
Effpi

concurrent programming with
dependent behavioural types

Alceste Scalas
(with Elias Benussi & Nobuko Yoshida)

University of Novi Sad — 17 September 2018

http://mrg.doc.ic.ac.uk

Mob$%&'y Re,-./c1 G/o3p

Post-docs:
Simon CASTELLAN

David CASTRO

Francisco FERREIRA

Raymond HU

Rumyana NEYKOVA

Nicholas NG

Alceste SCALAS

PhD Students:
Assel ALTAYEVA

Juliana FRANCO

Eva GRAVERSEN

POPL 2008 MOST INFLUENTIAL PAPER AWARD

www.scribble.org

Online tool : http://scribble.doc.ic.ac.uk/

End-to-End Switching Programme by DCC

End-to-End Switching Programme by DCC

[LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.
[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type Providers:
Compile-time API Generation for Distributed Protocols with Interaction Refinements in F#.
[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of Two
(Fully Abstract) Encodings.
[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz Ziarek:
A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems.
[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types
[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming..
[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based library
with polarities and lenses.
[FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.
[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

Selected Publications 2017/2018

[LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.
[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type Providers:
Compile-time API Generation for Distributed Protocols with Interaction Refinements in F#.
[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of Two
(Fully Abstract) Encodings.
[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz Ziarek:
A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems.
[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.
[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming.
[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based library
with polarities and lenses.
[FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.
[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

Selected Publications 2017/2018

Effpi

concurrent programming with
dependent behavioural types

Alceste Scalas
(with Elias Benussi & Nobuko Yoshida)

University of Novi Sad — 17 September 2018

Introduction Calculus Types Properties Implementation Conclusion

Example: payment service with auditing

A scenario in message-passing concurrency

A payment service should implement the following specification:

1. wait to receive a payment request

2. then, either:

2.1 reject the payment, or
2.2 report the payment to an audit service, and then accept it

3. restart from point 1

3 / 19

Introduction Calculus Types Properties Implementation Conclusion

Example: payment service with auditing

Demo!

4 / 19

Introduction Calculus Types Properties Implementation Conclusion

What is the Dotty / Scala 3 compiler saying?

found: Out[ActorRef[Result], Accepted]

required: Out[ActorRef[Result](pay.replyTo), Rejected]

∣

Out[ActorRef[Audit[]](aud), Audit[Pay(pay)]] >>:

Out[ActorRef[Result](pay.replyTo), Accepted]

5 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behind the scenes

What you have seen is based on:

▸ a concurrent functional calculus

▸ equipped with a novel type system:
▸ behavioural types (inspired by π-calculus theory)
▸ dependent function types (inspired by Dotty / Scala 3)

▸ implemented in Dotty / Scala 3 (via deep embedding)

▸ also offering a simplified actor-based API
▸ with a runtime supporting highly concurrent applications

6 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(

send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(

recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(

end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)

7 / 19

Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms (monadic style)
7 / 19

Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ and channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Therefore, we have classic typing judgements:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

8 / 19

Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ and channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Therefore, we have classic typing judgements:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

8 / 19

Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ and channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Therefore, we have classic typing judgements:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

8 / 19

Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ and channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Therefore, we have classic typing judgements:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

8 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T

= o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′

= str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?

Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

9 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

10 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

10 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

10 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′

⩽ T ′ ⩽ co[none]→ str→ proc

10 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′

⩽ co[none]→ str→ proc

10 / 19

Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

10 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

11 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

11 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

11 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

11 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

11 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety

▸ E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

. . . and they can model races on shared channels, and deadlocks

▸ Give a labelled semantics to a type T

▸ Verify safety/liveness properties of T via model checking

▸ Show that if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

12 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety

▸ E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

. . . and they can model races on shared channels, and deadlocks

▸ Give a labelled semantics to a type T

▸ Verify safety/liveness properties of T via model checking

▸ Show that if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

12 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety

▸ E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

. . . and they can model races on shared channels, and deadlocks

▸ Give a labelled semantics to a type T

▸ Verify safety/liveness properties of T via model checking

▸ Show that if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

12 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety

▸ E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

. . . and they can model races on shared channels, and deadlocks

▸ Give a labelled semantics to a type T

▸ Verify safety/liveness properties of T via model checking

▸ Show that if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

12 / 19

Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety

▸ E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

. . . and they can model races on shared channels, and deadlocks

▸ Give a labelled semantics to a type T

▸ Verify safety/liveness properties of T via model checking

▸ Show that if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

12 / 19

Introduction Calculus Types Properties Implementation Conclusion

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

▸ execute user-supplied functions (e.g., Amazon AWS Lambda)

▸ perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our framework, if a program thunk is received from a channel
of type ci[T], we can deduce its behaviour by inspecting T

E.g., if T = Π(x ∶cio[int])T ′

▸ we know that the thunk needs a channel x carrying strings

▸ from T ′, we can deduce if and how the thunk uses x

▸ from T ′, we can ensure that the thunk is not a forkbomb

13 / 19

Introduction Calculus Types Properties Implementation Conclusion

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

▸ execute user-supplied functions (e.g., Amazon AWS Lambda)

▸ perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our framework, if a program thunk is received from a channel
of type ci[T], we can deduce its behaviour by inspecting T

E.g., if T = Π(x ∶cio[int])T ′

▸ we know that the thunk needs a channel x carrying strings

▸ from T ′, we can deduce if and how the thunk uses x

▸ from T ′, we can ensure that the thunk is not a forkbomb

13 / 19

Introduction Calculus Types Properties Implementation Conclusion

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

▸ execute user-supplied functions (e.g., Amazon AWS Lambda)

▸ perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our framework, if a program thunk is received from a channel
of type ci[T], we can deduce its behaviour by inspecting T

E.g., if T = Π(x ∶cio[int])T ′

▸ we know that the thunk needs a channel x carrying strings

▸ from T ′, we can deduce if and how the thunk uses x

▸ from T ′, we can ensure that the thunk is not a forkbomb

13 / 19

Introduction Calculus Types Properties Implementation Conclusion

From theory to Dotty / Scala3

We directly translate our types in Dotty:

Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

⇓

(x: String, y: OChan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:

▸ calling send(...) yields an object of type Out[...]

▸ the object describes (does not perform!) the desired output

▸ the object is interpreted by a runtime system. . .

▸ . . . that performs the actual output

14 / 19

Introduction Calculus Types Properties Implementation Conclusion

From theory to Dotty / Scala3

We directly translate our types in Dotty:

Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

⇓

(x: String, y: OChan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:

▸ calling send(...) yields an object of type Out[...]

▸ the object describes (does not perform!) the desired output

▸ the object is interpreted by a runtime system. . .

▸ . . . that performs the actual output

14 / 19

Introduction Calculus Types Properties Implementation Conclusion

From theory to Dotty / Scala3

Demo!

15 / 19

Introduction Calculus Types Properties Implementation Conclusion

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. . .
. . . but the opening example was actor-based!

▸ An actor is a process with an implicit input channel

▸ The channel acts as a FIFO mailbox (as in the Akka framework)

▸ The actor DSL is syntactic sugar on the process DSL

Payoffs:

▸ we have very little actor-specific code

▸ we preserve the connection to the underlying theory

16 / 19

Introduction Calculus Types Properties Implementation Conclusion

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. . .
. . . but the opening example was actor-based!

▸ An actor is a process with an implicit input channel

▸ The channel acts as a FIFO mailbox (as in the Akka framework)

▸ The actor DSL is syntactic sugar on the process DSL

Payoffs:

▸ we have very little actor-specific code

▸ we preserve the connection to the underlying theory

16 / 19

Introduction Calculus Types Properties Implementation Conclusion

How can we run our DSLs?

Naive approach: run each actor/process in a dedicated thread

As in our λ-calculus, continuations are λ-terms (closures)

For better scalability, we can:

▸ schedule closures to run on a limited number of threads
▸ unschedule closures that are waiting for input

17 / 19

Introduction Calculus Types Properties Implementation Conclusion

How can we run our DSLs?

Naive approach: run each actor/process in a dedicated thread

As in our λ-calculus, continuations are λ-terms (closures)

For better scalability, we can:

▸ schedule closures to run on a limited number of threads
▸ unschedule closures that are waiting for input

17 / 19

Introduction Calculus Types Properties Implementation Conclusion

Scalability and performance
Ping-pong

101 102 103 104 105

Number of pairs

101

102

103

104

Ti
m

e
(m

illi
se

co
nd

s)

akka
statemachinemultistep
runnerimproved

Streaming ring

101 102 103 104 105

Number of ring members

103

104

105

Ti
m

e
(m

illi
se

co
nd

s)

akka
statemachinemultistep
runnerimproved

The general performance is not too far from Akka

▸ Main source of overhead: DSL interpretation

4 × Intel Core i7-4790 @ 3.60GHz; 16 GB RAM; Ubuntu 16.04; Java 1.8.0 181; Dotty 0.9.0-RC1; Scala 2.12.6

18 / 19

Introduction Calculus Types Properties Implementation Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

▸ with process-based and actor-based APIs

▸ with a runtime supporting highly concurrent applications

Theoretical foundations:

▸ a concurrent functional calculus
▸ equipped with a novel type system:

▸ behavioural types (inspired by π-calculus theory)
▸ dependent function types (inspired by Dotty / Scala 3)

▸ verify the behaviour of processes by model checking types

Work in progress:

▸ Dotty compiler plugin to verify type-level properties via
model checking, using mCRL2

19 / 19

Introduction Calculus Types Properties Implementation Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

▸ with process-based and actor-based APIs

▸ with a runtime supporting highly concurrent applications

Theoretical foundations:

▸ a concurrent functional calculus
▸ equipped with a novel type system:

▸ behavioural types (inspired by π-calculus theory)
▸ dependent function types (inspired by Dotty / Scala 3)

▸ verify the behaviour of processes by model checking types

Work in progress:

▸ Dotty compiler plugin to verify type-level properties via
model checking, using mCRL2

19 / 19

Appendix

References

Some references

D. Sangiorgi and D. Walker, The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

A. Igarashi and N. Kobayashi, “A generic type system for the π-calculus,” TCS,
vol. 311, no. 1, 2004.

N. Yoshida and M. Hennessy, “Assigning types to processes,” Inf. Comput.,
vol. 174, no. 2, 2002.

N. Yoshida, “Channel dependent types for higher-order mobile processes,” in
POPL, 2004.

M. Hennessy, J. Rathke, and N. Yoshida, “safeDpi: a language for controlling
mobile code,” Acta Inf., vol. 42, no. 4-5, pp. 227–290, 2005.

D. Ancona et al., “Behavioral Types in Programming Languages,” Foundations
and Trends in Programming Languages, vol. 3(2-3), 2017.

N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki, “The essence of
dependent object types,” in A List of Successes That Can Change the World -
Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, 2016.

L. Cardelli, S. Martini, J. Mitchell, and A. Scedrov, “An extension of System F
with subtyping,” Information and Computation, vol. 109, no. 1, 1994.

2 / 2

	Introduction
	Example: payment with auditing
	Overview

	Calculus
	The calculus

	Types
	Typing a process calculus
	Dependent behavioural types

	Properties
	Properties
	Mobile code

	Implementation
	Embedding
	Actor-based DSL
	Runtime

	Conclusion
	Appendix
	References
	References

