

http://mrg.doc.ic.ac.uk/

Us ∈ Mobility Research Group

www.scribble.org

Online tool : http://scribble.doc.ic.ac.uk/

End-to-End Switching Programme by DCC

End-to-End Switching Programme by DCC

Interactions with Industries

Interactions with Industries

Selected Publications 2016/2017
• [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of

Multiparty Sessions for Safe Distributed Programming..
• [COORDINATION’17] Keigo Imai, NY and Shoji Yuen: Session-ocaml: a session-based

library with polarities and lenses.
• [FoSSaCS’17] Julien Lange , NY: On the Undecidability of Asynchronous Session

Subtyping.
• [FASE’17] Raymond Hu , NY: Explicit Connection Actions in Multiparty Session Types.
• [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced Recovery.
• [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off Go: Liveness

and Safety for Channel-based Programming.
• [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY, Wayne Luk :

EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits.
• [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala
• [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by Global

Session Graph Synthesis.
• [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint API

Generation.
• [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.
• [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative Expressiveness of

Higher-Order Session Processes.
• [POPL’16] Dominic Orchard, NY: Effects as sessions, sessions as effects .

Selected Publications 2016/2017
• [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY :A Linear

Decomposition of Multiparty Sessions for Safe Distributed Programming.
• [COORDINATION’17] Keigo Imai, NY and Shoji Yuen: Session-ocaml: a session-

based library with polarities and lenses.
• [FoSSaCS’17] Julien Lange , NY : On the Undecidability of Asynchronous Session

Subtyping.
• [FASE’17] Raymond Hu , NY : Explicit Connection Actions in Multiparty Session

Types.
• [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced

Recovery.
• [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off Go:

Liveness and Safety for Channel-based Programming.
• [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY, Wayne Luk:

EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits.
• [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala
• [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by Global

Session Graph Synthesis.
• [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint API

Generation.
• [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.
• [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative Expressiveness

of Higher-Order Session Processes.
• [POPL’16] Dominic Orchard, NY: Effects as Sessions, Sessions as Effects.

Verification framework for Go

Overview

Behavioural types

SSA IR

Go source code

(1) Type inference

(2) Model
checking

(3) Termina-
tion checking

Transform and verify

Create input model

and formula

Pass to termination

prover

Check safety and
liveness

Address type and
process gap

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

func main() {

ch, done := make(chan int), make(chan int)

go send(ch) // Spawn as goroutine.

go func() {

for i := 0; i < 2; i++ {

print("Working...")

}

}()

go recv(ch, done)

go recv(ch, done) // Who is ch receiving from?

print("Done:", <-done, <-done) // 2 receivers, 2 replies

}

func send(ch chan int) { ch <- 1 } // Send to channel.

func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Send/receive blocks goroutines if channel full/empty resp.

Close a channel close(ch)

Guarded choice select { case <-ch:; case <-ch2: }

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

Deadlock detection

func main() {

ch, done := make(chan int), make(chan int)

go send(ch) // Spawn as goroutine.

go func() {

for i := 0; i < 2; i++ {

print("Working...")

}

}()

go recv(ch, done)

go recv(ch, done) // Who is ch receiving from?

print("Done:", <-done, <-done) // 2 receivers, 2 replies

}

func send(ch chan int) { ch <- 1 } // Send to channel.

func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Run program:

$ go run main.go

fatal error: all goroutines are asleep - deadlock!

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

Deadlock detection

func main() {

ch, done := make(chan int), make(chan int)

go send(ch) // Spawn as goroutine.

go func() {

for i := 0; ; i++ { // infinite loop

print("Working...")

}

}()

go recv(ch, done)

go recv(ch, done) // Who is ch receiving from?

print("Done:", <-done, <-done) // 2 receivers, 2 replies

}

func send(ch chan int) { ch <- 1 } // Send to channel.

func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Change to infinite

Deadlock NOT detected (some goroutines are running)

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

Deadlock detection

func main() {

ch, done := make(chan int), make(chan int)

go send(ch) // Spawn as goroutine.

go func() {

for i := 0; ; i++ { // infinite loop

print("Working...")

}

}()

go recv(ch, done)

go recv(ch, done) // Who is ch receiving from?

print("Done:", <-done, <-done) // 2 receivers, 2 replies

}

func send(ch chan int) { ch <- 1 } // Send to channel.

func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Change to infinite

Deadlock NOT detected (some goroutines are running)

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

Deadlock detection

Go has a runtime deadlock detector, panics (crash) if deadlock

Deadlock if all goroutines are blocked

Some packages (e.g. net for networking) disables it

import _ "net" // Load "net" package

func main() {

ch := make(chan int)

send(ch)

print(<-ch)

}

func send(ch chan int) { ch <- 1 }

Add benign import

Deadlock NOT detected

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

Deadlock detection

Go has a runtime deadlock detector, panics (crash) if deadlock

Deadlock if all goroutines are blocked

Some packages (e.g. net for networking) disables it

import _ "net" // Load "net" package

func main() {

ch := make(chan int)

send(ch)

print(<-ch)

}

func send(ch chan int) { ch <- 1 }

Add benign import

Deadlock NOT detected

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧

| close u;P
| select{⇡i ;Pi}i2I
| if e thenP elseQ
| newchan(y :�);P
| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P

| select{⇡i ;Pi}i2I
| if e thenP elseQ
| newchan(y :�);P
| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P
| select{⇡i ;Pi}i2I

| if e thenP elseQ
| newchan(y :�);P
| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P
| select{⇡i ;Pi}i2I
| if e thenP elseQ

| newchan(y :�);P
| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P
| select{⇡i ;Pi}i2I
| if e thenP elseQ
| newchan(y :�);P

| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P
| select{⇡i ;Pi}i2I
| if e thenP elseQ
| newchan(y :�);P
| P | Q | 0 | (⌫c)P

| X hẽ, ũi
D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P
| select{⇡i ;Pi}i2I
| if e thenP elseQ
| newchan(y :�);P
| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P ,Q := ⇡;P ⇡ := u!hei | u?(y) | ⌧
| close u;P
| select{⇡i ;Pi}i2I
| if e thenP elseQ
| newchan(y :�);P
| P | Q | 0 | (⌫c)P
| X hẽ, ũi

D

:= X (x̃) = P

P := {Di}i2I inP

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Abstracting Go with Behavioural Types

Types

↵ := u | u | ⌧
T , S := ↵;T | T � S | N{↵i ;Ti}i2I | (T | S) | 0

| (new a)T | close u;T | thũi
T := {t(ỹi) = Ti}i2I in S

Types of a CCS-like process calculus

Abstracts Go concurrency primitives

Send/Recv, new (channel), parallel composition (spawn)
Go-specific: Close channel, Select (guarded choice)

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Verification framework for Go

Model checking with mCRL2

Generate LTS model and formulae from types

Finite control (no parallel composition in recursion)

Properties (formulae for model checker):

X Global deadlock
X Channel safety (no send/close on closed channel)
X– Liveness (partial deadlock)
X– Eventual reception

Require additional guarantees

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Verification framework for Go

Termination checking with KITTeL

Extracted types do not consider data in process
Type liveness != program liveness

Especially when involving iteration
Check for loop termination

Properties:
X Global deadlock
X Channel safety (no send/close on closed channel)
X Liveness (partial deadlock)
X Eventual reception

func main() {
ch := make(chan int)

go func() {
for i := 0; i < 10; i�� {

// Does not terminate
}
ch <� 1

}()
<�ch

}

Type: Live

Program: NOT live

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

26

27

Verification framework for Go

Termination checking with KITTeL

Extracted types do not consider data in process
Type liveness != program liveness

Especially when involving iteration
Check for loop termination

Properties:
X Global deadlock
X Channel safety (no send/close on closed channel)
X Liveness (partial deadlock)
X Eventual reception

func main() {
ch := make(chan int)

go func() {
for i := 0; i < 10; i�� {

// Does not terminate
}
ch <� 1

}()
<�ch

}

Type: Live

Program: NOT live

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Tool demo

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Conclusion

Verification framework based on
Behavioural Types

Behavioural types for Go concurrency

Infer types from Go source code

Model check types for safety/liveness

+ termination for iterative Go code

Behavioural types

SSA IR

Go source code

Type inference

Model
checking

Termination
checking

Transform and verify

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Future work

Extend framework to support more properties

Unlimited possibilities!
Di↵erent verification techniques

e.g. [POPL’17], Choreography synthesis [CC’15]

Di↵erent concurrency issues

Other synchronisation mechanisms
Race conditions

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

Table 3: Go programs veri�ed by our framework and comparison with existing static deadlock detection tools.

Godel Checker dingo-hunter [35] gopherlyzer [39] GoInfer/Gong [30]
Programs # states �� �l �s �e Infer Live Live+CS Term Live Time DF Time Live CS Time

1 mismatch [35] 53 ⇥ ⇥ X X 620.68 996.79 996.67 X ⇥ 639.40 ⇥ 3956.41 ⇥ X 616.78
2 fixed [35] 16 X X X X 624.41 996.50 996.34 X X 603.18 X 3166.26 X X 609.95
3 fanin [35, 38] 39 X X X X 631.12 996.15 996.23 X X 607.98 X 19.76 X X 696.65
4 sieve [30, 35] 1 n/a - - - n/a n/a - n/a - X X 778.29
5 philo [39] 65 ⇥ ⇥ X X 6.10 996.51 996.56 X ⇥ 34.23 ⇥ 26.99 ⇥ X 16.84
6 dinephil3 [13, 32] 3838 X X X X 645.15 996.42 996.31 X n/a - n/a - X X 13.2 min
7 starvephil3 3151 ⇥ ⇥ X X 628.20 996.50 996.46 X n/a - n/a - ⇥ X 3.5 min
8 sel [39] 103 ⇥ ⇥ X X 4.23 996.70 996.61 X ⇥ 15.31 ⇥ 13.04 ⇥ X 50.46
9 selFixed [39] 20 X X X X 4.02 996.33 996.39 X X 14.93 X 3168.32 X X 13.08
10 jobsched [30] 43 X X X X 632.67 996.69 1996.14 X n/a - X 4753.56 X X 635.20
11 forselect [30] 26 X X X X 623.31 996.36 996.38 X X 611.79 n/a - X X 618.57
12 cond-recur [30] 12 X X X X 3.95 996.21 996.22 X X 9.40 n/a - X X 14.74
13 concsys [41] 15 ⇥ ⇥ X X 549.69 996.50 996.40 X n/a - ⇥ 5278.59 ⇥ X 521.26
14 alt-bit [30, 34] 112 X X X X 634.43 996.34 996.26 X n/a - n/a - X X 916.81
15 prod-cons 106 X ⇥ X X 4.10 996.37 1996.24 X ⇥ 10.15 ⇥ 30.10 ⇥ X 21.84
16 nonlive 8 X X X X 630.10 996.55 996.47 timeout ⌦ 613.62 n/a - ⌦ X 613.79
17 double-close 17 X X ⇥ X 3.48 996.58 1996.62 X ⇥ 8.68 ⇥ 11.83 X ⇥ 9.13
18 stuckmsg 4 X X X ⇥ 3.45 996.58 996.60 X n/a - n/a - X X 7.55
19 dinephil5 ⇠1M X X X X 626.45 41194.18 41408.00 X n/a - n/a - timeout >48 hrs
20 prod3-cons3 57493 X X X X 465.09 40859.24 40902.06 X n/a - n/a - timeout >48 hrs
21 async-prod-cons 164897 X X X X 4.29 47720.30 89414.60 X n/a - n/a - timeout >48 hrs
22 astranet [26] 1160 X X X X 2512.54 70399.00 75043.00 X n/a - n/a - n/a -

CS: Channel Safe, Term: Termination check, DF: Deadlock-free, timeout: Termination check timeout (likely does not terminate),⇥: False Alarm, ⌦: Undetected liveness error.

most programs use traditional imperative control �ow features su-
ch as for loops, for-range loops (i.e. loops over a �xed �nite data
structure) and for-select loops (i.e. an in�nite loop with a select
that can break the loop – the Consumer function of Figure 1) instead
of recursion; we assume that loop indices are not modi�ed in loop
bodies and that no goto-like constructs are used in a loop.

Since the analysis only takes into account loop parameters, a
loop that inde�nitely blocks (e.g. due to communication) may be
identi�ed as terminating. However, if our analysis identi�es the in-
ferred types as live and the termination check validates the program,
both termination and program liveness are guaranteed.

6 EVALUATION
Table 3 lists several benchmarks of our tool against other static
deadlock detection tools for Go (a detailed comparison of these
tools is given in § 7). The benchmarks were run with go1.8.3 on
an 8-core Intel i7-3770 machine with 16GB RAM on a 64-bit Linux.
The model checker we used was mCRL2 v201707.1.

The results for Godel Checker are shown in columns 3–11. Col-
umn 3 shows the number of states in the input LTS as a measure-
ment of the relative complexity of each program (proportional to
the number of concurrency-related operations rather than the num-
ber of lines of code). Columns 4–7 shows the core properties of
Figure 6 in § 4, i.e. no global deadlock (��), liveness (�l), channel
safety (�s) and eventual reception (�e). Columns 8–10 list the run-
ning time of Godel Checker, where Column 8 lists the inference
time, Columns 9 and 10 are the model checking times for liveness,
and both liveness and channel safety, respectively. The total run
time can be obtained by adding Column 8 to Column 9 or 10. Unless
otherwise stated, all times are in milliseconds. Column 11 (Term)
shows the result of the termination check, which proves the ter-
mination of loops in the given program, or times out after 15s. A
program that times out is conservatively assumed not to terminate.

Columns 12–13 pertain to the dingo-hunter tool from [35].
The time includes both communicating �nite state machine extrac-
tion and their analysis, but does not include building the global
graph and only checks for liveness. Columns 14–15 pertain to the

gopherlyzer tool [39], which only checks for global deadlock-
freedom (most programs had to be manually adjusted in order to be
accepted by this tool – see § 7 for the severe practical limitations of
the tool). Columns 16–18 refer to the GoInfer/Gong tool from [30].
The times include both type inference and analysis stages, which
only accounts for liveness and channel safety checks. Most pro-
grams in Table 3 are taken either from other papers on the static
veri�cation of Go programs [30, 35, 39] or from publicly available
source code. Programs 7, and 15–22 are introduced by this work.
Programs that are unsupported by a tool are marked with n/a.

Programs 1–7 are typical concurrent programs from the litera-
ture. The sieve program is not �nite control (it spawns an in�nite
number of threads), thus it can only be analysed by GoInfer/Gong.
Program 6 is a (three) dining philosophers program where the �rst
fork can be released, while Program 7 is the traditional deadlock-
ing version (Program 19 is as Program 6 but with 5 philosophers).
dingo-hunter does not support Programs 6, 7, and 19 due to dy-
namically spawned goroutines, while gopherlyzer does not sup-
port them due to a nested select statement. GoInfer/Gong analyses
them correctly, but is much slower than Godel Checker.

Programs 8–12 consist of idiomatic Go patterns which are all
handled correctly and quickly by our tool. Program 13 is a publicly
available program which is not live. Program 14 is an implemen-
tation of the alternating bit protocol. Program 15 is the Producer-
Consumer example from § 1, which is not live. All tools were able to
verify this simple program. Program 16 demonstrates the mismatch
between type and program liveness, where the type is live but due
to an erroneous loop the program does not terminate and causes a
partial deadlock. The termination check identi�es this as possibly
non-terminating, while GoInfer/Gong incorrectly identi�es it as
live. Program 17 closes a channel twice which �ags a violation of
channel safety in Godel Checker and GoInfer/Gong. Interestingly,
dingo-hunter detects a deadlock (a false alarm) due to its repre-
sentation of channel closure as a message exchange, but not due to
the double close. gopherlyzer also detects a deadlock incorrectly
due to the same reason. Program 18 is a program that violates the
eventual reception property by sending an asynchronous message
that is never received – none of the earlier tools can detect this.

9

