
μService and Scribble

aka

Scribble @ ThoughtWorks

Steve Ross-Talbot

stalbot@thoughtworks.com

(With thanks to Ray Hu)

September 2016

Structured Engineering @ TW

We propose that creating a practice within TW to concentrate on what we will

call “Structural Engineering” will provide a focus to concentrate and leverage

our experience in this area.

There are five constituent elements:

• Education (Theory, Practices and Research)

• Tools (Architectural Simulation Laboratories)

• Consultancy (offerings for both clients and internal teams)

• Collaboration (with external organisations e.g. Universities)

• TW Logistics (people and cash)

The world of programming
There is an increasing

chance of getting it all so

terribly wrong

We test a lot

We talk a lot (but never

enough)
We try to speed up the

lifecycle of development so we

can make mistakes earlier

The world of programming

Multiparty session types offer us a way of understanding our digital world better.

It offers a way for us to better identify what is good and what is bad as complexity

increases.

It does this by uncovering structure, the structure of communication based on

observable behavior in a distributed plain. Hence structured engineering @ TW!

MPST

Multi-party session types & Scribble

Nobuko Yoshida, 2016 –

https://www.youtube.com/watch?v=HEg088cW528

μService’s

A Micro service is normally part of a suite of
independently deployable services that support a
specific business goal using simple, well-defined

interfaces to communicate with each other. Typically

they are small and have language-agnostic APIs.

SOA

Cloud/DevOps

Agile

μServices

“throw-it-away” challenges our
conventional IT notion of value
and encourages a new form of
re-use that is based on thinking
and innovation.

μService’s and Serverless

Architectures

A μService’s is the leven bread of serverless computing.

Serverless computing is the new Cloud/DevOps that

incorporates fast instantiation into a cloud of executable

containers each able to execute the bundle of behaviors that

a set of μService’s exhibit.
June 17, 2016: "The Evolution of Microservices,"

Adrian Cockroft - https://learning.acm.org/webinar/

μService’s and Scribble

The problem I have found is that very few people understand what a choreography

really is, let alone how it can be described and used. Rather a choreography is a loose

description or a way of doing things. A style if you will.

Whereas we know differently!!

A choreography

promoted loose

coupling

What we are trying to do

EC2

DONE
DONE

DOING

Scribble
monitor

TO DO

TO DO

TO DO

To put meat on the bone of choreography

by proving out a tools chain for its use

Behavioral Docking

Scribble

description

Business

Logic
jar Server

Host OS

Docker Engine

Scribble
Business

Logic

EasyFSM

EasyFSM

EasyFSM

EasyFSM

EasyFSM

Why Docker

μService’s as FSM’s
A real world example

μService’s as FSM’s
The scribble

explicit global protocol PartnershipSupplier (role loginsvc, requestor, authorisersvc,
filtersvc, suppliersvc, contractsvc)

{
connect requestor to loginsvc;
login(username, password) from requestor to loginsvc;
choice at loginsvc {

loginFailure() from loginsvc to requestor;
disconnect requestor and loginsvc;

} or {
loginSuccess(uuid) from loginsvc to requestor;
connect requestor to authorisersvc;
connect authorisersvc to filtersvc;
do Main(requestor, authorisersvc, filtersvc, suppliersvc, contractsvc);

}
}

μService’s as FSM’s
The scribble

aux global protocol Main (role requestor, authorisersvc, filtersvc, suppliersvc, contractsvc)
{

choice at requestor { // GET SUPPLIER INFO
getSuppliers(uuid) from requestor to authorisersvc;
do SuppInfo(requestor, authorisersvc, filtersvc, suppliersvc);

} or { // GET CONTRACT INFO
getContracts(uuid) from requestor to authorisersvc;
do ContractInfo(requestor, authorisersvc, filtersvc, contractsvc);

}
do Main(requestor, authorisersvc, filtersvc, suppliersvc, contractsvc);

}

μService’s as FSM’s
The scribble

aux global protocol SuppInfo (role requestor, authorisersvc, filtersvc, suppliersvc)
{

choice at authorisersvc { // DENIED
deny() from authorisersvc to requestor;
exit() from authorisersvc to filtersvc;

} or { // PREPARE FILTERED SUPPLIER INFO FOR REQUESTOR
connect authorisersvc to suppliersvc;
getsuppliers(uuid) from authorisersvc to suppliersvc;
getsuppliersRtn(supplierdetails) from suppliersvc to authorisersvc;
do FilterInfo <filterSupplier(usercontext, filters, supplierdetails)>

(authorisersvc, filtersvc);
disconnect authorisersvc and suppliersvc;
getSuppliersRtn() from authorisersvc to requestor;

}
}

μService’s as FSM’s
The scribble

aux global protocol ContractInfo (role requestor, authorisersvc, filtersvc, contractsvc) {
choice at authorisersvc { // DENIED

deny() from authorisersvc to requestor;
exit() from authorisersvc to filtersvc;

} or { // PREPARE FILTERED SUPPLIER INFO FOR REQUESTOR
connect authorisersvc to contractsvc;
getContracts(uuid) from authorisersvc to contractsvc;
getContractsRtn(contractdetails) from contractsvc to authorisersvc;
do FilterInfo <filterContract(usercontext, filters, contractdetails)>

(authorisersvc, filtersvc);
disconnect authorisersvc and contractsvc;
contracts() from authorisersvc to requestor;

}
}
aux global protocol FilterInfo < sig Query > (role authorisersvc, filtersvc) {

Query from authorisersvc to filtersvc;
filtered() from filtersvc to authorisersvc;

}

μService’s as FSM’s

digraph G {
compound = true;
"70" [label="70: COMPLETED"];
"70" -> "72" [label="requestor -> MakeNewServerSideConnection()"];
"72" [label="72: "];
"72" -> "73" [label="filtersvc -> MakeNewClientSideConnection()"];
"73" [label="73: COMPLETED"];
"73" -> "74" [label="requestor Receive getsuppliers(uuid)"];
"74" [label="74: COMPLETED"];
"74" -> "75" [label="requestor Send deny()"];
"75" [label="75: "];
"75" -> "73" [label="filtersvc Send end()"];
"74" -> "76" [label="suppliersvc -> MakeNewClientSideConnection()"];
"76" [label="76: "];
"76" -> "77" [label="suppliersvc Send getsuppliers()"];
"77" [label="77: "];
"77" -> "78" [label="suppliersvc Receive suppliers()"];
"78" [label="78: COMPLETED"];
"78" -> "79" [label="filtersvc Send filterSupplier(usercontext, filters, supplierdetails)"];

μService’s as EasyFSM’s

<STATE id = "STATE_START">
<MESSAGE id = "roleName="requestor”” action = "connectionRequestFrom” nextState = "STATE_STARTED" />

</STATE>
<STATE id = "STATE_STARTED">

<MESSAGE id = "roleName="filtersvc"" action = "connectionRequestTo”
nextState = "STATE_CONNECTION_REQUEST_TO_filtersvc_OBTAINED" />

</STATE>
<STATE id = "STATE_CONNECTION_REQUEST_TO_filtersvc_OBTAINED”>

<MESSAGE id = "roleName="requestor" messageType="getSuppliers(uuid)"" action = "receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)”

<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)"" action = "receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getContracts(uuid)" />

</STATE>
<STATE id = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)">

<MESSAGE id = "roleName="requestor" messageType="deny()"" action = "sendMessage”
nextState = "STATE_sendMessage_SENT_TO_requestor_USING_deny()" />

<MESSAGE id = "roleName="suppliersvc"" action = "connectionRequestTo"
nextState = "STATE_CONNECTION_REQUEST_TO_suppliersvc_OBTAINED" />

</STATE>
……..

μService’s as EasyFSM’s

<STATE id = "STATE_CONNECTION_REQUEST_TO_filtersvc_OBTAINED”>
<MESSAGE id = "roleName="requestor" messageType="getSuppliers(uuid)"”

action = ”com.thoughtworks.org.receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)” />

<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)""
action = "com.thoughtworks.org.receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getContracts(uuid)" />

</STATE>

<STATE id = "STATE_START">
<MESSAGE id = "roleName="requestor”” action = "connectionRequestFrom” nextState = "STATE_STARTED" />

</STATE>
<STATE id = "STATE_STARTED">

<MESSAGE id = "roleName="filtersvc"" action = "connectionRequestTo”
nextState = "STATE_CONNECTION_REQUEST_TO_filtersvc_OBTAINED" />

</STATE>
<STATE id = "STATE_CONNECTION_REQUEST_TO_filtersvc_OBTAINED”>

<MESSAGE id = "roleName="requestor" messageType="getSuppliers(uuid)"" action = "receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)” />

<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)"" action = "receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getContracts(uuid)" />

</STATE>
<STATE id = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)">

<MESSAGE id = "roleName="requestor" messageType="deny()"" action = "sendMessage”
nextState = "STATE_sendMessage_SENT_TO_requestor_USING_deny()" />

<MESSAGE id = "roleName="suppliersvc"" action = "connectionRequestTo"
nextState = "STATE_CONNECTION_REQUEST_TO_suppliersvc_OBTAINED" />

</STATE>
……..

<STATE id = "STATE_CONNECTION_REQUEST_TO_filtersvc_OBTAINED”>

<MESSAGE id = "roleName="requestor" messageType="getSuppliers(uuid)"”
action = ”com.thoughtworks.org.receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)” />

<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)""
action = "com.thoughtworks.org.receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getContracts(uuid)" />

</STATE>

μService’s as EasyFSM’s

Represents a choice

Java like syntax for business logic bindingCurrent state

Next state parameters

DONE

Recipient or Provider (depends on direction)

μService’s and business logic

Some sort of java jar file incorporating all of

the business function method calls and their

parameter types as names.

To be implemented by the programmer is the

business logic itself within the method calls

and the parameter types as member variables

to be stored as needed.

Scribble and μServices runtime

Lazy instantiation of scribble-defined μServices

EasyFSM

μService

config.xml

for
Role

Scribble

description

Business

Logic
jar

role

Business

Logic
jar

config.xml

for
Role

Business

Logic
jar

for role

Scribble and μServices runtime

EC2

Lazy instantiation of scribble-defined μServices

Business

Logic
jar

role

contractsvc

EasyFSM

μServices

connect
to authorisersvc

Scribble

description

connect
to filtersvc

EasyFSM

μServices

authorisersvc

requestor

connect
to suppliersvc

EasyFSM

μServices

connect
to suppliersvc

filtersvc suppliersvc

Scribble and μServices runtime

EC2

Playing out a scribble choreography

using μServices

EasyFSM

μServices

filterSupplier

EasyFSM

μServices

authorisersvc

requestor

EasyFSM

μServices

getSuppliers

filtersvc
suppliersvc

Suppliers[]

Suppliers[]

getSuppliers

Suppliers[]

This is the next generation of

serverless architectures

June 17, 2016: "The Evolution of Microservices," Adrian Cockroft - https://learning.acm.org/webinar/

Velocity of agile delivery is increased through

• Capture of tacit knowledge as complexity increases

• Behavioral correctness of multi-parties (less rework)

• Standing up of stubbed out behaviors

• Reduction in effort and cost to deploy behaviors

• Behavioral on-the-fly instantiation

But that is not enough

The agile world viewTo prove out the tools chain

To apply it to existing systems

But that is not enough

Scribble Sniffer

Modeling Analysis Advice

We have to be able to understand what we have. The legacy issue.
And we need to understand it just enough to make sensible
decisions.
So we need be able to modeling what we find, and to analyse it and
have it give us advice on what to do (i.e. where to start first, the scope
of what we need to change)

TODO

