𝑄 ′) and
Gc ↾↾ (𝐸,𝑄), there exist Gc ′

such that Gc ′ ↾↾ (𝐸 ′, 𝑄 ′) and
Gc 𝑎−→ Gc ′

.

3.5 Trace Semantics and Trace Equivalence
We finally show trace equivalence for global and local types

with our Coq development of semantics for coinductive trees.

Definition 3.18 (Traces). (Codatatype trace in Action.v),

ranged over by 𝑡 , are terms generated coinductively by 𝑡 ::=
[] || 𝑎#𝑡 where 𝑎 is any action, as defined in § 3.4

4
.

We associate traces to the execution of global trees and

local environments.

Definition 3.19 (Admissible traces for a global tree). We say

that a trace is admissible for a global tree if the coinductive

relation trg _ _ (definition g_lts in Global/Semantics.v)

holds:

trg [] endc

Gc 𝑎−→ Gc ′ trg 𝑡 Gc ′

trg 𝑎#𝑡 Gc

Definition 3.20 (Admissible traces for environments). We

say that a trace is admissible for a pair of a local environment

and a queue environment if the coinductive relation trl _ _

(definition l_lts in Local/Semantics.v) holds:

∀p.𝐸 p = None

trl [] (𝐸, 𝜖)
(𝐸,𝑄) 𝑎−→ (𝐸 ′, 𝑄 ′) trl 𝑡 (𝐸 ′, 𝑄 ′)

trl 𝑎#𝑡 (𝐸,𝑄)

Observe that generally more than one execution trace are

admissible for a global tree or for an environment
5
.

We can now state the trace equivalence theorem, our final

result for multiparty session types. We sketch an outline of

the proof in [12].

Theorem 3.21 (Trace equivalence). (Theorem
TraceEquivalence in TraceEquiv.v.)

If Gc ↾↾ (𝐸,𝑄), then trg 𝑡 Gc
if and only if trl 𝑡 (𝐸,𝑄) .

Trace equivalence for global and local types (trees) con-

cludes our formalisation of the metatheory of multiparty ses-

sion types: squares (M.1) and (M.2) of the diagramin Figure 2.

In the next section we specify a language for communicating

systems inside Coq and extend extend the trace equivalence

result to well-typed processes.

4 A Certified Process Language
This section defines Zooid, an embedded domain specific

language in Coq for specifying certified multiparty processes.

Zooid combines shallow and deep embedding: on one hand

process actions are deeply embedded, represented as an in-

ductive type; on the other, the exchanged values, and compu-

tations applied to them are a shallow embedding expressed as

4
For traces, we use the same notation as for lists, however we bear in mind

that this definiton is coinductive: it generates possibly infinite streams.

5
About non-determinism in our semantics, see [12].
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[p-ty-end]

Γ ⊢lt finish : end

[p-ty-jump]

Γ ⊢lt jump 𝑋 : 𝑋

[p-ty-loop]

Γ ⊢ 𝑒 : Proc Γ ⊢lt 𝑒 : L
Γ ⊢lt loop 𝑋 {𝑒} : 𝜇𝑋 .L

[p-ty-read]

Γ ⊢ act𝑟 : unit→ ⟦S⟧ Γ, 𝑥 : ⟦S⟧ ⊢lt 𝑒 : L
Γ ⊢lt read act𝑟 (𝑥 .𝑒) : L

[p-ty-write]

Γ ⊢ act𝑤 : ⟦S⟧ → unit Γ ⊢ 𝑒𝑣 : ⟦S⟧ Γ ⊢lt 𝑒 : L
Γ ⊢lt write act𝑤 𝑒𝑣 𝑒 : L

[p-ty-send]

Γ ⊢ 𝑒1 : ⟦S𝑗⟧ Γ ⊢ 𝑒2 : Proc Γ ⊢lt 𝑒2 : L𝑗 𝑗 ∈ 𝐼
Γ ⊢lt send p (ℓ𝑗 , 𝑒1) . 𝑒2 : ![p]; {ℓ𝑖 (S𝑖 ) .L𝑖 }𝑖∈𝐼

[p-ty-recv]

∀𝑖 ∈ 𝐼 Γ ⊢ 𝑒𝑖 : ⟦S𝑖⟧ → Proc Γ, 𝑥 : ⟦S𝑖⟧ ⊢lt 𝑒𝑖 𝑥 : L𝑖
Γ ⊢lt recv p {ℓ𝑖 .𝑒𝑖 }𝑖∈𝐼 : ?[p]; {ℓ𝑖 (S𝑖 ) .L𝑖 }𝑖∈𝐼

[p-ty-interact]

Γ ⊢ act𝑖 : ⟦S⟧ → ⟦S′⟧ Γ ⊢ 𝑒𝑣 : ⟦S⟧ Γ, 𝑥 : ⟦S′⟧ ⊢lt 𝑒 : L
Γ ⊢lt interact act𝑖 𝑒𝑣 (𝑥 .𝑒) : L

Figure 5. Process Typing System

Gallina terms. The core process calculus of Zooid is session-

typed, where the typing derivation is described as a Coq

inductive predicate. The constructs of Zooid are smart con-

structors that build both a process, and a proof that this is

well-typed with respect to a given local type. Each process

is single threaded and the concurrent semantics occurs due

to the asynchronous nature of the channels.

4.1 Core Processes
The core process calculus of Zooid differs to those generally

used in the session-types literature in several aspects. First,

the combination of shallow and deep embedding implies that

a process may be defined in terms of a larger expression of

the ambient calculus. Secondly, the process calculus does

not include parallel composition. Just as “zooid”, in biology,

is used to refer to the single individual in a colonial organ-

ism, a process proc implements the behaviour of a single

participant in the distributed system: we are interested in

certifying processes in isolation to the larger system. This

approach plays well with the usual MPST methodology and

it admits heterogenous development, as in one can use Zooid
for the critical roles and other roles can be implemented in

different languages, using different frameworks.

Definition 4.1 (Syntax of untyped processes). Processes,
proc (definition Proc in Proc.v), are embedded in an ambi-

ent calculus 𝑒 . In our implementation, proc is the inductive

type of processes, of type Proc, and the ambient calculus is

Gallina, the specification language of Coq.

𝑒 F proc | 𝑒 + 𝑒 | if 𝑒 then 𝑒 else 𝑒
| fun 𝑥 ⇒ 𝑒 | . . . 𝑛 ∈ N ℓ𝑖 ∈ N

proc ∈ ProcF finish | jump 𝑋 | loop 𝑋 {𝑒}
| recv p {ℓ𝑖 .𝑒𝑖 }𝑖∈𝐼 | send p (ℓ, 𝑒) . 𝑒
| read act𝑟 (𝑥 .𝑒) | write act𝑤 𝑒𝑣 𝑒

| interact act𝑖 𝑒𝑣 (𝑥 .𝑒)

The constructs of Procmirror those of local types: finish
is the ended process; jump 𝑋 is a jump to recursion variable

𝑋 ; loop 𝑋 {𝑒} is a recursive process, built by expression 𝑒 ,

that introduces a new recursion variable 𝑋 ; recv p {ℓ𝑖 .𝑒𝑖 }𝑖∈𝐼
is the process receiving from p a message with label ℓ𝑖 , a

value 𝑥 , and continues as (𝑒𝑖 𝑥); and send p (ℓ, 𝑒1). 𝑒2 is the
sending process with label ℓ and expression 𝑒1 to participant
p, and then continues as 𝑒2. Our calculus does not include

parallel composition: we assume that the system is imple-

mented as the parallel composition of all the participants.

For example, the following is a process that receives requests

from a participant p and replies increasing the received num-

ber by𝑚, until p chooses to finish:

procq = loop 𝑋 {recv p{ℓ1 .fun 𝑥 ⇒ send p (ℓ1, 𝑥 +𝑚) .
jump 𝑋 ;ℓ2 .fun 𝑥 ⇒ finish}}

A process can be defined mixing Gallina terms and proc. For
example, in the process above, the term 𝑥 +𝑚 is a term in

Gallina. These Gallina terms can be used to specify branching

in the control flow of the process. The process below is one

possible implementation for p that loops until the value

received is greater than some threshold 𝑛:

𝑒p = fun 𝑥 ⇒ if 𝑥 > 𝑛 then send q (ℓ2, tt) . finish
else send q (ℓ1, 𝑥). jump 𝑋

procp = send q (ℓ1, 0) . loop 𝑋 {recv q {ℓ1 .𝑒p}}
Zooid processes interact with their environment by call-

ing functions written in the language of the runtime (OCaml

in this case). These functions exchange information between

Zooid and the environment in a safe way by not exposing

channels or the transport API. The interaction happens by

calling an external function: act𝑟 , act𝑤 , and act𝑖 for read-
ing, writing or interacting with the environment. act𝑟 is a
function that takes a unit and returns a value of payload

type (i.e.: a coq_ty T for some type T). act𝑤 is a function

that takes a parameter of payload type and returns unit,

allowing the process to call OCaml to print on the screen

or write to file or similar things. Finally act𝑖 is the action
function that passes data to the OCaml runtime and receives

some response, thus combining the two other environment

interaction functions. These functions do not affect the com-

munication structure of the process: they are internal actions

and do not appear in the trace of the process.

Definition 4.2 (Process typing system). We define typing

for processes Γ ⊢lt 𝑒 : L in Figure 5, as an inductive predicate

in Coq (definition of_lt in Proc.v). Since proc is embedded

in Coq, we assume the standard typing judgement for Gallina

terms, of the form Γ ⊢ 𝑒 : 𝑇 . We assume a set of sorts S𝑗 , and
an encoding as a Coq type ⟦S𝑗⟧ (see Definition 3.1).

Rules [p-ty-end], [p-ty-jump], and [p-ty-loop] state that the local

type of the ended process, a jump to𝑋 , and recursion are end,
𝑋 , and a recursive type respectively. Rule [p-ty-send] specifies

that a send process with label ℓ has a send type, if ℓ is in the

set of accepted labels. Rule [p-ty-recv] specifies that a receive
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process has a receive type, if all the alternatives have the cor-

rect local type for all possible payloads 𝑥 : ⟦S𝑖⟧. Any expres-

sion 𝑒 that does not match any of these rules must be proven

to be of the correct type for all of its possible reductions. For

example, it is straightforward to prove that if Γ ⊢lt 𝑒𝑡 : L
and Γ ⊢lt 𝑒 𝑓 : L then Γ ⊢lt if 𝑒 then 𝑒𝑡 else 𝑒 𝑓 : L
by case analysis on 𝑒 . Finally, rules [p-ty-read], [p-ty-write],

and [p-ty-interact], have no impact on the local type, so they

simply check that the actions are well typed, and that the

continuation process has the expected type.

4.2 Zooid
In the Coq library Zooid.v, Zooid terms (ranged over by

Z) are dependent pairs of a proc, and a proof that it is well-

typed with respect to a given local type L.
Definition wt_proc L := { P : Proc | of_lt P L }.

They are built using smart constructors, helper functions

and notations to define processes that are well-typed by con-

struction (i.e.: a process and a witness of its type derivation).

Moreover, we take care that the local type of each smart

constructor is fully determined by their inputs, so we can

use Coq to infer the local type of each of these processes.

Given a Zooid expression Z, we can project the first compon-

ent to extract the underlying proc term. Since the behaviour

of alternatives in Z terms is fully specified, we can infer its

local type. By construction, if a term Z can be defined, then

its underlying proc is well-typed with respect to some local

type L, second component of the dependent pair.

The simplest example is the finish term for inactive pro-

cesses of type l_end. Coq infers most parameters.

Definition wt_end : wt_proc l_end := exist _ _ t_Finish.

Notation finish := wt_end.

On the other hand, the notation \send is defined in the

same way, but the definition of the dependent pair requires a

simple proof (i.e.: wt_send). The send command is implemen-

ted using a singleton choice, and this proof simply says that

this label is the one in the singleton choice. The definition is

as follows:

Definition wt_send p l T (pl : coq_ty T) L (P : wt_proc L)

: wt_proc (l_msg l_send p [::(l, (T, L))])

:= exist _ _ (t_Send p pl (of_wt_proc P)

(find_cont_sing l T L)).

Notation "\send" := wt_send.

Despite not being directly encoded as a Coq datatype, Fig-

ure 6 presents the syntax for Zooid terms in BNF notation.

The syntactic constructs are the expected, with only a few

differences: (a) if then else is a Zooid construct since it

needs to carry the proof that the underlying proc is well–

typed; (b) branch and select must take a list of alternatives

(Z𝑏 and Z𝑠 respectively), and send/receive are defined as

branch/select with a singleton alternative. The alternatives

for branch, Z𝑏 , are pairs of labels and continuations. The

alternatives for select, Z𝑠 are:
(1) case 𝑒1 ⇒ ℓ, 𝑒2 : S! Z, specifies to send ℓ and 𝑒2 : ⟦S⟧

Definition 4.3 (Zooid syntax).
Z𝑏 F ℓ, 𝑥 : S? Z
Z𝑠 F case 𝑒 ⇒ ℓ, 𝑒 : S! Z | skip⇒ ℓ, S! L

| otherwise⇒ ℓ, 𝑒 : S! Z

Z F jump 𝑋 | loop 𝑋 (Z) | if 𝑒 then Z else Z
| send p (ℓ, 𝑒 : S)! Z | recv p (ℓ, 𝑥 : S)? Z

| finish | branch p [Z𝑏1 | . . . | Z𝑏𝑛]
| select p [Z𝑠1 | . . . | Z𝑠𝑛]
| read act𝑟 (𝑥 .Z) | write act𝑤 𝑒 Z
| interact act𝑖 𝑒 (𝑥 .Z)

Figure 6. Zooid Syntax

and then continue as Z, when 𝑒1 evaluates to true;
(2) otherwise⇒ ℓ, 𝑒2 : S! Z, specifies that the default al-
ternative is to send ℓ and 𝑒2, and then continue as Z; and
(3) skip⇒ ℓ, S! L, specifies the unimplemented alternat-

ive of sending ℓ and a value of sort S, and then continuing

as L. We require skip to enforce a unique local type: since

Definition 4.2 does not include subtyping, Zooid requires

that all the possible behaviours in the local type must be

either implemented or declared. We impose a syntactic con-

dition on select: there must be exactly one default case,

which must occur after the last case. The three constructs
to interact with external code (read, write, and interact)
are similar to their untyped counterparts from § 4.1. These

actions do not impact the traces nor the local types, so they

simply sport the local type of their continuations.

4.3 Semantics of Zooid
The semantics of Zooid is defined as a labelled transition

system of the underlying proc terms, analogously to that of

local type trees in Definition 3.14
6
, but with values instead

of sorts in the trace, and explicitly unfolding recursion.

Definition 4.4 (LTS for processes). The LTS for processes is,

for each action 𝑎, defined as:

[p-step-send] [p-step-recv]

𝑎 =!pq(ℓ, 𝑒1)
send q (ℓ, 𝑒1) . 𝑒2

𝑎−→ 𝑒2

𝑎 =?qp(ℓ̄𝚤 , 𝑒)
recv p {ℓ𝑖 .𝑒𝑖 }𝑖∈𝐼

𝑎−→ (𝑒�̄� 𝑒)

[p-step-loop]

[(loop 𝑋 {𝑒})/(jump 𝑋 )]𝑒 𝑎−→ 𝑒 ′

(loop 𝑋 {𝑒}) 𝑎−→ 𝑒 ′

The steps of the LTS are: [p-step-send] states that a send

process transitions to the continuation 𝑒2 with the action

that sends a label ℓ and value 𝑒1; [p-step-recv] states that a

receive process transitions to (𝑒�̄� 𝑒) with the receive action

from participant p; and [p-step-loop] unfolds recursion once

to perform a step on a recursive process.

We prove the type preservation for ⊢lt. To show this, we

need to relate process actions with local/global type actions.

This is done by a simple erasure that removes the values, but

preserves the types in an action, denoted by |𝑎 |. For example,

if 𝑎 =!pq(ℓ, 𝑒) and 𝑒 : ⟦S⟧, then |𝑎 | =!pq(ℓ, S).
6
For the sake of uniformity, here we present the LTS for processes as a

relation, however in Coq we define it, equivalently, as a recursive function:

do_step_proc in Proc.v.
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∃𝑡

Figure 7. Theorem 4.7, visually.

Theorem 4.5 (Type preservation). (Theorem preservation

in the file Proc.v.) If Γ ⊢lt 𝑒 : L and 𝑒
𝑎−→ 𝑒 ′, then there exists

L′ such that L
|𝑎 |
−−→ L′, and Γ ⊢lt 𝑒 ′ : L′.

We write trp 𝑡 𝑒 to express that a trace 𝑡 is admissible by

process 𝑒 . The formal definition goes analogously to Defin-

ition 3.20 for trl _ _; note, however, that the admission of

a trace by process is checked in isolation to other processes.

To relate process traces to global/local type traces we need

to define the notion of a complete subtrace.

Definition 4.6 (Complete subtrace). We say that 𝑡1 is a com-

plete subtrace of 𝑡2 for participant p (definition subtrace in

Local.v), if all actions in 𝑡2 that have p as a subject occur in

𝑡1 in the same relative position (i.e. the 𝑛-th action of p in

𝑡2 must be the 𝑛-th action of 𝑡1). We write 𝑡1 ⪯p 𝑡2 as the

greatest relation satisfying:

subj 𝑎 ≠ p 𝑡1 ⪯p 𝑡2

𝑡1 ⪯p (𝑎#𝑡2)
subj 𝑎 = p 𝑡1 ⪯p 𝑡2

(𝑎#𝑡1) ⪯p (𝑎#𝑡2) [] ⪯p []

The main result for Zooid states that for all admissible

traces for a well-typed process, there exists at least a trace

in the larger system that is a complete supertrace of that of

the process. We state this formally as Theorem 4.7

(process_traces_are_global_types in Proc.v). Thus, well-

typed processes inherit the global type properties of protocol

compliance, deadlock freedom and liveness.

Theorem 4.7 (Process and global type traces). Let Gc ↾↾
(𝐸, 𝜖) and Γ ⊢lt 𝑒 : L such that L ℜ (𝐸 p). Then, for all traces
𝑡p such that trp 𝑡p 𝑒 there exists a trace 𝑡 such that trg 𝑡 Gc

,

and |𝑡p | ⪯p 𝑡 .

Figure 7 presents the meaning of the above theorem graph-

ically. Any trace 𝑡p = 𝑎2#𝑎5#. . . of a process proc is con-

tained within a larger system trace 𝑡 = 𝑎1#𝑎2#𝑎3#. . . ofGc
,

given that proc behaves as some participant p in Gc
. Namely,

if a process 𝑒 is well typed with a local type L, which is equal

up to unravelling to that of participant p in Gc
, then the

behaviour of 𝑒 is that of p in Gc
.

4.4 Extraction
Terms of type Proc, in Coq, can be easily extracted to ex-

ecutable OCaml code, following an approach similar to that

of Interaction Trees [51]: we can substitute the occurrences

of proc terms by a suitable OCaml handler. Figure 8 shows

the declaration of a module for that purpose.

Module ProcessMonad specifies a monadic type t, that
supports the standard bind and pure operations, as well

as constructs for adding the required effects, in this case

Module ProcessMonad.

Parameter t : Type → Type.

(* monadic bind and pure values *)

Parameter bind : forall T1 T2, t T1 →
(T1 → t T2) → t T2.

Parameter pure : forall T1, T1 → t T1.

(* actions to send and receive *)

Parameter send : forall T, role → lbl → T → t unit.

Parameter recv : (lbl → t unit) → t unit.

Parameter recv_one : forall T, role → t T.

(* actions for setting up a loop and jumping *)

Parameter loop : forall T1, nat → t T1 → t T1.

Parameter set_current: nat → t unit.

(* function to run the monad *)

Parameter run : forall A, t A → A.

End ProcessMonad.

Figure 8. The Process Monad.

network communication and looping (with potential non-

termination). During extraction this module becomes the

ambient monad for the extracted code. In order to run the

code the user instantiates the monad to provide a low level

implementation, which fills in the details about the network

transport. Zooid processes are translated into the monad

using the function extract_proc from Proc.v. [12] shows

the function in its entirety.

4.5 Runtime
The code for an endpoint process is extracted as a value inside

of the process monad from § 4.4. Zooid’s runtime provides

an implementation of ProcessMonad. The endpoint process
is independent of the transport and network protocols; the

exact specification of those is deferred to the implementation

of the monad. The runtime implements the monad relying

on the monad provided by OCaml’s Lwt library
7
, as well as

its asynchronous communication primitives. The transport

uses TCP/IP and the payloads are encoded and decoded using

the ’Marshal’ module in OCaml’s standard library
8
. This

design prioritises OCaml based technologies to implement

asynchronous I/O and data encoding. Other transports are

possible (e.g., web services over HTTP).

4.5.1 Implementation. In Zooid, the user implements

their processes in the DSL, then uses Coq to produce OCaml

code for the monad’s module type and for the process, using

extraction. The runtime implements a means to run that

code. Concretely it provides the transport and serialization.

A runnable process amounts to an instance of the functor

type in Figure 9, in which we provide the process monad

instance together with the extracted process.

Communication primitives in processes are unaware of

transport or other networking issues, they simply expect to

be able to communicate with the other roles involved in the

7
https://ocsigen.org/lwt/5.2.0/manual/manual

8https://ocaml.org/releases/4.11/htmlman/libref/Marshal.html

https://ocaml.org/releases/4.11/htmlman/libref/Marshal.html
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module type PROCESS_FUNCTOR =

functor (MP : ProcessMonad) -> sig

module PM : sig

type 'x t = 'x MP.t

val run : 'a1 t -> 'a1

val send : role -> lbl -> 'a1 -> unit t

val recv :

role -> (lbl -> unit t) -> unit t

val recv_one : role -> 'a1 t

val bind : 'a1 t -> ('a1 -> 'a2 t) -> 'a2 t

val pure : 'a1 -> 'a1 t

val loop : var -> (unit -> 'a1 t) -> 'a1 t

val set_current : var -> unit t

end

val proc : unit MP.t

end

Figure 9. The Process Functor.

protocol. The runtime implementation requires the user to

provide for each role a list of channels to communicate with

the other roles. It is specified as:

type connection_spec

= Server of sockaddr | Client of sockaddr

type conn_desc =

{ role_to : role; spec : connection_spec }

where each process needs to specify a conn_desc list detail-

ing a channel to each role where it either starts a connection

(using the Client connector and specifiying IP and port in

the sockaddr datatype) or waits for a connection (in a similar

way using the Server constructor).

So finally, the runtime is invoked by calling the function:

val execute_extracted_process

: conn_desc list -> (module PROCESS_FUNCTOR) -> unit

which connects a participant to all the roles as specified in the

connection list and executes extracted process passed as first-

class module value to the function. If the extracted process

interacts with OCaml code, the library that implements all

the external functions has to be compiled into the executable.

With the addition of the runtime Zooid processes become

certified code that can be readily executed to implement

distributed multiparty services.

5 Evaluation: Certified Processes
This section displays several common use cases in the MPST

literature, implemented and certified using Zooid: (1) several
implementations of a recursive ping-pong protocol; (2) a

recursive pipeline; and (3) the two-buyer protocol from [27].

We conclude the section with a summary evaluating our

mechanisation effort.

A CommonWorkflow. Our workflow consists of the fol-

lowing steps: (1) specify the global type for the protocol;

(2) project the global type into the set of local types; (3) im-

plement a process using Zooid; (4) (if necessary) prove that
the local type of the process is equal up to unravelling to the

projection of some participant; (5) use extraction to OCaml;

and (6) implement external OCaml actions (if any).

Steps (1), (3), and (6) are the necessary inputs for imple-

menting a certified process. Steps (2) and (5) are fully auto-

mated, and step (4) is often automated too, although it may

require a simple manual proof. Finally, while step (5) is fully

automated, it is possible to control the result by using com-

mon Coq commands (e.g. marking some definitions opaque

to avoid inlining them).

5.1 Examples of Certified Processes
Pipeline. We start with a recursive variant of the example

in § 2.3. The first step is to specify the global type. We write

its inductive representation:

Definition pipeline := 𝜇𝑋 . Alice→ Bob :ℓ (nat).
Bob→ Carol :ℓ (nat).𝑋 .

The next step is to project pipeline into all of its parti-

cipants. There are two reasons to apply the projection at this

step: (1) only well-formed protocols are projectable; and (2)

we obtain the local types that will guide the implementation:

the local types will need to typecheck the implemented pro-

cesses. If the global type is not projectable, or the processes

do not implement the resulting local types (or one of their un-

rollings), then we cannot guarantee anything about a Zooid
implementation of any participant. We define a notation for

performing the projection of all participants:

Definition pipeline𝑙𝑡 := \project pipeline.

If pipeline is not well-formed, then \project will not

typecheck. Otherwise, pipeline𝑙𝑡 will be a list of pairs of
participants and local types. This list will contain an entry

for Alice, Bob and Carol. We get local type for Bob with:

Definition bob𝑙𝑡 := \get Bob pipeline𝑙𝑡 .

The notation \get expands into a lookup in pipeline𝑙𝑡
that requires a proof that Bob is in pipeline𝑙𝑡 . If we write
\get p pipeline𝑙𝑡 with some p ∉ pipeline𝑙𝑡 , then the com-

mand will fail to typecheck. There are now two possibilities

for using bob𝑙𝑡 to implement Bob: (1) providing bob𝑙𝑡 as a
type index; or (2) omitting bob𝑙𝑡 , inferring the local type, and
then proving that the inferred local type is equal to bob𝑙𝑡 up
to unravelling. Here we use (1), but sometimes the process

actually implements an unrolling of the local type. We will

show examples of (2) in the next section.

Definition bob : wt_proc bob𝑙𝑡
:= loop 𝑋 (recv Alice (ℓ, 𝑥 : nat)?

interact compute 𝑥 (fun 𝑟𝑒𝑠 ⇒
send Carol (ℓ, 𝑟𝑒𝑠 : nat)! jump 𝑋 )) .

WithZooid’s interact commandwe can call the compute
function, which is implemented in OCaml, allowing any

arbitrary computation safely because the runtime hides the

communication channels to prevent errors.

Finally, to do extraction to OCaml, we call extract_proc :
Proc→ MP.t. The user has options for code extraction: (1)
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since Proc is defined inductively, use Coq’s Eval compute
to first replace all occurrences of Proc to MP.t; (2) extract
the inductive representation, as well as extract_proc. The
former may evaluate and unfold more terms than desired. To

control this, we use Coq’s command Opaque to specify any

function or definition that we do not wish to be unfolded.

Ping-Pong. In the anonymous supplement, we present sev-

eral implementations of the clients of a ping-pong server.

The global protocol is:

Definition ping_pong := 𝜇𝑋 .Alice→ Bob : {
ℓ1 (unit). end; ℓ2 (nat) .Bob→ Alice :ℓ3 (nat).𝑋 }.

Here, Alice acts as the client for Bob, which is the ping-pong

server. Alice can send zero or more ping messages (label ℓ2),

and finally quitting (label ℓ1). Bob, for each ping received,

will reply a pong message (label ℓ3). In particular, we wish to

implement a client that sends an undefined number of pings,

stopping when the server replies with a natural number

greater than some 𝑘 . We show below the Zooid specification:

Definition alice : typed_proc := [proc
select Bob [skip⇒ ℓ1, unit! end

| otherwise⇒ ℓ2, 0 : nat!
loop 𝑋 (recv Bob (ℓ3, 𝑥 : nat)?
select Bob [case 𝑥 ≥ 𝑘 ⇒ ℓ1, tt : unit! finish

| otherwise⇒ ℓ2, 𝑥 : nat! jump 𝑋 ])]]
We project ping_pong and get the expected local type for

Alice: alice𝑙𝑡 . We observe that here the local type for alice
is not syntactically equal to alice𝑙𝑡 :

alice𝑙𝑡 = 𝜇𝑋 .![Bob];{ℓ1 (unit) .end; ℓ2 (nat).?[Bob];ℓ3 (nat).𝑋 }
projT1 alice = ![Bob];{ ℓ1 (unit) .end; ℓ2 (nat).𝜇𝑋 .

?[Bob];ℓ3 (nat) .![Bob];{ℓ1 (unit).end; ℓ2 (nat).𝑋 .}}
This is not a problem since a simple proof by coinduction

can show that both types unravel to the same local tree. This

gains the flexibility to have processes that implement any un-

rolling of their local type, and the proofs are mostly simple

as they follow the way the types were unrolled. See [12]

for more details on how to construct gradually this client,

showing how to iteratively program using Zooid.

5.2 A Certified Two Buyer Protocol
We conclude this section presenting an implementation of

the two-buyer protocol [27], a common benchmark of MPST.

This is a protocol for an online purchase service that enables

customers to split the cost of an item among two participants,

as long as they agree on their shares. First, buyer A queries
the seller S for an item. Then, S sends the item cost first to

A, then to B. Then, A sends a proposed share for the item. B
then either accepts the proposal, and receives the delivery

date from S, or rejects the proposal.
Figure 10 shows the protocol as a global type, the local

type, Blt, that results from the projection on B, and a possible
implementation of the role of B in Zooid. Different imple-

mentations of the local type will differ in how the choice is

made, but the local type will always need to be syntactically

Definition two_buyer := A→ S :ItemId(nat) .
S→ A :Quote(nat) .S→ B :Quote(nat) .
A→ B :Propose(nat) .B→ S :{ Accept(nat) .
S→ B :Date(nat) .end; Reject(unit) . end}

Blt := ?[S];Quote(nat) .?[A];Propose(nat) .![S];{Accept(nat) .
?[S];Date(nat) .end; Reject(unit) .end}

Definition buyerB : wt_proc Blt :=

recv S (Quote, 𝑥 : nat)? recv A (Propose, 𝑦 : nat)?
select S [case 𝑦 >= divn 𝑥 3⇒ Accept, 𝑦 − 𝑥 : nat!

recv S (Date, 𝑑 : nat)? .finish
| otherwise⇒ Reject, tt : unit! finish]

Figure 10. The Two Buyer protocol

equal to the projected Blt, due to the absence of recursion.

In the implementation chosen in Figure 10, the participant B
will reject any proposal where B pays more than one third

of the cost of the item. This implementation is guaranteed to

behave as B in the protocol two_buyer, hence deadlock-free.
Our workflow preserves the ability to define and implement

each participant independently: A and S could be implemen-

ted in any language, as long as they are implemented using

a compatible transport to that of the OCaml implementation

of MP.t. The code that checks the types and performs the

projections is certified, as it is exactly the same code about

which the properties were established.

5.3 Mechanisation Effort
The development is 7.3KLOC of Coq code, and 1.7KLOC

of OCaml for the runtime (including examples). The cer-

tified code consists of 269 definitions, including functions

and (co)inductive definitions, and 396 proved lemmas and

theorems.

An important feature of our proof design is the correspond-

ence of syntactic objects and their infinite tree representation.

Coinductive trees allow us to deal smoothly with semantics

and avoid bindings: such a technique applies to languages

with equi-recursion, a widespread construct [20, 37, 42]. On

the other hand we have kept an inductive type system for

processes, so that we have finite, easy-to-inspect, structures,

on which we can make computations. Our novel design takes

advantage of the infinite-tree representation of syntactic ob-

jects, thus providing us with syntactic types for Zooid and

coinductive representation for the proofs.

Themost challenging part was working out the right defin-

itions: the finite syntax object/infinite unrolling correspond-

ence felt like a convoluted approach at first, but it greatly

accelerated our progress afterwards.

6 Related Work and Conclusion
In the concurrency and behavioural types communities, there

is growing interest in mechanisation and the use of proof

assistants to validate research. As a recent example, Hinrich-

sen et al. [23] explore the notion of semantic typing using a
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concurrent separation logic as a semantic domain to build

on top a language to describe binary session types. On the

same vein, SteelCore [43] allows DSLs to take advantage of

solid the semantic foundations provided by a proof assist-

ant. Where their works use separation logic as a foundation,

Zooid uses MPST and their coinductive expansion.

The ambition of mechanisation in behavioural types is

increasing and collaborative projects that explore the space

of available solutions are an important tool for the com-

munity, where they explore different representations of bind-

ers (names, de Bruijn indices/levels, nominals respectively),

see [50, Discussion]. In this work we sidetrack the ques-

tion by designing Zooid to use a shallow embedding of its

binders (thus avoiding to need an explicit representation for

variables). In our experience, this is a simple and valuable

technique for the situations where it is applicable.

Other works also explore ideas on binary session types

using proof assistants and mechanised proofs. For example,

Brady [4] develops a methodology to describe safely com-

municating programs and implements DSLs, embedded in

Idris, relying on the Idris type checker. Thiemann [47] devel-

ops an intrinsically typed semantics in Agda that provides

preservation and a notion of progress for binary session

types. Gay et al. [18] explore the interaction between du-

ality and recursive types and how they take advantage of

mechanisation to formalise some of their results. Tassarotti

et al. [45] show the correctness (in the Coq proof assistant)

of a compiler that uses an intermediate language based on

a simplified version of the GV system [19] to add session

types to a functional programming language. And Orchard

and Yoshida [36] discuss the relation between session types

and effect systems, and implement their code in the Agda

proof assistant. Their formalisation concentrates on trans-

lating between effect systems and session types in a type

preserving manner. Castro et al. [8] present a type preserva-

tion of binary session types [26, 52] as a case study of using

their tool [9]. Furthermore, Goto et al. [22] present a session

types system with session polymorphism and use Coq to

prove type soundness of their system. Note that none of the

above works on session types treats multiparty session types

– they are limited to binary session types.

Our work on MPST uses mechanisation to both give a

fresh look at trace equivalence [16] in MPST and to further

explore its relation to a process calculus. At the same time

our aim is to provide a bedrock for future projects dealing

with the MPST theories. And crucially, this is the first work

that tackles a full syntax of asynchronous multiparty session

types that type the whole interaction, as opposed to binary

session types, which only type individual channels.

Furthermore, in this work, we present not only Zooid as

a certified process language, but also the methodology to

design a certified language like this. Zooid’s design starts

with the theory, then the mechanised metatheory, and, fi-

nally, implementing a deeply embedded process language

(deeply embedded in two ways: as a DSL and in the library

of definitions and lemmas provided in the proof mechan-

isation). We propose Zooid as an alternative to writing an

implementation that is proved correct post facto. There is

no tension between proofs and implementation, since the

proofs enable the implementation.

Regarding the choice of tool and inspiration in this work,

we point out that the first objective is to mechanise trace

equivalence between global and local types. For that, we took

inspiration from more semantic representations of session

types [20, 51]. The choice of the Coq proof assistant [46] was

motivated by its stability, rich support for coinduction, and

good support for the extraction of certified code. Stability is

important since this is a codebase that we expect to work on

and expand for future projects. The proofs take advantage

of small scale reflection [21] using Ssreflect to structure our

development. And given the pervasive need for greatest fixed

points in MPST, we extensively use the PaCo library [30] for

the proofs that depend on coinduction.

To conclude, we design and implement a certified lan-

guage for concurrent processes supporting MPST. We start

by mechanising the meta-theory of asynchronous MPST,

and prove the soundness and completness theorems of trace

semantics of global and local types. We then build Zooid, a
process language on top of that. Using code extraction, we

interface with OCaml code to produce running implementa-

tions of the processes specified in Zooid.
This work on mechanising MPST and Zooid is a found-

ing stone, there are many exciting opportunities for future

work. On top of our framework, we plan to explore new ideas

and extensions of the theory of session types. The immedi-

ate next step is to make the proofs extensible, for example

by allowing easy integration of custom merge strategies,

adding advanced features such as indexed dependent ses-

sion types [10], timed specifications [2, 3], or session/chan-

nel delegation [27]. Moreover, we intend to apply the work

in this paper (and its extensions) to implement a certified

toolchain for the Scribble protocol description language

(http://www.scribble.org), also known as “the practical in-

carnation of multiparty session types” [25, 35]. To this aim

we plan to translate from Scribble to MPST style global types,

following the Featherweight Scribble formalisation [35].
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