Session Subtyping and Multiparty Compatibility

using Circular Sequents

31st International Conference on Concurrency Theory (CONCUR 2020) Adapted for Mobility Reading group 22/10/2020.

Ross Horne

Computer Science, University of Luxembourg

1-4 September 2020

▲□▶▲□▶▲□▶▲□▶ □ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

"I must confess we were a little bit hampered by our lack of familiarity with the calculus of structures."

"I must confess we were a little bit hampered by our lack of familiarity with the calculus of structures."

イロト (母) (ヨ) (ヨ) (ヨ) () ()

The calculus of structures: Developed over the past 20 years. Enables the design of **analytic proof systems** for non-commutative logics. It's novelty is the use of *deep inference* — rules can be applied in *any context*.

"I must confess we were a little bit hampered by our lack of familiarity with the calculus of structures."

The calculus of structures: Developed over the past 20 years. Enables the design of **analytic proof systems** for non-commutative logics. It's novelty is the use of *deep inference* — rules can be applied in *any context*.

 $\frac{\vdash C\{\mathsf{T}\otimes(\mathsf{U}^{\mathfrak{N}}\mathsf{V})\}}{\vdash C\{(\mathsf{T}\otimes\mathsf{U})^{\mathfrak{N}}\mathsf{V}\}}$

"I must confess we were a little bit hampered by our lack of familiarity with the calculus of structures."

The calculus of structures: Developed over the past 20 years. Enables the design of **analytic proof systems** for non-commutative logics. It's novelty is the use of *deep inference* — rules can be applied in *any context*.

The sequent calculus: The original **analytic proof calculus** of Gentzen. Published in 1934, so is widely understood. Rules are applied to the *root connective* of a formula selected from a sequence of formulae.

 $\frac{\vdash C\{\mathsf{T}\otimes(\mathsf{U}^{\mathfrak{N}}\mathsf{V})\}}{\vdash C\{(\mathsf{T}\otimes\mathsf{U})^{\mathfrak{N}}\mathsf{V}\}}$

"I must confess we were a little bit hampered by our lack of familiarity with the calculus of structures."

The calculus of structures: Developed over the past 20 years. Enables the design of **analytic proof systems** for non-commutative logics. It's novelty is the use of *deep inference* — rules can be applied in *any context*.

The sequent calculus: The original **analytic proof calculus** of Gentzen. Published in 1934, so is widely understood. Rules are applied to the *root connective* of a formula selected from a sequence of formulae.

 $\frac{\vdash C\{\mathsf{T}\otimes(\mathsf{U}^{\mathfrak{N}}\mathsf{V})\}}{\vdash C\{(\mathsf{T}\otimes\mathsf{U})^{\mathfrak{N}}\mathsf{V}\}}$

$$\begin{array}{c} \vdash \mathsf{T},\mathsf{U},\mathsf{\Gamma} \\ \vdash \mathsf{T}^{\mathfrak{V}}\mathsf{U},\mathsf{\Gamma} \end{array} \qquad \begin{array}{c} \vdash \mathsf{T},\mathsf{\Gamma} \quad \vdash \mathsf{U},\Delta \\ \vdash \mathsf{T}\otimes\mathsf{U},\mathsf{\Gamma} \end{array}$$

[Times] TIIΓ⊢	[Par] T F4 H II Fa H	[OK]
<u>Τ,0,Γ</u> + Τ⊗U,Γ⊦	$\frac{\Gamma_{1},\Gamma_{1}}{T \approx U,\Gamma_{1},\Gamma_{2} \vdash}$	OK, OK, OK ⊢

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\begin{array}{ccc} [\mathsf{Times}] & & & [\mathsf{Par}] \\ \hline T \,,\, U \,,\, \Gamma \, \vdash & & & \\ \hline T \,\otimes\, U \,,\, \Gamma \, \vdash & & & \\ \hline T \,\otimes\, U \,,\, \Gamma \, \vdash & & \\ \hline T \,\otimes\, U \,,\, \Gamma \,,\, \Gamma \,_2 \, \vdash & & \\ \hline \end{array} \begin{array}{c} [\mathsf{OK}] \\ \mathsf{OK} \,,\, \mathsf{OK} \,,\, \ldots \,\mathsf{OK} \,\vdash \\ & \mathsf{OK} \,,\, \mathsf{OK} \,,\, \ldots \,\mathsf{OK} \,\vdash \\ \hline \end{array}$$

$$\begin{array}{ll} [J_{\text{DNN}}] \\ \underline{!\lambda_j; \mathsf{T}_j , \Gamma \vdash} & \text{for all } j \in I \\ & \underbrace{\bigvee_{i \in I} ! \lambda_j; \mathsf{T}_i , \Gamma \vdash}_{i \in I} \end{array} \end{array} \begin{array}{l} [\mathsf{MEET}] \\ & \underbrace{?\lambda_j; \mathsf{T}_j , \Gamma \vdash}_{i \in I} \text{ for some } j \in I \\ & \underbrace{\bigwedge_{i \in I} ? \lambda_j; \mathsf{T}_i , \Gamma \vdash}_{i \in I} \end{array}$$

 $\frac{[\mathsf{Prefix}]}{\mathsf{T},\mathsf{U},\mathsf{\Gamma}} \vdash \frac{1}{!\lambda;\mathsf{T},?\lambda;\mathsf{U},\mathsf{\Gamma}}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\begin{array}{ll} \text{[TIMES]} & [PAR] & [OK] \\ \hline T, U, \Gamma \vdash & & \hline T, \Gamma_1 \vdash & U, \Gamma_2 \vdash & OK, OK, \dots OK \vdash \\ \hline T \otimes U, \Gamma \vdash & & \hline T \stackrel{\otimes}{} U, \Gamma_1, \Gamma_2 \vdash & OK, OK, \dots OK \vdash \\ \end{array}$$

 $\frac{I \subseteq J \quad \mathsf{T}_{k} , \mathsf{U}_{k} , \mathsf{\Gamma} \vdash \text{ for all } k \in I}{\bigvee_{i \in I} ! \lambda_{i}; \mathsf{T}_{i} , \bigwedge_{j \in J} ? \lambda_{j}; \mathsf{U}_{j} , \mathsf{\Gamma} \vdash}$

Criticism 2: Session type systems should feature recursion.1

1 Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini. <

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a **regular** setting — a bounded number of single threaded participants.

1 Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini. <

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a **regular** setting — a bounded number of single threaded participants.

Observation 2: In the regular setting, we can use **equirecursion** from type theory — fixed points are equivalent to their infinite unfoldings.

1 Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini. 🗉 🕨 👍 🗁 🖌 🚊 👘 🛬 🥠 🔍 🔿

Criticism 2: Session type systems should feature recursion.¹

Observation 1: Most session calculi are restricted to a **regular** setting — a bounded number of single threaded participants.

Observation 2: In the regular setting, we can use **equirecursion** from type theory — fixed points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

1 Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini. 🗉 🕨 🗧 🕨 🗧 👘 🛬 👘 🛬 🖉 🔍 🔿

Criticism 2: Session type systems should feature recursion.¹

Observation 1: Most session calculi are restricted to a **regular** setting — a bounded number of single threaded participants.

Observation 2: In the regular setting, we can use **equirecursion** from type theory — fixed points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce and Sangiorgi, to make proofs in the sequent calculus circular.

$$\frac{ \begin{bmatrix} \mathsf{F}_{\mathsf{IX}}\cdot\mu \end{bmatrix} }{ \begin{bmatrix} \Theta \end{bmatrix} \mu t.\mathsf{T}, \mathsf{\Gamma} \end{bmatrix} \mathsf{T} \Big\{ \overset{\mu t.\mathsf{T}}{}_{h} \Big\}, \mathsf{\Gamma} \vdash \\ \frac{ \begin{bmatrix} \Theta \end{bmatrix} \mu t.\mathsf{T}, \mathsf{\Gamma} \vdash \\ \end{bmatrix} \begin{bmatrix} \Theta \end{bmatrix} \mu t.\mathsf{T}, \mathsf{\Gamma} \vdash \\ \end{bmatrix}$$

¹ Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini. 🗉 🕨 🗧 🕨 🗧 👘 🛬 👘 🛬 🖉 🔍 🔿

$$\frac{1}{\mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \otimes \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \otimes \mu \mathbf{t}.(!\lambda_1;\mathbf{t} \vee !\lambda_2;\mathbf{t}) \vdash} [\mathsf{Times}]$$

Abbreviations :

$$\frac{\bigcup, V, \mathsf{T} \vdash}{\mu \mathsf{u}.(?\lambda_1; \mathsf{u}) \otimes \mu \mathsf{v}.(?\lambda_2; \mathsf{v}) \otimes \mu \mathsf{t}.(!\lambda_1; \mathsf{t} \lor !\lambda_2; \mathsf{t}) \vdash} [\mathsf{Times}]$$

$$\begin{array}{rcl} \textit{Abbreviations}: & \textsf{U} = & \mu \textbf{u}.(?\lambda_1; \textbf{u}) \\ & \textsf{V} = & \mu \textbf{v}.(?\lambda_2; \textbf{v}) \\ & \textsf{T} = & \mu \textbf{t}.(!\lambda_1; \textbf{t} \lor !\lambda_2; \textbf{t}) \end{array}$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

$$\frac{[\Gamma] \cup, \vee, !\lambda_1; T \vee !\lambda_2; T \vdash}{\cup, \vee, T \vdash} [Fix-\mu] \\ \frac{\mu u.(?\lambda_1; u) \otimes \mu v.(?\lambda_2; v) \otimes \mu t.(!\lambda_1; t \vee !\lambda_2; t) \vdash}{[Times]}$$

$$\begin{array}{rcl} \textit{Abbreviations}: & \mathsf{U} = & \mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \\ & \mathsf{V} = & \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \\ & \mathsf{T} = & \mu \mathbf{t}.(!\lambda_1;\mathsf{t} \lor !\lambda_2;\mathsf{t}) \\ & \mathsf{\Gamma} = & \mathsf{U} \ , \mathsf{V} \ , \mathsf{T} \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

$$\frac{[\Gamma] \cup, \vee, !\lambda_{1}; \mathsf{T} \vdash [\mathsf{Fix} \cdot \mu]}{\frac{[\Gamma] \cup, \vee, !\lambda_{1}; \mathsf{T} \vee !\lambda_{2}; \mathsf{T} \vdash}{\bigcup, \vee, !\lambda_{1}; \mathsf{T} \vee !\lambda_{2}; \mathsf{T} \vdash} [\mathsf{Join}] } \frac{[\Gamma] \cup, \vee, !\lambda_{1}; \mathsf{T} \vee !\lambda_{2}; \mathsf{T} \vdash}{\mu \mathsf{u}.(?\lambda_{1}; \mathsf{u}) \otimes \mu \mathsf{v}.(?\lambda_{2}; \mathsf{v}) \otimes \mu \mathsf{t}.(!\lambda_{1}; \mathsf{t} \vee !\lambda_{2}; \mathsf{t}) \vdash} [\mathsf{Times}] }$$

$$\begin{array}{rcl} \textit{Abbreviations}: & \textsf{U} = & \mu \textbf{u}.(?\lambda_1; \textbf{u}) \\ & \textsf{V} = & \mu \textbf{v}.(?\lambda_2; \textbf{v}) \\ & \textsf{T} = & \mu \textbf{t}.(!\lambda_1; \textbf{t} \lor !\lambda_2; \textbf{t}) \\ & \textsf{\Gamma} = & \textsf{U}, \textsf{V}, \textsf{T} \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

$$\frac{\overline{[\Gamma']\!] \Gamma]?\lambda_1; U, V, !\lambda_1; T \vdash}}{[\Gamma] U, V, !\lambda_1; T \vdash} \begin{bmatrix} [\mathsf{Prefix}] \\ [\mathsf{Fix-}\mu] \end{bmatrix} \frac{\overline{[\Gamma'']\!] \Gamma]U, ?\lambda_2; V, !\lambda_2; T \vdash}}{[\Gamma] U, V, !\lambda_2; T \vdash} \begin{bmatrix} [\mathsf{Prefix}] \\ [\mathsf{Fix-}\mu] \end{bmatrix}$$

$$\frac{\overline{[\Gamma] U, V, !\lambda_1; T \lor !\lambda_2; T \vdash}}{U, V, T \vdash} \begin{bmatrix} \mathsf{Fix-}\mu] \\ [\mathsf{Hix-}\mu] \end{bmatrix}$$

$$\frac{\overline{[\Gamma] U, V, !\lambda_1; T \lor !\lambda_2; T \vdash}}{\mu u. (?\lambda_1; u) \otimes \mu v. (?\lambda_2; v) \otimes \mu t. (!\lambda_1; t \lor !\lambda_2; t) \vdash} \begin{bmatrix} \mathsf{Times} \end{bmatrix}$$

$$\begin{array}{rcl} \textit{Abbreviations}: & \mathsf{U} = & \mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \\ & \mathsf{V} = & \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \\ & \mathsf{T} = & \mu t.(!\lambda_1;\mathsf{t} \lor !\lambda_2;\mathsf{t}) \\ & \mathsf{\Gamma} = & \mathsf{U} \ , \mathsf{V} \ , \mathsf{T} \\ & \mathsf{\Gamma}' = & \mathsf{U} \ , \mathsf{V} \ , !\lambda_1;\mathsf{T} \\ & \mathsf{\Gamma}'' = & \mathsf{U} \ , \mathsf{V} \ , !\lambda_2;\mathsf{T} \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

$$\begin{array}{rcl} \textit{Abbreviations}: & \mathsf{U} = & \mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \\ & \mathsf{V} = & \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \\ & \mathsf{T} = & \mu t.(!\lambda_1;\mathsf{t} \lor !\lambda_2;\mathsf{t}) \\ & \mathsf{\Gamma} = & \mathsf{U} \ ,\mathsf{V} \ ,\mathsf{T} \\ & \mathsf{\Gamma}' = & \mathsf{U} \ ,\mathsf{V} \ , !\lambda_1;\mathsf{T} \\ & \mathsf{\Gamma}'' = & \mathsf{U} \ ,\mathsf{V} \ , !\lambda_2;\mathsf{T} \end{array}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\begin{array}{rcl} \textit{Abbreviations}: & \mathsf{U} = & \mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \\ & \mathsf{V} = & \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \\ & \mathsf{T} = & \mu \mathbf{t}.(!\lambda_1;\mathbf{t} \lor !\lambda_2;\mathbf{t}) \\ & \mathsf{\Gamma} = & \mathsf{U} \ , \mathsf{V} \ , \mathsf{T} \\ & \mathsf{\Gamma}' = & \mathsf{U} \ , \mathsf{V} \ , !\lambda_1;\mathsf{T} \\ & \mathsf{\Gamma}'' = & \mathsf{U} \ , \mathsf{V} \ , !\lambda_2;\mathsf{T} \end{array}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Multiparty Compatibility: Proves the following threads are multiparty compatible.

 $\mu Y.(?\lambda_1;Y) \parallel \mu Z.(?\lambda_2;Z) \parallel \mu X.(!\lambda_1;X \oplus !\lambda_2;X)$

$$\begin{array}{rcl} \textit{Abbreviations}: & \mathsf{U} = & \mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \\ & \mathsf{V} = & \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \\ & \mathsf{T} = & \mu t.(!\lambda_1;\mathsf{t} \lor !\lambda_2;\mathsf{t}) \\ & \mathsf{\Gamma} = & \mathsf{U} \ , \mathsf{V} \ , \mathsf{T} \\ & \mathsf{\Gamma}' = & \mathsf{U} \ , \mathsf{V} \ , !\lambda_1;\mathsf{T} \\ & \mathsf{\Gamma}'' = & \mathsf{U} \ , \mathsf{V} \ , !\lambda_2;\mathsf{T} \end{array}$$

Multiparty Compatibility: Proves the following threads are multiparty compatible.

 $\mu Y.(?\lambda_1;Y) \parallel \mu Z.(?\lambda_2;Z) \parallel \mu X.(!\lambda_1;X \oplus !\lambda_2;X)$

Subtyping: Establishes the following subtype relation ($U \otimes V \leq T$ iff $U \otimes V \otimes \overline{T} \vdash$).

$$\mu \mathbf{u}.(?\lambda_1;\mathbf{u}) \otimes \mu \mathbf{v}.(?\lambda_2;\mathbf{v}) \leq \mu \mathbf{t}.(?\lambda_1;\mathbf{t} \wedge ?\lambda_2;\mathbf{t})$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

The Cut Elimination "Gold Mine" (again)

The Cut Elimination "Gold Mine" (again)

$\begin{array}{l} Theorem \mbox{ (cut elimination)} \\ \mbox{ [Cut]} \\ The \mbox{ rule } \frac{\Gamma_1 \mbox{ , } \Gamma_{\vdash} \mbox{ } \overline{\Gamma} \mbox{ , } \Gamma_{2} \mbox{ } \vdash}{\Gamma_1 \mbox{ , } \Gamma_{2} \mbox{ } \vdash} \mbox{ is admissible in Session.} \end{array}$

Corollary (algorithmic subtyping) Subtyping is a decidable preorder.

$\begin{array}{l} \text{Theorem (algorithmic typing)} \\ \underset{\text{[SUBSUMPTION]}}{\text{[SUBSUMPTION]}} \\ \text{All instances of } \frac{\Delta \vdash P: \mathsf{T} \quad \mathsf{T} \leq \mathsf{U}}{\Delta \vdash P: \mathsf{U}} \text{ can be pushed to the bottom of a type derivation.} \end{array}$

Theorem (deadlock freedom)

Any race-free multiparty-compatible network satisfies deadlock freedom.

Corollary (substitution principle)

P can replace Q while preserving multiparty compatibility,

whenever $T \leq U$, where $\vdash P : T$ and $\vdash Q : U$.

Now I see! So, what cool things can you do?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Password:	
	Log in

Owner:

?login_page(app_ID, scope); !deny \oplus !authorise(name, password)

Trusted App:

!login_page(app_ID, scope);
?deny;!release

- + ?authorise(name, password);
 - recY. !release

Resource:

- recX. ?release
 - + ?request(token); !revoke ⊕ !response(data);X

Trusted App:

 \mapsto

!login_page(app_ID, scope);
?deny;!release

- + ?authorise(name, password); recY.!release
 - ⊕ !request(token);
 ?revoke + ?response(data);Y

OAuth 2.0 Server:

?initiate(app_ID, scope); !login_page(app_ID, scope); (?deny;!close;!release)

- + ?authorise(name, password); (!close;!release)
 - !authorisation_code(code);
 ?exchange(app_ID, secret, code);
 (!close;!release)
 - ⊕ !access_token(token)

Untrusted App:

!initiate(add_ID, scope);

- ?close
- + ?authorisation_code(code); !exchange(app_ID, secret, code); ?close
 - + ?access_token(token);
 - recY. !request(token); ?revoke
 - + ?response(data);Y

Trusted App:

 \mapsto

!login_page(app_ID, scope); ?deny;!release

- + ?authorise(name, password); recY.!release
 - ⊕ !request(token);
 ?revoke + ?response(data);Y

OAuth 2.0 Server:

?initiate(app_ID, scope); !login_page(app_ID, scope); (?deny;!close;!release)

- + ?authorise(name, password); (!close;!release)
 - !authorisation_code(code);
 ?exchange(app_ID, secret, code);
 (!close;!release)
 - ⊕ !access_token(token)

Untrusted App:

!initiate(add_ID, scope);

- ?close
- + ?authorisation_code(code); !exchange(app_ID, secret, code); ?close
 - + ?access_token(token);
 - recY. !request(token);

?revoke

+ ?response(data);Y

Untrusted App \otimes OAuth Server \leq Trusted App

An application that delegates to an Oauth 2.0 server

Allowing the deputy to make a choice is useful

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Internal delegation may liberate multiparty subtyping with roles.

Trusted App:

 \mapsto

Owner!login_page(app_ID, scope);
?deny;!release

- + Owner?authorise(name, password); recY.!release

?revoke + Resource?response(data);Y

App?initiate(app_ID, scope); App∘≪•;

Owner!login_page(app_ID, scope); (?deny;•)∘App;!close;!release)

Owner?authorise(name, password);
 OApp:

(!close;!release)

- App?authorisation_code(code); App?exchange(app_ID, secret, code); (!close;!release)
 - ⊕ App!access_token(token)

OAuth!initiate(add_ID, scope);

o**≪•O**Auth; OAuth•**》**∘;

?close

- + OAuth?authorisation_code(code); OAuth!exchange(app_ID, secret, code); ?close
 - + OAuth?access_token(token);
 recY.OAuth!request(token);

?revoke

+ Resource?response(data);Y

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with rich notions of multiparty compatibility and subtyping.

Conclusion: Non-commutative logic + race-freedom provides us with rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both "Kobayashi" and "Padovani" live (LIVE and LIVE+ respectively in POPL'19). System SESSION verifies this (but only guarantees deadlock freedom without further modifications).

 $\mu X. (!\lambda_1; X \oplus !\lambda_2) \parallel \mu Y. (?\lambda_1; Y + ?\lambda_2) \parallel \mu X. (!\lambda_3; X \oplus !\lambda_4) \parallel \mu Y. (?\lambda_3; Y + ?\lambda_4)$

Conclusion: Non-commutative logic + race-freedom provides us with rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both "Kobayashi" and "Padovani" live (LIVE and LIVE+ respectively in POPL'19). System SESSION verifies this (but only guarantees deadlock freedom without further modifications).

 $\mu X. (!\lambda_1; X \oplus !\lambda_2) \parallel \mu Y. (?\lambda_1; Y + ?\lambda_2) \parallel \mu X. (!\lambda_3; X \oplus !\lambda_4) \parallel \mu Y. (?\lambda_3; Y + ?\lambda_4)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question for the Mobility Reading Group: What established extensions of global types allow the above to be typed and also guarantee livelock freedom (or, at least, deadlock freedom)?