Multiparty session types and their
applications in large distributed systems

Rumyana Neykova

session lype]

Multiparty Session Types: Concepts @

» Separate the communication into conversations (sessions)

» Each process plays a role in a conversation => its type is
defined by the conversation and its role

Standard Multiparty Session Types

Global G = alice—bob(nat);
G ype bob— carol(nat);end
Projection
Local Thob = ?(alice, nat).
Taiioe) - Tbob)~ {Tcarol) -~ types | (carol, nat).end
Type
checking

Poob = ?(alice)(x).

! (carol,x+1).0

Palloe PbOb Pcarol processes

» Properties
Communication safety (no communication mismatch)

Communication fidelity (the communication follow the
protocol)

Progress (no deadlock/stuck in a session)

session Llype

Evolution Of MPST E

» Binary Session Types [THK98, HVK98]

[!

» Multiparty Session Types [POPL08]

L

» Session Types with Assertions [Concur’| |]

L

» Network Monitoring through Multiparty Session Types

[FMOODS’|3]

v

» Local Verification of Global Protocols, Practical Interruptible
conversations [RV’| 3]

Ocean Observatory Initiative (OOI) @

OOl aims: to deploy an infrastructure (global network) to
expand the scientists’ ability to remotely study the ocean

National
LambdaRail
n*10Gb

Usage: Integrate real-time data acquisition, processing
and data storage for ocean research,...

Case Study: OOI

» OO requirements

applications written in different languages, running on
heterogeneous hardware in an asynchronous network.

different authentication domains, external untrusted
applications

requires correct, safe interactions

Session Types for Monitoring TCD

» Distributed monitoring
attach a monitor to each application
the monitor checks messages w.r.t specification

ensures interoperablity

Education

Session types for monitoring

» Adapting MPST theory to
monitoring

» Principals
Developers design

protocols in a dedicated
language - Scribble

Well-fomedness is checked
by Scribble tools

Protocols are projected
into local types

Local types generate
monitors

Specification
(Scribble)

Implementation

(Python)

Verification
(Dynamic)

o

Local
Specification

session lyp

Y

Global Protocol

Projection

Local
Specification

~,

Local
Specification

Source Code

Source Code Source Code

Conversation
Layer

Conversation
Layer

Conversation
Layer

Monitor

—» Monitor Monitor |4

I

Safe Network

OOI Requirements - revisited

» Communication based on various protocols

General protocol verification monitor
» Heterogeneous systems

protocol description language - Scribble
» Different authentication domains

distributed monitoring

» Can we guarantee safety properties

a theory for network monitoring with soundness theorems

session Lype

OOI Governance Framework Design \)

https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+0OV+Conversation+
Management

[Conversations and Interceptors |

Business logic Business logic
Message + Message +
Annotations ION interceptor 10N interceptor Annotations
e e
Fact Fact
Governance-Conversations Candidate Design |
events events
" Brosess B mgess e -~ Remote Service
ION conversation interceptor Message I |:> ION conversation interceptor | Process request eeet
[E— | e | Local conv | R .
monitor | Business Logic |-
<=-——_ P id | (Service) | .« | AgentBase --------------------
‘V? N P ‘v? |

update >
action <

T
\
\
1
1
v
v
v
1

\ i

' acicl) ——
,' Governance control prrere— TR
\ ; Intercepto Dispatcher H (Orchestrator) Knowledge

\ 1

Local protocol Local protocol
projection projection

[E—
State Info

Ci ion Monitor Conversation

Specs
(Seribble)

fog

Conformance messages
Interceptors
P Conversation Log

Messaging Client

Message Broker

https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Conversation+Management

www.scribble.org

Scribble

Protocol Lanﬁuaﬂe

session Lype

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural
construction come from that unconscious moment, when you do not realise what it is, when there is no concrete
shape, only & whisper which is not & whisper, an image which is not an image, somehow it staris to urge you in your

mind, in 30 small a voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

What is Scribble?

Scribble is a language to describe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do a meaningful interaction: participants simply
cannot communicate effectively, since they do not know when to expect the other parties to
send their data, or whether the other party is ready to receive a datum it is sending. In fact
it is not clear what kinds of data is to be used for each interaction. It is too costly to carry
out communications based on guess works and with inevitable communication mismatch
(synchronisation bugs). Simply, it is not feasible as an engineering practice.

Pocuments

Protocol Lanﬂuaﬂe Guide

Downloads

Java Tools

Com'runH'y
Discussion Forum
Java Tools

issues
Wik
Pyﬂnon Tools

lssues

Wik

Scribble Community

» Webpage:
» www.scribble.org

» GitHub:
» https://github.com/scribble

» Tutorial:

» www.doc.ic.ac.uk/~rhu/scribble/tutorial.html
» Specification (0.3)

» www.doc.ic.ac.uk/~rhu/scribble/langref.html

http://www.scribble.org/
https://github.com/scribble
http://www.doc.ic.ac.uk/~rhu/scribble/tutorial.html
http://www.doc.ic.ac.uk/~rhu/scribble/langref.html

Two Buyer Protocol in Scribble E

module Bookstore;

type <java> '"java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

global protocol TwoBuyers(role A, role B, role S) {
title(String) from A to S;
quote (Integer) from S to A, B;
rec LOOP {
share (Integer) from A to B; Buyeri' Seller BuyerQ
choice at B {

accept (address:String) from B to A, S;
date(String) from S to B; ___ title
} or { ot
k— quote —|— quote
retry() from B to A, S; i
continue LOOP; | quote L0 wdN—
} oor A{
quit() from B to A, S; i
Yo 2 addres S ——
date—»

Protocol Well-fomedness (choice)

global protocol Protocoll(role A, role B) {
choice at A {
ml() from A to B;
} or {
m2() from A to B; } }

global protocol Protocol2(role A, role B, role C) {
choice at A {
ml() from A to B;
mi() from B to C; // Additional step
} or {
m2() from A to B; } }

global protocol Protocol3(role A, role B, role C) {
choice at A {
mi() from A to B;
mi() from B to C;
} or {
mi() from A to B; // Copy-paste error
m2() from B to C; } }

Buyer: A local projection E

module Bookstore_TwoBuyers_A;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

local protocol TwoBuyers_A at A(role A, role B, role S) {
title(String) to S;
quote(Integer) from S;
rec LOOP {
share (Integer) to B;
choice at B {
accept(address:String) from B;
} or {
retry() from B;
continue LOOP;
} or {
quit() from B;
P r g

The whole Picture

Glebal

protocol ListResources(client as C, registry as R){

Response from R to C;}

Lecal TV’Q@- protocol ListResources at registry

(client as C){

(|n Scrib ble) Request(resource_kind) from C;

Response to C;}

p = Participant(name)

c = p.accept_invitation('ListResources',
‘registry’)

resource_kind = c.recv('client’)

resource = get_resources(resource_kind)

c.send('client’, resource)

Request(resource_kind) from C to R;

Projection

protocol ListResources at client
(registry as R){
Request(resource_kind) to R;
Response from R;}

.

Veeritication
p = Participant(name)
c = p.create_conversation('ListResources',
‘client’)
msg = 'Resource:asdf’
c.send('registry', msg)
resource = c.recv('registry')

It’s Demo time

» Internal” CC Runtime component monitoring
» [DEMO]

More advanced protocols

» https://confluence.oceanobservatories.org/display/syseng/
CIAD+COI+OV+Governancet+Framework

» Higher-level" application protocols

» Composition of RPC calls
» Negotiation protocol

https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Governance+Framework

Application-level service call composition

// Direct spectification

global protocol P3(role C, role S1, role S2, role S3, role S4)

{
() from C to S1;
() from S1 to S2;
() from S2 to Si1;
() from S1 to S3; c 81
() from S3 to S4;=T— 1T
() from S4 to S3; I P .
() from S3 to S4; J,REDH _ R;E -
() from S4 to S3; ,,“' -
() from S3 to S1; |
() from S1 to C; ;;
! d
RPC

Pro
Refir

Scoping E

global protocol ServiceCall(role Client, role Service) {
() from Client to Server;
() from Server to Client;

¥

// By composing basic ServiceCalls
global protocol P2(role C, role S1, role S2, role S3, role S4)
{
() from C to Si1;
do ServiceCall(S1 as Client, S2 as Server);
() from S1 to S3;
do ServiceCall(S3 as Client, S4 as Server);

do ServiceCall(S3 as Client, S4 as Serve _“ St
() from S3 to Si; I —
() from S1 to C; fj?yg—‘ e

RPC

I RPC

RPC

Scoping E

// "Middleman" pattern
global protocol Middleman(
role L, role M, role R, role S)

{

() from L to M;

do ServiceCall(M as Client, S as Server);

do ServiceCall(M as Client, S as Server);

() from M to R;
+
// By composing ServiceCall and Middleman patterns
global protocol P3(role C, role S1, role S2, role S3, role S5S4)

{

() from C to S1; L 3L
do ServiceCall(S1 as Client, S2 as Server); T w— o
do Middleman(S1 as L, S3 as M, S4 as R); —— wre

() from S1 to C;

RPC

I RPC

RPC

Agent Negotiation

» Provider and Consumer agents negotiate a Service

Agreement Proposal

» https://confluence.oceanobservatories.org/display/syseng/ CIAD+COl

+OV+Negotiate+Protocol

Consumer Provider
Agent Agent
negotiate: request{SAP_1) Confirm is the
Megotistion starting by & o) complementary accept
ﬁﬁ‘&";{,mﬁﬂma negotiate: acceptiSAP_1, details) by the :!)lhel' pafﬂ;{bﬂth
confirmed by Cansumer negotiate: confirm(SAP_1) ,..i_-—l mu:g?eement}. o

ALT

Prosiger inviling & Consurmer
with a proposal. accepted by
Corsumar and confimad by

Megoliation starting by the
Provider

ALT

Hegotiation starting by a

negotiate: invite(SAP_1)

IS S

negotiate: acceptiSAP_1, details)

negotiate: confirm(SAP_1)

With a mutual accept, at
least one commitment
on each side of the
conversation results
[may be multiple). The
contract is as stated in
thie maost recent SAP

negotiate: request{SAP_1)

negotiate: counter-propose{SAP_2)

Consumer makng a proposal,
Th recipient {Provider) makes
A couriler-propossl supplanting

negotiate: acceptiSAP_2, details)

A counter-propose is a
new SAP, but it typically
refines or partially
modifies the prior SAP.

SAP_1, which i then accepled
by Cansumar and canfirmad by
the Provider,

negotiate: confim(SAF_2)

ALT

negoliate: request{SAR_1)

Megotalion starng by a
Consumer making a propesal,
rafeciad by the Providar anding

||

Any party can reject
instead of counter-

the Magoliakon.

negotiate: reject{SAP_1) —-ﬁ‘——.;__‘ praposa (or accept)
|

Negotiation protocol in Scribble

global protocol Negotiationl(role I, role C) {

propose (SAP) from I to C;
rec START {
choice at C {
accept() from C to I;
confirm() from I to C;
}or {
propose (SAP) from C to I;
choice at I {
accept() from I to C;
confirm() from C to I;
} or {
reject() from I to C;
} or A{
propose (SAP) from I to C;
continue START;
}
} or{
reject() from C to I;
> 3

Megatistion starting by a
Consumer making & proposal.

then accegled by Provider snd

confimed by Cansumer

Consumer Provider
Agent Agent
negotiate: request{SAP_1) Confirm is the
negotiate: accept{SAP_1, details) gﬁhgml:gﬂ;m
negotiate: confirm({SAP_1) ..é—-j mu;lg&e%tnfg -

Magotiation starting by the
Provider inviling a Cansurmer
with a propasal. accepted by

ALT

negotiate: invite(SAP_1)

Ieast one commitment
on each side of the
conversation results

negotiate: accept{SAP_1, details)

[may be multiple). The
contract is as stated in

the most recent SAP

,,--—J A counter-propose is a

Cansumer and confimed by negotiate: confim(SAP_1)
Provider
ALT negotiate: request{SAP_1)
Mogoliation starting by a negotiate: counter-propose{SAP_2)

Consumer making a proposal,

The recipient (Provider) makes

& courier-p

negotiate: accept(SAP_2, details)

new SAP, but it typically
refines or partially
modifies the prior SAP.

‘SAP_1, which is then accepied
by Cansumar and confirmed by

tha Pravider,

negotiate: confirm(SAP_2)

Megeeaticn startng by &
Consumer making a propesal,

rafecsad by the Providar ending

the Nagotiation.

ALT

negotiate: requestiSAR_1)

Any party can reject
instead of countar-

negotiate: reject(SAP_1) -i-'___‘ proposa (of accept)
|

Negotiation protocol in Scribble

global protocol Negotiation2(role I, role C)
propose (SAP) from I to C;
do NegotiationAux(I as I, C as C);

}

{

global protocol NegotiationAux(role I, role C) {

choice at C {
accept () from C to I;
confirm() from I to C;
} or {
propose (SAP) from C to
do NegotiationAux(C as
} or{
reject() from C to I;

I;
I, I as C);

Consumer
Agent

Megatistion starting by a

Consumer making & proposal.
then accegled by Provider snd

confimed by Cansumer

negotiate: request{SAP_1)

negotiate: accept{SAP_1, details)

negotiate: confirm{SAP_1)

Provider
Agent
Confirm is the
complementary accept
bry the other party (both
— must accept for an

| agreement).

“T—-.., With a mutual accept, at

Ieast one commitment
on each side of the
conversation results

[may be multiple). The
contract is as stated in

the most recent SAP

}

ALT negotiate: invite(SAP_1)
pm"fii?ui‘;’;'gm',‘:,, negotiate: accept{SAP_1, details)
with a propasal, accepted by
Cansumar and canfimed by negotiate: confirmi{SAP_1)

Provider
ALT

Hegotiation starting by a

Consumer making a proposal,
The recipient (Provider) makes

a courier-proposal,

negotiate: request{SAP_1)

,,--—J A counter-propose is a

negotiate: counter-propose{SAP_2)

negotiate: accept(SAP_2, details)

new SAP, but it typically
refines or partially
modifies the prior SAP.

‘SAP_1, which is then accepied
by Cansumar and confirmed by

tha Pravider,

negotiate: confirm(SAP_2)

Megeeaticn startng by &
Consumer making a proposal

rafecsad by the Providar ending

the Nagotiation.

ALT

negotiate: requestiSAR_1)

Any party can reject
instead of countar-

negotiate: reject(SAP_1) -i-'___‘ proposa (of accept)
|

session Lype

Governance Framework

- Remote Service

Process
Business Logic -~~~
(Service)

] control Controller
Dispatcher }. (Orchestrator)

Governance
Interceptor

i engage / pvlate - __ .
’ e —— |
: 1
i Tead ~ |
| |
i annotate i e _______________________________________:
1 '
i —
! read
! i Conversation Management
i annotate E Service
! _ = '
i Conversation Manitor Conversation
| State Info Interceptor Specs
| (Scribble)
e~ —_—
T log
Conformance messages
Interceptors
5 Conversation Log

Messaging Client

Message Broker

Scribble annotations @

Annotations = Scribble Construct [Logic]

[Condition(payment>=1000)] » The monitor passes
offer(payment: Integer) from C to |[; {‘type’:param, ...}

to the upper layers

[defaultaccept]

offer(payment: Integer) from C to |; » Upper layers recognize

and process the
annotation type or
discard it

[CreateCommitment(C, |, payment) at C]
offer(payment: Integer) from C to |;

session Llype)

A theory for network monitoring E

» Formalise MPST-monitoring and asynchronous networks.
» Introduce monitors as first-class objects in the theory

» Justify monitoring by soundness theorems.
Safety
monitors enforces specification conformance.
Transparency
monitors does not affect correct behaviours.
Fidelity

correspondence to global types is maintained.

session lype

Formalism: networks @

N == [Pl | MIN, | 0| (wa)N | (ws)N | (r: h)

» Asynchronous networks composed of
processes P located at principals a
Abstracts local applications
router r
abstracts network routing information updated on-the-fly

global queue h

Abstracts messages in transit

Formalism: Monitor @

» Specifications
Y o= 0 | ,a:(l;A),
Fo=0 | La:2(T[x]) | Fa:(T[r]) Ax=0 | A,s[c]:T,

2 spec., A: session env, [: shared env.

» Monitors
M=a«a:(l;A)
Monitors are introduced as component of monitored
networks

M Sl g r(s[r2]) # «
[s[r1, 22] 1 (V)]a | MI(r s h) — [Oa | M|(r 5 h-s(r1,12,1(v)))
M 5[1‘/1,1‘2]!1’(1|,f}k

Jlf‘ Fl

[slr1, r2]H(v)]o M| (r 5 h) — [0]a [M| (r h)

Result

» Local Safety
— [P]o | M a: ([A) with M = a: (I A).
a monitored process satisfies its specification
» Global Safety
If N is fully monitored w.r.t. ¥, then =N : %.
monitored network behaves as expected

» Session Fidelity

a configuration is consistent when it corresponds to a well-
formed array of global types through projection

consistent is preserved by reduction

At any time, the network corresponds to a well-formed
specification

Summary

» Having a context allows to control the communication

» Having granularity allows to specify constraints on the
interactions

» Early error detection is much cheaper
» High-level policies on top of protocol verification

» Good abstraction means easy programming — you
program with send and receive (no threads, sockets,
channels)

References

» http://www.youtube.com/watch?feature=endscreen&v=mr
Eiwd9Buxk&NR=1

» https://confluence.oceanobservatories.org/download/attac
hments/1835101 1/OOI+Cyberlnfrastructure+-
+Next+Generationt+OceanographictResearch-
lowres.pdf?version=|&modificationDate=1246912767000

http://www.youtube.com/watch?feature=endscreen&v=mrEiwd9Buxk&NR=1
https://confluence.oceanobservatories.org/download/attachments/18351011/OOI+CyberInfrastructure+-+Next+Generation+Oceanographic+Research-lowres.pdf?version=1&modificationDate=1246912767000

[t 1s your turn ...

protocol O&A(you, me)
{

rec Loeop

{

Questions from you to me;
Answers from me to you;
Loop;

