
Generating Deadlock-Free and Live Go
Code From Unbounded Multiparty
Session Protocols

Authors:

David Castro-Pérez, Benito Echarren-Serrano, Nobuko Yoshida

1

Multiparty Session Types (MPST)

2

Multiparty Session Types (MPST)

3

Multiparty Session Types (MPST)

4

Multiparty Session Types (MPST)

5well-typed ⇒ protocol compliance Λ deadlock freedom

Problems

➔ In MPSTs, the number of participants
fixed at the beginning of a session

◆ New participants cannot be
introduced

➔ This information may not available in
many practical settings

➔ Cannot express common parallel
computation patterns

◆ Fork-join in Go
6

Solution

➔ Based on unbounded multiparty
session types - an extension to
MPST theory:

◆ UMP allows protocols to call
other protocols

◆ Participants can be invited in
protocol calls

◆ Protocol calls can involve new
dynamic participants

7

{

Evaluation

8

Sources of Overhead

9

Benchmarks

10

Benchmarks

11

Benchmarks

12

Case Studies

13

Domain Name System (DNS) Protocol

14

Min-Max Noughts and Crosses AI

15

Min-Max Noughts and Crosses AI

16

Summary

17

➔ We designed and implemented extension to the NuScr framework, GoScr1

◆ It is the first practical implementation of MPST with unbounded participants

◆ It can express common programming patterns in Go

◆ We show that GoScr can represent real-world protocols

➔ GoScr is more expressive than previous work (e.g. [POPL ‘19])

➔ GoScr has negligible performance overhead for computationally heavy
benchmarks

1https://github.com/nuscr/nuscr

https://github.com/nuscr/nuscr

Extra Slides

18

Routing Protocol

19

Routing Protocol
Demo

20

Expressiveness of Nested Protocols

➔ In nested protocols, the number of participants within a protocol are finite and
cannot change

◆ New participants introduced through nested protocol calls

➔ Can only express processes where each step of the computation only involves
a fixed number of participants

◆ Can express a protocol to calculate the infinite fibonacci sequence

◆ Cannot express protocols such as the unbounded primesive

21

Expressiveness of Nested Protocols

Protocol Nested Protocols POPL 2019

Dynamic Ring ✔ ✗

Dynamic Pipeline ✔ ✗

Dynamic Fork-Join ✔ ✗

Recursive Fork-Join ✔ ✗

Fibonacci ✔ ✔
Unbounded Fibonacci sequence ✔ ✗

Fannkuch-redux ✔ ✔
Bounded Prime Sieve ✔ ✗

Unbounded Prime Sieve ✗ ✗

1

1The Computer Language Benchmarks Game

Performance Evaluation

23

➔ Benchmark
◆ Speedup (t1/ t2) of Scribble (t2) vs native Go (t1)
◆ Intel i7- 6700 processor and 16GB RAM

Contributions

➔ Designed and implemented extension to the Scribble framework1

◆ First practical implementation of nested session types

◆ Express common programming patterns in Go

◆ Express large number of real-world protocols

➔ Compared expressiveness of our extension against previous work [POPL ‘19]

➔ Performance evaluation using a benchmark

24

1https://github.com/nuscr/nuscr
https://github.com/becharrens/nuscr (fork of repository)

https://github.com/nuscr/nuscr
https://github.com/becharrens/nuscr

Future work

➔ Prove the correctness of our implementation

➔ Reduce overheads of nested protocol calls

➔ Implement nested protocols in a distributed setting

➔ Guaranteeing termination in nested protocols

➔ Implementing nested protocols using CFSMs

25

Scope of Protocols

➔ Top-level scope

➔ Every protocol introduces its own scope

➔ Protocols defined within a scope cannot be accessed outside that scope

➔ Allow shadowing of protocol names
◆ Declaration of a protocol with the same name in a subscope overrides previous

definition

26

Renaming protocols

➔ Flatten structure of Scribble module

◆ Resolve name clashes between nested protocols in different scopes

◆ Resolve name clashes between global and nested protocols

➔ Generate unique names for each protocol

➔ Update references in protocol calls

➔ Simplifies definition of projection

➔ Needed for code generation

27

Recursion

➔ Difficult to design a correct
implementation for protocols
combining:
◆ Asynchronous communication
◆ Choice
◆ Recursion

28

Recursion - Possible Implementation

29

func main() {
 numChan := make(chan int, 100)
 endChan := make(chan string, 1)
 go pipeline.Sender(numChan,
endChan)
 go pipeline.Receiver(numChan,
endChan)
 time.Sleep(1 * time.Second)
}

func Sender(sendChan chan int,
 endChan chan string) {

 for i := 0; i < 100; i++ {
 sendChan <- i
 }
 endChan <- "Finished"
}

func Receiver(recvChan chan int,
 endChan chan string) {

 for {
 select {
 case num := <-recvChan:
 fmt.Println(num)
 case endMsg := <-endChan:
 fmt.Println(endMsg)
 return
 }
 }
}

Recursion - Possible Implementation

30

func main() {
 numChan := make(chan int, 100)
 endChan := make(chan string, 1)
 go pipeline.Sender(numChan,
endChan)
 go pipeline.Receiver(numChan,
endChan)
 time.Sleep(1 * time.Second)
}

func Sender(sendChan chan int,
 endChan chan string) {

 for i := 0; i < 100; i++ {
 sendChan <- i
 }
 endChan <- "Finished"
}

func Receiver(recvChan chan int,
 endChan chan string) {

 for {
 select {
 case num := <-recvChan:
 fmt.Println(num)
 case endMsg := <-endChan:
 fmt.Println(endMsg)
 return
 }
 }
}

Generated Output:

0
Finished

Recursion - Possible Implementation

31

func main() {
 numChan := make(chan int, 100)
 endChan := make(chan string, 1)
 go pipeline.Sender(numChan,
endChan)
 go pipeline.Receiver(numChan,
endChan)
 time.Sleep(1 * time.Second)
}

func Sender(sendChan chan int,
 endChan chan string) {

 for i := 0; i < 100; i++ {
 sendChan <- i
 }
 endChan <- "Finished"
}

func Receiver(recvChan chan int,
 endChan chan string) {

 for {
 select {
 case num := <-recvChan:
 fmt.Println(num)
 case endMsg := <-endChan:
 fmt.Println(endMsg)
 return
 }
 }
}

Race Condition

Channels are reused
throughout all the choices

Extracting Recursion into Protocols

➔ Reusing channels in different unfoldings of recursion leads to race conditions

➔ Cannot allocate all necessary channels statically

◆ Potentially infinite recursion unfoldings

➔ Allocate channels dynamically at the beginning of each unfolding of the
recursion

◆ Generate new protocols with the body of each recursion

32

Recursion Extraction

33

Before extraction

Recursion Extraction

34

Before extraction

Recursion Extraction

35

After extractionBefore extraction

Recursion Extraction

36

After extractionBefore extraction

Recursion Extraction

37

After extractionBefore extraction

Recursion Extraction

38

After extractionBefore extraction

Implementation Structure

39

Package messages

➔ Generate structs for the different
labeled messages exchanged in the
protocol

➔ Fields in struct correspond to
payload of the message

type Msg struct {

Int int

}

40

Package channels

➔ Channels used by the roles for
labeled message exchanges are
stored in a struct

➔ Each channel will only be used in one
exchange

type Router_Chan struct {

 Receiver_Msg chan forward.Msg

 Sender_Msg chan forward.Msg

}

41

Package invitations

● Each role has a struct storing all the
channels needed to send and receive
invitations

● Invitations consist of:
○ Channel struct
○ Invitation struct

type Forward_Router_InviteChan struct {

Invite_Receiver_To_Forward_Receiver chan
forward.Receiver_Chan

Invite_Receiver_To_Forward_Receiver_InviteCha
n chan Forward_Receiver_InviteChan

Invite_Router_To_Forward_Sender chan
forward.Sender_Chan

Invite_Router_To_Forward_Sender_InviteChan
chan Forward_Sender_InviteChan

}

42

Package callbacks

➔ Protocol logic implemented through
callbacks
◆ Callback calls interleaved in role

implementation

➔ Define interface with methods that
define a role’s behaviour, which the
user must implement

type Forward_Router_Env interface {
Msg_To_Receiver() forward.Msg
Done()
ResultFrom_Forward_Sender(result

forward_2.Sender_Result)
To_Forward_Sender_Env()

Forward_Sender_Env
Forward_Setup()
Router_Choice() Forward_Router_Choice
Msg_From_Sender(msg forward.Msg)

}

43

Package results

➔ Non-dynamic participants in a
protocol will generate a result
◆ Mechanism for returning results

of computation in the protocol
outside of the session

➔ Generate empty struct - user
defines what useful information
should be returned

type Sender_Result struct {

}

44

Contributions

➔ Extended MPST-based framework so it can statically verify the specification of
nested protocols

➔ Developed first practical application of nested protocols theory
◆ Increased Scribble’s expressiveness with the ability to model many real-world applications

➔ Generate correct implementations in Go using its inbuilt concurrency primitives

➔ Proposed approach to return results from nested subsessions

45

Fork-Join

46

Fork-Join

47

Task

Master

W1

Fork-Join

48

Master

W1

Task

W2

Fork-Join

49

Master

W1

Task

W2
Wn

...

Fork-Join

50

Master

W1

W2
Wn

...

End

Wn+1

Fork-Join

51

Master

W1

W2
Wn

...

Wn+1

Result

Master

Fork-Join

52

Master

W1

W2
Wn

...

Wn+1

Result

Master

Fork-Join

53

Master

W1

W2
Wn

...

Wn+1

Result

Master

Code Generation Approach

➔ Generate role APIs from their local protocols

◆ Implementation is correct by construction

➔ Roles execute as goroutines which communicate over shared memory
channels

➔ Protocol implementation defined through callbacks

➔ Role implementation returns result

54

