uService and Scribble
aka
Scribble @ ThoughtWorks

Steve Ross-Talbot
stalbot@thoughtworks.com
(With thanks to Ray Hu)
September 2016

Structured Engineering (@ TW

We propose that creating a practice within TW to concentrate on what we will
call “Structural Engineering” will provide a focus to concentrate and leverage
our experience in this area.

There are five constituent elements:

* Education (Theory, Practices and Research)

* Tools (Architectural Simulation Laboratories)

* Consultancy (offerings for both clients and internal teams)
* Collaboration (with external organisations e.g. Universities)
 TW Logistics (people and cash)

The world of programming

There is an increasing
chance of getting it all so
terribly wrong

We test a lot

We try to speed up the We talk a lot (but never
lifecycle of development so we enough)
can make mistakes earlier

The world of programming

Multiparty session types offer us a way of understanding our digital world better.
It offers a way for us to better identify what is good and what is bad as complexity
increases.

It does this by uncovering structure, the structure of communication based on
observable behavior in a distributed plain. Hence structured engineering @ TW!

Multi-party session types & Scribble

Dialogue between Industry and Academia
Binary Session Types (PARL 94, ESOP 98]

v
Milner, Honda and Yoshida joined W3C WS-CDL (2002)
v
Formalisation of W3C WS-CDL Esor07)
v

. Scribble at ™ Technology

Multiparty session types

» Global Types and End Point Projection (Abstract Choreography)

» Potential errors

x Communication mismatch: e.g. receiver is sent an unexpected message
x Protocol violation: executed interaction does not follow the protocol

« Deadlock: e.g. all endpoints blocked on input

G A A B
P ti
; rojection ‘ T
TV e LC ‘
Conformance Projection (Good)
Pa F;(] A: (B, T1).2(C, T3)

B (A, T).1C, T
C B, T2).MA, T3)

Scribble Protocol

g Is y for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only & whisper which is not a whisper, an image which is not an
image, somehow & starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling® - Kohel Honda 2007

* Basic example:

Nobuko Yoshida, 2016—
https://www.youtube.com/watch?v=HEg088cW5 28

protocol HelloWorld {
role You, Worlkd
Hello from You 1o World,

C
G=A-B:T,.

B C: T,
CA:T;

Bad (Deadlock)

A:(C, T3).1(B, Th)
B (A, T)).MC. T,
C:2(B, T2)./(A, T3)

uService’s

A Micro service is normally part of a suite of
independently deployable services that support a
specific business goal using simple, well-defined
interfaces to communicate with each other. Typically

they are small and have language-agnostic APIs.

Cloud/DevOps

“throw-it-away” challenges our
conventional IT notion of value
and encourages a new form of

re-use that is based on thinking
and innovation.

SOA Agile

uService’s and Serverless
Architectures

A uService’s 1s the leven bread of serverless computing.

Serverless computing 1s the new Cloud/DevOps that
incorporates fast instantiation into a cloud of executable
containers each able to execute the bundle of behaviors that

f uService’s exhibit.

June 17,2016: "The Evolution of Microservices,"
Adrian Cockroft - https://learning.acm.org/webinar/

Rol e

Whiteli Serverless Cost Efficiencies
Good for s RSO <
100% useful work, no agents, overheads .

o 100% utilization, no charge between requests Serverless Work in Progress

< 11 >) 515 No need to size capacity for peak traffic ,

Anecdotal costs ~1% of conventional system Tooling for ease of use
Ideal for low traffic, Corp IT, spiky workloﬁ Multi-region HA/DR patterns
' Debugging and testing frameworks

Monitoring, end to end tracing

— Full screen

o) 52:24/1:07:19

1

QD

< 1 » o) 5324/10719 @ & wid |

uService’s and Scribble

On the left site an
orchestration with
point-to-point
conncetions is shown.
On the right site a
choreography pattern
is shown where each
service waits for
events to act on.

‘.'| ,-"""' : ","' \ ' //’ 4 / : = .
| \ / / |

[/ ‘ ."I. \ ‘ e / !

y 7 ,-"v "» - ,"‘ .'u

Orchestration vs. Choreography, Source: www.thoughtworks.com

The problem I have found is that very few people understand what a choreography
really i1s, let alone how it can be described and used. Rather a choreography is a loose
description or a way of doing things. A style if you will.

Whereas we know differently!!

What we are trying to do

TO DO
Scribble

¥ monitor

DONE
DONE

To put meat on the bone of choreography
by proving out a tools chain for Its use

\ Machme uService!
In dot notatio
TO DO \
DOING
sssssssssssss

Behavioral Docking

Why Docker

Containers vs. VMs

VM

Host OS

Server

Containers are isolated,
but share OS and, where

| N

Docker
Deployment

fontainer

Docker Engine

Host OS

m m m m m
< Q Q Q Q Q
Server

Scribble DR

Logic
A X Docker Engine
Business Scribble Host OS
Logic description

jar

Server

W 0% and Bits

¥ usefulness

b

uService’s as FSM’s

A real world example

Pagination
LoginSvc MicroSve

Filtering
MicroSve

Router

5

S ither
= ippliers

Contracts

Authorization Filtering

GET ==——>| Lookup
>

5 Product 3
S | Contract Identit
uppliers ontracts P entity

GET e

*»

GET |

rs

e GET —of

uService’s as FSM’s

The scribble

explicit global protocol PartnershipSupplier (role loginsvc, requestor, authorisersvc,
filtersvc, suppliersvc, contractsvc)

connect requestor to loginsvc;
login(username, password) from requestor to loginsvc;
choice at loginsvc {
loginFailure() from loginsvc to requestor;
disconnect requestor and loginsvc;
por{
loginSuccess(uuid) from loginsvc to requestor;
connect requestor to authorisersvc;
connect authorisersvcto filtersvc;
do Main(requestor, authorisersvc, filtersvc, suppliersvc, contractsvc);

uService’s as FSM’s

The scribble

aux global protocol Main (role requestor, authorisersvc, filtersvc, suppliersvec, contractsvc)
{
choice at requestor { // GET SUPPLIER INFO
getSuppliers(uuid) from requestor to authorisersvc;
do Supplnfo(requestor, authorisersvc, filtersvc, suppliersvc);
}or { // GET CONTRACT INFO
getContracts(uuid) from requestor to authorisersvc;
do Contractinfo(requestor, authorisersvc, filtersvc, contractsvc);

}

do Main(requestor, authorisersvc, filtersvc, suppliersvc, contractsvc);

uService’s as FSM’s

The scribble

aux global protocol Supplinfo (role requestor, authorisersvc, filtersvc, suppliersvc)
{
choice at authorisersvc { // DENIED
deny() from authorisersvc to requestor;
exit() from authorisersvc to filtersvc;
}or { // PREPARE FILTERED SUPPLIER INFO FOR REQUESTOR
connect authorisersvc to suppliersvc;
getsuppliers(uuid) from authorisersvc to suppliersvc;
getsuppliersRtn(supplierdetails) from suppliersvc to authorisersvc;
do FilterInfo <filterSupplier(usercontext, filters, supplierdetails)>
(authorisersvc, filtersvc);
disconnect authorisersvc and suppliersvc;
getSuppliersRtn() from authorisersvc to requestor;

uService’s as FSM’s

The scribble

aux global protocol Contractinfo (role requestor, authorisersvc, filtersvc, contractsvc) {
choice at authorisersvc { // DENIED
deny() from authorisersvc to requestor;
exit() from authorisersvc to filtersvc;
}or { // PREPARE FILTERED SUPPLIER INFO FOR REQUESTOR
connect authorisersvc to contractsvc;
getContracts(uuid) from authorisersvc to contractsvc;
getContractsRtn(contractdetails) from contractsvc to authorisersvc;
do FilterInfo <filterContract(usercontext, filters, contractdetails)>
(authorisersvc, filtersvc);
disconnect authorisersvc and contractsvc;
contracts() from authorisersvc to requestor;

}

aux global protocol FilterInfo < sig Query > (role authorisersvc, filtersvc) {
Query from authorisersvc to filtersvc;
filtered() from filtersvc to authorisersvc;

uService’s as FSM’s

[SEND TO comtractsve getcomiraces()

ECEIVE FROM contractsve contracts() ISEND T0 roqucstor contracts()

EasyFSM
Configuration o
file

RECEIVE FROM fliersve fered()

DISCONNECT FROM suppliersve()

Business logic
jar

uService’s as EasyFSM’s

uService’s as EasyFSM’s

<STATE id = "STATE_CONNECTION_REQUEST_TO _filtersvc_OBTAINED"”>
<MESSAGE id = "roleMame="requestor" messageType="getSuppliers(uuid)
action = "com.thoughtworks.org.receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)” />
<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)""
action = "corn.thoughtworks.org.receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getContracts(uuid)" />

nm»

</STATE>

FIiLe \
State
Machine

. <STATE id = "STATE_START">
In dot notation ! =

<MESSAGE id = "roleName="requestor”” action = "connectionRequestFrom” nextState = "STATE_STARTED" />
</STATE>
<STATE id = "STATE_STARTED">
<MESSAGE id = "roleName="filtersvc"" action = "connectionRequestTo”
nextState = "STATE_CONNECTION_REQUEST_TO _filtersvc_OBTAINED" />
</STATE>
<STATE id = "STATE_CONNECTION_REQUEST_TO _filtersvc_OBTAINED”>
<MESSAGE id = "roleName="requestor" messageType="getSuppliers(uuid)"" action = "receiveMessage"
\ nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)” />
<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)"" action = "receiveMessage"
nextState = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getContracts(uuid)" />

</STATE>
<STATE id = "STATE_receiveMessage_RECEIVED_FROM_requestor_PROVIDING_getSuppliers(uuid)">
<MESSAGE id = "roleName="requestor" messageType="deny()"" action = "sendMessage”
nextState = "STATE_sendMessage_SENT_TO_requestor_USING_deny()" />
<MESSAGE id = "roleName="suppliersvc"" action = "connectionRequestTo"
nextState = "STATE_CONNECTION_REQUEST_TO_suppliersvc_ OBTAINED" />
</STATE>

uService’s as EasyFSM’s

Recipient or Provider (depends on direction)

Current state Java like syntax for business logic binding

<STATE id = "STATE_CONNECTION, REQUEST_TO _filter BTAINED”>

<MESSAGE id = "roleName="requestor"-iiiessageType="getSuppliers(uuid)
action = "com.thoughtwoiits.org.receiveMessage"
nextState = "STATE receiveMessage RECEIVED_FROM requestor_PROVIDING_getSuppliers(uuid)” />
<MESSAGE id = "roleName="requestor" messageType="getContracts(uuid)""

tion = "com.thoughtworks.org.receiveMessage"

nextState = "STATE_receiveMess RECEIVED_FROM _requesior_PROVIDING_getContracts(uuid)" />

DONE

nn

</STATE>

Represents a choice Next state parameters

uService’s and business logic

EasyFSM
Configuration
_— e Some sort of java jar file incorporating all of
State the business function method calls and their
Machine parameter types as names.

In dot notation

To be implemented by the programmer is the

business logic itself within the method calls

and the parameter types as member variables
susiness logic to be stored as needed.

jar

Scribble and uServices runtime

2

role \
N Scribble
description
Business
Logic
jar

N\
y

Business ml
Logic
jar

Lazy instantiation of scribble-defined uServices

Scribble and uServices runtime

EC2

™
s

authorisersvc

connect

suppliersvc

EasyFSM
uServices EasyESM EasyFSM
uServices uServices

™ conn‘ect_/

to filtersvc

to suppliersve

" |
- 7, ‘& |7, ‘X
role Al = P P
\ requestor filtersvc suppliersvc contractsvc
Business Scribble
Logic description

jar Lazy instantiation of scribble-defined uServices

» Scribble and pServices runtime

el

requestor

Suppliers]] EC2
getSuppliers =5 252 1he Bvolution of IVlicroservices, Adrian LOCKIOTl &

F—
‘ Serverless Architecture

(Velocity of agile delivery is increased through
< * Capture of tacit knowledge as complexity increases

* Behavioral correctness of multi-parties (less rework)
* Standing up of stubbed out behaviors e
* Reduction in effort and cost to deploy behaviors
This is the ° Behavioral on-the-fly instantiation

serverless architectures
| s

gEEmicribble choreography
gl using uServices

L

T A AN
S (oynamons) (kinesis | (ss)

@ Serverless Architecture

API Gateway

bl) 50:54/10719

|DynamoDB' | Kinesis l

June 17,2016: "The Evolution of Microservices," Adrian Cockroft - https://learning.acm.org/webinar/

But that Is not enough

<To prove out the tools chain
\

To apply It to eX|st|ng systems
T >~

But that I1s not enough

We have to be able to understand what we have. The legacy issue.
And we need to understand it just enough to make sensible
decisions.

So we need be able to modeling what we find, and to analyse it and
have it give us advice on what to do (i.e. where to start first, the scope
of what we need to change)

Scribble Snitter \

‘«\

Analysis

Modeling

