
Let it Recover:
Multiparty Protocol-Induced Recovery

1

“Fail fast and recover quickly”
Erlang proverb

“Fail fast and recover quickly and safely ”
OPCT proverb (after this talk)

2

3

Part One
Background

The Erlang programming language

-> 1;factorial(0)
factorial(X) when X > 0 -> X * factorial(X-1).

4

Erlang’s coding philosophy

5

Organise your processes in supervision trees

Let it crash: Erlang’s fault tolerance model

Do not program defensively, let the process crash

In case of error, the process is automatically terminated

Processes are linked. When a process crashes linked
process are notified and (can be) restarted.

Recently adopted by

-
-
-

one-for-one
all-for-one
rest-for-one

Supervision Strategies

6

unsound

A recovery may cause deadlocks, orphan messages, reception
errors

Supervision strategies: Drawbacks

Supervision strategies are: statically defined, error-prone

inefficient

7

unsoundinefficient

How to generate sound and efficient supervision strategies?

By using Session Types!

8

Session Types Overview

Global protocol (session type)

Local protocol (session type)
Slice of global protocol relevant to one role
Mechanically derived from a global protocol

A system of well-behaved processes is free from deadlocks,
orphan messages and reception errors

The framework has been applied to Java, Python, MPI/C, Go…

Process language
Execution model of I/O actions by roles

9

10

Part Two
Let It Recover

Protocol

Dependency Graph Recovery Table

Recovery workflow
recovery algorithm implementation

A recovered system is free from deadlocks, orphan messages
and reception error.

Outperforms one of the built-in recovery strategies in Erlang

(A:3)

Erlang Runtim

11

†

(B:1) (C:2)

This talk: Safe Recovery for Session Protocols
Approach

Recovery algorithm to analyse a global protocol as to calculate
the dependencies of a failed process.

Local supervisors monitor the state of the process in the protocol

Protocol supervisors use the algorithms at runtime to decide which
process to recover

12

Causalities

Causalities

15

Part Three
Recovery Algorithm

Recovery Algorithm

16

Recovery Algorithm

17

5

Initialise Final condition
3 3, 4 3, 4

1:B E; 2:C E;
3:B
6:D

A; 4:C
E; 7:E

A; 5:A
B;

D;

Initialise Final Condition

21 76

:5, 6, 7

33 44

3

4 3, 4 done

not done

18

4

3, 43, 4

Recovery points

recovery point: take the top node from the set of recovery nodes

Failure Recovery points
…
3,
A

3, B
4, C
4, A
…

…
A:3, B:3, C:4
A:3, B:3, C:5
C:2, E:2
C:1, B:1, …
…

Global Recovery Table

1:B
3:B

C; 2:C E;
A; 4:C A;

19

Main Results: Transparency and Safety (informally)
Theorem: Transparency

The recovered protocol is a reduction of the initial protocol.
The configuration of the system after a failure is reachable from
the initial configuration.

Theorem:Safety

Any reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a
reception error.

21

Part Four
Recovery Implementation

Enabling Protocol Recovery in

gen_server stores recovery tables protocol specification

protocol supervisor
(recover processes)

local supervisors
(monitor the process behaviour)

gen_server
(used to implement processes)

22

Enabling Protocol Recovery in Erlang: Example

23

Evaluation: Web Crawler Example
se

co
nd

s

number of crashes

A process is chosen at random at the start

Improvement when several failures occur

By mistake initially we implemented all-for-one that
introduced a deadlock

source: http://foat.me/articles/crawling-with-akka/

http://foat.me/articles/crawling-with-akka/

Evaluation: Concurrency Patterns
se

co
nd

s

Map ReduceRing Calculator

52% improvement when
intense local computation
disconnected interactions

Up to 7% overhead when all roles
are restarted

Future work & Resources
Framework summary

Ensure processes are safe and conform to a protocol (even in cases of
failures)
Create supervision trees and link processes dynamically based on a
protocol structure

Future work

Support for stateful processes
Integration with checkpoints
Replications and recovery actions

Additional Resources

Scribble webpage: scribble.doc.ic.ac.uk
Project source: https://gitlab.doc.ic.ac.uk/rn710/codeINspire
MRG webpage: http://mrg.doc.ic.ac.uk/

http://mrg.doc.ic.ac.uk/

Q & A

27

Future work & Resources
Framework summary

Ensure processes are safe and conform to a protocol (even in cases of
failures)
Create supervision trees and link processes dynamically based on a
protocol structure

Future work

Support for stateful processes
Integration with checkpoints
Replications and recovery actions

Additional Resources

Scribble webpage: scribble.doc.ic.ac.uk
Project source: https://gitlab.doc.ic.ac.uk/rn710/codeINspire
MRG webpage: http://mrg.doc.ic.ac.uk/

28

http://mrg.doc.ic.ac.uk/

