
Let it Recover:
Multiparty Protocol-Induced Recovery
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“Fail fast and recover quickly”
Erlang proverb

“Fail fast and recover quickly and safely ” 
OPCT proverb (after this talk)
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Part One 
Background



The Erlang programming language

-> 1;factorial(0)  
factorial(X) when X > 0 -> X * factorial(X-1).
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Erlang’s coding philosophy
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Organise your processes in supervision trees

Let it crash: Erlang’s fault tolerance model

Do not program defensively, let the process crash 

In case of error, the process is automatically terminated 

Processes are linked. When a process crashes linked  
process are notified and (can be) restarted. 

Recently adopted by

- 
- 
-

one-for-one  
all-for-one  
rest-for-one

Supervision Strategies 
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unsound

A recovery may cause deadlocks, orphan messages, reception  
errors

Supervision strategies: Drawbacks

Supervision strategies are: statically defined, error-prone

inefficient
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unsoundinefficient

How to generate sound and efficient supervision strategies?

By using Session Types!
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Session Types Overview

Global protocol (session type) 

Local protocol (session type) 
Slice of global protocol relevant to one role  
Mechanically derived from a global protocol

A system of well-behaved processes is free from deadlocks,  
orphan messages and reception errors 

The framework has been applied to Java, Python, MPI/C, Go…

Process language 
Execution model of I/O actions by roles
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Part Two 
Let It  Recover



Protocol

Dependency Graph Recovery Table 

Recovery workflow
recovery algorithm implementation

A recovered system is free from deadlocks, orphan messages  
and reception error. 

Outperforms one of the built-in recovery strategies in Erlang

(A:3) 

Erlang Runtim
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This talk: Safe Recovery for Session Protocols
Approach 

Recovery algorithm to analyse a global protocol as to calculate  
the dependencies of a failed process. 

Local supervisors monitor the state of the process in the protocol 

Protocol supervisors use the algorithms at runtime to decide which  
process to recover
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Causalities



Causalities
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Part Three 
Recovery Algorithm



Recovery Algorithm
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Recovery Algorithm

17



5

Initialise Final condition
3 3, 4 3, 4

1:B E; 2:C E;
3:B 
6:D

A; 4:C 
E; 7:E

A; 5:A 
B;

D;

Initialise Final Condition

  

21 76

:5, 6, 7

33 44

3

4 3, 4 done

not done
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Recovery points

recovery point: take the top node from the set of recovery nodes

Failure Recovery points
…  
3, 
A 

3, B 
4, C 
4, A 
…

…
A:3, B:3, C:4
A:3, B:3, C:5
C:2, E:2
C:1, B:1, …
…

Global Recovery Table

1:B 
3:B

C; 2:C E; 
A; 4:C A;
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Main Results: Transparency and Safety (informally)
Theorem: Transparency 

The recovered protocol is a reduction of the initial protocol.  
The configuration of the system after a failure is reachable from  
the initial configuration. 

Theorem:Safety 

Any reachable configuration which is an initial configuration of well-  
formed global protocol is free from deadlock, an orphan massage and a  
reception error.
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Part Four 
Recovery Implementation



Enabling Protocol Recovery in

gen_server stores recovery tables protocol specification

protocol supervisor 
(recover processes) 

local supervisors 
(monitor the process behaviour) 

gen_server 
(used to implement processes)
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Enabling Protocol Recovery in Erlang: Example

23



Evaluation: Web Crawler Example
se

co
nd

s

number of crashes 

A process is chosen at random at the start 

Improvement when several failures occur 

By mistake initially we implemented all-for-one that  
introduced a deadlock 

source: http://foat.me/articles/crawling-with-akka/

http://foat.me/articles/crawling-with-akka/


Evaluation: Concurrency Patterns
se

co
nd

s

Map ReduceRing Calculator

52% improvement when 
intense local computation 
disconnected interactions 

Up to 7% overhead when all roles  
are restarted



Future work & Resources
Framework summary 

Ensure processes are safe and conform to a protocol (even in cases of  
failures) 
Create supervision trees and link processes dynamically based on a  
protocol structure 

Future work  

Support for stateful processes  
Integration with checkpoints  
Replications and recovery actions 

Additional Resources 

Scribble webpage: scribble.doc.ic.ac.uk 
Project source: https://gitlab.doc.ic.ac.uk/rn710/codeINspire 
MRG webpage: http://mrg.doc.ic.ac.uk/

http://mrg.doc.ic.ac.uk/


Q & A
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