
PRINCIPLES AND PRACTICE
OF SESSION TYPES

Vasco T. Vasconcelos, University of Lisbon!
and!

Raymond Hu, Imperial College London

A tutorial at POPL!
20 January 2014

OUTLINE

• Part I _ Fundamentals of session types, by Vasco!

• Part II _ Specification and verification of
distributed applications using multiparty session
types, by Ray!

• Grab these slides from 
http://www.doc.ic.ac.uk/~rhu/popl14tutorial.pdf

MOTIVATION _ ITERATOR

• Met java.util.Iterator? 
 
 
 
 

interface Iterator {
 boolean hasNext ();
 Object next ();
 void remove ();
}

COMMON MISTAKES
void commaSeparatedList (Iterator it) {
 System.out.print(it.next());
 while (it.hasNext())
 System.out.print(", " + it.next()); }

void filter (Iterator it, Object o) {
 while (it.hasNext())
 if (it.next().equals(o))
 System.out.print(it.next()); }

void removeFirst (Iterator it) {
 if (it.hasNext())
 it.remove(); }

COMPILE AND RUN

• This code compiles...!

• ... and sometimes even runs!

• To “correctly” use the iterator one must read the
documentation

THE
ITERA
TOR
DOC
UME
NTAT
ION

public interface Iterator<E> {	
 /**	
 * Returns <tt>true</tt> if the iteration has more elements. (In other	
 * words, returns <tt>true</tt> if <tt>next</tt> would return an element	
 * rather than throwing an exception.)	
 *	
 * @return <tt>true</tt> if the iterator has more elements.	
 */	
 boolean hasNext();	
!
 /**	
 * Returns the next element in the iteration. Calling this method	
 * repeatedly until the {@link #hasNext()} method returns false will	
 * return each element in the underlying collection exactly once.	
 *	
 * @return the next element in the iteration.	
 * @exception NoSuchElementException iteration has no more elements.	
 */	
 E next();	
!
 /**	
 * 	
 * Removes from the underlying collection the last element returned by the	
 * iterator (optional operation). This method can be called only once per	
 * call to <tt>next</tt>. The behavior of an iterator is unspecified if	
 * the underlying collection is modified while the iteration is in	
 * progress in any way other than by calling this method.	
 *	
 * @exception UnsupportedOperationException if the <tt>remove</tt>	
 *	 	 operation is not supported by this Iterator.	
 	
 * @exception IllegalStateException if the <tt>next</tt> method has not	
 *	 	 yet been called, or the <tt>remove</tt> method has already	
 *	 	 been called after the last call to the <tt>next</tt>	
 *	 	 method.	
 */	
 void remove();	
}

next() only if
there are elements
in the collection

remove() only
after next()

SOCKET COMMUNICATION
Socket client = new Socket("Charizard", 2345);
ObjectOutputStream out = new ObjectOutputStream(
 client.getOutputStream());
out.writeObject(1.1);

ServerSocket serverSocket = new ServerSocket(2345);
Socket server = serverSocket.accept();
ObjectInputStream in = new
 ObjectInputStream(server.getInputStream());
Integer i = (Integer) in.readObject();

WOULDN’T IT BE NICE …

• … to program in a language that makes
NoSuchElementException,
IllegalStateException,
ClassCastException unnecessary?!

• We need more expressive types...

WHAT WE REALLY NEED

• Abstractions that allow to talk about continuous
interactions!

• Languages and compilers that make sure code
follows the abstractions

SESSION TYPES TO THE
RESCUE

• Introduced by Kohei Honda et alia in 1994-98
(see further reading)!

• Abstract series of continuous interactions; abstract
communication protocols!

• Originally associated to the pi-calculus; later
transposed to functional and OO languages

RUNNING EXAMPLE _ AN
ONLINE DONATION SERVICE

• Clients create donation campaigns and send the
campaign link to benefactors!

• Benefactors donate by providing a credit card
number and an amount to be charged to the card!

• The server provides for the creation of campaigns
and forwards the donations to the bank

Three sorts of participants: server, clients, and
benefactors

DEMO

• Based on SePi, Sessions on Pi, http://gloss.di.fc.ul.pt/
sepi/!

• A pi-calculus based language with (linearly refined)
session types!

• We introduce the various basic type and process
constructors

V1 _ CHANNEL CREATION, INPUT,
OUTPUT, PARALLEL COMPOSITION

V2 _ CHOICE

V3 _ RECURSIVE TYPES AND
PROCESS DEFINITIONS

V4 _ LINEAR CHANNELS THAT
BECOME UNRESTRICTED (I/II)

V4 _ LINEAR CHANNELS THAT
BECOME UNRESTRICTED (II/II)

V5_ MULTIPLE CLIENTS (I/II)

V5_ MULTIPLE CLIENTS (II/II)

CONCLUSION _ FUNDAMENTALS
OF SESSION TYPES

• Session types describe continuous interaction, provide for
protocol description!

• Work well with imperative, functional and OO languages!

• When incorporated in programming languages session types
prevent a series of runtime errors!

• May also be used to monitor communication on applications
built with untyped (or non session typed) languages

NEXT

• Part II _ Specification and verification of
distributed applications using multiparty session
types

The Scribble Protocol Language

Specification and verification of distributed applications using

multiparty session types

Raymond Hu (Imperial College London, Cognizant)

and the Scribble team

http://www.doc.ic.ac.uk/~rhu/popl14tutorial.pdf

1 / 42

Outline

I Background:

I Multiparty session types (MPST)
I The Scribble protocol language

I Active use case project: Ocean Observatories Initiative

I Scribble by examples

I Global protocol specification
I Multiparty protocol validation (well-formedness)
I Dynamic MPST verification by runtime monitoring of

conversation endpoints

I http://www.doc.ic.ac.uk/~rhu/popl14tutorial.pdf

2 / 42

Background: Multiparty Session Types (MPST) 1/2

G

T

Alice

T

Bob

T

Carol

P

Alice

P

Bob

P

Carol

Projection

Type checking

I Process language

I Execution model of I/O actions by session participants
I

PA = s(x). s!B(m1). s?C (x)

I (Static) type checking for communication safety

[POPL08] Multiparty asynchronous session types. Honda et al.

[CONCUR08] Global progress in dynamically interleaved multiparty sessions.
Bettini et al.

3 / 42

I Global session type

I
G = A ! B : m

1

; B ! C : m
2

; C ! A : m
3

I Local session types

I Slice of global protocol relevant to each role
I Mechanically derived from global protocol
I

TA = B!m
1

.C?m
3

Background: Multiparty Session Types (MPST) 2/2

I Specifying protocols involving more than two parties!

G = A ! B : m
1

; B ! C : m
2

; C ! A : m
3

A B C

m

1

m

2

m

3

I Stronger safety than separate binary session types:
PA = sAC?x .sAB !m1

TAB = B!m
1

,TAC = C?m
3

PB = sBA?y .sBC !m2

TBA = A?m
1

,TBC = C !m
2

PC = sCB?z .sC !m3

TCB = B?m
2

,TCA = C !m
3

⇥ deadlock (due to lost causality between inter- (binary)
session actions)

4 / 42

The Scribble protocol language

I Scribble: adapts and extends MPST as an engineering
language for describing multiparty message passing protocols

I Communication model: asynch., reliable, role-to-role ordering

global protocol MyProtocol(role A, role B, role C) {

m1(int) from A to B;

rec X {

choice at B {

m2(String) from B to C;

continue X;

} or {

m3() from B to C;

} } }

I Global and local protocol definitions
I Other features: parallel protocols, subprotocol composition,

parameterised protocol declarations, interruptible conversations

[COB12] Structuring communication with session types. Honda et al.

[ICDCIT11] Scribbling interactions with a formal foundation. Honda et al.
5 / 42

Industry collaborations

I JBoss Savara: Tool support for Testable Architecture
frameworks (Red Hat, Cognizant)

I Scribble: intermediate protocol language underneath
BPMN2/WS-CDL user interface

I Tooling: global-to-local projection, protocol/system
simulations:

I Requirements model (e.g. sequence diagram traces) against
service specification

I System outputs (e.g. log files) against requirements/service
model

[JBOSS] http://www.jboss.org/savara

http://www.jboss.org/scribble

[TA] http://www.cognizant.com/InsightsWhitepapers/SOA_

Manifesto_WP1.2010.pdf

6 / 42

Ocean Observatories Initiative (OOI) 1/2

I NSF project ($400M, 5 years) to build a cyberinfrastruture for
the remote acquisition and delivery of oceanography data

7 / 42

Ocean Observatories Initiative (OOI) 2/2

8 / 42

I COI: Python-based endpoint
platforms (Capability Containers),
AMQP-based messaging network

Capability Container

Scribble people

Matthew Arrott UCSD, Ocean Observatories Initative
Laura Bocchi Imperial College London
Gary Brown Red Hat
Tzu-Chun Chen L’Università di Torino
Romain Demangeon Université Pierre et Marie Curie
Pierre-Malo Deniélou Royal Holloway, University of London
Kohei Honda Queen Mary, University of London
Raymond Hu Imperial College London
Rumyana Neykova Imperial College London
Nicholas Ng Imperial College London
Nobuko Yoshida Imperial College London

9 / 42

Scribble examples

I Basic scribble (OOI agent negotiation)

I Applied MPST framework:
Global well-formedness; local projection; FSM generation

I Parameterised protocols and subprotocols

I OOI RPC service composition
I Agent negotiation refactored

I Interruptible conversations: (OOI resource usage control)

I OOI endpoint code and runtime monitoring

I We demo the current status of Scribble

I The work on Scribble and the OOI integration (and other
applications of MPST) is ongoing

10 / 42

OOI agent negotiation 1/5

I https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+OV+Negotiate+Protocol

11 / 42

OOI agent negotiation 2/5
type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

}

12 / 42

OOI agent negotiation 3/5 (choice)
type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

choice at P {

accept() from P to C;

confirm() from C to P;

} or {

reject() from P to C;

} or {

propose(SAP) from P to C;

} }

13 / 42

OOI agent negotiation 4/5
type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

choice at P {

accept() from P to C;

confirm() from C to P;

} or {

reject() from P to C;

} or {

propose(SAP) from P to C;

choice at C {

accept() from C to P;

confirm() from P to C;

} or {

reject() from C to P;

} or {

propose(SAP) from C to P;

} } }

14 / 42

OOI agent negotiation 5/5 (recursion)
type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

rec X {

choice at P {

accept() from P to C;

confirm() from C to P;

} or {

reject() from P to C;

} or {

propose(SAP) from P to C;

choice at C {

accept() from C to P;

confirm() from P to C;

} or {

reject() from C to P;

} or {

propose(SAP) from C to P;

continue X;

}

}

}
15 / 42

The Scribble Framework

Global Protocol

Local
Protocol

Local
Protocol

Endpoint
Code

Endpoint
Code

Conversation
Runtime

Conversation
Runtime

Monitor Monitor

Safe Network

Projection

. . .

Implementation (Python, Java, . . .)

. . .
Dynamic
Verification

Specification
(Scribble)

16 / 42

I Scribble global protocols

I Well-formedness validation

I Scribble local protocols

I FSM generation (for endpoint
monitoring)

I (Heterogeneous) endpoint
programs

I Scribble Conversation API
I (Interoperable) Distributed

Conversation Runtime

Global protocol well-formedness 1/2

global protocol ChoiceAmbiguous(role A, role B, role C) {

choice at A {

m1() from A to B; // X

m2() from B to C;

m3() from C to A;

} or {

m1() from A to B; // X

m5() from B to C;

m6() from C to A;

} }

global protocol ChoiceNotCommunicated(role A, role B, role C) {

choice at A {

m1() from A to B;

m2() from B to C; // X

} or {

m4() from A to B;

} }

17 / 42

Global protocol well-formedness 2/2

global protocol ParallelNotLinear(role A, role B, role C) {

par {

m1() from A to B; // X

m2() from B to C;

} and {

m1() from A to B; // X

m4() from B to C;

} }

global protocol RecursionNoExit(role A, role B, role C, role D) {

rec X {

m1() from A to B;

continue X;

}

m2() from A to B; // Unreachable for A, B

m3() from C to D;

}

18 / 42

Local protocol projection (Negotiation Consumer)

// Global

propose(SAP) from C to P;

rec START {

choice at P {

accept() from P to C;

confirm() from C to P;

} or {

reject() from P to C;

} or {

propose(SAP) from P to C;

choice at C {

accept() from C to P;

confirm() from P to C;

} or {

reject() from C to P;

} or {

propose(SAP) from C to P;

continue START;

} } }

19 / 42

// Projection for Consumer

propose(SAP) to P;

rec START {

choice at P {

accept() from P;

confirm() to P;

} or {

reject() from P;

} or {

propose(SAP) from P;

choice at C {

accept() to P;

confirm() from P;

} or {

reject() to P;

} or {

propose(SAP) to P;

continue START;

} } }

FSM generation (Negotiation Consumer)

20 / 42

RPC composition 1/4

I https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+OV+Conversation+Management

21 / 42

RPC composition 2/4

global protocol Comp1(role Client as C,

role Service1 as S1, role Service2 as S2,

role Service3 as S3, role Service4 as S4) {

m1() from C to S1;

m2() from S1 to S2;

m2a() from S2 to S1;

m3() from S1 to S3;

m4() from S3 to S4;

m4a() from S4 to S3;

m5() from S3 to S4;

m5a() from S4 to S3;

m3a() from S3 to S1;

m1a() from S1 to C;

}

I https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+OV+Conversation+Management

22 / 42

RPC composition 3/4 (parameterised subprotocols)

global protocol RPC<sig M1, sig M2>(role Client as C, role Server as S) {

M1 from C to S;

M2 from S to C;

}

global protocol Relay<sig M1, sig M2>(

role First as F, role Middle as M, role Last as L) {

M1 from F to M;

M2 from M to L;

}

global protocol Comp3(role Client as C,

role Service1 as S1, role Service2 as S2,

role Service3 as S3, role Service4 as S4) {

do Relay<m1(), m2()>(C as First, S1 as Middle, S2 as Last);

do Relay<m2a(), m3()>(S2 as First, S1 as Middle, S3 as Last);

do RPC<m4(), m4a()>(S3 as Client, S4 as Server);

do RPC<m5(), m5a()>(S3 as Client, S4 as Server);

do Relay<m3a(), m1a()>(S2 as First, S1 as Middle, C as Last);

}

23 / 42

RPC composition 4/4

global protocol RPC<sig M1, sig M2>(role Client as C, role Server as S) {

M1 from C to S;

M2 from S to C;

}

global protocol Relay<sig M1, sig M2>(

role First as F, role Middle as M, role Last as L) {

M1 from F to M;

M2 from M to L;

}

global protocol Comp3(role Client as C,

role Service1 as S1, role Service2 as S2,

role Service3 as S3, role Service4 as S4) {

do Relay<m1(), m2()>(C as First, S1 as Middle, S2 as Last);

do Relay<m2a(), m3()>(S2 as First, S1 as Middle, S3 as Last);

do RPC<m4(), m4a()>(S3 as Client, S4 as Server);

do RPC<m5(), m5a()>(S3 as Client, S4 as Server);

do Relay<m3a(), m1a()>(S2 as First, S1 as Middle, C as Last);

}

24 / 42

Agent negotiation (refactored)

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role Consumer, role Producer) {

propose(SAP) from Consumer to Producer;

do NegotiateAux(Consumer as Proposer, Producer as CounterParty);

}

global protocol NegotiateAux(

role Proposer as A, role CounterParty as B) {

choice at B {

accept() from B to A;

confirm() from A to B;

} or {

reject() from B to A;

} or {

propose(SAP) from B to A;

do NegotiateAux(B as Proposer, A as CounterParty);

} }

25 / 42

Resource Usage Control (interruptible)

I User, Resource Controller, Instrument Agent

I U registers with C to use a resource (instrument) via A for a
specified duration (or another metric)

U C A
req(int)

start

data

data(2)

...
...

(1)

U C A

pause

resume

(1)

stop

timeout

timeout

(2)

I https://confluence.oceanobservatories.org/display/CIDev/

Resource+Control+in+Scribble

26 / 42

Extending MPST with interruptible conversations

I Well-formed global types traditionally rule out any ambiguities
between roles in conversation instances

I Sent messages are expected and vice versa
I No messages lost or redundant

27 / 42

U C A
req(int)

start

data

data

pause

data

resume

A valid trace

I Asynchronous interrupts: inherent
“communication races”

I Interruptible is a mixed choice,
also completely optional

I Concurrent and nested interrupts
I Asynchronous entry/exit of

interruptible blocks by roles

RUC Scribble 1/5 (streaming)
global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

rec Y {

data() from A to U;

continue Y;

}

}

28 / 42

RUC Scribble 2/5 (interruptible stream)
global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

interruptible {

rec Y {

data() from A to U;

continue Y;

} }

with {

pause() by U;

}

resume() from U to A;

}

29 / 42

RUC Scribble 3/5
global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

interruptible {

rec X {

interruptible {

rec Y {

data() from A to U;

continue Y;

} }

with {

pause() by U;

}

resume() from U to A;

continue X;

} }

with {

stop() by U;

timeout() by C;

} }

30 / 42

RUC Scribble 4/5
global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

req(int) from U to C;

start() from C to A;

interruptible {

rec X {

interruptible {

rec Y {

data() from A to U;

continue Y;

} }

with {

pause() by U;

}

resume() from U to A;

continue X;

} }

with {

stop() by U;

timeout() by C;

} }

31 / 42

RUC Scribble 5/5 (conversation scopes)
global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

req(int) from U to C;

start() from C to A;

interruptible _1 {

rec X {

interruptible _2 {

rec Y {

data() from A to U;

continue Y;

} }

with {

pause() by U;

}

resume() from U to A;

continue X;

} }

with {

stop() by U;

timeout() by C;

} }

32 / 42

MPST-based distributed protocol monitoring 1/3
req(int) to C;

interruptible _1 {

rec X {

interruptible _2 {

rec Y {

data() from A;

continue Y;

} } with {

throws pause() to A;

}

resume() to A;

continue X;

} } with {

throws stop() to A, C;

catches timeout() from C;

}

I Builds on formal MPST-FSM encoding
I Interruptible scopes modelled by dynamically nested FSMs

[ESOP12] Multiparty Session Types Meet Communicating Automata.
Deniélou and Yoshida.

33 / 42

Projection and FSM for U

1 2

MPST-based distributed protocol monitoring 2/3

with conv.join(’user’) as c:

c.send(controller, ’req’, 100)

with c.scope(’timeout’ ’stop’) as c1:

while not self.enough_data():

with c1.scope(’timeout’, ’stop’) as c2:

while not batch.full():

next = c2.recv(agent, ’data’)

batch.append(next)

c2.interrupt(’pause’)

process_data(batch)

c1.send(agent, ’resume’)

c1.interrupt(’stop’)

I MPST monitoring requirements: complete mediation, Scribble
metadata (embedded in payload: msg. operator, source/dest.)

I Errors detected: non-conformance to protocol

I Local actions: bad I/O, bad operator, bad source role, . . .
I Remote: firewall exepected messages (operator, role)

34 / 42

1 2

MPST-based distributed protocol monitoring 3/3

I Local monitoring of endpoint and environment conversation
actions

I Dynamic verification of MPST communication safety

[RV13] Practical Interruptible Conversations – Distributed Dynamic

Verification with Session Types and Python. Hu et al.

[FMOODS13] Monitoring networks through multiparty session types. Bocchi
et al.

[TGC11] Asynchronous distributed monitoring for multiparty session

enforcement. Chun et al.

35 / 42

Dynamic verification of MPST (with interruptible)

I MPST motivations:

I MPST type systems typically designed for languages with
first-class communication and concurrency features

I Distributed systems motivations:

I Heterogenous languages, runtime platforms, implementation
techniques, . . .

I Unavailable source code

I OOI use case motivations:

I Python (untyped languages)
I OOI governance stack

I Interruptible:

I Dynamic creation of nested FSMs for fresh scope generation

36 / 42

OOI Demo

37 / 42

Static session type checking
I Session typing checks endpoint code against projections

I Built for a target language (extension) or API
I Mapping of protocol “constants” to program entities
I Conformance of control flow to protocol structure

session *s;

role *B, *Seller;

session_init(&argc, &argv, &s, "TwoBuyers_A.scr");

send_string(str_title, B, TITLE);

recv_int("e, Seller, QUOTE);

while (true) {

probe_label(&label, B);

if (has_label(label, "accept")) {

vsend_string(result_str, 2, B, Seller);

break;

} else if (has_label(&label, "retry")) { continue;

} else if (has_label(&label, "quit")) { break;

} }

I C [TOOLS’12], OCaml [CSF’09], Java [COORD’10], others...

38 / 42

Conclusion

I Scribble adapts MPST to practical distributed application
development

I Global protocol specification and validation
I Local projection and FSM generation
I Conversation API and runtime endpoint monitoring

I Many future directions

I Extending Scribble/MPST to capture additional forms of
interaction

I Integrating Scribble with other specification/programming
techniques

I Driven by use cases

I Reference list (from p18):
http://mrg.doc.ic.ac.uk/presentations/tgc13/August13.pdf

I https://github.com/scribble (demo’d tools not fully available
just yet but soon)

39 / 42

Binary Session Types Reading

I Honda, Vasconcelos and Kubo. Language Primitives and Type Discipline

for Structured Communication-Based Programming. In European

Symposium on Computing, volume 1381 of LNCS, pages 122–138.

Springer, 1998.

I Gay and Hole. Subtyping for session types in the pi calculus. Acta

Informatica, 42(2/3):191–225, 2005.

I Vasconcelos. Fundamentals of Session Types. Information and

Computation. Elsevier, 217:52–70, 2012.

I SePi, A pi-calculus based language with linearly refined session types,

http://gloss.di.fc.ul.pt/sepi/

I Caires, Pfenning and Toninho. Linear logic propositions as session types.

Mathematical Structures in Computer Science, 2013. To appear.

40 / 42

MPST Reading

I
Multiparty asynchronous session types. Honda, Yoshida and Carbone.

POPL 2008

I
Global progress in dynamically interleaved multiparty sessions. Bettini,

Coppo, D’Antoni, De Luca, Dezani-Ciancaglini and Yoshida. CONCUR

2008

I
Scribbling interactions with a formal foundation. Honda, Mukhamedov,

Brown, Chen and Yoshida. ICDCIT 2011

I
Asynchronous distributed monitoring for multiparty session enforcement.

Chen, Bocchi, Denilou, Honda and Yoshida. TGC 2011

I
Structuring communication with session types. Honda, Hu, Neykova,

Chen, Demangeon, Denilou and Yoshida. COB 2012

41 / 42

MPST Reading

I
Multiparty Session Types Meet Communicating Automata. Deniélou and

Yoshida. ESOP 2012

I
Monitoring networks through multiparty session types. Bocchi, Chen,

Demangeon, Honda and Yoshida. FMOODS 2013

I
Practical Interruptible Conversations – Distributed Dynamic Verification

with Session Types and Python. Hu, Neykova, Yoshida and Demangeon.

RV 2013

I More references (from p18):

http://mrg.doc.ic.ac.uk/presentations/tgc13/August13.pdf

42 / 42

	popl2014.key-bis
	main-bis

