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Multiparty Session Types (MPST)

5well-typed ⇒ protocol compliance Λ deadlock freedom



Problems

➔ In MPSTs, the number of participants 
fixed at the beginning of a session

◆ New participants cannot be 
introduced

➔ This information may not available in 
many practical settings

➔ Cannot express common parallel 
computation patterns

◆ Fork-join in Go
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Solution

➔ Based on unbounded multiparty 
session types - an extension to 
MPST theory:

◆ UMP allows protocols to call 
other protocols

◆ Participants can be invited in 
protocol calls

◆ Protocol calls can involve new 
dynamic participants
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Sources of Overhead
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Benchmarks
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Benchmarks
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Case Studies
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Domain Name System (DNS) Protocol
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Min-Max Noughts and Crosses AI
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Summary
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➔ We designed and implemented extension to the NuScr framework, GoScr1

◆ It is the first practical implementation of MPST with unbounded participants

◆ It can express common programming patterns in Go

◆ We show that GoScr can represent real-world protocols

➔ GoScr is more expressive than previous work (e.g. [POPL ‘19])

➔ GoScr has negligible performance overhead for computationally heavy 
benchmarks

1https://github.com/nuscr/nuscr

https://github.com/nuscr/nuscr
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Routing Protocol
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Routing Protocol 
Demo
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Expressiveness of Nested Protocols

➔ In nested protocols, the number of participants within a protocol are finite and 
cannot change

◆ New participants introduced through nested protocol calls

➔ Can only express processes where each step of the computation only involves 
a fixed number of participants

◆ Can express a protocol to calculate the infinite fibonacci sequence

◆ Cannot express protocols such as the unbounded primesive
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Expressiveness of Nested Protocols

Protocol Nested Protocols POPL 2019

Dynamic Ring ✔ ✗

Dynamic Pipeline ✔ ✗

Dynamic Fork-Join ✔ ✗

Recursive Fork-Join ✔ ✗

Fibonacci ✔ ✔
Unbounded Fibonacci sequence ✔ ✗

Fannkuch-redux ✔ ✔
Bounded Prime Sieve ✔ ✗

Unbounded Prime Sieve ✗ ✗

1

1The Computer Language Benchmarks Game



Performance Evaluation
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➔ Benchmark
◆ Speedup (t1/ t2) of Scribble (t2) vs native Go (t1) 
◆ Intel i7- 6700 processor and 16GB RAM



Contributions

➔ Designed and implemented extension to the Scribble framework1

◆ First practical implementation of nested session types

◆ Express common programming patterns in Go

◆ Express large number of real-world protocols

➔ Compared expressiveness of our extension against previous work [POPL ‘19]

➔ Performance evaluation using a benchmark
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1https://github.com/nuscr/nuscr
https://github.com/becharrens/nuscr (fork of repository)

https://github.com/nuscr/nuscr
https://github.com/becharrens/nuscr


Future work

➔ Prove the correctness of our implementation

➔ Reduce overheads of nested protocol calls

➔ Implement nested protocols in a distributed setting

➔ Guaranteeing termination in nested protocols

➔ Implementing nested protocols using CFSMs
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Scope of Protocols

➔ Top-level scope

➔ Every protocol introduces its own scope

➔ Protocols defined within a scope cannot be accessed outside that scope

➔ Allow shadowing of protocol names
◆ Declaration of a protocol with the same name in a subscope overrides previous 

definition
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Renaming protocols

➔ Flatten structure of Scribble module

◆ Resolve name clashes between nested protocols in different scopes

◆ Resolve name clashes between global and nested protocols

➔ Generate unique names for each protocol

➔ Update references in protocol calls

➔ Simplifies definition of projection

➔ Needed for code generation
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Recursion

➔ Difficult to design a correct 
implementation for protocols 
combining:
◆ Asynchronous communication
◆ Choice
◆ Recursion
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Recursion - Possible Implementation
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func main() {
    numChan := make(chan int, 100)
    endChan := make(chan string, 1)
    go pipeline.Sender(numChan, 
endChan)
    go pipeline.Receiver(numChan, 
endChan)
    time.Sleep( 1 * time.Second)
}

func Sender(sendChan chan int, 
    endChan chan string) {

    for i := 0; i < 100; i++ {
        sendChan <- i
    }
    endChan <- "Finished"
}

func Receiver(recvChan chan int, 
    endChan chan string) {

    for {
        select {
        case num := <-recvChan:
            fmt.Println(num)
        case endMsg := <-endChan:
            fmt.Println(endMsg)
            return
        }
    }
}



Recursion - Possible Implementation
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func main() {
    numChan := make(chan int, 100)
    endChan := make(chan string, 1)
    go pipeline.Sender(numChan, 
endChan)
    go pipeline.Receiver(numChan, 
endChan)
    time.Sleep( 1 * time.Second)
}

func Sender(sendChan chan int, 
    endChan chan string) {

    for i := 0; i < 100; i++ {
        sendChan <- i
    }
    endChan <- "Finished"
}

func Receiver(recvChan chan int, 
    endChan chan string) {

    for {
        select {
        case num := <-recvChan:
            fmt.Println(num)
        case endMsg := <-endChan:
            fmt.Println(endMsg)
            return
        }
    }
}

Generated Output:

0
Finished



Recursion - Possible Implementation
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func main() {
    numChan := make(chan int, 100)
    endChan := make(chan string, 1)
    go pipeline.Sender(numChan, 
endChan)
    go pipeline.Receiver(numChan, 
endChan)
    time.Sleep( 1 * time.Second)
}

func Sender(sendChan chan int, 
    endChan chan string) {

    for i := 0; i < 100; i++ {
        sendChan <- i
    }
    endChan <- "Finished"
}

func Receiver(recvChan chan int, 
    endChan chan string) {

    for {
        select {
        case num := <-recvChan:
            fmt.Println(num)
        case endMsg := <-endChan:
            fmt.Println(endMsg)
            return
        }
    }
}

Race Condition

Channels are reused 
throughout all the choices



Extracting Recursion into Protocols

➔ Reusing channels in different unfoldings of recursion leads to race conditions

➔ Cannot allocate all necessary channels statically

◆ Potentially infinite recursion unfoldings

➔ Allocate channels dynamically at the beginning of each unfolding of the 
recursion

◆ Generate new protocols with the body of each recursion
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Recursion Extraction
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Recursion Extraction
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After extractionBefore extraction



Recursion Extraction
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Recursion Extraction
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Recursion Extraction
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After extractionBefore extraction



Implementation Structure
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Package messages

➔ Generate structs for the different 
labeled messages exchanged in the 
protocol

➔ Fields in struct correspond to 
payload of the message

type Msg struct {

Int int

}
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Package channels

➔ Channels used by the roles for 
labeled message exchanges are 
stored in a struct

➔ Each channel will only be used in one 
exchange

type Router_Chan struct {

    Receiver_Msg chan forward.Msg

    Sender_Msg chan forward.Msg

}
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Package invitations

● Each role has a struct storing all the 
channels needed to send and receive 
invitations

● Invitations consist of:
○ Channel struct
○ Invitation struct

type Forward_Router_InviteChan struct {

Invite_Receiver_To_Forward_Receiver chan 
forward.Receiver_Chan

Invite_Receiver_To_Forward_Receiver_InviteCha
n chan Forward_Receiver_InviteChan

Invite_Router_To_Forward_Sender chan 
forward.Sender_Chan

Invite_Router_To_Forward_Sender_InviteChan 
chan Forward_Sender_InviteChan

}
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Package callbacks

➔ Protocol logic implemented through 
callbacks
◆ Callback calls interleaved in role 

implementation

➔ Define interface with methods that 
define a role’s behaviour, which the 
user must implement

type Forward_Router_Env interface {
Msg_To_Receiver() forward.Msg
Done()
ResultFrom_Forward_Sender(result 

forward_2.Sender_Result)
To_Forward_Sender_Env() 

Forward_Sender_Env
Forward_Setup()
Router_Choice() Forward_Router_Choice
Msg_From_Sender(msg forward.Msg)

}
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Package results

➔ Non-dynamic participants in a 
protocol will generate a result
◆ Mechanism for returning results 

of computation in the protocol 
outside of the session

➔ Generate empty struct - user 
defines what useful information 
should be returned

type Sender_Result struct {

}
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Contributions

➔ Extended MPST-based framework so it can statically verify the specification of 
nested protocols

➔ Developed first practical application of nested protocols theory
◆ Increased Scribble’s expressiveness with the ability to model many real-world applications

➔ Generate correct implementations in Go using its inbuilt concurrency primitives

➔ Proposed approach to return results from nested subsessions
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Fork-Join
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Fork-Join
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Fork-Join
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Code Generation Approach

➔ Generate role APIs from their local protocols

◆ Implementation is correct by construction

➔ Roles execute as goroutines which communicate over shared memory 
channels

➔ Protocol implementation defined through callbacks

➔ Role implementation returns result 

54


