
Choreography Automata

Franco Barbanera1, Ivan Lanese2, Emilio Tuosto3

1 University of Catania
2 University of Bologna/INRIA
3 GSSI/University of Leicester

February 16, 2021

1/37

The general idea

If you have a bunch of dancers...

2/37

The general idea

If you have a bunch of dancers...

2/37

....would you like to end up with this....

3/37

or with THIS?

4/37

5/37

Same approach, different context

6/37

Choreographic development of distributed
(message-passing) systems:

I exploits global & local specifications

coexistence of two distinct but related views of a system:
the global and the local views.

I supports correctness-by-construction
“projection” : an operation producing the local view from
the global one

7/37

Choreographic development of distributed
(message-passing) systems:

I exploits global & local specifications

coexistence of two distinct but related views of a system:
the global and the local views.

I supports correctness-by-construction
“projection” : an operation producing the local view from
the global one

7/37

Choreographic development of distributed
(message-passing) systems:

I exploits global & local specifications

coexistence of two distinct but related views of a system:
the global and the local views.

I supports correctness-by-construction
“projection” : an operation producing the local view from
the global one

7/37

The choreographic approach:
A lighthouse on the Formal Verification ocean

I specification languages: WS-CDL, BPMN, ...

I choreographies for microservices;

I experimental choreographic languages: Chor, AIOCJ, ...

I etc.

8/37

9/37

Which setting?

I NON channel-based

I “Basically” actor-based.

10/37

Which abstraction for processes?

1

A

2

AB!msg1

BA?msg2 BA?msg3

11/37

Which abstraction for processes?

1

A

2

AB!msg1

BA?msg2 BA?msg3

11/37

Communicating Finite State Machines (CFSMs)

An automata-based formalism for the description and the analysis of
distributed systems.

A machine MA

1

A

2

AB!msg1

BA?msg2 BA?msg3

I MA can send msg1 to machine MB;
asynchronously; through the directed buffered FIFO channel AB

I Then, either msg2 or msg3 can be received from MB;
through channel BA;

I and so on....
12/37

Communicating Finite State Machines (CFSMs)

An automata-based formalism for the description and the analysis of
distributed systems.

A machine MA

1

A

2

AB!msg1

BA?msg2 BA?msg3

I MA can send msg1 to machine MB;
asynchronously; through the directed buffered FIFO channel AB

I Then, either msg2 or msg3 can be received from MB;
through channel BA;

I and so on....
12/37

Communicating Finite State Machines (CFSMs)

An automata-based formalism for the description and the analysis of
distributed systems.

A machine MA

1

A

2

AB!msg1

BA?msg2 BA?msg3

I MA can send msg1 to machine MB;
asynchronously; through the directed buffered FIFO channel AB

I Then, either msg2 or msg3 can be received from MB;
through channel BA;

I and so on....
12/37

Communicating Finite State Machines (CFSMs)

An automata-based formalism for the description and the analysis of
distributed systems.

A machine MA

1

A

2

AB!msg1

BA?msg2 BA?msg3

I MA can send msg1 to machine MB;
asynchronously; through the directed buffered FIFO channel AB

I Then, either msg2 or msg3 can be received from MB;
through channel BA;

I and so on....
12/37

Communicating Finite State Machines (CFSMs)

An automata-based formalism for the description and the analysis of
distributed systems.

A machine MA

1

A

2

AB!msg1

BA?msg2 BA?msg3

I MA can send msg1 to machine MB;
asynchronously; through the directed buffered FIFO channel AB

I Then, either msg2 or msg3 can be received from MB;
through channel BA;

I and so on....
12/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

Systems of CFSMs

A system of CFSMs:
S = (Mp)p∈P

- P is the set of roles (participants) of S, and
- for each p ∈ P, Mp = (Qp, q0p,A, δp) is a CFSM.

A configuration of S:
s = (~q, ~w)

- ~q = (qp)p∈P the overall state of the system
where qp ∈ Qp the current state of machine Mp

- ~w = (wpq)pq∈Chan with wpq ∈ A∗. the current contents of channels

The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

13/37

System transitions:

(~q,w)
AB!msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

AB!msg

I and the message msg is buffered in the channel from A to B,
that is w′AB = wAB·msg and ∀pr 6= AB. w′pr = wpr

14/37

System transitions:

(~q,w)
AB!msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

AB!msg

I and the message msg is buffered in the channel from A to B,
that is w′AB = wAB·msg and ∀pr 6= AB. w′pr = wpr

14/37

System transitions:

(~q,w)
AB!msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

AB!msg

I and the message msg is buffered in the channel from A to B,
that is w′AB = wAB·msg and ∀pr 6= AB. w′pr = wpr

14/37

System transitions:

(~q,w)
AB!msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

AB!msg

I and the message msg is buffered in the channel from A to B,
that is w′AB = wAB·msg and ∀pr 6= AB. w′pr = wpr

14/37

System transitions:

(~q,w)
BA?msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

BA?msg

I and the message msg (if present) is popped from top of the buffered
channel BA,
that is wAB = msg·w’AB and ∀pr 6= AB. w′pr = wpr

15/37

System transitions:

(~q,w)
BA?msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

BA?msg

I and the message msg (if present) is popped from top of the buffered
channel BA,
that is wAB = msg·w’AB and ∀pr 6= AB. w′pr = wpr

15/37

System transitions:

(~q,w)
BA?msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

BA?msg

I and the message msg (if present) is popped from top of the buffered
channel BA,
that is wAB = msg·w’AB and ∀pr 6= AB. w′pr = wpr

15/37

System transitions:

(~q,w)
BA?msg−−−−→ (q′,w′)

I In the machine MA:
qA q′A

BA?msg

I and the message msg (if present) is popped from top of the buffered
channel BA,
that is wAB = msg·w’AB and ∀pr 6= AB. w′pr = wpr

15/37

Synchronous communications model for CFSMs

A configuration of S: ~q = (qp)p∈P

where qp ∈ Qp is the current state of Mp

System transitions: ~q
B−→A : msg−−−−−−→ ~q′

whenever

In the machine MA:
qA q′A

BA?msg

In the machine MB:
qA q′A

BA!msg

In all other machines MX (X 6= A, B): qX = q’X

16/37

Synchronous communications model for CFSMs

A configuration of S: ~q = (qp)p∈P

where qp ∈ Qp is the current state of Mp

System transitions: ~q
B−→A : msg−−−−−−→ ~q′

whenever

In the machine MA:
qA q′A

BA?msg

In the machine MB:
qA q′A

BA!msg

In all other machines MX (X 6= A, B): qX = q’X

16/37

Synchronous communications model for CFSMs

A configuration of S: ~q = (qp)p∈P

where qp ∈ Qp is the current state of Mp

System transitions: ~q
B−→A : msg−−−−−−→ ~q′

whenever

In the machine MA:
qA q′A

BA?msg

In the machine MB:
qA q′A

BA!msg

In all other machines MX (X 6= A, B): qX = q’X

16/37

Synchronous communications model for CFSMs

A configuration of S: ~q = (qp)p∈P

where qp ∈ Qp is the current state of Mp

System transitions: ~q
B−→A : msg−−−−−−→ ~q′

whenever

In the machine MA:
qA q′A

BA?msg

In the machine MB:
qA q′A

BA!msg

In all other machines MX (X 6= A, B): qX = q’X

16/37

Synchronous communications model for CFSMs

A configuration of S: ~q = (qp)p∈P

where qp ∈ Qp is the current state of Mp

System transitions: ~q
B−→A : msg−−−−−−→ ~q′

whenever

In the machine MA:
qA q′A

BA?msg

In the machine MB:
qA q′A

BA!msg

In all other machines MX (X 6= A, B): qX = q’X

16/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Relevant properties of systems

I Liveness:
whenever a machine is willing to perform some actions,
the system can evolve so that one of those actions is
eventually done

I Deadlock-Freedom:
in case the system get stuck, no machine is in a state with
an outgoing transition (the system do progress)

I Lock-Freedom:
if a machine can perform some actions, sooner or later it
will do one (any single machine does progress)

We restrict the attention to fair runs of systems.

17/37

Choreographies for CFSMs systems:
Which description formalism?

It takes a thief to catch a thief... so

Choreography Automata

18/37

Choreographies for CFSMs systems:
Which description formalism?

It takes a thief to catch a thief... so

Choreography Automata

18/37

Choreographies for CFSMs systems:
Which description formalism?

It takes a thief to catch a thief... so

Choreography Automata

18/37

Choreographies for CFSMs systems:
Which description formalism?

It takes a thief to catch a thief... so

Choreography Automata

18/37

Choreography Automata through an Example

0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

Which sequences of interactions are represented?

* A finite state automaton where all states are final.

Moreover we take all infinite words whose all finite prefixes are accepted.

(prefix-closed and continuous sets of interaction sequences).

19/37

Choreography Automata through an Example

0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

Which sequences of interactions are represented?

* A finite state automaton where all states are final.

Moreover we take all infinite words whose all finite prefixes are accepted.

(prefix-closed and continuous sets of interaction sequences).

19/37

Choreography Automata through an Example

0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

Which sequences of interactions are represented?

* A finite state automaton where all states are final.

Moreover we take all infinite words whose all finite prefixes are accepted.

(prefix-closed and continuous sets of interaction sequences).

19/37

An apparent resemblance

Choreography Automata vs. Conversation Protocols
(by Bultan et al.)

They look alike, but actually their semantics and underlying
communication models do differ.
(a thorough comparison in the Related Works section of the paper)

20/37

Choreography Automata through an Example

0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

21/37

Projection

(
0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

)�L
=

22/37

Projection

(
0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

)�L
=

22/37

Projection

0 1 2 3 42

5 6

ε ε SL?cnt

ε

ε

ε

ε
ε

SL?bye

23/37

Projection

SL?cnt

SL?bye

24/37

Projection

(
0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

)�C

25/37

Projection

(
0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

)�S

26/37

Projection

(
0 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRef
C−→

S:b
ye

S−→L : bye

)�S

26/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

I The behaviour of the system of CFSMs perfectly matches the
overall behaviour described by the choreography automata:

I The system is Live, i.e. if a machine wants to perform some actions,
the system can evolve so that one of them eventually is done

I The system is Deadlock-Free i.e. it will never get stuck (the
system does eventually progress)

I The system is Lock-Free
i.e. if a machine can perform some actions, sooner or later it will do
one (any single machine does eventually progress)

27/37

Projection

C

C
S

!req

SC?res

C
S

!r
ef

CS!bye

CS!ok

S
C

?res

S
C

?n
o

R
ef

S

C
S

?req

CS!res

SL?cnt

CS?ref
CS

?b
ye

CS?ok

SC!res

SC!noRef

SC!bye
L

SL?cnt

SL?bye

These good properties do hold in case of either
Synchronous or Asynchronous

communications

28/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

There ain’t no such thing as a free lunch

Only the projections of well-behaved Choreography Automata
are well-behaved.

Theorem
Given a well-formed c-automaton CA, the system obtained by projection,
(CA�A)A∈P , is live, lock-free, and deadlock-free both for synchronous and
asynchronous communications.

Definition (Well-formedness)
A c-automaton CA is well-formed if (roughly)

I when there is a choice, a single participant decides;

I all the partecipants are made aware of the choices affecting their
expected behaviour ;

I parallelism of independent interactions must be made explicit by
interleaving them

Slight changes between the synchronous and the asynchronous cases.
29/37

Well-formedness = Well-sequenced + Well-branched

Definition (Well-sequencedness (synchronous))

A c-automaton is well-sequenced if for each two consecutive

transitions q
A−→B : m−−−−−→ q′

C−→D : n−−−−→ q′′ either

I they share a participant, that is {A, B} ∩ {C, D} 6= ∅, or

I they are concurrent, i.e. there is q′′′ such that

q
C−→D : n−−−−→ q′′′

A−→B : m−−−−−→ q′′.

30/37

Well-formedness = Well-sequenced + Well-branched

Definition (Well-sequencedness (synchronous))

A c-automaton is well-sequenced if for each two consecutive

transitions q
A−→B : m−−−−−→ q′

C−→D : n−−−−→ q′′ either

I they share a participant, that is {A, B} ∩ {C, D} 6= ∅, or

I they are concurrent, i.e. there is q′′′ such that

q
C−→D : n−−−−→ q′′′

A−→B : m−−−−−→ q′′.

30/37

Not all c-automata can be “completed” to well-sequenced
ones.

0

1

2

A−→
B : a

C−→
D : c

C−→
D

:
c

0

1

2

3

A−→
B : a

C−→
D : c

C−→
D

:
c

C−→
D : c

A−→
B : a

0

1

2

3

4

A−→
B : a

C−→
D : c

C−→
D

:
c

C−→
D : c

A−→
B : a

C−→D : c

A
−→
B

:
a

(a) (b) (c)

31/37

Well-formedness = Well-sequenced + Well-branched

Definition (Well-branchedness (synch and asynch))

A c-automaton is well-branched if for each state q in and
A ∈ P sender in a transition from q, all of the following
conditions must hold:

(1) all transitions from q involving A , have sender A ;

(2) for each transition t from q whose sender is not A and
each transition t ′ from q whose sender is A , t and t ′ are
concurrent

(3) for each q-span (σ, σ′) where A chooses at and each
participant B 6= A ∈ P , the first pair of different labels on
the runs σB and σ′B (if any) is of the form
(CB?m,DB?n) with C 6= D or m 6= n.

We dub A a selector at q.
32/37

Well-formedness = Well-sequenced + Well-branched

Definition (Well-branchedness (synch and asynch))

A c-automaton is well-branched if for each state q in and
A ∈ P sender in a transition from q, all of the following
conditions must hold:

(1) all transitions from q involving A , have sender A ;

(2) for each transition t from q whose sender is not A and
each transition t ′ from q whose sender is A , t and t ′ are
concurrent

(3) for each q-span (σ, σ′) where A chooses at and each
participant B 6= A ∈ P , the first pair of different labels on
the runs σB and σ′B (if any) is of the form
(CB?m,DB?n) with C 6= D or m 6= n.

We dub A a selector at q.
32/37

Future work: Towards choreographic models for open
systems

Usually choreographic models are good for the description of
closed systems. What about open systems?

A starting point:
The “participants as interfaces” approach to open
(i.e. composable) systems of (asynchronous) CFSMs

Barbanera, de’Liguoro, Hennicker

Connecting open systems of communicating finite state

machines (JLAMP)

33/37

Future work: Towards choreographic models for open
systems

Usually choreographic models are good for the description of
closed systems. What about open systems?

A starting point:
The “participants as interfaces” approach to open
(i.e. composable) systems of (asynchronous) CFSMs

Barbanera, de’Liguoro, Hennicker

Connecting open systems of communicating finite state

machines (JLAMP)

33/37

Future work: Towards choreographic models for open
systems

Usually choreographic models are good for the description of
closed systems. What about open systems?

A starting point:
The “participants as interfaces” approach to open
(i.e. composable) systems of (asynchronous) CFSMs

Barbanera, de’Liguoro, Hennicker

Connecting open systems of communicating finite state

machines (JLAMP)

33/37

Future work: Towards choreographic models for open
systems

Usually choreographic models are good for the description of
closed systems. What about open systems?

A starting point:
The “participants as interfaces” approach to open
(i.e. composable) systems of (asynchronous) CFSMs

Barbanera, de’Liguoro, Hennicker

Connecting open systems of communicating finite state

machines (JLAMP)

33/37

The “participants as interfaces” approach to open systems
S1

MI MC

MM MJ

MT MH

S2 MW

MD

MK MB

MA

34/37

The “participants as interfaces” approach to open systems
S1

MI MC

MM MJ

MT MH

S2 MW

MD

MK MB

MA

ANY participant can be looked at as an interface.

34/37

The “participants as interfaces” approach to open systems
S1

MI MC

MM MJ

MT MH

S2 MW

MD

MK MB

MA

ANY participant can be looked at as an interface.

If J and K are “compatible”
the two open systems can be connected via J and K

by simply replacing them by “forwarders”.

34/37

The “participants as interfaces” approach to open systems

S1J↔KS2

MI MC

MM
⇒⇐F⇒J ⇐

MT MH

MW

MD⇒⇐F⇒K ⇐ MB

MA

ANY participant can be looked at as an interface.

If J and K are “compatible”
the two open systems can be connected via J and K

by simply replacing them by “forwarders”.
* Good properties of the systems are preseved by composition.*

34/37

The “participants as interfaces” approach to open systems

A preliminary investigation of the “participants as interfaces” approach to
open systems of synchronous CFSMs

Barbanera, Lanese, Tuosto
Composing Communicating Systems, Synchronously ISoLA
2020

35/37

The “participants as interfaces” approach to open systems

A preliminary investigation of the “participants as interfaces” approach to
open systems of synchronous CFSMs

Barbanera, Lanese, Tuosto
Composing Communicating Systems, Synchronously ISoLA
2020

35/37

Future work: Towards choreographic models for open
systems

A first step (done): Using Global Types to internally describe
the “participants as interfaces” composition mechanism on
global specifications (preserving well-formedness)

Barbanera, Dezani, Lanese, Tuosto
Composition and Decomposition of Multiparty Sessions

(JLAMP)

The second step (to do):
Extending the approach to Coreography automata.

36/37

Future work: Towards choreographic models for open
systems

A first step (done): Using Global Types to internally describe
the “participants as interfaces” composition mechanism on
global specifications (preserving well-formedness)

Barbanera, Dezani, Lanese, Tuosto
Composition and Decomposition of Multiparty Sessions

(JLAMP)

The second step (to do):
Extending the approach to Coreography automata.

36/37

Future work: Towards choreographic models for open
systems

A first step (done): Using Global Types to internally describe
the “participants as interfaces” composition mechanism on
global specifications (preserving well-formedness)

Barbanera, Dezani, Lanese, Tuosto
Composition and Decomposition of Multiparty Sessions

(JLAMP)

The second step (to do):
Extending the approach to Coreography automata.

36/37

37/37

